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1. Introduction  

 

        In this paper, the authors offer their reflections on mental structures constructed in students' 

cognitive planes in solving a standard nonlinear complex task of calculating the limit of function. When 

students are faced with the need to calculate the limit of function, a certain number of these students is 

not thinking about using the applicable technologies on the calculation. This point out the need that 

lecturers of Calculus should be more engaged in the learning process in order to better approach the 
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students with the concept of limit of functions and some of applicable algorithms for calculating these 

values. The research questions of this study were:  

 Genetic decomposition algorithm for calculating the limit of functions using 'Logarithmization' 

and l'Hôpital‟s rule.  

 What can APOS theory do in this case?  

 Reconstruction of student thinking in the process of finding the limit.  

 Which parameters can be deduced from the analysis of student responses relying on RBC + C 

theory of abstraction?  

 

2. The goal of the paper 

 

        In this paper, we use research format similar to the procedures set forth in the well-known text 

“Understanding the limit concept: Beginning with a coordinated process schema“ [10], described in 

more detail in the initial Eduard Dubinsky‟s text “A learning theory approach to calculus” [15] and 

effectively applied in Lynn Heather Bowie‟s dissertation “A learning theory approach to students’ 

misconceptions in Calculus” [5].  

 

        In essence, our steps are as follows:  

(1) Using the framework of theoretical perspectives (APOS theory), we expose students to the concept of 

the limit of function in the example of one such task that seeks to resolve non-linear access (calling at 

several different properties of mathematical objects and the establishment of their unity, thus 

establishing a correlation between them - relational level task within the SOLO taxonomy);  

(2) We observe and evaluate a student's success in solving the given task;  

(3) Analyzing students' mistakes, we are trying to determine when these errors occur in the procedures 

and also the type of errors;  

(4) We are trying to understand why errors occur relying on elements of the RBC + C theory of 

abstraction;  

(5) Reviewing the genetic decomposition of instructional teaching in this particular example, by 

repeating the procedure.  

 

3. Background / Theoretical foundation  

 

        3.1. Literature Review  

 

        There are many international studies on the quality of student understanding of the concept of limit 

of function (for example, see [2], [8], [11], [18], [29], [31], [32], [34], [37], [38], [41], [46], [48], [49], 

[51]). In thеsе studies the authors present the findings that the vast majority of tested students have 

significant difficulty in understanding the concept of limit of function. Furthermore, students have 

difficulties in understanding the process in which this concept occurs. They have difficulty with 

understanding and accepting of the characteristics of this concept as well as its use as a tool or as an 

object in the construction of other mathematical concepts. It also points out that the difficulties 

encountered in understanding this concept considerably complicate the understanding and mathematical 

acceptance of other very important concepts such as continuity, differentiability and integrability of 

functions (see, for example, [39], [48]). Some researchers in mathematics education, as, for example,  

Bernard Cornu  [8] and Anna Sierpinska [46] present their observations in the form of a statement that a 

high percentage of students have a static view of the processes with mathematical objects. Students with 

such commitment only develop their procedural skills. A significant number of students with such a view 

of the interrelationships of mathematical objects have considerable difficulty in perceiving, 

understanding and accepting processes in which is incorporated the concept of mathematical objects and 

is resulting in abstraction (see [31]). Widely accepted substantial part of the international community of 

researchers in mathematics education can be illustrated as follows: student perception of the limit of 

function as a process that is something that never ends and therefore does not reach (for example: Jim 

Cottrill, Devilyna Nichols, Keith Schwingendorf, Karen Thomas and Draga Vidakovic (see [10]), and 

Eduard Dubinsky [16]. Even once Anna Sfard (for example, in the article [43]) pointed out that the limit 

of function should be seen as a dynamic structure. Although, some authors initially (for example, David 
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Tall in the article [48]) considered that the conceptualization of the dynamic structure is easy and natural 

for students, it seems that this is not so (for example, see [29], [34]). It is estimated that the problem in 

students' minds is the failure to realize the connection between the formal definition of the concept of the 

limit of function and its dynamic structure (see, for example [11], [18], [51]).        

