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S-e-PRIME ELEMENT PROPERTY IN LATTICES

Shahabaddin Ebrahimi Atani

ABSTRACT. Let e be a fixed element of a bounded distributive lattice £ and S
a join-subset of L. Following the concept of S-F-prime filters [16], we define
S-e-prime elements of £ as a new generalization of weakly S-prime elements
[17]. Let p be a proper element of £ with S Ap =0 (i.e. sAp = 0 for all
s € 5). We say that p is an S-e-prime element of £ if there is an element
s € S such that forallz,ye Lifp<zVyandpVeLsVy, thenp<sVa
or p < sVy. We will make an intensive investigate the basic properties and
possible structures of these elements.

1. Introduction

All lattices considered in this paper are assumed to have a least element de-
noted by 0 and a greatest element denoted by 1, in other words they are bounded.
Recently, the study of algebraic structures, using the properties of lattice theory,
tends to a useful research topic. Associating a lattice with an algebraic struc-
ture allows us to obtain characterizations and representations of special classes of
algebraic structures in terms of lattices and vice versa (see for example [7, 9, 11-18]).

Various generalizations of prime ideals of commutative rings have been stud-
ied. Recall from [1], a prime ideal P of R is a proper ideal having the property
that ab € P implies either a € P or b € P for each a,b € R. In 2003, Anderson
and Smith in [3] defined weakly prime ideals which is a generalization of prime
ideals (also see [10]). A proper ideal P of a ring R is said to be a weakly prime if
0 # xy € P for each x,y € R implies either x € P or y € P. Thus every prime
ideal is weakly prime. In 2020, Hamed and Malek [19] introduced the notion of an
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S-prime ideal (also see [18, 20]), i.e. let S C R be a multiplicative set and I an
ideal of R disjoint from S. We say that I is S-prime if there exists an s € S such
that for all a,b € R with ab € I, we have sa € I or sb € I. Almahdi et. al. [4]
introduced the notion of a weakly S-prime ideal as follows (also see [17]): We say
that I is a weakly S-prime ideal of R if there is an element s € S such that for all
z,y € Rif 0 # xy € I, then sx € I or sy € I. Akray and Hussein generalized the
concept of I-prime submodules in [6] (also see [5]). Let R be a commutative ring
and I be a fixed ideal of R. Then a proper submodule P of an R-module M is
called I-prime submodule of M if rm € P — IP for all r € R and m € M implies
that either m € P or r € (P :g M), and a proper ideal P of R is I-prime if for
a,b € R with ab € P — I P implies either a € P or b € P. So every weakly prime is
I-prime. Let £ be a bounded lattice. We say that a subset S C L is join subset if
0 € S and s;Vsy €S forall s1,s9 € S. Let F be a fixed filter of a bounded dis-
tributive lattice £ and S a join subset of £. In [16], the present author, introduced
the concepts of F-prime filters and S-F-prime filters as a new generalizations of
weakly prime filters and S-prime filters, respectively, i.e. A proper filter P of L is
F-prime if for a,b € £ with aVb € P — (FV P) implies either a € P or b € P and
we say that a proper filter P of £ with PNS = () is an S-F-prime filter if there is
an element s € S such that for all a,b € Lifavbe P— (PV F), then sVa € P
or sVbe P. Also, in [17], the present author, introduced the concepts of S-prime
elements (as a new generalization of prime elements) and weakly S-prime elements
(as a new generalization of weakly prime elements). A proper element p of L is
called prime (resp. weakly prime) if p < xVy (resp. p <z Vy#1),thenp <z
or p < y. Let S be a join subset of £. An element p of £ satisfying S Ap =0 is
said to be S-prime (resp. weakly S-prime) if there exists an element s € S such
that, whenever z,y € L, p < zVy (resp. p < zVy # 1) impliesp < sVz or p < sVy.

