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Abstract. This paper demonstrates diverse uses of mutually-complementary digital 

tools through the perspective of technology-immune/technology-enabled K-16 

problem solving and compares this perspective with the theory of instrumental 

genesis. The demonstration and comparison take place over the background of the 

modern-day mathematics teacher education. The ideas of the theory of instrumental 

genesis are extended to include multiple instruments, multiple subjects, and 

multiple objects in the context of a single, yet open-ended mathematical task. An 

interplay between basic and advanced instrumentations (alternatively, technology-

immune activities) is considered in the context of using multiple instruments. 

Mathematical models that support the discussion include a system of two linear 

algebraic equations in two unknowns, a non-linear indeterminate algebraic equation 

in two unknowns, a two parametric linear difference equation of the second order 

and its non-linear recursive modification.  
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1.  Introduction 

 

 The aim of this paper is to connect the notion of technology-immune/technology-

enabled (TITE) problem solving originally introduced in [3] as an extension of Type II uses 

of technology framework [33] to the theory of instrumental genesis [37] with its origin in the 

seminal ideas by Vygotsky [44] about mediating cognitive processes, learning included, by 

technical devices and psychological tools. Solving a TITE mathematical problem cannot be 

outsourced entirely to a technical device capable of diverse numeric and/or symbolic 

computations, yet the role of this device in dealing with the problem is critical. A TITE  

mathematical problem solving may include the use of multiple software products (digital 

devices) in support of a single task. In many cases, using different tools – numeric, symbolic, 

graphic –  not only provides support in solving a problem but it motivates one‟s deep thinking 
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about computationally obtained results that can lead to posing a new problem or a family of 

problems.  

 Due to the advent of computers in education, the theory of instrumental genesis is 

used by researchers to study how new pedagogical ideas about the appropriation of an artifact 

as a material object and its elaboration to become an instrument as a psychological concept 

develop. After an artifact is turned into an instrument, the latter becomes inserted between the 

subject (user of digital technology) and the object (task) and can act bi-directionally; that is, 

affecting both the completion of the task and intellectual development of the user. According 

to Vygotsky [44], “the instrumental method distinguishes a twofold relation between 

behavior and an external phenomenon [which] … can play the role of the object toward 

which the act of behavior is directed … [and] of a means by means of which we direct and 

realize the psychological operations (memorizing, comparing, selecting, etc.) necessary for 

the solution of the problem.”  By acting towards the task, an instrument evinces pragmatic 

mediation and by acting towards the user it supports epistemic mediation [31]. This duality of 

the role of an instrument in problem solving allows one to see the TITE concept through the 

lenses of the theory of instrumental genesis. Indeed, whereas during a technology-enabled 

stage of activity an instrument extends mental capacity of a subject, during a technology-

immune stage of activity, by transforming an artifact into an instrument, the subject grows in 

his/her cognitive power.    

 This paper presents a variety of examples from different grade levels of mathematics 

to elucidate a close relationship between two educational perspectives on learning in the 

digital era. While some examples will be mentioned briefly in making different points, three 

illustrations of using multiple instruments in the context of a single problem will be described 

in detail. Mathematical models associated with these illustrations include a system of two 

linear equations with two unknowns (with the origin at the elementary level), a non-linear 

indeterminate equation in two variables (stemming from the middle or secondary school 

levels), and a linear two parametric difference equation of the second order (arising at the 

secondary or tertiary levels). Using software tools as diverse as Kid Pix [10], The Geometer’s 

Sketchpad [26] (referred to below as GSP), the Graphing Calculator [8] (referred to below as 

GC), Wolfram Alpha (https://www.wolframalpha.com; referred to below as WA), Maple [15], 

and Excel spreadsheet, both similarities and differences between TITE problem solving 

methodology and instrumental genesis theory in the context of mathematics teacher education 

will be demonstrated. Prospective teachers‟ reflections on the use of digital instruments, both 

at the basic and advanced levels, as means of learning mathematics for teaching are included 

in the section on teacher education. Finally, the paper will emphasize the important role of 

mutually-complementary digital instruments in promoting experiment-oriented methods of 

teaching mathematics in the modern-day educational environment. 

 

2. Two types of technology application in education 

 

 Despite all technological innovations available for teaching and learning in the 21
st
 

century, the pedagogy of a mathematics classroom might still be found focusing on drill and 

practice (D&P). In arithmetic, D&P may include placing right answers in boxes in response 

to addition, subtraction, multiplication, or division queries to be either accepted or rejected by 

a computer. In geometry, D&P may include the construction of basic shapes or comparing 

their areas through computational measurement (e.g., stamping the correct shape in response 

to a quest for selecting a specific shape from several shapes available or considering numeric 

evidence as proof of congruency when a triangle is cut in two parts by a median). In 

computer-assisted algebra, D&P may include using trial and error in finding roots of 
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quadratic equations to be approved by a computer, factoring polynomials, or inverting 

functions and matrices with the help of software. 

 In the early 1980s,  at the outset of using computers in the schools, Maddux [33] 

referred to teaching through D&P in the general context of education as Type I uses of 

technology and advocated for using technology in support of “new and better ways of 

teaching” (p. 38, italics in the original). He called such new ways of integrating computer-

assisted didactics as Type II applications of technology. The Type I vs. Type II distinction 

proved to be pedagogically effective as two decades later, a book edited by Maddux and 

Johnson [34] included diverse classroom experiences specifically reflecting on successful 

Type II computer-assisted pedagogies. In mathematics education, solving and posing 

multistep problems, using mathematical concepts as tools in computing applications, or 

exploring curricular topics that otherwise are not grade-appropriate (or simply unattainable) 

are examples of Type II computer-assisted pedagogies.  

 The notion of the two types of technology applications is not only a pedagogically 

useful distinction between different perspectives on technological mediation. This notion 

highlights the dichotomy between instructivist and constructivist learning environments [11] 

that are, as far as mathematics is concerned, aimed at, respectively, nurturing procedural 

skills and developing conceptual understanding of the skills as the foundation of procedural 

competence. Whereas instructivist learning environments are very specific and quite limited 

in terms of their learning outcomes, constructivist learning environments help learners to 

develop the so-called epistemic fluency [35] – the ability to use productive thinking [51] and 

conceptual shortcuts [14] as means of conceptual knowledge construction and cultivation of 

computational competence. Epistemic fluency can be both epistemically mediated by an 

instrument developed from an artifact and expertly used in turning an artifact into an 

instrument. Just as the boring and clumsy uses of mathematics could (and should) motivate 

the development of its more procedurally effective concepts (e.g., addition vs. counting, 

multiplication vs. repeated addition, decimals vs. common fractions), one‟s mundane 

experience with Type I application of technology can motivate the epistemic development of 

creative ideas to support educational applications of Type II.  

 One can observe that the growth in symbolic computation capabilities of 

mathematical modeling software makes the outcome of problem solving dependent on “an 

automatic transport phenomenon” [23, p. 205, italics in the original] – the subject‟s ability to 

correctly input all the problem‟s data into a computer. This phenomenon also blurs the 

dichotomy between Type I and Type II technology applications. In order to continue securing 

benefits from Maddux‟s [33] educational framework, the notion of Type II uses of 

technology has to be elevated to a higher level where one deals with TITE problems. One can 

say that the TITE problem-solving methodology is the Type II application of technology of 

the second order. 

 

3. TITE methodology as instrumental genesis 

 

 As was mentioned in the introduction, the theory of instrumental genesis has been 

used by educational researchers  to study how new pedagogical ideas about the appropriation 

of an artifact as a material object and its elaboration to become an instrument as a 

psychological concept in support of carrying out a particular task take shape. In the modern 

era, computers are commonly used as technical devices and the symbolic language of 

mathematics serves as a psychological tool that mediates thinking as a high-level mental 

activity associated with the use of computers. In terms of the theory of instrumental genesis, 

technology-immune (TI) part of problem solving may be construed as “instrumentation” – a 

process through which a subject (i.e., a user of a digital tool) develops intellectually (e.g., by 
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selecting appropriate mathematical concepts to be used in computing applications); its 

technology-enabled (TE) part may be construed as “instrumentalization” – a process through 

which an artifact (i.e., a digital tool) broadens the realm of utilization. As Lonchamp put it, 

“In the instrumentation process, the subject develops, while in the instrumentalization process, 

the artifact evolves” [31, p. 216]. Within a  TITE activity, its TI part represents the subject‟s 

thinking about how to use software as an instrument which mediates problem solving – this 

can be seen as the process of instrumentation because the use of software (high-tech artifact) 

shapes this thinking. By the same token, a TE part represents the case when software, after 

being transformed into an instrument, enables the process of instrumentalization due to which 

the resolution of a particular problem/situation can be computationally enhanced as a new 

application of software has been developed. Just as TI mathematical activities can differ in 

complexity on the spectrum from basic to advanced, one may distinguish between basic and 

advanced instrumentations as a subject turns an artifact into an instrument. 