        In reviewing the available international literature we did not find any reports of success in helping 

students overcome difficulties in understanding the dynamics and formally defined the concept of 

deterministic limit of functions. In this report, we will not offer our thoughts on the model that would 

allow a higher success in our efforts. What we do in this paper is to focus more attention on the before 

mentioned problems using the categories APOS theory by analyzing a specific task on the limit of 

function (non-linear complex task, or speaking the language of the SOLO taxonomy, task-level 'SOLO 4' 

- relational level), which seeks an understanding of several aspects in which the results of applying these 

different approaches should be treated as independent of each other.  

        Defended master thesis (for example, [25], [28]), doctoral dissertations (for example [4], [7], [26], 

[35], [36], [42]) and a large number of published articles (for example, [3], [8], [11], [12], [22], [24], 

[27], [33], [34], [37], [38], [40], [46], [47], [49], [51]) represent the actuality of the problem.  

 

        3.2. APOS theory  

 

        Authors of  APOS theory is Eduard Dubinsky and colleagues (see, for example, [9], [14], [17]). The 

name of this theory consists of the first letters of the following terms: Action, Processes, Objects and 

Schemes. We will explain these terms to the available literature: [1], [6], [19] and [50]. 

        Action is the transformation of objects perceived by an individual, essentially foreign and as a 

requirement, either explicitly or from memory, step-by-step instructions on how to perform the operation. 

When the action is repeated and individual reflection in relation to the act to occur, then we can make the 

internal mental construction, which we call the process, a person who carries out activities is able to 

think of it as an exercise of the observed processes.  

        The objects were constructed during the process when an individual becomes aware of the process 

as a category and accept that some transformations can act on an object.  

        Finally, the scheme for a particular mathematical concept of a single collection made up of actions, 

processes, facilities, and other schemes that are connected through some form of general principles and 

framework in the mind of the individual in that situation can be treated fit. This framework must be 

coherent in the sense that it provides, explicitly or implicitly, the method of determining which 

phenomena are within the scheme and which are not. This approach implies that all subjects in it can 

represent in terms of actions, processes, facilities and schemes.  

        These four components - an action, process, object and scheme, here are presented in a hierarchical 

sequence. The authors (Jim Cottrill, Devilyna Nichols, Keith Schwingendorf, Karen Thomas, Draga 

Vidakovic) of this theoretical approach believe (for example, see [10]) that each individual constructs in 

this series must be constructed prior to the next. In reality the situation is not exactly linear.  

        In fact, when considering the conceptualization of an idea, but its development and its use in some 

processes, i.e., linking with other categorical concepts, the situation is much more complex since there 

may be a reverse impact.  

 

        3.3. RBC + C theory of abstraction  

 

        RBC (Recognizing Building-with-Constructing) model emphasizes the need for abstraction and 

stimulation in the process of abstraction. Activities under this theory are: Recognition, the use of tools 

(with building) and construction. Abstraction is one of the basic concepts used in this study, is defined in 

a simple way as "the process of moving from recognizable to abstract" [20]. Three mentioned 

epistemological activity will further explain:  

        Identifying and the use of pre-formed structures. Thus, under the 'recognition' known mathematical 

structure, in terms of the thought occurs when the mind of him who learns meet, identify and understand 

(as a whole but also by parts) this structure in a mathematical context in which that forests moves [20].  

        In the process 'use of elements and tools' student‟s mind still is not enriched with new complex 

knowledge is already used existing knowledge to understand and solve new paradigm within the 

mathematical concept which is moving in search of new knowledge [21].  
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        The process of 'designing', also known as (re)arranging for upgrading, is the process of constructing 

new knowledge. It is the process by which existing components of mathematical knowledge possibly 

supplemented with other components, the new way of establishing a mutually regulating complex 

arrangement in the previous grid knowledge and thus gain new meanings.  