Let e be a fixed element of £. Among many other results in this paper, the
first, preliminaries section contains elementary observations needed later on. Sec-
tion 3 concentrates on some basic properties of e-prime elements of £ as a new
generalization of weakly prime elements. A proper element p of L is e-prime if for
a,b € L withp <aVband pVe £ aVbimplies either p < a or p < b. At first,
some informations about the structure of such elements are given in Example 3.1,
Example 3.2 and Example 3.3. We give an example (Example 3.2 (3)) of a e-prime
element of £ that is not a weakly prime element (so it is not prime). Proposition
3.1 shows that if £ is a local complete lattice with unique coatom element ¢ and
1 # p € L, then c¢ is an p-prime element. It is shown (Theorem 3.1) that if p is
an e-prime element of £ that is not prime, then e < p. In the Corollary 3.2, we
give a condition under which an e-prime element of £ is a prime element. In the
Theorem 3.2, We give three other characterizations of e-prime elements. In the rest
of this section, we investigate the properties of e-prime elements similar to prime
elements. In particular, we investigate the behavior of e-prime elements under ho-
momorphism, in factor lattices, V-lattice and in cartesian products of lattices (see
Theorem 3.3, Theorem 3.4, Theorem 3.5 and Theorem 3.6).
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Let S be a join subset of L. Section 4 concentrates on some basic properties of
S-e-prime elements of £ as a new generalization of S-prime elements. At first, we
give the definition of S-e-prime element (Definition 4.1) and provide an example
(Example 4.1 (5)) of an S-e-prime element of £ that is not an S-prime element.
In the Theorem 4.1, We give a characterization of S-e-prime elements. We provide
some conditions under which a join of a family of S-e-prime elements of £ is an
S-e-prime element (see Theorem 4.2). It is proved (Theorem 4.3) that if S is a
join subset of £ and p is an S-e-prime element of £ that is not S-prime, then
e < p. The remaining part of this section is mainly devoted to investigate S-e-
prime elements under various contexts of constructions such as homomorphism,
in factor lattices, S-V-lattices, cartesian products of lattices and S-c-Noetherian
lattices (see Theorem 4.4, Theorem 4.5, Theorem 4.6, Theorem 4.7, Theorem 4.8,
Theorem 4.9 and Theorem 4.10).

2. Preliminaries

A poset (L,<) is a lattice if sup{a,b} = a Vb and inf{a,b} = a A b exist for all
a,b € L (and call A the meet and V the join).

DEFINITION 2.1. (1) A lattice £ is complete when each of its subsets X has a
least upper bound and a greatest lower bound in £. Setting X = L, we see that
any nonvoid complete lattice contains a least element 0 and greatest element 1 (in
this case, we say that £ is a lattice with 0 and 1).

(2) A lattice L is called a distributive lattice if (xVy) ANz = (xAz)V (yA=z)
for all z,y, z € L (equivalently, £ is distributive if (x Ay)Vz = (zV2)A(yV z) for
all x,y,z € L£).

(3) An element x of a lattice £ is nontrivial (resp. proper) if x # 0,1 (resp.
x #1).

(4) We say that an element z in a lattice £ is an atom (resp. coatom) if there
isno y € L such that 0 < y < z (resp. < y < 1). The set of all coatom (resp.
atom) elements of £ is denoted by CA(L) (resp. A(L)).

(5) A lattice L is called local if it has exactly one coatom element ¢ that x < ¢
for each proper element =x.

(6) If £ and L' are lattices, then a lattice homomorphism v : L — L' is a map
from £ to £’ satistying v(zVy) = v(x)Vou(y) and v(zAy) = v(z) Av(y) for z,y € L.
A lattice homomorphism is said to be a order lattice homomorphism if x < y if and
only if v(z) < v(y) for z,y € L.

(7) A non-empty subset F of a lattice £ is called a filter, if for a € F, b € L,
a<bimpliesbe F,and x Ay € F for all z,y € F (so if £ is a lattice with 1, then
1 € F and {1} is a filter of £).

(8) Let D be subset of a lattice £. Then the filter generated by D, denoted
by T'(D), is the intersection of all filters that is containing D. A filter F is called
finitely generated (resp. cyclic) if there is a finite subset A of F' (resp. if there is
an element a € F') such that F' = T(A) (resp. F =T({a}) =T(a)).

For undefined notations or terminologies in lattice theory, we refer the reader
to [7, 9]. First we need the following easy observations proved in [11, 12, 13, 14].
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LEMMA 2.1. Let L be a lattice.

(1) A non-empty subset F of L is a filter of L if and only if xV z € F and
x ANy €F forallz,y € F, z € L. Moreover, sincex=zV (xAy),y=yV (zAy)
and F is a filter, x Ny € F gives x,y € I for all x,y € L.

(2) Let A be an arbitrary non-empty subset of L. Then

TA)={zeLl: agNag AN - Na, <z for somea; € A(1<i<n)}

Moreover, if a,b € L, then T({a}) =T(a) ={zVa:x € L} and a < b if and only
if T(b) C T(a).

