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Abstract: The paper shares several teaching ideas that may be used in a mathematics course for 
elementary teacher candidates. The meaning of tacit assumptions in word problems and ensuing methods 
of problem solving that various interpretations imply are discussed. A value of insight in recognizing a 
connection between two seemingly unrelated contexts as avenues converging to the same mathematical 
concept is acknowledged. The notion of conceptual shortcut as a trial and error solution informed by 
conceptual understanding of the corresponding concrete situation is applied to finding two unknowns 
forming a meaningful bond. It is demonstrated how the use of technology in computational experiments 
can be presented as an instrumental act within which technology, placed between a problem to solve and 
a problem solver, serves as a bi-directional mediator of the act. The paper includes excerpts from teacher 
candidates’ solicited reflections on the pedagogy of the courses taught by the author. 
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1 Introduction 
 
A typical problem for an early elementary classroom used around the world is to decompose a 

positive integer into a sum of two like integers (Becker and Selter, 1996; Serrazina and Rodrigues, 2015; 
Van de Walle, 2001; Young-Loveridge, 2002). This decomposition problem can be presented in context: 
How many ways can ten cookies be put on two plates in all possible orders with at least one cookie on 
a plate? One can draw a picture of plates and cookies and then describe the images using uncomplicated 
addition and its commutative property, thereby providing an answer to this question in terms of the 
following nine equalities (each describing one of the nine ways): 

 
 . 10 = 1+ 9 = 9 +1= 2 + 8 = 8 + 2 = 3+ 7 = 7 + 3= 4 + 6 = 6 + 4 = 5 + 5
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A tacit assumption that one takes for granted when decomposing the number 10 into a sum of 
two positive integers as a way of answering the above question is the absence of any difference between 
the cookies; in other words, the cookies are assumed to be identical. However, if all ten cookies are 
different, a more complicated counting technique has to be used. The first two sums, 1 + 9 and 9 + 1, 
each will be replaced by the number  which represents the number of ways a cookie can be selected 
from 10 cookies to be put on a plate with one cookie. For each such selection, the remaining 9 cookies 
will be put on the second plate. Therefore, the plate with one cookie can be created in ways. The 

plate with two cookies (alternatively a plate with 8 cookies) can be created Type	equation	here.in  

ways. The plate with three cookies (alternatively a plate with 7 cookies) can be created in  ways. 

The plate with four cookies (alternatively a plate with 6 cookies) can be created in  ways. The plate 

with five cookies can be created in  ways. Because the symbol  would represent the number of 
ways a plate with 6 cookies can be created, the computations do not need to continue as plates with 6, 7, 
8, and 9 cookies were already created. Therefore, noting that due to the classic summation formula for 
binomial coefficients					∑ 𝐶!" = 2!!

"#$  (Cuoco, 2005), the sum 

4𝐶$%"
&

"#$

=	4𝐶$%"
$%

"#$

	− 	𝐶$%% − 𝐶$%$% = 2$% − 2 = 1022 

represents the number of ways 10 different cookies can be put on two plates with regard to the order of 
plates. In general, n different cookies can be put on two plates with regard to the order of plates in 2! −
2 ways.  

This extension into cookies (or any kind of objects) being all different was used to illustrate an 
expectation by the Association of Mathematics Teacher Educators (2017) for elementary teachers to 
“hold deep conceptual understanding of the mathematics they teach as well as knowledge of how these 
foundational mathematical ideas connect to subsequent learning in the mathematical horizon” (p. 48).  
Furthermore, this extension was used to make elementary teacher candidates aware of how mathematics 
they are to teach depends on context and how the assumption of cookies being identical simplifies the 
solution of the problem. In what follows, although identical cookies will be used only, the paper intends 
to demonstrate how mathematical ideas appropriate for exploring with elementary teacher candidates 
can “reveal a surprising intricacy and complexity when they are examined in depth” (ibid, p. 48).  

By extending the cookies context in a different direction, one can introduce the third plate filled 
with ten cookies and interpret the above nine decompositions of the number 10 as having three plates 
filled with cookies so that one of the plates has as many cookies as the other two plates combined. Adding 
a simplifying condition that plates are arranged in order (that is, ranked by ordinal numbers and, thereby, 
not subject to commutation), one can still intricate the situation by extending it to four plates where the 
third plate has as many cookies as the first and the second plates combined, and the fourth plate has as 
many cookies as the second and the third plates combined. Now the following question can be posed: 
How many cookies can one put on the first and the second plates, so that the third plate has as many 
cookies as the first two plates and the second and the third plates have ten cookies combined?  
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Figure 1. One way to get 10 cookies on the fourth plate: (2, 4, 6, 10). 