        In an effort to RBC through these theories offer the all acceptable justification in the formation of 

new structures of knowledge, Dreyfus [13] suggested its expansion process 'consolidation' forming a C + 

RBC theory of abstraction. 

  

        3.4. Sfard’s theoretical model for the learning of mathematical concepts 

 

        A mathematical concept is a complex web of ideas developed from mathematical definitions and 

mental constructs [44, 45]). We use Sfard‟s model of learning mathematics process. Sfard‟s [44, 45] 

theoretical model for the learning of mathematical concepts encompasses both operational (procedural, 

algorithmic) understanding and structural (conceptual, abstract) understanding, characterizing both as 

necessary and complementary. According to Sfard [44], when learning a new concept, a natural starting 

point is through a definition. Some mathematical definitions treat concepts as objects that exist and are 

components of a larger system. This is considered a structural conceptualization. On the other hand, 

concepts can also be defined in terms of processes, algorithms, or actions leading to an operational 

conception. A structural conception requires the ability to visualize the mathematical concept as a “real 

thing” that exists as part of an abstract mathematical structure, whereas an operational conception implies 

more of a potential that requires some action or procedure to be realized. Sfard emphasizes that the 

operational and structural conceptions are not mutually exclusive; they are complementary. The two 

aspects of conception can be considered as two sides of the same coin; both are critical to building a deep 

understanding of mathematics.  

 

4. The task  

 

        Task: Calculate  

 lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥   . 

  

        4.1. Preliminary genetic decomposition  

 

1. We should observe the object f(x) = (𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥    and specify the domain of the function x  f(x): The 

domain of this function is determined by the following conditions: (1) ctg x > 0, (2) ln x ≠ 0, (3) x > 0. 

Solutions of the first two inequalities are:  

   (1) ctgx  0  x(0 + k, 


2
+  𝑘), where is  kZ.  

    (2) lnx  0  x(0,1) (1,+). 

So, if we want to assess lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥  observe the boundary process 'behavior functions 

(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥   for x  0
+
‟. To this end, we choose the variable x from the interval with (0,1). For selected 

values variable worth ctgx x > 0 and lnx  < 0. This part of the activities in solving this task we 

recognize as 'action'.  

2. The equality f(x) = (𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥  = M wherein x (0, 1), we apply natural logarithm (ln):  

lnM =  
1

𝑙𝑛𝑥
𝑙𝑛(𝑐𝑡𝑔𝑥). 

  

It follows  

lim𝑥 0+ 𝑙𝑛𝑀 =  lim𝑥 0+
1

𝑙𝑛𝑥
𝑙𝑛⁡(𝑐𝑡𝑔𝑥).  

 

This part of the activities recognized as preliminary activities at the object. The second part of the 

activities at the object is determined in the following point.  

 

3. Since the function x  lnx is a continual function on the interval 0,+, we conclude that it is worth  
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lim𝑥 0+ 𝑙𝑛𝑀 = 𝑙𝑛 lim𝑥  0+ 𝑀 =  lim𝑥 0+
1

𝑙𝑛𝑥
𝑙𝑛 𝑐𝑡𝑔𝑥 . 

  

4. How lnx  - and 𝑙𝑛⁡(𝑐𝑡𝑔𝑥)  + when x  0
+
, and how the conditions of the l'Hôpital‟s rule

1
 are 

fulfilled, we have  

                                                                   𝑙𝑛( lim
𝑥  0+

𝑀) =  lim
𝑥  0+

1

𝑙𝑛𝑥
𝑙𝑛⁡(𝑐𝑡𝑔𝑥) 

                                                                                =    lim𝑥 0+

1

𝑐𝑡𝑔𝑥
(

−1

𝑠𝑖𝑛 2𝑥
)

1

𝑥

 

                                                                                =    lim𝑥 0+
−𝑥

𝑐𝑜𝑠𝑥  𝑠𝑖𝑛𝑥
 

                                                                                 =   lim𝑥 0+
𝑥

 𝑠𝑖𝑛𝑥

−1

𝑐𝑜𝑠𝑥
 

                                                                                 =  -1 

 

because lim𝑥 0+
𝑥

 𝑠𝑖𝑛𝑥
 = 1 and cos 0 = 1. Application l'Hôpital‟s rule in this decomposition can be 

regarded as a separate and pre-designed scheme but its application in this case we recognize as part of the 

process. The second part of the process is anti-logarithm. 