(3) If L is distributive, then (G :x F) ={z € L: 2V F C G} and (F ¢
T({z})=(F:zz)={a€L:aVzeF} are filters of L.

3. Characterization of e-prime elements

In this section, we collect some basic properties concerning e-prime elements
and remind the reader the following definition.

DEFINITION 3.1. Let e be a fixed element of a lattice £. A proper element p
of L is e-prime if for a,b € £ with p <aVband pVe £ aVbimplies either p < a
or p < b.

ExXAMPLE 3.1. (1) If p is a proper element of £, then p is always p-prime (by
definition).

(2) Let p and ¢ be elements of £ with ¢ < p. If p is proper, then p is always
g-prime (by definition). In particular, p is always 0-prime.

EXAMPLE 3.2. (1) If e = 1, then the 1-prime and the weakly prime elements
of £ are the same.

(2) Suppose that p is a weakly prime (i.e. 1-prime) element of £ and let e be
an element of £. Let a,b € £ such that p < aVbandpVe £ aVbsoaVb#1
since always p Ve < 1. It follows that p < a or p < b. Thus, every weakly prime
element (prime element) is e-prime.

(3) Let £L = {0,a,b,¢,1} be a lattice with the relations 0 < a < ¢ < 1,
0<b<c<1l,avb=cand aAb = 0. Then c is an a-prime element of L
by Example 3.1 (2). Also, ¢ is not a weakly prime (prime) element of £ because
c<aVb=c#1,c%aandc¥b. Thus an e-prime element need not be a weakly
prime element (prime element).

ExXAMPLE 3.3. Let e and f be elements of £ such that e < f. Suppose that p
is an f-prime element of £ and let 2,y € £ such that p<azVyandpVe Lz Vy.
Then e < f gives pV f £ 2 Vy which implies that p < z or p < y. Therefor, p is an
e-prim element of £. However, the converse is not true in general. Indeed, assume
that £ is the lattice as in Example 3.2 (3) and let a < 1. Then p = ¢ is an a-prime
element of £ but not an 1-prime element of L.

The proof of the following lemma can be found in [14, Lemma 2.1], but we give
the details for convenience.
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LEMMA 3.1. If p is a non-trivial element of a complete lattice L, then p < ¢
for some coatom element ¢ of L.

PROOF. Set Q = {b: b is an element of £ with p < b < 1}. Then Q # 0 since
p € Q. Moreover, (2, <) is a partial order. Clearly, Q2 is closed under taking joins
of chains and so  has at least one maximal element (coatom element) by Zorn’s
Lemma, say p < ¢, as needed. O

PRrROPOSITION 3.1. Let L be a local complete lattice with unique coatom element
c. If p is a proper element of L, then c is an p-prime element.

PROOF. Let p be a proper element of L. If p = 0, we are done by Example 3.1
(2). So assume that p # 0. Then p < ¢ by Lemma 3.1, i.e. the result follows from
Example 3.1 (2). O

An element p € L is called irreducible if p = x V y, then either x € T'(p) or
y € T(p). Compare the next example with Theorem 2.11 (2) and Theorem 2.11 (3)
in [5].

EXAMPLE 3.4. Let £ be the lattice as in Example 3.2 (3). Then L is a local
complete lattice with unique coatom element c. Consider the filter T'(¢) = {1, c}.

(1) Since ¢ < aVb=c# 1 with ¢ £ a and ¢ £ b, we conclude that ¢ is not a
weakly prime (1-prime) element. Moreover, ¢ is u-prime for every element u < ¢ of
L but it is not 1-prime.

(2) Since ¢ = aVb with a,b ¢ T(c), we infer that c is not an irreducible element,
but it is u-prime by (1). Thus an u-prime element need not be irreducible.

Henceforth we will assume that e is a fized element of L.
THEOREM 3.1. Let p be an e-prime element of L. If p is not prime, then e < p.

PROOF. Suppose that e £ p; we show that p is prime. Let z,y € £ such that
p<azVy IfpVed zVy, then pis an e-prime gives p < z or p < y. So we
may assume that pVe < zVy. Since e € p = pA (xz V y), we conclude that
pVe £ pA(zVy). Thenp < pA(zVy) = (pAz)V(pAy) implies that p < pAz <
orp<pAy<y,i.e. pis prime. O

COROLLARY 3.1. Let p be an 1-prime element of L. If p is not a prime element,
then p = 1.