Figure 1 shows a possible solution with two cookies on the first plate, four – on the second plate, 
six – on the third plate, and ten – on the fourth plate. In other words, the quadruple (2, 4, 6, 10) is such 
that 6 = 2 + 4 and 10 = 4 + 6. As was already mentioned above, adding the fourth plate makes the 
situation more intricate in one sense and less complex in another sense for ranking the plates leaves out 
the possibility of swapping the first two plates if the number of cookies on the fourth plate is specified. 
Indeed, swapping the first two numbers yields the quadruple (4, 2, 6, 8) which provides an erroneous 
response to the question posed.  Below, we will refer to the process according to which cookies have 
been (and will be) put on plates as the ATLT (add the last two) rule. By reflecting on the solution shown 
in Figure 1, a teacher can ask students whether this solution is unique and if not, how all solutions to the 
problem about ten cookies on the fourth plate can be found. As an elementary teacher candidate noted, 
“I like the idea of prompting the students with a difficult question that has many answers ... some students 
that I have met would thrive with this type of activity ... [expecting] the students to present their thinking 
and problem solving that went into the problem, why they got that answer, etc.” First, in the environment 
encouraging the discussion of difficult questions, the students could note that the above quadruple of 
integers can be extended to the quintuple (2, 2, 4, 6, 10), thereby, prompting the extension to the fifth 
plate having ten cookies on it so that, according to the ATLT rule, 4 = 2 + 2, 6 = 2 + 4  and 10 = 4 + 6. 
Second, by changing the number of cookies and the number of plates, new problems structured by the 
ATLT rule can be formulated. Such changes should not be considered trivial – for example, one can 
check to see that whereas there is only one way to put nine cookies on the fifth plate following the ATLT 
rule, there is no solution for nine cookies and six plates. This is where technology may come into play 
under the umbrella of problem posing and solving, allowing for arithmetic, concrete materials and digital 
computation to meet.  

However, the introduction of technology as an enhancement of arithmetic involved in hands-on 
explorations is not straightforward and it requires one’s ability to decontextualize from the concreteness 
of cookies by taking advantage of the abstractness of mathematics. An important task for a teacher 
towards developing such an ability is to appreciate this relation between problem posing and problem 
solving, to learn how to recognize the emergence of a new problem through a teacher-student interaction, 
and to “be expert in ... the craft of task design ... and the mining of student ideas” (Conference Board of 
the Mathematical Sciences, 2012, p. 65). In the words of another elementary teacher candidate, 
“Mathematics has moved away from pure memorization in arithmetic and progressed into manipulation, 
association and reasoning. These skills enhance a student’s ability to think abstractly and apply one 
idea to many ideas in mathematics.”  

The teacher candidate’s view of the modern-day mathematics classroom confirms the importance 
of students’ learning to explore various seemingly unrelated contexts using experience with one idea, 
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even if this idea is not yet fully developed. For example, the idea of counting cookies on plates can be 
associated with using the context of pet store mathematics (Abramovich, 2005) as follows: A pet store 
sells exotic creatures, drimps and grimps. It is known that among a drimp and two grimps there are ten 
legs. How many legs does a drimp have and how many legs does a grimp have? It follows from Figure 
2, which shows four triples of one drimp and two grimps, that because the total number of legs is 10, a 
drimp may only have an even number of legs as, regardless of the number of legs a grimp has, two 
grimps have an even number of legs. If a drimp has two legs, a grimp has four legs; if a drimp has four 
legs, a grimp has three legs; if a drimp has six legs, a grimp has two legs; and if a drimp has eight legs, 
a grimp has one leg.  

 

 

Figure 2. Solving a problem with drimps and grimps. 

Counting legs can go as follows: drimp and grimp have six legs; adding another grimp to the mix 
yields ten legs. Alternatively, adding cookies on the first two plates, results in cookies on the third plate 
and adding cookies on the third and the second plates yields cookies on the fourth plate. Therefore, in 
addition to the quadruple (2, 4, 6, 10), three more quadruples, (4, 3, 7, 10), (6, 2, 8, 10) and (8, 1, 9, 10), 
define solutions to the original question about ten cookies on the fourth plate. Connecting cookies to 
creatures may be seen by psychologists as an insight (Dunker, 1945) or productive thinking (Wertheimer, 
1959) when solution of one problem is recognized to be stemming from that of another, seemingly 
unrelated, problem. It is interesting to note that in the 4th century B.C., Aristotle was referring to these 
modern-day psychological concepts as sagacity – “a hitting by guess upon the essential connection in an 
inappreciable time” (cited in Pólya, 1945, p. 58). What is important for a teacher in explaining the 
meaning of insight (or sagacity) is to develop a conceptual bridge between two problem situations. A 
picture can play the role of such a bridge. Regarding the use of pictures, an elementary teacher candidate 
who was afraid of students’ questions due to the traditional experience with mathematics as a never 
ending application of memorized rules, admitted that “by being able to break the problem down into 
pictures that students can understand, I can have more confidence in my mathematical conceptual skills 
which will help me explain it better ... this makes math more enjoyable and fun for me, and I hope to 
pass this on to my future students.” 

 One can note that Figure 2 is not only a visual representation of the statement one drimp and 
two grimps have ten legs but also is kind of a forebear of an algebraic equation , in which 
the right-hand side and the coefficient in the unknown G, both being even numbers, define (conceptually 
rather than procedurally) possible values of the unknown D. In other words, an equation as a 
mathematical model of a word problem emerges from one’s thinking about its pictorial solution rather 
than being communicated by a ‘more knowledgeable other’ to be used automatically as the only means 
of obtaining a numeric solution. Put another way, a word problem of the above type can be solved by 

D + 2G = 10
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partitioning a number of objects in two groups of sets of different cardinality when the cardinality of a 
set in one group can be determined from the relationship between the number of objects and the number 
of sets in another group.  