  

5. Finally, we obtain  

lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥  = е−1.      

        4.2. Experiences in Teaching  

 

        Tested were 48 candidates - first-year students study program for the education of mechanical 

engineers at the Faculty of Mechanical Engineering, University of Banja Luka.  

  

        The test results / Distribution of student successfulness (N = 48) are represented in the following 

table: 

 

 Efficacy  0 Acceptable 

with mistakes 

Without 

mistakes 
 

Number  19 20 4 5 48 

Frequency 39.58 41.67 8.33 10.42 100.00 
 

    

      

Table 1 

 

Legend: The symbol „‟ denotes students who did not offer any answers to the task. Symbol „0‟ 

indicates completely unacceptable information that students offered as a solution to the problem.  

 

         Illustration of some students‟ mistakes  

 

Example 1 Despite the strongly efforts, the authors of this text were not in position to reconstruct 

student‟s considerations in the design equation  

lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 = lim𝑥0+(1 −  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
+  1)

1

𝑙𝑛𝑥 .  

 

We tend to judge it comes to 'slip of the tongue' so that the next row, row (2), we get a correct 

transformation of the previous hypothesized that if  -1 instead of  +1. Line (3) and line (4) gave the 

                                                           
1
 Guillaume François Antoine, Marquis de l'Hôpital (1661 -1704),  a French mathematician. 

http://sr.wikipedia.org/wiki/1661
http://sr.wikipedia.org/wiki/1704
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correct algebraic transformations: (2)  (3) and (3)  (4). The error is observed in the transformation 

(4)  (5). It is unacceptable transformation  

lim𝑥0+  (1 −  
𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

1

𝑙𝑛𝑥  

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
  = 𝑒lim 𝑥0+

(𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥 )

𝑠𝑖𝑛𝑥


1

𝑙𝑛𝑥    

 

estimating transform unscrews it in the following way:  

lim𝑥0+  (1 −  
𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

1

𝑙𝑛𝑥  

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
 = lim𝑥0+  (1 −  

𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥  

1

𝑙𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥

 

Thus, the inadmissibility of the offered solutions rectify this task stems from the false identification  

lim𝑥0+  1 −  
𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
 

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥
 = e.  

                    lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 = lim𝑥0+(1 −  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
+  1)

1

𝑙𝑛𝑥                                            line (1) 

                                                    = lim𝑥0+(1 −  
𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

1

𝑙𝑛𝑥                                             line (2) 

                                                    = lim𝑥0+  (1 −  
𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

1

𝑙𝑛𝑥  

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
               line (3) 

                                                    = lim𝑥0+  (1 −  
𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥
)

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥  

1

𝑙𝑛𝑥

𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥

               line (4) 

                                                    = 𝑒lim 𝑥0+
(𝑐𝑜𝑠𝑥 +𝑠𝑖𝑛𝑥 )

𝑠𝑖𝑛𝑥


1

𝑙𝑛𝑥                                                        line (5) 

                                                    = e
0
 = 1.                                                                               line (6) 

 

The following example is analogous to the preceding can be observed similarly as erroneous 

identification  

lim𝑥0+ 1 + (𝑐𝑡𝑔𝑥 − 1) 
1

𝑐𝑡𝑔𝑥 −1  = е. 

 

Example 2  lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 = lim𝑥0+(1 +  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
−  1)

1

𝑙𝑛𝑥                                              

                                                    = lim𝑥0+   1 + (𝑐𝑡𝑔𝑥 − 1) 
1

𝑐𝑡𝑔𝑥 −1 
(𝑐𝑡𝑔𝑥 −1)

1

𝑙𝑛𝑥

 

                                                    = 𝑒
lim
𝑥0+

𝑐𝑡𝑔𝑥 −1

𝑙𝑛𝑥  =  𝐿.𝑃.  =  𝑒
lim
𝑥0+

−
1

1+𝑥2
1
𝑥   

                                                    = e
0
 = 1.  