 For example, one can use a spreadsheet to generate consecutive square numbers 1, 4, 

9, 16, 25, … by entering these numbers one by one into the cells of the spreadsheet or as 

squares of the corresponding natural numbers entered, perhaps recursively, into an adjacent 

column or row. This action may be considered as a basic instrumentation in operating a 

spreadsheet.  Alternatively, the square numbers can be generated as partial sums of 

consecutive odd numbers 1, 3, 5, 7, 9, … . It is the relationship between two sets of integers 

(odd and square numbers) in the form  𝑛2 =   𝑛 − 1 2 +  2𝑛 − 1 , or, alternatively, 𝑛2 =
1 + 3 + 5 + ⋯ +  2𝑛 − 1 ,  that is inserted as a psychological tool between the subject and 

the spreadsheet. This TI-type action by the subject can be characterized as an advanced 

instrumentation for it requires knowledge of (although quite obvious) relation between two 

consecutive squares expressed through a diagram of Figure 1. In particular, the diagram 

shows how augmenting a square by a gnomon (which geometrically represents an odd 

number as a double plus one) results in the next (integer sided) square.  

 By the same token, the capability of a spreadsheet to accommodate this and other 

mathematical relations and formulas through the technique of cell referencing makes it 

possible to use this computational tool, originally developed for activities outside of 

(mathematics) education, as a medium of demonstration through numerical evidence how 

different sets of integers are related. That is, integrating mathematical knowledge (either 

basic or advanced) and a spreadsheet constitutes a TE part (or instrumentalization) of the 

TITE methodology when a spreadsheet becomes an artifact turned into an instrument in order 

to be used outside the domain of its originally intended agency. 

 

 

Figure 1. Diagrammatic representation of algebraic 

formula. 

 A TITE  mathematical problem 

solving may include the use of multiple 

artifacts (digital devices) in support of a 

single task. In the case when the devices 

are complementary such use of technology 

may be considered through the lenses of 

double stimulation for a subject who is 

assigned a specific task or extends the 

assignment in a computational discovery 

fashion. The method of double stimulation 

is based on the idea of “using two sets of 

stimuli, one the primary set that has to be 

mastered and the other an auxiliary set that 
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can serve as an instrument for mastering the primary set” [32, p. 47]. For example, in 

deciding the convergence of the series  
1

𝑛2
∞
𝑛=1   – the first stimulus – a subject can first extend 

the spreadsheet filled with consecutive squares to numerically model partial sums of their 

reciprocals (instrumentalization) to see the apparent convergence of the partial sums to the 

number 1.6449… . Then, using WA, the subject can find out  that  
1

𝑛2
∞
𝑛=1 =

𝜋2

6
 (identity 

known as the Basel Problem solved by Euler in 1735) and compare (instrumentation) a 

decimal approximation of  
𝜋2

6
  to the decimals generated by the spreadsheet. That is, the 

second set of stimuli may be referred to as an integrated spreadsheet [4] as it consists of two 

rather distinct devices having complementary computational capability – numeric and 

symbolic. One can see how integrating commonly available digital instruments can be used in 

mastering the decision about the convergence of a series, thus indicating that, indeed, “double 

stimulation is not a mechanical process; the prevailing instruments and procedures have to be 

creatively adapted for solving the problems encountered” [39, p. 245]. Furthermore, the 

presence of the numberp , which typically is associated with circular functions, may motivate 

one to look into the nature of the sums of the reciprocals of squares of integers and find out 

(the instrumentation) how great Euler solved the Basel Problem [19]. One can see that using 

two digital tools not only provides support in solving a problem (the first stimulus working in 

a TE fashion or enabling instrumentalization) but it can motivate one‟s deep thinking 

(belonging to the second set of stimuli working epistemically in a TI fashion or enabling 

instrumentation) about computationally obtained results.  

 

4. Multiple levels of instrumentation call for a new curriculum 

 

 A point can be made that as the sophistication of digital tools progresses, 

mathematical problem-solving practices with the use of technology, that until recently were 

considered among Type II pedagogies, become less and less intellectually engaging. This 

reduction in complexity of doing mathematics in the digital era blurs the distinction between 

the two types. Put another way, a digital tool with highly sophisticated symbolic computation 

capabilities enables mathematical problem solving to be reduced to a simple push of a button 

(e.g., using WA in factoring the polynomial 𝑥3 − 2𝑥2 − 2𝑥 − 3,  or solving the equation 

1

x
+

1

y
=

1

4
 in positive integers as shown in Figures 2 and 3, respectively; although the latter 

case does require being specific about the nature of x and y before asking the tool to solve the 

equation by clicking at the equal sign in its input box).  

 

Figure 2. Factoring polynomial with WA. 
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Figure 3. Solving an indeterminate equation with WA. 

 

 It should be noted that the type of technology usage or the level of instrumentation 

associated with a particular mathematical activity may depend on what kind of tool is 

selected to support the activity. For example, in the context of the GSP the construction of, 

say, the point (1, 1) requires just typing the coordinates in the Plot Points dialogue box of the 

Graph menu of the program. The activity is purely of a TE type and the program is used as an 

instrument requiring only the very basic level of instrumentation. Yet, in the context of the 

GC, whereas such construction is possible, it requires digital fabrication [12, 22, 49] of the 

point through graphing the system of inequalities  𝑥 − 1 < 𝜀,  𝑦 − 1 < 𝜀 for a sufficiently 

small e , something that represents the point in the form of a tiny square of side 2e . If one 

wants to digitally fabricate the point in the form of a tiny disk of radius  𝜀, one has to graph 

the inequality (x-1)
2 

+
 
(y-1)

2 
 ;; that is, to graph a set of points located inside a circle of 

radius e  centered at the point (1, 1).  

 One can see that the use of the GSP in plotting a point falls into Type I category, 

alternatively, requiring basic instrumentation, and digitally fabricating the point in the context 

of the GC is an example of a Type II use of technology of the second order for it requires not 

only knowledge of two-variable inequalities but the application of this knowledge through the 

process of digital fabrication. In other words, the use of the GC in plotting a point through a 

TITE problem-solving methodology can be referred to as turning an artifact into an 

instrument requiring an advanced instrumentation. Furthermore, one can characterize the 

TITE digital fabrication of geometric objects in the context of the GC as instrumentalization 

– a process through which this computer application broadens the realm of utilization by 

defying the perceived constraints, typical for artifacts, through revealing, for a novice user, 

hidden, yet available, psychological operations. 

 The above examples can demonstrate that whereas in the context of a single tool, 

Type I and Type II applications may become indistinguishable, in the context of more than 

one tool, Type I may become Type II and vice versa. Alternatively, depending on a tool, a TE 

activity (or instrumentalization), to be successful, requires augmentation by a TI component 

(or advanced instrumentation). Not only a complex TITE activity can be seen through the 

lenses of instrumental genesis, but such pedagogically diverse affordability of high-tech 

software products may call for a new mathematics curriculum which allows for the unity of 

cognitive engagement and technology use as essential elements of mathematical problem 

solving. This new curriculum should take into consideration both positive (conceptual 

development) and negative (button pushing) affordances of computer technology. Put another 

way, the need for mathematical problem solving supported by the instrumental perspective on 
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TITE methodology motivates the development of new pedagogical ideas for problem posing 

[5].  

 As was already mentioned in the introduction, the theory of instrumental genesis 

distinguishes between pragmatic mediation when an instrument is used by a subject to reach a 

certain goal and epistemic mediation when through the use of an instrument the subject 

develops intellectually [31]. When the goal is to solve a mathematical problem using an 

instrument, one can talk about pragmatic mediation by the instrument. Posing a similar 

problem or modifying the original one using this instrument requires insight into the problem 

situation and understanding of how the instrument was used. In the case of problem posing, 

the instrument is directed toward the subject for whom it provides epistemic mediation. In 

other words, epistemic mediation is “a deliberate process of deepening inquiry by creating 

external knowledge artifacts  that … provide stepping stones for directing and guiding further 

personal or collective inquiry efforts” [39, p. 244]. One can say that pragmatic mediation 

represents a TE part of an activity and epistemic mediation represents a TI part of the activity. 

For example, in the case of using an instrument by a subject in the context of a computational 

experiment, an instrument, by pragmatically mediating the experiment, delivers information 

and this can be seen as a TE part of the activity. But experimental data has to be explained 

and, through a TI part of the activity, an epistemic mediation takes place as a way of seeking 

explanation of the results of the experiment. Put another way, at the beginning of TITE 

problem solving, pragmatic mediation leads to the delivery of numeric, graphic, or symbolic 

information. Then, epistemic mediation comes into play as a reflection on problem solving to 

enable new problems to be formulated. The pioneering ideas by Isaacs [25] about information 

vs. explanation cognitive paradigm can nowadays be described in terms of an interplay 

between  pragmatic and epistemic mediation. 

 

5. An incorrect use of an instrument prompts a modification of instrumentation  

 

 Verillon and Rabardel provided what they called “a simplified example of 

instrumental genesis: a baby learning to use a spoon … [a process through which] he acquires 

some knowledge about the behavior of liquids [e.g., milk] as opposed, say, to mashed 

potatoes” [43, p. 85]. These authors used this context as an example of learning through 

instrumentation when a spoon from an artifact becomes an instrument inserted between the 

source of food and the baby and it acts bi-directionally. This example can also demonstrate a 

negative affordance of an instrument, something that may not necessarily be appreciated by a 

subject. Indeed, a baby may simply not care whether milk stays in the spoon or is spilled over 

on its way to his mouth. While a baby may learn, as these authors suggested, that a spoon is 

not the right tool to carry milk, infants frequently do not care of the outcome. Nonetheless, 

baby develops some kind of understanding of the negative affordance of a spoon-based 

instrument as a carrier for milk, especially when being supervised or assisted by an adult (see 

a citation from Vygotsky [48] at the end of the paper).  