Such an approach to teaching mathematics, when a solution of a word problem serves as a kind 
of a forebear for an equation it satisfies, follows the framework of action learning – a pedagogy focusing 
on reflection and critical thinking as means of improving problem-solving performance (Dilworth, 1998; 
Abramovich, Grinshpan and Milligan, 2019). In the context of elementary mathematics teacher 
education, this approach reflects a position by Vygotsky (1987) regarding instruction which “is only 
useful when it moves ahead of development … [as through this move it] impels or wakens a whole series 
of functions that are in a stage of maturation lying in the zone of proximal development” (p. 212, italics 
in the original). Working within this zone under the teacher’s guidance, a student can develop skills in 
solving an algebraic equation using what may be called a conceptual shortcut (Canobi, 2005; Kuo, Hull, 
Gupta and Elby, 2013). For example, the equation  can be solved through a conceptual 
shortcut: because 2 and 10 are multiples of 2, the possible values for D are 2, 4, 6 and 8, thereby, the 
corresponding values for G are 4, 3, 2 and 1 (see Figure 2). This approach to word problems is also in 
agreement with one of the tenets of Gestalt psychology asserting that for many children “it makes a big 
difference whether or not there is some real sense in putting the problem at all” (Wertheimer, 1959, p. 
273). To support this assertion, Wertheimer, one of the founders of Gestalt psychology, gave an example 
of a 9-year old girl who was not successful in her studies at school. In particular, she was unable to solve 
simple problems requiring the use of basic arithmetic. However, when given a problem which grew out 
of a concrete situation with which she was familiar and the solution of which “was required by the 
situation, she encountered no unusual difficulty, frequently showing excellent sense” (ibid, pp. 273-274). 
That is, as a teacher candidate shared with the author, “It is not about how much mathematical knowledge 
one knows to give their class, it is about how you teach it and how it impacts the students. We should 
think about math in terms of application to the real world problems that students learn as they develop 
their quantitative reasoning.” The next sections will continue presenting ideas along these lines 
motivating concepts through action learning.  

 
2  Mapping cookies/legs to plates/creatures  
 
George Pólya, known for his truly fundamental contributions that made mathematics education 

a university subject and problem solving an object of disciplined inquiry, advised mathematics educators 
that “observation and analogy may lead to discoveries” (Pólya, 1981, p. 158). Following this advice, 
note that due to the ATLT rule, the following relations in each quadruple (confirmed by the images of 
Figure 2) can be observed: 

 
6 + 4 = 2 + 4 + 4, 7 + 3 = 4 + 3 + 3, 8 + 2 = 6 + 2 + 2, 9 + 1 = 8 + 1 + 1. 

This combination of numeric and visual observations may prompt one to contextualize the above four 
relations using cookies as shown in the diagram of Figure 3. That is, the contextualization suggests that 
ten cookies can be arranged in three groups of cookies put either on the first or on the second plate in the 
problem explored in the previous section. But how can one explain that cookies on the second and the 
third plates can be put on three plates in four different ways as shown in Figure 3? Indeed, six cookies 
can be put in two groups: two cookies from the first plate and four cookies from the second plate in the 
original arrangement. Likewise, in the case of the quadruple (4, 3, 7, 10) the number 7 can be 
decomposed into 3 and 4, so that 10 = 4 + (3 + 3); for the quadruple (8, 1, 9, 10) the number 9 can be 

D + 2G = 10
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decomposed into 1 and 8, so that 10 = 8 + (1 + 1); for the quadruple (6, 2, 8, 10) the number 8 can be 
decomposed into 6 and 2, so that 10 = 6 + (2 + 2). 
 

 

Figure 3. Ten cookies on three plates of two types. 

One can describe numerically what is seen in Figures 2 and 3 as follows:  

10 = 2 + (4 + 4),   10 = 4 + (3 + 3),   10 = 6 + (2 + 2),   10 = 8 + (1 + 1). 
In the context of Figure 3, all cookies on the fourth plate (i.e., ten cookies in the top rectangle) can be 
put in three groups the cardinalities of which are either the number of cookies on the first plate or the 
number of cookies on the second plate and such arrangement of cookies can be done in four different 
ways. 

Acknowledging the value of open-ended questions as a means of learning mathematics, an 
elementary teacher candidate, looking forward to her own classroom, admitted being prepared to 
“encourage students to ask similar kind of questions by coming up with word problems that can be 
expanded.”  With this in mind, one can slightly change the numbers for cookies and plates to pose a new 
question: How many ways can one put cookies on the first two plates so that, when using the ATLT rule, 
the fifth plate would have 20 cookies? In answering this question, the quintuple (1, 6, 7, 13, 20) can be 
found through trial and error (e.g., by keeping a single cookie on the first plate and changing the number 
of cookies on the second plate to see if three consecutive applications of the ATLT rule would yield 20 
cookies; if this does not work, start with two cookies on the first plate, and so on). Now, by analogy, 
having experience with numeric interpretation of Figure 3, one can note that the number of cookies on 
the fifth plate can be represented as the following combinations of such numbers on the first two plates: 

 
 or   2×1 + 3×	6 = 20. 