        The following two examples of student errors are not demanding reconstructed.  

 

Example 3  lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥  = (+)
1

1  = +.   
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Example 4   lim𝑥   0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  lim𝑥0+  
1

𝑡𝑔𝑥
 

1

𝑙𝑛𝑥
=  lim𝑥0+  

1
1
𝑙𝑛𝑥

𝑡𝑔𝑥
1
𝑙𝑛𝑥

 =  
1

0+  = +.  

        The example that follows, in the fifth step in identifying lim
𝑥  0+

1

𝑙𝑛𝑥
=0, can be used for demonstration 

didactic situations when wrongly executed steps from school mathematics lead to unacceptable solutions:  

 

Example 5 Let be   lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  𝐿. Applying the natural logarithm to the left- and right-side of 

this equality, we obtain  

lnL = 𝑙𝑛 lim𝑥 0+ 𝑐𝑡𝑔𝑥 
1

𝑙𝑛𝑥 =  lim𝑥  0+ 𝑙𝑛 𝑐𝑡𝑔𝑥 
1

𝑙𝑛𝑥 =  lim
𝑥  0+

1

𝑙𝑛𝑥
𝑙𝑛 𝑐𝑡𝑔𝑥 = lim

𝑥  0+
𝑙𝑛 𝑐𝑡𝑔𝑥  

because lim
𝑥  0+

1

𝑙𝑛𝑥
= 0. Furthermore, since we have  

lim
𝑥  0+

𝑙𝑛 𝑐𝑡𝑔𝑥 =  lim
𝑥  0+

𝑙𝑛  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 =  lim

𝑥  0+
𝑙𝑛  

 1−𝑠𝑖𝑛𝑥 2

𝑠𝑖𝑛𝑥
 = 𝑙𝑛

0

1
= 1  

we conclude that L = e
1
.   

 

         The last example is a demonstration of how to deduce the correct start of a strange conclusion.  

 

Example 6 Let be lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  𝐶. Using ln on this equality, we obtain 

  

𝑙𝑛𝐶 =  𝑙𝑛 lim
𝑥  0+

 𝑐𝑡𝑔𝑥 
1
𝑙𝑛𝑥 =  lim

𝑥  0+
𝑙𝑛 𝑐𝑡𝑔𝑥 

1
𝑙𝑛𝑥 =  lim

𝑥  0+

1

𝑙𝑛𝑥
𝑙𝑛 𝑐𝑡𝑔𝑥 . 

From here, further, followed by  

lim
𝑥  0+

1

𝑙𝑛𝑥
 lim
𝑥  0+

𝑙𝑛 𝑐𝑡𝑔𝑥 =  0 −   . 

Therefore, it is  

C = e
0-

 = 
𝑒0

𝑒
 = e

-
 1.   

        4.3. The second model of genetic decomposition. We use a simple algebraic transformation  

 

(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 = 𝑒
1

𝑙𝑛𝑥
ln⁡(𝑐𝑡𝑔𝑥 )

.  

 

From here, because the function Exp: x  e
x 
is a continus function, it follows  

 

lim
𝑥   0+

(𝑐𝑡𝑔𝑥)
1
𝑙𝑛𝑥 =  𝑒

lim
𝑥 0+

1
𝑙𝑛𝑥

ln⁡(𝑐𝑡𝑔𝑥 )
 

  

Here, as in the first model, we have  

lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  𝑒−1.   