 Somewhat similarly, yet in a much more advanced learning situation, a student of 

undergraduate mathematics may use a spreadsheet to decide whether the harmonic series 

converges or diverges. The spreadsheet is programmed (basic instrumentation) to generate 

natural numbers, their reciprocals, and partial sums of the reciprocals within three columns, 

respectively. Because of an extremely slow growth of the partial sums, the so constructed 

spreadsheet (an artifact turned into an instrument) would not demonstrate the divergence of 

the harmonic series and, thereby, this computational experiment is likely to lead the student 

towards a wrong conclusion. However, spreadsheet is not spoon and series is not milk. That 

is why, an assistance of a „more knowledgeable other‟ is needed for mathematical learning to 

take place.  
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 With this in mind, as shown elsewhere [1], in order to demonstrate the divergence of 

the harmonic series, one can still use a spreadsheet, but its instrumentalization takes a very 

different path. It requires creating a two-dimensional modeling environment based on the 

knowledge of mathematics and spreadsheets. The mathematics part includes knowing 

Bolzano-Cauchy principle of convergence of a sequence which states that in order for the 

variable 𝑥𝑛  (in our case, 𝑥𝑛 =   
1

𝑖

𝑛
𝑛=1  – the sequence of partial sums of the harmonic series) 

to have a final limit it is necessary and sufficient that for any   0 there exists N > 0  such 

that the inequality  𝑥𝑛 − 𝑥𝑚  < 𝜀   holds true for all n > N , m> N . The spreadsheet part 

includes knowing the function INDEX, a special, not commonly known computing 

instrument. A similar example of the negative affordance of an instrument deals with the 

negative affordance of a hand-held graphing calculator as a means of exploring the limiting 

behavior of the function y = ln x+10sinx  as x grows larger through graphing [18], although 

it appears that, unlike a spreadsheet,  the calculator cannot be modified to enable an 

alternative instrumentation with a positive affordance outcome. To a certain extent, the 

calculator‟s representation of the logarithmic function at the infinity is reminiscent of baby‟s 

use of a spoon in carrying milk or any other liquid, in general. 

 

6. Managing information provided by the modern-day artifacts 

 

A TI part of a TITE activity can be at least of two types. The first type is when one 

uses mathematical concepts as tools in computing applications with the goal to turn an 

artifact into an instrument. One such example is the above-mentioned use of Bolzano-Cauchy 

principle of convergence in the context of a spreadsheet. The second type of a TI part of a 

TITE activity, depending on an instrument used, may include the need to analyze and make 

sense of numeric, symbolic, graphic, or even verbal information. For example, a spreadsheet 

can generate Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, … , and the use of the greatest 

common divisor function would demonstrate numerically that two consecutive Fibonacci 

numbers are relatively prime. This TE part of the activity can motivate a follow up 

explanation of this phenomenon in a TI fashion. In particular, one can connect Fibonacci  

recursion to the Euclidean algorithm. Indeed, by interpreting the sequence of relations 34 = 

21 + 13, 21 = 13 + 8, …, 2 = 1 + 1,  as representing the number in the left-hand side being the 

dividend, the larger and the smaller numbers in the right-hand side being, respectively, the 

divisor multiplied by the quotient 1, and the remainder, one can see that having the number 1 

as the last non-zero remainder, proves (due to Euclid) the relative primality of 34 and 21. 

Without loss of generality, this observation can be extended to any two consecutive Fibonacci 

numbers.  However, the use of other tools in this context may lead to some unexpected 

instrumental genesis outcomes. 

For instance, one can also enter the first few Fibonacci numbers into the input box of 

WA which immediately offers the recurrence relation and the generating function for 

Fibonacci numbers. While the term generating function sounds enticing, the very concept 

may be beyond the grade level of the subject involved. In that way, WA remains an artifact 

for the subject that would not act as a grade-appropriate instrumental psychological concept. 

Likewise, the Online Encyclopedia of Integer Sequences (OEIS
®

) as an artifact offers, among 

many other things, the continuation of the first few terms in the form 1, 1, 2, 3, 5, 8, 13, 39, 

124, … interpreting each term as the sum of the preceding two terms with the digits reversed. 

This unexpected interpretation by OEIS
® 

might turn an artifact into an instrument if one 

realizes that 39 = 31 + 8 and 124 = 93 + 31. An interesting instrumental genesis activity 

motivated by the above instrumentation, which is exactly of the TITE kind, is to program a 

spreadsheet to generate this sequence. Such variety of concepts that different artifacts make 
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available at the pre-instrumental level raises an issue of how a subject can manage the 

abundance of information with such an easy modern-day access [17]. That is, a TITE activity 

can provide either instrument-based or artifact-based information that may not be originally 

expected to be obtained and thus cannot be easily understood, let alone meaningfully 

interpreted, by a subject.  

 

7. TITE methodology illustrations as instrumental genesis  

 

7.1. Illustration 1: From early algebra to Cramer’s Rule with multiple instruments 

 

 Often, solving a word problem from the secondary school mathematics curriculum 

involves constructing a system of two linear equations in two unknowns and using algebraic 

transformations to find the unknowns. Problems of that kind can be reformulated in terms of 

grade-appropriate context and then introduced already at the early elementary level. The 

instrumental perspective on learning mathematics in the digital era makes it possible to insert 

technology between a student and a problem. For example, a student at that grade level can 

be asked to solve a (mathematical) word problem by trial and error using computer program 

Kid Pix – software for creative activities of young children. One can say that, in general, Kid 

Pix is already an instrument ready to be used by children, for example, by creating images of 

different objects, either available as stamps in the tool kit of the program or simply drawn 

using the program‟s multi-colored pencil. However, in order to be used for mathematical 

problem solving a child first encounters the program as an artifact and gradually transforms it 

into an instrument under the guidance of a teacher.  

 

7.1.1. Early algebra through the method of double stimulation 

 

 As an illustration when Kid Pix mediates problem solving through the method of 

double stimulation, consider the following problem [2]: 

 Five drimps and one grimp have the total of 16 legs. Four drimps and three grimps 

have the total of 15 legs. How many legs does a drimp have and how many legs does a grimp 

have? 

 Here, the use of the names drimp and grimp serve as a vicarious form for variables. In 

other words, the artificial creatures serve for a child as the first set of stimuli to deal with. Kid 

Pix serves as the second set of stimuli allowing for drawing pictures of the first set. A child, 

for example, can select (by drawing) drimp to have two legs and grimp to have four legs and 

then count the total number of legs among them in the double stimulation fashion. The child 

would end up with 14 legs and would have to make a different selection as this trial ends up 

in error. What if we have a three-legged drimp? Then, by drawing five three-legged drimps 

the child would count 15 legs leaving just one leg for the remaining one grimp. This trial 

works for the first condition. Could this combination, Drimp = 3 and Grimp = 1 work for the 

second condition? It can, as four three-legged drimps have 12 legs and three one-legged 

grimps have 3 legs thus having 15 legs among them. The problem has been solved (Figure 4). 

Without realizing it, the child managed to solve a system of two linear equations with two 

unknowns as a trial and error physical activity by partitioning 16 objects into five groups of 

one cardinality and a single group of another cardinality, and then, using the same 

cardinalities, by partitioning 15 objects into four and three such groups. 
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Figure 4. Using Kid Pix as an instrument. 

  

7.1.2. Discovering conceptual bond 

 

 Now, a child is ready to move from the instrument-created solution to its description 

through numbers and words. When such a move is encouraged by a teacher, it reflects the 

position by Vygotsky regarding instruction which “is only useful when it moves ahead of 

development … [as it] impels or wakens a whole series of functions that are in a stage of 

maturation lying in the zone of proximal development” [47, p. 212, italics in the original]. 

Working within this zone, the child can generate the following description of the images 

using “the second order symbolism which involves the creation of written signs for the 

spoken symbols of words” [46, p. 115]: 5 Drimps + 1 Grimp = 16 Legs and 4 Drimps + 3 

Grimps = 15 Legs. Put another way, the child described self-created images (with the help of 

an instrument) in the form being a precursor for the equations 5D+G =16 and 4D+ 3G =15. 

Writing these equations using the words drimp and grimp can be mediated by the features of 

Kid Pix that may be seen as another case of double stimulation by the images of creatures as 

the first stimulus (Figure 4) and “speaking” (by Kid Pix) numerals and letters as the second 

stimulus (Figure 5). Whereas the picture is concrete and describes situation provided by the 

word problem, the equations (which are not really equations in the mathematical sense) 

provide foundation for seeing the picture in a more general way as the description of the 

manifold of situations of which the situation with drimps and grimps is just one of the many. 

This interplay between concrete and abstract was described by Vygotsky [45, section 3] as 

follows.  