 
In order to find all ways to put 20 cookies on the plates of two types (Figure 4) – two plates of 

one type (rectangle) and three plates of another type (oval) – one can use the following systematic 
approach. If a cookie is put on each of the two plates of the first type, then the remaining 18 cookies can 
be put evenly on each of the three plates of another type (because 18 is divisible by 3). If two or three 
cookies are put on each of the two plates of the first type, then the remaining 16 or 14 cookies, 
respectively, cannot be put evenly on three plates of another type (because neither 16 nor 14 is divisible 
by 3). If four cookies are put on each of the two plates of the first type, then the remaining 12 cookies 

(1+1)+ (6 + 6 + 6) = 20
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can be put evenly on three plates of another type (because 12 is divisible by 3). Continuing in the same 
vein, one can find that when seven cookies are put on each of the two plates of the first type, the 
remaining six cookies can be put evenly on the three plates of another type (because 6 is divisible by 3). 
The arrangement of cookies proves to be completed by noting that neither eight nor nine cookies put on 
the two plates of the first type allow for a solution in the context of the remaining three plates (because 
neither 4 nor 2 is divisible by 3). Alternatively, if there are 20 legs among two drimps and three grimps, 
the equation has three integer solutions (1, 6), (4, 4) and (7, 2) from where the 
corresponding quintuples follow, respectively, (1, 6, 7, 13, 20), (4, 4, 8, 12, 20) and (7, 2, 9, 11, 20). 
These quintuples can help one comprehend the meaning of the coefficients in the equation 

and their origin, by presenting its left-hand side in the form  
 

, 

where the five addends, grouped in parentheses, show the rule according to which the left-hand side 
develops and the values of D and G in each such group correspond to the three pairs of integers 
satisfying the equation.  

 

 

Figure 4. There are three ways to put twenty cookies on five plates of two types. 

 

Figure 5. There are three ways to distribute 20 legs among two drimps and three grimps 

 

2D + 3G = 20

2D + 3G = 20

(D)+ (G)+ (D +G)+ (G + D +G)+ (D +G +G + D +G)
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 3  Connecting the ATLT rule to Fibonacci numbers 

One may discover that not all problems about cookies or creatures are easily solvable, let alone 
when their numbers are large. For example, whereas a problem with seven cookies and four plates or 
with seven legs among one drimp and two grimps can be solved by trial and error (resulting in three 
solutions for both contexts), the problem with 25 cookies and seven plates requires more than trial and 
error. Indeed, using the sequence 

 
                               D, G, D + G, D + 2G, 2D + 3G, 3D + 5G, 5D + 8G, ...,          (1) 

the first seven terms of which show five consecutive applications of the ATLT rule when counting either 
cookies or legs, one can first prove that 5 drimps and 8 grimps may not have 25 legs. Indeed, 5 drimps 
may have either 5, or 10, or 15, or 20 legs, thereby, leaving to 8 grimps either 20, or 15, or 10, or 5 legs, 
the quantities not divisible by 8. Likewise, if D and G represent the number of cookies on the first two 
plates, respectively, no matter what the numbers are, repeating the first and second plates, respectively, 
5 and 8 times may not yield 25 cookies. It is interesting to recognize the duality of the two contexts, 
cookies on plates and legs on creatures. Indeed, a case with a small number of cookies, e.g., seven, is 
difficult to resolve in terms of creatures and a case with a large number of cookies, e.g., 25, is easier to 
resolve in terms of creatures. Notwithstanding, when the number of plates and the number of cookies on 
the last plate (alternatively, the number of consecutive applications of the ATLT rule in counting legs 
among drimps and grimps) increase, the above reasoning may be difficult to use in either case.  That is 
where educational computing can support students’ conceptual understanding and elicit their epistemic 
advancement. But conceptualization requires generalization.  

With this in mind note that the coefficients in D and G in sequence (1) develop through the ATLT 
rule as well. Indeed, in the sum 5D + 8G we have 5 = 3 + 2 and 8 = 3 + 5 where, likewise, 3 = 2 + 1 and 
2 = 1 + 1. Mathematically, the sequence of coefficients can be defined as follows: its first two terms are 
equal to the number 1 and every term beginning from the third is the sum of the previous two terms. As 
is well known, these numbers are called Fibonacci numbers1, named after Leonardo Fibonacci (1270-
1350, Italy) – the most prominent mathematician of his time, credited with the introduction of Arabic 
numerals into the Western mathematics. Changing the first two Fibonacci numbers and keeping the rule 
according to which all other terms develop, result in a sequence called Fibonacci-like sequence. A 
famous example of a Fibonacci-like sequence is represented by Lucas numbers 2, 1, 3, 4, 7, 11, 18, 
29, ... , named after a mathematician Edouard Lucas (1842-1891, France), the author of the famous 
Tower of Hanoi puzzle (Hofstadter, 1985). Coincidentally, it was Lucas who in 1876 gave the sequence 
1, 1, 2, 3, 5, 8, 13, 21, ... its modern name (Koshy, 2001, p. 5).  

 
4  Reflection as a path to problem posing 

In the spirit of action learning, one can reflect on problem-solving activities and pose conceptual 
questions formulated in terms of the two contexts considered above: cookies on plates and legs on 
creatures. 