  

        4.4. The third model of genetic decomposition. If we denote 

  lim𝑥  0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  lim𝑥0+  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 

1

𝑙𝑛𝑥
=  𝐿, 

we have  

lnL = 𝑙𝑛 lim𝑥  0+  
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 

1

𝑙𝑛𝑥
=  lim𝑥  0+ 𝑙𝑛  

𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 

1

𝑙𝑛𝑥
=  lim

𝑥  0+

1

𝑙𝑛𝑥
𝑙𝑛  

𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 = lim

𝑥  0+

1

𝑙𝑛𝑥
 𝑙𝑛𝑐𝑜𝑠𝑥 − 𝑙𝑛𝑠𝑖𝑛𝑥  
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= lim
𝑥  0+

1

𝑙𝑛𝑥
 𝑙𝑛𝑐𝑜𝑠𝑥 −  lim

𝑥  0+

1

𝑙𝑛𝑥
 𝑙𝑛𝑠𝑖𝑛𝑥  = − lim

𝑥  0+

1

𝑙𝑛𝑥
 𝑙𝑛𝑠𝑖𝑛𝑥  

  

because  lim
𝑥  0+

1

𝑙𝑛𝑥
 𝑙𝑛𝑐𝑜𝑠𝑥 = 0. Other limes, since lim

𝑥  0+
𝑙𝑛𝑥 =  −  and lim

𝑥  0+
 𝑙𝑛𝑠𝑖𝑛𝑥  = −,  we  

 

calculate by applying l‟Hôpital‟s  rule:  

− lim
𝑥  0+

𝑙𝑛𝑠𝑖𝑛𝑥

𝑙𝑛𝑥
=  − lim

𝑥  0+

1

𝑠𝑖𝑛𝑥
𝑐𝑜𝑠𝑥

1

𝑥

= − lim
           𝑥 0+

𝑥

𝑠𝑖𝑛𝑥
 𝑐𝑜𝑠𝑥 =  −1.   

From here we obtain lim𝑥   0+(𝑐𝑡𝑔𝑥)
1

𝑙𝑛𝑥 =  е−1.  

 

        4.5. The general model of genetic decomposition. Suppose you had a requirement to 

calculate   lim𝑥  𝑐(𝑓 𝑥 )𝑔(𝑥), where f and g are functions such that f(x)  0 in the vicinity of the point c. 

Proceed in the following manner:  

 

First step: If the L mark   𝑓(𝑥)𝑔(𝑥), we have: 𝑙𝑛𝑓(𝑥)𝑔(𝑥) = 𝑔 𝑥 𝑙𝑛𝑓 𝑥 =  𝑙𝑛𝐿 . 

Possible failures and possible errors:  

1. Do not determine the scope of the function x  𝑓(𝑥)𝑔(𝑥);  

2. Unnoticeably of necessity of applying the procedure described above;  

3. Incorrect using of the properties of the logarithm.  

Note that the application procedure  

(𝑓(𝑥))𝑔(𝑥) = 𝑒𝑔(𝑥)ln𝑓(𝑥), 

  

although it is correct, strongly complicates recording which also opens up the possibility of occurrence of 

some other flaws.  

 

Second step: Since the x  lnx is a continuous function where it is defined, followed by 

  

𝑙𝑛(lim 𝑥  𝑐 𝐿) = lim
𝑥  𝑐

𝑙𝑛𝐿 =  lim𝑥 𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥).  

 

Suppose we set up an additional requirement: 'Describe the reasoning methods to solve the task', this step 

allowed us to determine the student's understanding of the concept of continuity of the function ln: x  

lnx 

 

Step Three: If there is a natural way, we can calculate the limit lim𝑥 𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥) = а and after that 

we get anti-logarithm  

𝐿 =  𝑒𝑎 .  