“Let us compare the direct image of a nine, for example, the figures on playing 

cards, and the number 9. The group of nine on playing cards is richer and 

more concrete than our concept “9,” but the concept “9” involves a number 

of judgments which are not in the nine on the playing card; “9” is not 

divisible by even numbers, is divisible by 3, is 3
2
, and the square root of 81; 

we connect “9” with the series of whole numbers, etc. Hence it is clear that 

psychologically speaking the process of concept formation resides in the 

discovery of the connections of the given object with a number of others, in 

finding the real whole. That is why a mature concept involves the whole 

totality of its relations, its place in the world, so to speak. “9” is a specific 

point in the whole theory of numbers with the possibility of infinite 

development and infinite combination which are always subject to a general 

law”.  

  Just as a child may not be mature enough to see in the image of the number 9 on a 

playing card a variety of abstractions described by Vygotsky, he or she is not yet cognitively 
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developed to comprehend the meaning of the word equation as a concept. Yet, the use of Kid 

Pix as an instrument of early algebra instruction makes it possible using equal sign at the 

level of counting and adding familiar objects within two concrete sets followed by comparing 

the sum of cardinalities of the two sets to a given number of objects. Paraphrasing Vygotsky, 

one can say that the process of formation of the concept of the system of two linear algebraic 

equations with two unknowns may ultimately lead one to discover that two triples of integers, 

(5, 1, 16) and (4, 3, 15), form a conceptual bond which, in a geometric domain, forces the 

straight lines described by the linear equations (informally constructed by the child within the 

zone of proximal development as a reflection on counting legs on drimps and grimps) to 

intersect at the point the coordinates of which represent the number of legs on each creature 

(Figures 6-8). In particular, from a problem-posing perspective, this implies that an arbitrary 

change of data in the conceptual bond does not necessarily allow for a solvable problem as 

two lines do not necessarily intersect, let alone at a point with integer coordinates. The next 

section will discuss the issue of problem posing from an instrumental perspective, which is 

especially relevant for teacher candidates‟ mathematics learning. 

 

7.1.3. From problem solving to problem posing using a spreadsheet 

 

 The process of formation of the concept of two linear equations in two unknowns can 

motivate the construction of an instrument for posing numerically coherent (i.e., solvable) 

problems [5] about drimps and grimps. This instrument can be constructed in the context of a 

spreadsheet and, being complementary to Kid Pix, it could be utilized by teachers in posing a 

variety of problems to be solved by young children using Kid Pix. More generally, the 

instrument in question can be used to pose any kinds of problems described by a system of 

two linear equations in two (positive integer) unknowns. The construction of such a 

spreadsheet is a clear-cut TI activity (alternatively, an advanced instrumentation) for it is 

based on the Cramer‟s rule well known from linear algebra. This rule, in our case, expresses a 

solution to a system of two linear equations with two unknowns (the number of legs on each 

creature) in terms of the determinants constructed out of the above two triples of integers 

which serve as the coefficients of the equations. Using a spreadsheet-based instrument is a 

clear-cut TE activity (or instrumentalization carried out in a trial and error fashion) for it 

requires one to „play‟ with six scroll bars and watch when two cells in the right-hand side of 

the instrument display a solution (the values of the unknown number of legs or just any two 

unknowns whatever the context). For example, as shown in Figure 5, the two triples (3, 3, 15) 

and (2, 3, 14)  yield the solution (1, 4) –  a one-legged drimp and a four-legged grimp.  

 The programming of the problem-posing instrument includes formulas in two cells to 

compute the values of unknowns through Cramer‟s rule (whatever the data entered into cells 

B4, D4, F4, B10, D10, F10 using the scroll bars) and in another two cells displaying the 

results of calculations in the case of positive integers only. More specifically:  

 Cell H2 (with hidden calculations): = (F4*D10-F10*D4) / (B4*D10-B10*D4), 

 Cell J2 (with hidden calculations): = (B4*F10-B10*F4) / (B4*D10-B10*D4), 

 Cell H6: =IF(OR(INT(H2) < H2,  INT(I2) < I2,  H2 <=0, I2<=0)," ", H2), 

 Cell J6: =IF(OR(INT(H2)<H2,INT(I2) < I2, H2<=0, I2<=0)," ", I2). 

 The programming of the spreadsheet can be modified to allow for an extended context 

for which a non-integer solution is a possibility. 
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Figure 5. A problem-posing instrument. 

 

7.1.4. On the duality of instrumentalization 

 

 As a way of extending activities from early algebra to high school algebra in the 

context of teacher education, the spreadsheet-based instrument of Figure 5 can be augmented 

by another (already mentioned) artifact, the GC, requiring this time only a basic level of 

instrumentation in constructing a graphical representation of the system of two linear 

equations in two unknowns and its solution displayed through placing the cursor at the point 

of intersection of the graphs of two equations (Figure 6). Similarly, one can use the GSP in 

creating this representation (Figure 7). However, this time, using the latter artifact as an 

instrument is not as straightforward as when using the former artifact. Indeed, whereas the 

GC can graph (both linear and non-linear) relations of the form F(x, y) = constant, the GSP 

can be used as a graphing tool when relations between two variables are presented only in the 

functional form, y = f(x). In order to make a transition from the relation F(x, y) = constant to 

that of y = f(x), one has to go beyond the basic level of instrumentation afforded by the GC 

and make an algebraically accurate transition from one form to another in order to use the 

GSP as a graphing tool (Figure 7). Yet, in order to control the thickness of the graphs in 

Figure 7 one has only to select the line style from the Display menu, something that can be 

characterized as the basic instrumentation. Although the line style feature is not dynamic, it is 

still an infrastructural element of the software and, therefore, may be referred to as a “hot-

spot,” a term used [24] when describing a dynamic technological environment from the 

instrumental genesis perspective. 

  At the same time, if one wants to alter the thickness of lines representing the graphs 

in the context of the GC (which can graph relations but does not have the line style tool), 

such alteration requires advanced instrumentation. As shown in Figure 8, in order to change 

the default thickness of graphs plotted by the GC, one has to make an accurate transition from 

F(x, y) = constant to y = f (x)  and then graph the inequality  𝑦 − 𝑓(𝑥) < 𝜀  for sufficiently 

small  – a parameter that controls the thickness. Such interplay between two similar artifacts 

used as instruments in carrying out the same task is interesting in a sense that the level of 

instrumentation required depends on which artifact has been selected. Using the above-

mentioned example of instrumental genesis provided by Verillon and Rabardel [43], one can 

say that just as a strainer spoon and a regular spoon as artifacts can both be used in the 

preparation of a cup of tea, using these artifacts as instruments when dealing with leaf-loose 

tea requires different kind of instrumentation, depending on which of the two spoons is used. 

Perhaps this is what the developers of Ontario Mathematics Curriculum
1
 meant by referring 

                                                 
1
 The university where the author works is located the United States in close proximity to Ontario province of 

Canada and many of the author‟s students are Canadians pursuing their master‟s degrees in education. 
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to technology as “tools of mathematicians … [expecting that] students should be given 

opportunities to select and use the particular applications that may be helpful to them as they 

search for their own solutions to problems” [36, p. 15, italics added]. Such mutual duality of 

basic and advanced instrumentation of two seemingly similar artifacts points at the critical 

characteristic of the instrumental genesis – instrumentalization in the sense of technology-

enabled (TE) activity may require different levels of instrumentation, on the spectrum from 

basic to advanced, in the sense of technology-immune (TI) activity. One can also note that 

advanced instrumentation is often hidden within an infrastructural feature of software that 

provides users with a “hot-spot” [24] tool requiring basic instrumentation only. In other 

words, advances in the development of artifacts can be described as instrumentalization 

processes due to which a transition from advanced to basic instrumentation practices becomes 

possible. 

                 

Figure 6. Graphing with the GC as basic instrumentation. 

 

 

Figure 7. Graphing with the GSP as advanced instrumentation. 
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Figure 8. Changing thickness of lines with the GC as advanced instrumentation 

 

7.2. Illustration 2:  From tape diagrams to number theory with multiple instruments 

 

As was mentioned earlier in this paper, a TITE problem cannot be solved by software 

at the push of a button (even when such a push is preceded by thinking about the nature of 

unknowns like in the case of partitioning 1/4 into a sum of two unit fractions by WA as 

displayed in Figure 3), yet technology use in the process of TITE problem solving is critical. 

In this section, another, non-linear word problem will be explored using TITE problem-

solving methodology and multiple instruments with mutually-complementary roles. Through 

this exploration, which  will extend an earlier study of solving problems of that type in a 

multiple-application environment [7], the use of the instruments will be interpreted in terms 

of the theory of instrumental genesis.  