 
1 The sequence of numbers 1, 1, 2, 3, 5, 8, 13, … , nowadays commonly associated with the name of Fibonacci, was also 
referred to as the series of Lamé, e.g., “la célèbre série de Lamé ou de Fibonacci” (Catalan, 1884, p. 8, italics in the 
original).  Gabriel Lamé (1795–1870) – a French mathematician and engineer. Eugène Charles Catalan (1814–1894) – a 
French/Belgian mathematician. 
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Question 1. Considering the first and the second plates filled with cookies as the plates of the 
first and the second type, respectively, and given the rank of the last plate, how can one find the number 
of plates of each type to put cookies on the last plate through the ATLT rule?  

 
Remark 1. Figure 4 shows how the total of 20 cookies from the fifth plate can be put on two 

plates of the first type and three plates of the second type. At the same time, one can check to see that 
although 20 cookies may be put on one plate of the first type and two plates of the second type in different 
ways, none of the ways enables having 20 cookies on the fifth plate using the ATLT rule. Indeed, 

, yet  This shows there is something special about the 
numbers two and three and, in general, about the numbers sought in Question 1. 

 
Question 2. Given the number of consecutive applications of the ATLT rule when counting the 

total number of legs among drimps and grimps, how can one find the number of creatures of each type? 
  
Remark 2. Figure 5 shows how the total of 20 legs in the case of three consecutive applications 

of the ATLT rule can be distributed among two creatures of the first type and three creatures of second 
type. At the same time, although 20 legs can be distributed among one drimp and two grimps in different 
ways (e.g., D = 4 and G = 8), three consecutive applications of the ATLT rule yield 

 
 
Remark 3. One may note that when D and G are number of cookies on the first and the second 

plates, respectively, cookies on the fourth plate form the sum D + 2G, cookies on the fifth plate form the 
sum 2D + 3G, cookies on the sixth plate form the sum 3D + 5G, and so on. Likewise, two, three, four, 
and so on applications of the ATLT rule when counting legs, starting from D and G legs, yield, 
respectively, D + 2G, 2D + 3G, 3D + 5G and so on legs. The coefficients 3 and 5 are Fibonacci numbers 
of ranks four and five, respectively. 

 

5  A spreadsheet as a part of an instrumental act 

Nowadays, a computer is commonly used as a technical device which enhances problem solving 
and mathematical machinery serves as a psychological tool that mediates one’s thinking about how the 
use of the tool makes the device applicable to a specific problem type. One of the most popular computer 
applications is an electronic spreadsheet – a high-tech artifact which through the appropriate use of 
mathematics may become an effective instrument of problem solving.  In terms of the instrumental 
genesis theory (Rabardel, 1995) with its origin in the seminal ideas of Vygotsky (1930) about mediating 
problem solving by psychological instruments and technical devices, a spreadsheet may be considered 
being inserted between a problem solver and a problem to solve. This modern-day epistemically-oriented 
troika – user-spreadsheet-problem – makes the process of solving a problem an instrumental act. As the 
middle term of the troika, a spreadsheet acts bi-directionally. On the one hand, it acts primarily towards 
solving a problem. On the other hand, the use of the instrument requires significant intellectual efforts 
on the part of the problem solver. That is, the instrument acts towards the cognitive development of its 
user. An important role of a mathematics teacher educator, when demonstrating possible uses of 
mathematics in spreadsheet programming as a means of turning an artifact into an instrument, is to 
support and encourage epistemic advancement of teacher candidates.  

20 = 1⋅2 + 2 ⋅9 2 + 9 = 11,11+ 9 = 20, 20 +11= 31.

4 + 8 = 12,12 + 8 = 20, 20 +12 = 32.
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In particular, in order to assist one in answering the above questions, a rather sophisticated yet 
user-friendly spreadsheet-based environment can be employed. Such a spreadsheet (the programming of 
which is included in Appendix) is shown in Figure 6. It can also be used for posing and solving problems 
about cookies on plates or legs on creatures. For instance, by setting the number of cookies at 20 (cell 
A2) and the number of plates at 5 (cell B2), the spreadsheet generated three asterisks: cell D9 is 
associated with the cells B9 and D2, the third row in Figures 4 and 5, leading to the quintuple (7, 2, 9, 
11, 20) of cookies on the given plates; cell F6 is associated with the cells B6 and F2, the second row in 
Figures 4 and 5,  leading to the quintuple (4, 4, 8, 12, 20); cell H3 is associated with the cells B3 and H2, 
the first row in Figures 4 and 5, leading to the quintuple (1, 6, 7, 13, 20).  

 

 

Figure 6. Twenty cookies on five plates of two types (cf. Figure 4). 

Such a combination of concrete objects like cookies on plates and digital tools like spreadsheets, 
being powerful in its simplicity, represents an engaging learning environment which motivates further 
explorations into the problems about cookies/creatures. In particular, the spreadsheet of Figure 6 can be 
used by a teacher to pose a problem for students to solve using concrete materials of their choice: either 
cookies on plates or legs on creatures. Using the spreadsheet of Figure 6, one can check to see that setting 
any term of Fibonacci numbers as the number of cookies on the last plate and the rank of the term selected 
as the number of plates results in the unique solution. For example, when there are 8 cookies on the 6th 
plate (the number 8 is the 6th Fibonacci number), the first and the second plates will both have one cookie 
only. Likewise, when there are 11 cookies on the 6th plate (the number 11 is the 6th Lucas number), the 
first and the second plates will have, respectively, two and one cookies only. At the same time, there 
exist two ways to put cookies on the first and the second plates so that the 5th plate will have 11 cookies. 
One can confirm the last two statements using hands-on and conceptual shortcut approaches; that is, first 
to put 11 cookies on three plates of one type and five plates of another type (Figure 8) and solve the 
equation  (by seeing that only G = 1 and D = 2 yield the solution), followed by putting 11 
cookies on two plates of one type and three plates of another type (Figure 9) and solving the equation 

 (because G = 1 yields D = 4 and G = 3 yields D = 1) .   