 

The fourth step (optional): If in the calculation of limit values have difficulty lim𝑥 𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥) forms 

  

lim𝑥 𝑐 𝑔 𝑥 = 0  lim𝑥  𝑐 𝑙𝑛𝑓 𝑥 =   

or forms  

lim
𝑥  𝑐

𝑔 𝑥 =        lim
𝑥  𝑐

𝑙𝑛𝑓(𝑥) = 0 , 

we can apply l'Hôpital‟s rule on  lim𝑥 𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥) =  lim𝑥  𝑐
𝑙𝑛𝑓 (𝑥)

1

𝑔(𝑥)

  after prior transformation 

lim𝑥 𝑐
𝑙𝑛𝑓 (𝑥)

1

𝑔(𝑥)

=  lim𝑥 𝑐

1

𝑓 𝑥 
𝑓 ′ (𝑥)

−
𝑔′ (𝑥)

𝑔(𝑥)2

  .  

Possible failures and possible errors:  

4. Ignoring the conditions for the application of  l'Hôpital’s rule;  

5. Improper use l'Hôpital’s rule;  

6. Incorrectly calculating the deduction.  
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Step Five: If exists   lim𝑥  𝑐

1

𝑓 𝑥 
𝑓 ′ (𝑥)

−
𝑔′ (𝑥)

𝑔(𝑥)2

= 𝑎, then   𝑙𝑛(lim 𝑥 𝑐 𝐿) = 𝑎, and make anti-logarithm of the last  

equality yields the desired result  

lim𝑥  𝑐(𝑓 𝑥 )𝑔(𝑥) =  𝑒𝑎 .   

  

        According to the applied procedure we estimate this task is a nonlinear complex task and it is a 

relational type (speaking in the SOLO taxonomy language).  

        Possible failures and possible errors:  

7. Unacceptable procedure in calculating limes;  

8. Wrong calculated the value;  

9. Omission of anti-logarithmization.  

 

        Distribution of students‟ mistakes (N = 24): 

 
Type of 

mistake 
1. 2. 3. 4. 5. 6. 7. 8. 9. 

Number 23 1 0 22 17 19 19 20 7 

Frequency 95.83 4.17 0.00 91.67 70.83 79.17 79.17 83.33 29.17 

 
Table 2 (Results of the written assessment.) 

 

        For identifying problems that may indicate a misconception, standard quantitative analysis was 

used. First, we summarize student performance on the written assessment and our process for identifying 

problems that indicated a persistent error. Second, we investigate the persistent errors through analysis of 

student responses obtained during individual interviews. Results of the written assessment are presented 

in Table 1. The percentage of students who correctly answered the problems across the test is indicated 

misunderstanding of limit concept and unsatisfactorily accepted used algorithms in this calculating.         

Distribution of students mistakes by types are presented in Table 2.   

 

5. Concluding Observations  

 

        To make an insight into the mental structures that are generated in the minds of students in finding a 

solution of the given task, we rely on two theoretical bases: 'chunk-by-chunk' analysis and elements of 

APOS theory. The collected data received from this test suggest the conclusion that the understanding of 

the concept of limit of functions and fluency of work with this concept is one of the most demanding 

proficiencies. By deducing from this task and also from a significant number of other examples of limits 

of functions, form the hypothesis that the students of technical faculties construct a mental image of this 

abstract idea with much difficulty. Our many years of experience suggest that this problem is to be 

presented to student with extreme carefulness. 

        However, our knowledge about the design of learning suggests that it should be planned with more 

time in the realization of both lectures and excesses with students in an effort to help them develop their 

mental structures at the level of processes, facilities and schemes (speaking in the language of APOS 

theory). Speaking in the language of RBC + C theory of abstraction implies that teaching and student‟s 

learning should focus on:  

1. Type recognition of function and consideration of accumulation points of function domain  

observed functions in which should claim the limit;  

2. The choice of tools applicable to the process of computing;  

3. The process of computation;  

4. Modeling using a number of variations of the scheme (consolidation).  

 

        Graphic access to a significant number of cases allows the developing of mental structures on the 

„process level‟ and also at the „level of the building‟. The focus on the symbolic structures should help us 

in understanding the concept of constructed object. If the scheme allows understanding and connection 

procedures: „Action  Process  Object  Actions‟ in an acceptable manner in a particular case, then it 
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should be part of the course. Estimating the impact of such a focus in the implementation in teaching 

requires further research. 