 To begin, one can check to see that the following question (a word problem) 

In how many days can each of two workers complete a certain job provided that by 

working together they can complete the job in four days?  

cannot be automatically answered (solved) by WA. In order to use this cutting-edge artifact as 

an instrument, one has to construct a mathematical model of the problem situation (a TI part 

or instrumentation) in the form of an algebraic equation and enter it into the input box of the 

artifact (a TE part or instrumentalization). That is, at the TI stage, WA, being inserted 

between the subject and the task, acts towards the former, thus supporting problem solving 

with epistemic mediation. To this end, one has to figure out that if x and y are unknowns 

representing the (integer) number of days sought and, without loss of generality, the unity is 

used to represent the entire work, then the reciprocals 
1

x
  and 

1

y
 represent their daily 

individual capacities (alternatively, average speed of their work) and the product 4(
1

x
+

1

y
)

  represents  the entire work carried out over four days so that the equation 4(
1

x
+

1

y
) = 1 or its 

equivalent form 
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1

x
+

1

y
=

1

4
                    (1) 

is a mathematical model of the problem using which WA can find x and y as it is shown in 

Figure 3. Equation (1) is a non-linear indeterminate Diophantine equation in two variables, 

that is, an equation with more than one integer solution. At this stage of problem solving, WA 

acts towards the task, thus supporting problem solving with pragmatic mediation. As a result, 

three possible pairs of integers representing an answer/solution to the word problem have 

been found: (8, 8), (6, 12) and (5, 20). 

 

7.2.1. Solving equation (1) using tape diagrams 

 

 Another tool that can be inserted between the subject and the task is purely visual by 

means of which the subject can “realize the psychological operations … necessary for the 

solution of the problem” [44]. More specifically, this TI part of solving the above word 

problem (or, put another way, to solve the indeterminate equation) is to find all the three 

solutions without using equation (1). Instead, one can reason with a tape diagram, a term 

coined in the United States by Common Core State Standards [16]. Such solution is shown in 

the diagram of Figure 9. To clarify, note that the top four bars show how four days of work of 

workers on par with each other can be divided into eight equal pieces of work, so that each 

worker does one piece of work daily. This means that each worker, working alone, would do 

the entire work in eight days and 
1

8
 of work in one day. Thus, 

1

4
=

1

8
+

1

8
. The four bars in the 

middle of the diagram show how four days of work can be divided into twelve equal pieces, 

so that one worker does two pieces of work daily and another (slower) worker does one piece 

of work daily. This means that each worker, working alone, can do the entire work in six and 

twelve days, i.e., 
1

6
 and 

1

12
 of work in one day, respectively. Thus, 

1

4
=

1

6
+

1

12
. Finally, the 

four bars at the bottom of the diagram show how four days of work can be divided into 

twenty equal pieces, so that one worker does four pieces of work daily and another (slower) 

worker does one piece of work daily. This means that each worker, working alone, can do the 

entire work in five and twenty days, i.e., 
1

5
 and 

1

20
 of work in one day, respectively. Thus, 

1

4
=

1

5
+

1

20
.  

 This shows that an isomorphism can be established between a TE solution generated 

by WA and a TI solution presented in Figure 9 through diagrammatic reasoning. In terms of 

instrumental genesis, reasoning with tape diagrams represents an example of double 

stimulation as two sets of stimuli have been involved – a three-part diagram and real-life 

context it represents. Nonetheless, one might notice that the first set of stimuli did have bars 

divided into two, three and five pieces, and ask as to why dividing a bar into four pieces was 

not included. This suggests that establishing an isomorphism between two solutions, the TE 

and the TI ones, can only validate the accuracy of the solutions but it does not prove that all 

solutions to equation (1) have been found. 
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Figure 9. Solving work problem using diagrammatic reasoning. 

 

7.2.2. Algebra as a psychological instrument of proof 

 

 Another TI part of this activity could be in making sense of the three solutions to 

equation (1) generated by WA (or found through reasoning with tape diagrams). To this end, 

the following question has to be addressed: How can one prove that equation (1) has indeed 

only three solutions? There are several ways to answer this question. One way is to introduce 

the identities 
1

n
=

1

n+1
+

1

n(n+1)
  and 

1

n
=

1

2n
+

1

2n
  to imply that when n = 4 the only 

candidates for a solution beyond those generated by the two identities, that is, 
1

4
=

1

5
+

1

20
 and  

1

4
=

1

8
+

1

8
, are the fractions 

1

6
 and  

1

7
; the latter one would have to be rejected, as the 

difference  
1

4
−

1

7
=

3

28
  is not a unit fraction. This exploration can also lead to posing new 

problems by altering the right-hand side of equation (1). Through this kind of problem posing, 

TI and TE activities become indistinguishable and converge into a single tool-mediated 

mathematical activity. Problem posing can also be seen through the lenses of instrumental 

genesis – a new pedagogical idea about using problem-solving data as “a means by means of 

which we direct and realize psychological operations” [44] for posing new problems, thus 

enriching the existing curriculum. In connection with the observation made at the end of the 

previous section, one can note that whereas algebra-based proof did provide rigor, something 

that the tape diagram approach did not, this observation has yet to be explained. 

 

7.2.3. Geometry software as an instrument of proof 

 

 One can also demonstrate that equation (1) has exactly three solutions by representing 

unit fractions through electronic fraction circles constructed in the context of the GSP. In 

many cases, this computer program can serve as a friendly, ready-to-be-used instrument. As 

was mentioned above, constructing a point with given coordinates, plotting graphs of 

functions, and changing the line style of the graphs are  examples of the basic instrumentation. 

However, in the context of proving that equation (1) has exactly three solutions, a special 

instrument has to be created to enable pragmatic mediation of the proof to be carried out in a 

geometric domain. To this end, a mini-program called a script has to be developed at an 
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advanced level of instrumentation. Typically, scrips are used for specific, multi-step 

geometric constructions.  Consider a task of constructing and then adding two fraction circles 

(unit fractions) in order to make a larger fraction. In the fractional form, the task was solved 

above “at the push of a button” by using WA (Figure 3) when representing 1/4 as a sum of 

two unit fractions. In a course of construction of a fraction circle one has to define the 

location of its center and the length of its radius. When constructing the sum of two (or more) 

unit fractions, their representations through fraction circles (or simply sectors of the circle) 

should have common center and the same length radii.  

 The main instrumentation (or TI) idea behind this construction task deals with a 

frequently overlooked (or taken for granted) fact that fractions may only be added when the 

same unit is their point of reference. This idea is hidden in the construction of a fraction circle 

when one defines its radius. As shown in Figure 10, the three pairs of fraction circles have the 

same radius, each pair sharing the center. Therefore, they may be added as geometric images, 

something that is taken for granted when the corresponding unit fractions are added in the 

numeric domain. Here, the concept of same unit is implicitly embedded in the construction of 

the very unit using its parts. A conceptual flaw which might occur at the action level 

(constructing fraction circles with different radii) might result in the erroneous image of the 

sum of such fractions. The three solutions follow from representing fraction circle 1/4 first as 

a sum of two equal fractions (1/8 and 1/8) leaving for unequal fractions only three options: 

one with 1/7 (bigger than 1/8), another with 1/6 (bigger than 1/7), and the last one with 1/5 

(bigger than 1/6). While this geometric approach is similar to the one described above in 

terms of algebraic identities, it provides one with a visually rich instrumental genesis 

approach to proof. Furthermore, one can see that dividing a bar in the tape diagram into four 

pieces is equivalent to dividing the fraction circle 1/4 into two pieces one of which would be 

represented by the unit fraction 1/16 and, due to the equality  
1

4
−

1

16
=

3

16
, the remaining piece 

would be represented by the fraction 
3

16
 which is not a unit fraction. Finally, due to the use 

of geometric reasoning as a means of proof the process of instrumentation does take place as 

one grows in conceptual understanding of ideas behind the arithmetic of fractions.   

 

 

Figure 10. Pragmatic mediation by a GSP-based instrument. 

 

7.2.4. Number theory as a psychological instrument of generalization 

 

 The above two ways of proving the number of solutions of equation (1) were based on 

ideas dealing with algebraic identities and geometric representations of operations on 

fractions. A more advanced proof may deal with the subject‟s use of number theory. To this 

end, one has to represent equation (1) in the form 

                                                                   y = 4 +
16

x - 4
                        (2) 
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(where, not by coincidence, 16 = 42 ) and show that only when the denominator x – 4 assumes 

the values 1 (when x = 5 thus y = 20), 2 (when x = 6 thus y = 12), 4 (when x = 8 thus y = 8), 8 

(when x = 12 thus y = 6), and 16 (when x = 20 thus y = 5), equation (2) has five whole 

number solutions two of which are symmetrical, thus leaving us again with exactly three 

solutions. One can note that each solution with unequal x and y has a symmetrical counterpart 

and therefore, in order to exclude symmetrical solutions from being counted twice, one can 

increase five by one and divide the sum by two. Equations (1) and (2) can be generalized to 

the forms 
1

x
+

1

y
=

1

n
 and 

                                                                   y = n+
n2

x - n
 ,                           (3) 

respectively, so that the number of partitions of the unit fraction 1/n into a sum of two like 

fractions would be equal to one half of the (odd) number of divisors of n2 increased by one. 

Note that an integer square has always an odd number of divisors. Indeed, if n = p
1

r
1 p

2

r
2 ...p

k

r
k  

(the prime factorization) then n2 = p
1

2r
1 p

2

2r
2 ...p

k

2r
k  and thereby, by the rule of product

2
, there 

are (2r
1
+1) ×(2r

2
+1) ...(2r

k
+1)  divisors of n2 as each prime factor p

i
 can be selected in 

2r
i
+1 ways with exponents ranging from zero to 2r

i
.  

 

 

Figure 11. WA shows that an integer square has an odd number of divisors. 