3D + 5G = 11

2D + 3G = 11
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Figure 7. A problem with a single solution: putting 11 cookies on three and five plates. 

 

Figure 8. Two ways to put 11 cookies on two and three plates. 

If the total number of plates is equal to n (alternatively, n is the rank of the last plate), then, with 
D and G  being the number of cookies on the first and the second plates, respectively, the number of 
cookies on the last plate is the sum aD + bG, where a and b are Fibonacci numbers of the ranks n – 2  
and n – 1. Put another way, these two numbers represent the quantities of the plates of two types. For 
example, if there are five plates, then one has to find the third and the fourth Fibonacci numbers, which 
are 2 and 3; therefore, regardless of D and G, there will be two plates of the first type and three plates of 
the second type. Likewise, in the case of seven plates, one has to consider the equation 

 
                                         (2) 

decontextualized from the above contexts and use the conceptual shortcut approach to demonstrate that 
equation (2) does not have integer solutions as G has to be a multiple of 5 and already G = 5 makes the 
left-hand side of (2) greater than its right-hand side. In the case of Question 2, the left-hand side of (2) 
results from five consecutive applications of the ATLT rule to counting legs among drimps and grimps. 
The absence of integer solutions to equation (2) means that such count may not result in 25 legs. In 
general, n consecutive applications of the ATLT rule when counting legs among the creatures with D 
and G legs would yield the expression aD + bG, where a and b are Fibonacci numbers of ranks n and n 
+ 1, respectively; these numbers representing the number of creatures of the two types. Without transition 
from arithmetic to algebra, that is, without replacing numbers by letters, equation (2) and its solution 
through a conceptual shortcut would never come to light. This answers Questions 1and 2. 

5D + 8G = 25
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             6  An instrumental act leads to technology motivated conjecturing  

 Consider the case when the number of cookies on the plate of rank n is the Fibonacci number of 
rank n.  For example, let n = 34 – the Fibonacci number of rank 9. In order to find the number of cookies 
on the first two plates, one has to solve the equation 13D + 21G = 34 the only integer solution of which 
is D = G = 1. Here 13 and 21 are Fibonacci numbers of ranks 7 and 8, respectively. At the same time, in 
the equation 8D + 13G = 34 (where 8, 13 and 34 are Fibonacci numbers of ranks 6, 7, and 9, respectively) 
the unknown G has to be an even number not greater than 2 (as both 8D and 34 are multiples of 2 and 
already ) yielding the only solution D = 1 and G = 2 (where 1 and 2 are Fibonacci numbers of 
ranks 2 and 3, respectively). In the equation 5D + 8G = 34 (where 5 and 8 are Fibonacci numbers of 
ranks 5 and 6, respectively) the unknown D  has to be an even number not greater than 2 (as both 8G 
and 34 are multiples of 2 and ) yielding the only solution D = 2 and G = 3 (where 2 and 3 are 
Fibonacci numbers of ranks 3 and 4, respectively). Put another way, if the is the Fibonacci number 
of rank n, the above observations suggest that the three identities 

 hold true, yielding the following inductively 
conjectured 
 

Proposition 1. 

                                .        (3) 

Remark 4. Identity (3) is equivalent to another identity  
 

                                                   (4) 

among Fibonacci numbers developed in the context of finding the number of ways to tile a  
checkerboard (Grimaldi, 2012, p. 38). Indeed, replacing in (3) n by k + n yields 

 whence . That is, conceptually different applications 
of Fibonacci numbers enable almost identical formulations in which they are involved. The recognition 
of the existence of such formulations requires much more than insight, as putting cookies on plates and 
tiling one-dimensional checkerboards are quite mathematically and contextually distinct activities. 
Notwithstanding, one has to keep in mind that, although discoveries in mathematics education rarely 
lead to new results in purely mathematical sense, such discoveries are very important from a pedagogical 
perspective and in no way may be considered educationally insignificant, especially when they take 
place within student-centered activities. 
 