        Following Sfard‟s emphasis that the operational and structural conceptions are complementary, we 

have to recognize these conceptions in student‟s calculations. The transition from operational 

understanding to structural understanding occurs in stages and it is a long and “inherently difficult” 

process. As students move from operational to structural understanding, they go through the three Sfard‟s 

stages: interiorization, condensation, and reification. During the first stage, interiorization, the student 

becomes skilled at performing processes involving the concept until these processes can be carried out 

mentally and with ease. During the second stage, condensation, the learner is able to think about a 

complicated process as a whole without need to carry out the details. The student is able to break the 

process into manageable units without loosing sight of the whole. In this stage, there is also a growing 

facility with moving between different representations, recognizing similarities, and making connections. 

For example, students may recognize problems with calculating the limit lim𝑥  𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥)  in the step 

three. By recognizing the similarities between this situations and conditions in the l'Hôpital‟s rule, 

students begin to see both as specific examples of the concept of the limit.  Reification represents a 

significant shift in thinking, one in which the concept is suddenly seen as part of a larger mathematical 

structure. It is at this stage that students begin to operate with a concept as an object and as the input into 

new processes.  

        Here we should point out that a significant part of misunderstanding the concept of limit of 

functions derives from the trinity of this concept: The symbol lim𝑥 𝑐 𝑓(𝑥) is also a number (i.e, the 

object), the process - the behavior of the function in the neighborhood of the point c (c is a point of 

accumulation of domain of function f ) and the procedure for calculating the limit. However, in contrast 

to the concepts of the so-called School mathematics (where the algorithm associated with a concept used 

to calculate the specific value of this concept), the limit of functions has no universal algorithm that 

works in all cases. Furthermore, the concept of the limit of function is not limited to computation in a 

finite number of steps to give a definitive response to the request. This is exactly the place, in the 

language of APOS theory, where begins the difference between „actions‟ and „processes‟.  

        Useful insight into the relevant mental structures towards which teaching should focus, was revealed 

by the APOS genetic decomposition of the limit of a function concept. The findings of this study 

confirmed that the limit of a function concept is one that students find difficult to understand, and 

suggests that this is possibly the result of many students not having appropriate mental structures at the 

process, object, and schema levels. Many researchers (for example, see [31]) consider that APOS genetic 

decomposition is adequate. However, general reflections on the teaching design indicated that more time 

needs to be devoted to helping students develop the mental structures at the process, object, and schema 

levels.  

        Based on our analysis of the students‟ reasoning, we are able to build on the APOS framework by 

addressing the question of how students correlate processes described from Step 1 to Step 5. We estimate 

that our genetic decomposition of limit could include the first three actions of the APOS framework, 

along with the following three activities that address the process of coming to accept and understand the 

concept and procedure of informal calculation of the limit: 
 

𝐿 = 𝑓(𝑥)𝑔(𝑥)  𝑙𝑛𝐿 =  𝑔 𝑥 𝑙𝑛𝑓 𝑥 , 
 

   lim 𝑥  𝑐 𝐿 =  𝑒𝑎   𝑙𝑛(lim 𝑥  𝑐 𝐿) =  lim𝑥  𝑐 𝑔(𝑥)𝑙𝑛𝑓(𝑥) 

and  

lim
𝑥  𝑐

𝑔(𝑥)𝑙𝑛𝑓(𝑥) =  lim
𝑥  𝑐

𝑙𝑛𝑓(𝑥)

1
𝑔(𝑥)

= lim
𝑥  𝑐

𝑙𝑛𝑓(𝑥)

1
𝑔(𝑥)

=  lim
𝑥  𝑐

1
𝑓 𝑥 

𝑓 ′(𝑥)

−
𝑔′(𝑥)
𝑔(𝑥)2

 = 𝑎. 

 

        In this study we identified and characterized persistent errors made when university students are 

calculating the limit of function. We identify nine persistent errors. Upon analyzing these errors, we 

conjectured that all of them arise from an underdeveloped conception of function and processes with it. 
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