 

 This reasoning can be supported by WA which, can demonstrate that square of any 

integer has an odd number of divisors (e.g., in Figure 11 all divisors of the first 25 squared 

                                                 
2
 The rule of product means the following: if object A can be selected in m ways and if, following the selection 

of A, object B can be selected in n ways, then the ordered pair (A, B) of the two objects can be selected in mn 

ways. For example, if Orrin wants to buy a donut and a soft drink and there are three kinds of donut and four 

kinds of drink, then there are  3  4 = 12  possible choices of donut and soft drink that he can make. 
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integers are displayed in brackets). Therefore, there are 
(2r

1
+1) ×(2r

2
+1)...(2r

k
+1) +1

2
 ways 

to partition 1/n into a sum of two unit fractions.  When n = 4 we have n2 = 24 , that is 

r
1
= 2, r

i
= 0, i >1 and 

(2r
1
+1) +1

2
=

5+1

2
= 3 – the  number of ways the unit fraction 1/4 can 

be partitioned into a sum of two like fractions. In that way, WA becomes inserted between the 

subject and the task of proving and it acts bi-directionally in supporting the use of number 

theory as a psychological instrument of generalization. 

 

7.3. Illustration 3: Mediating experimental mathematics by multiple instruments 

 

  In this final illustration, another type of equation, a two parametric difference 

equation commonly used nowadays as a model of a discrete dynamical system, will be 

explored. In what follows, a TITE methodology will be presented as an educational analogue 

of experimental mathematics and described in terms of the theory of instrumental genesis.  

 

7.3.1. Pragmatic mediation using a spreadsheet 

 

 To begin, consider a mathematical model in the form of a linear difference equation 

of the second order 

                                      𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏𝑥𝑛−1 , 𝑥0 = 𝑥1 = 1 .                          (4) 

Using a spreadsheet as an artifact, that is, a tool to be turned into an instrument through a 

relatively uncomplicated TI programming activity, the subject can set a goal to model 

equation (4) numerically and, similar to the case of Fibonacci number sequence described by 

this equation when a = b = 1, explore the behavior of the ratios 
𝑥𝑛+1

𝑥𝑛
  for different values of a 

and b (Figure 12).  

            This requires the following (basic instrumentation) skills in spreadsheet programming:  

 1) designating two (perhaps slider-controlled) cells for the values of a and b (both 

positive and negative),  

 2) setting the initial values in two successive cells, and 

 3) defining in the next cell a formula through which, according to equation (4), a 

linear  combination of the contents of the previous two cells is created.  

As a result, the spreadsheet displays the following three values needed to solve equation (4) 

numerically: x
0
, x

1
, ax

1
+ bx

0
. Now, one has to define another formula, to the right of the cell 

with x
1
 to compute the ratio 

x
1

x
0

. It only remains to replicate the so-developed formulas down 

the rows (a TE part of the instrumental genesis) and, by changing the values of a and b, to 

observe the results of this computational experiment. These uncomplicated TITE activities 

turn an electronic spreadsheet into an instrument of experimental mathematics, enabling 

pragmatic mediation of the experiment in question.  

 Coincidentally, one can set a = 2 and b = -4 (Figure 12) noting that  a2 + 4b < 0; this 

inequality implies that the characteristic equation, 𝑥2 − 𝑎𝑐 − 𝑏 = 0,  of difference equation 

(4) does not have real roots.  As a result, one can observe that the ratios 
x
n+1

x
n

 form cycles of 

period three represented by the string of numbers {1, -2, 4} repeated over and over as n 

increases. Computing (or unintentionally discovering through „playing‟ with the coefficients 
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a and b) this three-cycle is a technology enabled (TE) part of the mathematical activity 

pragmatically mediated by the spreadsheet. However, an unexpected experimental result calls 

for explanation. In particular, a subject might wonder: Is there a rule that can produce 

coefficients a and b so that the ratios 
x
n+1

x
n

 always form cycles of period three? Answering this 

question is not possible without recourse to mathematical reasoning. At that point, another TI 

part of the activity begins, and it may require the use of tools capable of symbolic 

computations and enabling epistemic mediation of the subject.  

 

 

Figure 12. Turning an artifact into an instrument. 

 

7.3.2. WA and Maple as instruments of epistemic mediation 

In order to explore the behavior of the ratios 
x
n+1

x
n

, difference equation (4) can be 

transformed to the form 

                                                    𝑟𝑛 = 𝑎 +  
𝑏

𝑟𝑛−1
,  𝑟0 = 1                                        (5) 

where r
n

=
x
n+1

x
n

. It was observed that when a = 2 and b = -4, equation (5) generates a three-

cycle {1, -2, 4}. Therefore, in order to provide an explanation to this unexpected 

phenomenon, the subject has to deal with equation (5) keeping in mind that a2 + 4b< 0. The 

questions to be answered are: 

 Can equation (5) generate a three-cycle when a ≠ 2 and b ≠ -4?  

 Can equation (5) generate cycles of higher lengths for certain values of parameters a 

and b such that a2 + 4b < 0?   

 What are those values and how does a cycle‟s length depend on them?  

To answer these questions, a new series of TITE activities ensures. 

In order to find all cycles of period three, the subject can use equation (5) to compute 

(without using technology) 
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r
1
= a + b, r

2
= a +

b

g
2

= a +
b

a + b
=
a2 + ab+ b

a + b
,

r
3
= a +

b

g
3

= a +
b(a + b)

a2 + ab+ b
=
a3 + a2b+ 2ab+ b2

a2 + ab+ b
,

 

and then, after setting 𝑟3 = 1, to solve the equation 
a3 + a2b+ 2ab+ b2

a2 + ab+ b
= 1. This would lead 

to the following chain of equalities 

 

𝑎3 + 𝑎2𝑏 + 2𝑎𝑏 =  𝑎2 + 𝑎𝑏 + 𝑏, 𝑎3 + 𝑎2𝑏 − 𝑎2 + 𝑎𝑏 − 𝑏 = 0 

𝑎2 𝑎 + 𝑏 − 1 + 𝑏 𝑎 + 𝑏 − 1 = 0,    𝑎 + 𝑏 − 1  𝑎2 + 𝑏 = 0 
 

whence either  a + b – 1 = 0  or a2 + b= 0. Alternatively, replacing the above TI activity with 

a TE one, the subject can use WA as a tool capable of symbolic computations.  

Note that when b = 1 - a equation (5) generates r
n

= 1 for all n ≥ 0. Indeed, if b = 1 – a 

in (5) then 𝑟𝑛 = 𝑎 +
1−𝑎

𝑟𝑛−1
   whence r

0
= r

1
= r

2
= ...=1, something that may be considered as a 

trivial cycle of any period, in particular, of period three. Therefore, only those parameters a 

and b that satisfy the equation a2 + b= 0, provide equation (5) with a non-trivial cycle of 

period three.  Put another way, in the (a, b)-plane all three-cycles reside on the parabola 

defined by the equation a2 + b= 0 which, in particular, passes through the point (2, -4). 

 

 

Figure 13. Taking advantage of symbolic computations of WA. 

 

 As shown in Figure 13, WA, used as an instrument, confirms the correctness of the 

traditional algebraic transformations. It is always useful to have formal algebraic 

transformations confirmed by an instrument and vice versa, to have symbolic computations 

delivered by the instrument to be confirmed by algebra just to make sure that correct button 

on the artifact was pushed. Such dual confirmation would motivate the subject to use the 

instrument in the case of more complicated symbolic computations. This is shown in Figure 

14 where WA found that the relation a2 + 2b = 0  enables the emergence of cycles of period 
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four in recursive equation (5). Note that when 𝑏 = −𝑎2  and 𝑏 =
−𝑎2

2
  the inequality 

a2 + 4b < 0  holds true; put another way, the parabolas  𝑏 = −𝑎2  and 𝑏 =
−𝑎2

2
 are located 

under the umbrella of the discriminant parabola  𝑏 =
−𝑎2

4
. An interesting aspect of these 

explorations is the emergence of more than one parabola as a locus of parameters a and b 

which cause the ratios  
x
n+1

x
n

 in equation (4) to form cycles of any period greater than four. 

For more information see [6]. 

 

 

Figure 14. Computing a four-cycle using WA. 

 

 

Figure 15. Verifying locus of four-cycle using Maple. 
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7.3.3. Verifying theory through experiment using complementary instruments 

 

 Now, as a way of verifying theory, stemming from symbolic computations of WA and 

Maple, through a new experiment carried out by the joint use of the GC and a spreadsheet as 

complementary instruments, the subject can graph the parabola 𝑏 =
−𝑎2

2
 (Figure 16 where b = 

y and a = x) by the GC, set up a multi-digit precision in the Document Setting of the program, 

select a point on the parabola using the cursor, and then enter manually the coordinates of the 

selected point into the spreadsheet (Figure 17 where a = x = 1.765625 and b = y = -

1.55871582) to see the four-cycle {1, 0.206909, -5.76771, 2.035874}. In much the same vein, 

the subject can continue using WA or Maple to symbolically compute the equations of loci on 

which cycles of higher periods occur and verify the computations through the use of the GC 

and a spreadsheet as complementary instruments. As noted by Freudenthal, “It is 

independency of new experiments that enhances credibility … [for] repeating does not create 

new evidence, which in fact is successfully aspired to by independent experiments” [21, pp. 