Remark 5.  In order to prove identity (3), one has to use the formula 
 

 

 

13⋅4 > 34

8 ⋅4 = 32
Fn

F7F1 + F8F2 = F9 , F6F2 + F7F3 = F9 ,F5F4 + F6F4 = F9

Fn−(k+1)Fk + Fn−k Fk+1 = Fn , k ≥1, n ≥ 2

Fk+n = FnFk+1 + Fn−1Fk , k ≥ 0, n ≥1

1× (k + n−1)

Fk+n = Fk+n−k−1Fk + Fk+n−k Fk+1 Fk+n = FnFk+1 + Fn−1Fk

Fn =
1
5
(1+ 5

2
)n − (1− 5

2
)n

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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which is a closed formula for Fibonacci numbers, with being their recursive 

representation from which it can be derived that – the so-called Golden Ratio, the 

reciprocal of  . A beauty of the closed formula, named after  a French mathematician Jacques 

Binet (1786-1856), and the importance of making elementary teacher candidates familiar with it is that 
the formula shows how one class of numbers (in this case, integers) can be represented through another 
class of numbers (in this case, irrational numbers), the two classes being related in a certain sense. Just 
as recognizing relation of cookies to creatures required insight, the relation between Fibonacci numbers 
(introduced by Fibonacci to Western European mathematics in the 13th century) and the Golden Ratio 
(already known to Pythagoras in the 5th century B.C.) was revealed only in the 16th century. A formal 
proof Proposition 1 is beyond the level of elementary school mathematics. One may recall that at the 
beginning of the paper an elementary teacher candidate was cited when appreciating “a student’s ability 
to think abstractly and apply one idea to many ideas in mathematics.” Indeed, just as the idea of 
connecting a problem with cookies to the problem with creatures through an equivalent reformulation 
and explaining the solution of the latter in terms of the former, it (the idea) can be applied to proving 
identity (3) through the recourse to Binet’s formula. Keeping in mind that comprehending an idea is 
more important than deciphering its technical realization, the proof of Proposition 1 is omitted from the 
main text of this paper and included in Appendix. 
 
            7  Conclusion 

This paper was written to reflect on the author’s experience as a mathematics instructor of 
elementary teacher candidates and to share pedagogical ideas behind the courses taught that support 
current standards for teaching and recommendations for teachers. Several pedagogical ideas of how 
mathematics for teachers can be structured were highlighted. The paper included excerpts from the 
teacher candidates’ solicited commentaries on the pedagogy of the courses.  

The first pedagogical idea dealt with the dual nature of implicit/explicit assumptions which an 
elementary teacher may encounter when teaching to solve word problems. The paper started with the 
discussion of how a simple question about putting cookies on two plates in the absence of the assumption 
of cookies being identical may require a mathematically complicated resolution. This discussion 
demonstrated an intricate relationship between context from which posing a word problem stems and 
mathematics which frames the ensuing problem solving. In the real classroom, when the assumption 
about cookies being identical is implicitly presumed, it may be challenged by a curious student and, 
likewise, when it is made explicit, another curious student might ask a teacher to explain the need for 
this, seemingly self-evident declaration. It both cases, to address students’ curiosity, an elementary 
teacher needs to have what is commonly referred to as deep understanding or flexible knowledge of 
mathematics (e.g., Association of Mathematics Teacher Educators, 2017; Conference Board of the 
Mathematical Sciences, 2012; Baumert et al., 2010). The discussion around this issue  was to give an 
example of why elementary teachers are expected to possess such knowledge. 

Another pedagogical idea dealt with the use of two seemingly unrelated contexts, revealing a 
hidden relationship between which does require insight (sagacity), just as any new idea in mathematics 
entails. The need for making this relationship explicit is due to the fact that often, especially in 
mathematics, questions posed within one context (e.g., cookies on plates) can be answered through the 

Fn+1 = Fn + Fn−1

lim
m→∞

Fn+1
Fn

= 1+ 5
2

5 −1
2
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exploration of another context (e.g., legs on creatures) followed by formulating an answer in terms of 
the relationship between the two contexts. At the same time it was shown that whereas some questions 
were easier to answer in the context of creatures, other questions were easier to answer in the context of 
cookies. At the end of the paper, this idea, formulated in pretty authentic terms, was used to explain 
rather esoteric purpose of representing Fibonacci numbers (integers) through the Golden Ratio (an 
irrational number), something that enabled proving an identity among Fibonacci numbers through a 
recourse to Binet’s formula involving the Golden Ratio. 

With a reference to the Gestalt psychology recommendations for teaching and learning 
elementary mathematics, the importance of using concrete situations was emphasized as a tool of 
comprehending the abstractness of the subject matter aimed at successful problem solving. It was shown 
how the pedagogy of using concrete situations makes sure that instruction “moves ahead of development” 
(Vygotsky, 1987, p. 212, italics in the original) by using pictorial representations of the situations 
involved as forebear of algebraic equations. In such cognitive milieu, solving those equations does not 
require one to use developmentally demanding algebra. Rather, one can learn to solve algebraic 
equations through conceptual shortcuts when numeric properties of coefficients of the equations decide 
the values of the unknowns. One can say that the pedagogy of using a conceptual shortcut is structured 
by an early algebra trial and error argument informed by conceptual understanding.  

To make a room for the appropriate use of technology, the ATLT rule was eventually formalized 
by bringing classic Fibonacci numbers into consideration, something that allowed for the development 
of a spreadsheet capable of exploring conceptual questions posed about cookies and creatures. In turn, 
the use of the spreadsheet was explained in terms of the concept of the instrumental act (Vygotsky, 1930) 
when a middle term is inserted between a problem solver and a problem to be solved. Using a spreadsheet 
as such an element of an instrumental act enabled for finding an answer to conceptual questions in terms 
of relations among Fibonacci numbers that were generalized to the form of a non-trivial number-
theoretical identity stemming from the contexts of cookies and  creatures. This identity was shown to be 
equivalent to an identity developed in a very different context through mathematically very different 
means. This made it possible to encounter one of the most profound features of mathematics when 
different problems and methods of solving them lead to either equivalent or identical mathematical 
outcomes. 

Similar to the development of an extended musical composition, the paper represented 
mathematical ideas in an ascending order, starting from a typical early grades partition problem put in 
context of putting ten cookies on two plates. By using concreteness of the context as a scaffold for a 
headway to mathematical formalism needed for the design of a spreadsheet capable of computational 
experiments leading to technology motivated conjecturing, the paper illustrated how mathematical 
knowledge for teaching in the modern-day classroom can be developed. We conclude the paper by citing 
a teacher candidate’s understanding of the importance of such knowledge. In her words, “it is important 
for K-6 teachers to be able to build the knowledge students need to succeed in the higher grade as they 
will be learning more formulas and adding to what they were taught in K-6. As a teacher in the primary 
grades we are really getting them interested in math, and building their foundation that they need for 
the rest of their life.” 
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Appendix 
 
Programming the spreadsheet of Figure 6 
 

Cell A2: given the name Cookies. Cell B2: given the name Plates. Cell A3: = 1; cell A4: = 1; cell 
A5: = A3 + A4 – replicated down column A, thereby, generating consecutive Fibonacci numbers. Cell 
B3: = 1; cell B4: = B3 + 1 – replicated down column B, generating possible numbers of cookies put on 
the first plate. Cell C2: =1; cell D2: = C2 + 1 – replicated to the right along row 2, generating possible 
numbers of cookies put on the second plate.  

 
Cell  C3:  =IF(AND($A$2+Plates-3>0,INDEX($A$2:$A$40,Plates-2,1)*$B2 
+INDEX($A$2:$A$40,Plates-1,1)*C$1=Cookies), "*"," ") – replicated to cell I10. 
  
In order to explain how the last (conditional) formula works, note that the spreadsheet of Figure 

6 is designed to solve the equation  by selecting different pairs of x and y (displayed, 
respectively, in column B – beginning from cell B3, and row 2 – beginning from cell C2) where a and 
b, a ≤ b, are consecutive Fibonacci numbers (displayed in column A starting from cell A3) and c is the 
number of cookies (displayed in cell A2) on the last plate (which rank is displayed in cell B2). The 
spreadsheet function INDEX is used to select a certain number from a range of numbers. In our case, 
one has to select the values of a and b (from consecutive Fibonacci numbers). Therefore, given the 
number of cookies on the last plate, the pair of Fibonacci numbers is unique. For example, when the 
number of plates is 8, the pair of ranks of the corresponding Fibonacci numbers is (8 – 1, 8 – 2) = (7, 6) 
and the relation  

  
INDEX($A$2:$A$40,Plates-2,1)*$B2+INDEX($A$2:$A$40, Plates-1,1)*C$1=Cookies  
 

turns into  
 

INDEX($A$2:$A$40,7,1)*$B2+INDEX($A$2:$A$40, 6,1)*C$1=Cookies  
or 

8*$B2+13*C$1=Cookies, 
 

ax + by = c
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as the 7th and the 6th numbers in the range A3:A10 are 13 and 8, respectively. 
 
Proof of Proposition 1 
 

 

and 

 

 
Thefore, 
 

 

 
Simplifying the sums in the first and the second brackets of the final expression yields, respectively, 

Fn−(k+1)Fk =
1
5
(1+ 5

2
)n−k−1 − (1− 5

2
)n−k−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
5
(1+ 5

2
)k − (1− 5

2
)k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5
(1+ 5

2
)n−1 + (1− 5

2
)n−1 − (1− 5

2
)n−k−1(1+ 5

2
)k − (1+ 5

2
)n−k−1(1− 5

2
)k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fn−k Fk+1 =
1
5
(1+ 5

2
)n−k − (1− 5

2
)n−k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
5
(1+ 5

2
)k+1 − (1− 5

2
)k+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5
(1+ 5

2
)n+1 + (1− 5

2
)n+1 − (1− 5

2
)n−k (1+ 5

2
)k+1 − (1+ 5

2
)n−k (1− 5

2
)k+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Fn−(k+1)Fk + Fn−k Fk+1

= 1
5
(1+ 5

2
)n−1 + (1− 5

2
)n−1 − (1− 5

2
)n−k−1(1+ 5

2
)k − (1+ 5

2
)n−k−1(1− 5

2
)k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 1
5
(1+ 5

2
)n+1 + (1− 5

2
)n+1 − (1− 5

2
)n−k (1+ 5

2
)k+1 − (1+ 5

2
)n−k (1− 5

2
)k+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
5
(1+ 5

2
)n−1 + (1− 5

2
)n−1 + (1+ 5

2
)n+1 + (1− 5

2
)n+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 1
5
(1− 5

2
)n−k−1(1+ 5

2
)k + (1+ 5

2
)n−k−1(1− 5

2
)k + (1− 5

2
)n−k (1+ 5

2
)k+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.



IMVI OMEN, 10(1)(2020)                                                                                                                                                      S. Abramovich  
 

 
32 

 

 

and 
 

 

This completes the proof of Proposition 1.  
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