193-194]. 

 

 

Figure 16. The GC as a complementary instrument to WA. 

 

 

Figure 17. Complementary use of a spreadsheet to the GC and WA. 
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 The joint use of the GC and the spreadsheet demonstrates how the subject‟s utilization 

of  multiple mutually-complementary instruments depends on a specific practice. When 

graphing a parabola, the form in which its equation is entered into the input box of the GC is 

irrelevant for the instrument. It may be both a relational form such as a2 + 2b = 0  and 

functional form such as  𝑏 =
−𝑎2

2
. In both  cases, same geometric image, a graph, which has 

to be used jointly with numeric characteristics, results. Yet, the precision with which the 

coordinates of a point through which the graph passes are picked up by the cursor from the 

graph is essential for the spreadsheet, a complementary instrument, which uses the 

coordinates as an input for  the instrumental activity in order to a computational experiment 

to be accurate. This accuracy is especially important when the goal of a new experiment is to 

enhance credibility of earlier experiments. Although the GC and the spreadsheet are 

independent instruments, their complementary character in the instrumental activity described 

above demands that “their specificities differentiate their functional values in line with the 

particularities of situations” [38, p. 679].  

 Experimentally more difficult, although not impossible, the verification of 

complementariness of the spreadsheet and the GC can include using scroll bars which control 

the values of the parameters a and b in the spreadsheet to obtain a cycle of period four, then 

graph the so located values of a and b in the context of the GC to see that the point belongs to 

the parabola a2 + 2b = 0 . By zooming in, the subject can decide whether precision with 

which the values of the parameters have been found is of sufficient accuracy for the numeric, 

geometric, and algebraic outcomes of the instrumental activity in order to be experimentally 

close to each other. If they are, one can say that the TITE methodology in which different 

instruments and instrumental activities overlap, has the potential to transform educational 

practices of mathematics teacher preparation. The next section includes teacher candidates‟ 

reflections on the use of multiple mutually-complementary instruments as they learn teaching 

mathematics in the digital era. 

 

8. Voices from teacher education classrooms 

 

 Rabardel and Bourmaud [38] proposed to distinguish among three major orientations 

of an instrument-mediated activity when an instrument is placed between the subject (e.g., a 

user of digital tools) and the object (e.g., a mathematical problem). These include the 

orientation toward the object (a pragmatic mediation aimed at solving a problem), the 

orientation toward oneself (an epistemic mediation in the case when problem solving 

becomes a means of the subject‟s intellectual growth), and the orientation toward other 

subjects (i.e., epistemic mediation of other possible actors of the instrument-mediated 

activity). The third orientation has important implications for mathematics teacher education 

when its course work integrates TITE methodology and the use of multiple mutually-

complementary instruments. In the education of teachers, other actors are either students in 

K-12 schools where teacher candidates do field work or their future students for whom the 

impact of the third orientation is delayed. In real life, there are many technical and social 

systems in which delays are inherent. One such system is education where application of 

knowledge received by a teacher candidate (the original subject) is delayed for some time. 

Eventually, this orientation of the subject toward other subjects may be associated with both 

pragmatic mediation, when a teacher‟s task is to teach, and epistemic mediation, when a 

teacher learns teaching by interacting with students. 

 The following comments by teacher candidates about their use of digital instruments 

have been solicited over the span of several years as reflections on different courses taught by 

the author under the umbrella of TITE methodology. They are included to demonstrate 
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orientation of teacher candidates as subjects towards their future students as other subjects. 

The comments are related to the above three illustrations of TITE problem solving as 

instrumental genesis using multiple mutually-complementary instruments.   

 

8.1. Reflections on Illustration 1 

 

 Reflecting on the use of Kid Pix as a tool for early algebra learning, an elementary 

teacher candidate shared her perspective on learning to use computers and ultimate plans to 

utilize the skills so developed in the future. She believes that “Creating visuals on the 

computer is a great way for students to learn how to use technology for school purposes and 

to utilize the many skills students have. I will definitely be using these new skills in my 

classroom when I become a teacher. I think it is a great resource to have when teaching 

elementary school students as they learn best by using visuals.”  

 In this comment, one can see the orientation of the teacher candidate (a subject) 

toward other subjects (young children) delayed until her dream to become their teacher 

comes through. In the context of the same illustration, another teacher candidate‟s comment 

is appreciative of turning a spreadsheet as an artifact into an instrument for posing problems. 

As she put it, “Technology makes problem posing a lot easier for teachers. Once the 

spreadsheet is developed, it is very easy to go back and change the numbers. It can also help 

teachers save paper, by projecting problems onto a smart board, instead of printing out 

handouts for each of their students.”  

 Note that the teacher candidate, by using the word “developed” distinguished between 

a spreadsheet as an artifact and an instrument, and opened a window to seeing such 

development as a TI activity or instrumentation. In her comment, a smart board appears as a 

complementary instrument of classroom pedagogy which works in combination with any 

other tool capable of projecting images on a screen through a TE activity or 

instrumentalization. 

 

8.2. Reflections on Illustration 2 

 

 The second illustration included the use of the GSP as a means of proving that the 

fraction 1/4 has exactly three partitions into a sum of two unit fractions. As is well known, 

the arithmetic of fractions is a difficult topic to teach in the grade school and it is not always 

well accepted by elementary teacher candidates as they take an elementary mathematics 

education course due to their previous confusion with this topic. That is why, when the use of 

technology is considered by teacher candidates as help in their preparation to become 

professionally oriented toward other subjects, their own students included,  one can recognize 

the value of instrumentation in turning a geometric software into an instrument for teaching 

and learning fractions. The following comment by a teacher candidate is indicative in that 

respect. When asked to reflect on the issue of mediating mathematical proof by means of 

technology, a teacher candidate admitted: “The electronic manipulatives helped me articulate 

mathematical proof through visual understanding. Sometimes it is difficult to consider which 

fractions are going to create a particular sum. But the manipulatives helped me to 

understand what was going on in the problem as well as understand why the answers were 

correct. This is my first experience with the Geometer’s Sketchpad and I was thrilled at 

knowing there are alternative ways to teach children about fractions. I can remember 

disliking the topic in class when I was in school because it was boring and often difficult to 

understand.” 

 In this comment, one can see the emergence of the teacher candidate‟s professional 

orientation toward her future students. Although, like in the case of the problem-posing 
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spreadsheet of Figure 5, a TI or instrumentation part was due to the author, the teacher 

candidate was capable of carrying out a TE part or instrumentalization. The same can be said 

about a comment of another teacher candidate who clearly saw the GSP as a psychological 

tool being inserted between the subject and the object. “The use of electronic manipulatives 

helped in two ways. It helped by backing up the equations by showing that there was no way 

that any unit fractions were excluded, and it showed how the problem could be solved by 

using pictures only. When it comes solving math problems, you always want to be sure that 

you have found every answer possible and that nothing was left out. If it was solved 

mathematically first, then the manipulatives proved your answer once you finished solving 

the problem.” Here, the teacher candidate essentially talked about the value of double 

stimulation of mathematical reasoning by means of formal mathematics and instrumental 

action as “a means by means of which we direct and realize the psychological operations 

(memorizing, comparing, selecting, etc.) necessary for the solution of the problem” [44]. 

 

8.3. Reflections on Illustration 3 

 

 Finally, in the context of the third illustration aimed at the demonstration of the TITE-

oriented educational side of experimental mathematics, the following two comments are 

indicative of secondary teacher candidates‟ appreciation of the affordances of technology in 

using experiment as window to theory and verifying theory so developed through a new 

experiment. The appropriate use of multiple digital instruments has not come unnoticed in 

these comments. So, one of the future secondary mathematics teachers admitted: 

“Technology is very helpful in developing a relationship between experimental and 

theoretical mathematics. Experimental mathematics can be achieved through uses of 

technology such as spreadsheets, graphing calculators, and Maple which would have been 

inefficient if attempted algebraically and without the use of technology. Technology can also 

aid students in theoretical aspects of mathematics when algebra and operations become too 

tedious or difficult.” One can also see in this comment the acknowledgement of the value of 

digital instruments in facilitating access of all students to advanced symbolic mathematics, a 

long-term program initiated with the advent of technology into K-16 mathematics classroom 

at the end of the last century [27, 28, 41, 42]. Also, complementary use of instruments 

requires understanding of their mutual dependence in terms of the importance of 

mathematical precision of the input and its influence on the output. Indeed, as a teacher 

candidate acknowledged, “Using points traced on the parabola and inputting them into a 

spreadsheet yield a fascinating observation as the ratios form a cycle. Using technology to 

visualize this phenomenon illustrates how sensitive the software is. If the accuracy of decimal 

places is less than three decimal places, the ratios do not form a cycle.” One can see the 

teacher candidate‟s attention to the conditions of the experiment and the appropriate use of an 

instrument as an element of the second set of stimuli used in verifying the validity of 

instrumental actions for mastering the first set of stimuli – a TITE-based computational 

experiment aimed at exploring the behavior of solutions of recursive equation (5) under the 

condition a2 + 4b < 0.  

 

9. Conclusion 

 

 This paper was written to demonstrate connections between the theory of instrumental 

genesis and TITE mathematical problem-solving methodological framework. Whereas 

teaching and  learning through the TITE framework was developed in the context of 

mathematics education, the theory of instrumental genesis studies pedagogical ideas about the 

uses of digital technology across the wide spectrum of disciplines and psychological contexts. 
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However, when mapped on the domain of mathematics education, the theory of instrumental 

genesis has many aspects in common with the TITE mathematical problem solving. The 

paper provided three major illustrations to discuss connections between two perspectives on 

the use of digital instruments in mathematics education. The focus of discussion was on the 

use of multiple instruments oriented toward a single task. At the same time, the use of 

multiple instruments made it possible to consider a task as an evolving exploration because 

each instrument, being both complementary and unique, allowed for a specific extension of 

the task. This also made it possible to extend the three major orientations of an instrument-

mediated activity proposed in [38] – toward the object, toward oneself, and toward other 

subjects – to include an orientation toward other objects. In mathematics education, other 

objects could be construed as new problems posed by the subject through the process of 

epistemic mediation as new instrumentation ideas develop.  

The diagram of Figure 18 shows multiple orientations motivated by bi-directional 

relations among the instruments involved, among the subjects, and among the objects 

stemming from instrument-mediated activities. For example, the interaction among four 

instruments was illustrated through exploring a non-linear recursive equation (5) where the 

cyclic behavior of solutions was first discovered numerically within a spreadsheet, then 

explored in a symbolic environment of WA and Maple, and finally verified through the joint 

use of the GC and a spreadsheet in order to enhance credibility of instrument-mediated 

activities responsible for the serendipitous numeric discovery and rigor-laden algebraic 

realization of cycles. The orientation toward other objects is a natural characteristic of such 

learning environments because problem solving and problem posing are closely related 

mathematical activities [20, 29, 40]. As for the issue of orientation toward other subjects, 

solicited responses of teacher candidates on a TITE course work involving multiple 

instruments used in the context of three different illustrations were presented and briefly 

discussed. A few more comments about these illustrations are also included in the conclusion. 

 

 

Figure 18. TITE activity with mutually-complementary instruments and multiple orientations. 
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 The first illustration involved multiple instruments used within a single context, yet at 

different grade levels associated with the context. It demonstrated the progression of the use 

of instruments from drawing artificial creatures by young children to posing similar problems 

and constructing graphical solutions of the problems from early algebra curriculum by their 

future teachers. It was noted that through posing problems and exploring them using multiple 

instruments, one discovers that problem data complies a conceptual bond the appreciation of 

which is what unites problem posing and problem solving. The approach to early algebra 

when the appropriate use of software for creative activities of young children, under the 

guidance of a teacher as a „more knowledgeable other‟, allows them to solve informally a 

system of two linear equations in two unknowns as the first step toward learning algebra at 

the secondary level. That is, algebraic skills that are typically developed at the secondary 

level can, nonetheless, be observed in a young learner, when he or she is appropriately guided 

by a teacher, without the former realizing the possession of such skills as they are at the 

rudimentary stage of development. Vygotsky described this complex educational psychology 

phenomenon as follows (cf. the last sentence of the first paragraph of section 5 of this paper):  

“Although at an early stage of mathematical development, quantitative 

reasoning and arithmetical thinking of a child are pretty vague and immature 

in comparison with those of an adult with whom the child interacts, it is 

through this interaction that the final forms of reasoning and thinking about 

numbers, that have to be developed as a result of having an adult in his/her 

environment, are  somehow present at that stage and, not only present but in 

fact define and guide the child’s first steps toward the development of the final 

forms of understanding quantity and comprehending arithmetic” [48, p. 84, 

translated from Russian by the author].   

 

 The second illustration demonstrated that a tape diagram had the same functional 

value as algebraic, geometric and number theory reasoning tools (or psychological operations) 

in terms of the goal which was to establish an isomorphism among the sets of three solutions 

of non-linear algebraic equation (1) found through different means. Yet, “their specificities 

differentiate their functional values in line with the particularities of situations” [38, p. 679] 

enabling the demonstration that different concepts of mathematics represent a system of 

psychological instruments that are not isolated but rather can merge by and large on a single 

task ensuring the clarity of its completion through conceptual connectivity. At the same time, 

only algebra, geometry, and number theory provided rigor in proving that equation (1) has 

exactly three solutions. It was also argued that rigor of algebra (or number theory, for the 

matter) may not be used to explain some simple observations made in the context of the tape 

diagram. Yet, geometric reasoning with the use of fraction circles was helpful in explaining 

those observations. This suggests that the tape diagram and the fraction circles approaches 

were close to each other in a sense that they both belong to the psychological domain of 

imagery and visualization, something that is critical for Gestalt psychologists who study 

constructive aspects of perception in terms of what one can see in an image (e.g., [50]).   

 The third illustration dealt with exploring recursive equation (5) with a variety of 

instruments including a spreadsheet, WA, Maple, and the GC. It was demonstrated that 

whereas WA and Maple as different artifacts had the functional complementariness in 

obtaining and confirming the equations of parabolas as loci on which cycles of the same 

period realize
3
, the graphic and numeric functionalities of the GC and a spreadsheet, 

respectively, not only confirmed the correctness of symbolic computations but demonstrated 

                                                 
3
 In this paper such demonstration was limited to period four. As shown in [6], for any integer K > 0 there exists 

an integer p > K such that in equation (4) the ratios x
n+1

/ x
n
 form cycles of period p. 
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how the appropriate use of the system of four diverse instruments “organized resources of a 

heterogeneous nature into a homogeneous system whole” [38, p. 682]. The “system whole” 

made it possible to demonstrate an educational side of experimental mathematics and its 

capacity to provide both internal and external validity of an educational experiment [13] – 

providing meaningful interpretation of the former type of validation (recognizing the 

possibility of cyclic behavior of the ratios x
n+1

/ x
n
) and using this interpretation to generalize 

the experiment (with support of its instruments capable of symbolic computations) as the 

latter type of validation. The “system whole” can also show the progress in the use of 

technology in mathematics education over the span of several decades from noting that 

“calculus should be presented to the student in the same spirit as the experimental sciences” 

[9, p. 664] to arguing that the pedagogy of the digital-era school mathematics “can be used to 

experiment with algebraic expressions, perform complicated algebraic manipulations, and 

understand how algebraic manipulations behave” [16, p. 62, italics added]. 

 Digital tools considered in this paper can often be observed as software of choice in a 

mathematics teacher education classroom. In the case of a spreadsheet, the transition from an 

artifact to an instrument requires basic skills in using cell referencing techniques and 

spreadsheet formulas. In some cases, the creation of a spreadsheet environment requires 

rather advanced knowledge of Excel or its appropriate integration with tools of symbolic 

computation. In the case of WA or Maple, the main difficulty in their instrumentation deals 

with conceptual understanding of the task to be solved by the tool. Such understanding 

required knowledge of the ranges of unknowns for WA and relationships between parameters 

for Maple. One can say that in the joint use of WA and Maple “there is both a partial 

functional coverage (redundancy) and equally partial functional complementarities” [38, p. 

682]. In the case of KidPix, the transition from artifact to instrument requires understanding 

of how actions on the first-order symbols which comprise the artifact can be interpreted 

through the second-order symbolism of a specific early algebra task. Moreover, the suggested 

use of KidPix as an artifact, designed originally for kids‟ entertainment, is a clear case of 

instrumentation when a non-disciplined creativity of children is advanced to be used within 

the educational domain of early algebra. Likewise, through learning to replace high school 

algebra by conceptually-oriented arithmetic teacher candidates grow intellectually and use 

their instrumentation skills for the creation of a spreadsheet-based (alternatively, artifact-

based) computational environment as a self-made instrument which can be used for 

mathematical problem posing. Through posing problems as an instrumental activity 

stemming from problem solving one can come across “problems being defined by answers at 

the same time as answers are being constructed during the shaping of problems” [30, p. 65]. 

Constructing such instruments for formulating (and solving) mathematical problems, that can 

be utilized beyond a task that motivated the very idea of the construction, contributes to the 

pragmatic dimension of artifacts integrated into the praxis of technology-rich classrooms [43]. 

 Throughout the paper, the difference between basic and advanced instrumentations 

was discussed to demonstrate how the level of instrumentation required depends on an 

artifact. For example, whereas the change of the line style (e.g., thickness) by a “hot-spot” of 

the GSP requires basic instrumentation, the change of thickness in the context of the GC 

required advanced instrumentation through digital fabrication. Furthermore, the level of 

instrumentation, in many respects, depends on a subject as well: what seems to be advanced 

for one may be basic for the other. It that sense, the orientation toward other subjects can be 

used as an instrument of professional development of schoolteachers within a school or a 

school district. The array of artifacts available and the scope of their applications in a 

mathematics teacher education classroom support the diversity of teaching methods 

incorporating the ideas of instrumental genesis and TITE mathematical problem solving. In 

that way, the instrumental perspective on TITE mathematics curriculum of teacher education 
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opens a window to new uses of commonly available digital tools to the benefit of diverse 

learners of K-16 mathematics. 
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