Proor. By Theorem 3.1, 1 < p,ie. p=1. (]

COROLLARY 3.2. Let p be an e-prime element of L. If e £ p, then p is a prime
element of L.

PROOF. This is a direct consequence of Theorem 3.1. ]

One can easily show that if p,a € £, then A,(p) = {z € L:p < xVa} is a filter
of L. We next give three other characterizations of e-prime elements. Compare the
next theorem with Theorem 3.2 in [16].
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THEOREM 3.2. If p is a proper element of L, then the following statements are
equivalent:

(1) p is an e-prime element of L;

(2) Forp £ a, Au(p) = T(p) U Aua(p Ve);

(3) For p £ a, Aa(p) = T(p) or Aa(p) = Aa(p Ve);

(4) For elements x and y of L with T(x) VvV T(y) C T(p) and T(x)V T(y) ¢
T(p) VT(e), either T(x) CT(p) or T(y) C T(p).

PROOF. (1) = (2) Let p £ a. If z € T(p), then p < 2 =pV s < zV a for some
s € L gives z € Ag(p); so T'(p) C Au(p). If z € Ay(pVe), thenp<pVe<zVa
implies that z € A,(p). Therefore, T(p) U As(p V e) C Ay(p). For the reverse
inclusion, assume that z € A,(p) (sop < zVa). If pVe £ zVa, then p < z by (1)
which implies that z=2Vp e T(p). If pVe < 2zVa, then z € A,(pV e) and so we
have equality.

(2) = (3) Since Aq(p) € T(p) U Au(p V e) by (2), we conclude that either
Ao (p) C T(p) or Au(p) C Aa(pVe) by [11, Remark 2.3 (i)], and so (3) holds.

(3) = (1) Let a,b € L such that p<aVband pVe £ aVb On the contrary,
assume that p £ a and p £ b. It suffices to show that p Ve < aVb. Since p £ a
and b € A,(p), we infer that b € T'(p) or b € A,(pVe) by (3). If b € T(p), then
p <b=pVecforsome c € L, acontradiction. If b € A,(pVe), then pVe<aVb.

(3) = (4) On the contrary, assume that T'(z) ¢ T(p) and T(y) € T(p). It
suffices to show that T'(z) VT(y) C T(p) VT(e). Let z € T(x). If z ¢ T(p), then
2V T(y) € T(p) implies that T(y) € A.(p). Now, T(y) € T(p) gives T(y) C
A.(pVe) by (3); hence VT (y) C T(p) VT(e). So we may assume that z € T(P).
By assumption, there exists 2z’ € T'(x) such that 2’ ¢ T'(p); thus z A 2’ ¢ T(p) and
zAz" € T(x) by Lemma 2.1 (1). By an argument like that as above, (zA2") VT (y) C
T(p) VT(e). Let w € T(y). Then (2 A2 )Vu=(zVu)A(z'Vu) e T(p)VTe)
gives zVu € T(p) VT (e) by lemma 2.1 (1); so 2V T(y) C T(p) vV T(e). Hence,
T(x)VT(y) CT(p)VT(e), as needed.

(4) = (1) Let a,b € L such that p < aVband pVe £ aVb. Then T(a)VT(b)
T(p) and T'(a) VT(b) € T(p) vV T(e) gives a € T'(a) C T(p) or b € T(b) C T(p)
(4); hence p < a or p < b, i.e. (1) holds.

N —

o< N

We continue this section with the investigation of the stability of e-prime filters
in various lattice-theoretic constructions.

THEOREM 3.3. If v : L — L' is an order lattice homomorphism such that
v(1) =1 and v(0) = 0, then the following hold:

(1) If v is an epimorphism and p is an e-prime element of L, then v(p) is an
v(e)-prime element of L'.

(2) If v(p) is an v(e)-prime element of L', then p is an e-prime element of L.

PROOF. (1) Let 2,y € £ such that v(p) < zVy and v(pVe) = v(p)Vu(e) £ zVy.
Then there exist a,b € £ such that x = v(a), y = v(b) and v(p) < v(aVbd) =z Vy
and v(pVe) £v(aVb) (sopVesaVb). By the hypothesis, p < a Vb gives p < a
or p < b which implies that v(p) < v(a) = x or v(p) < v(b) = y), as needed.
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(2) Let a,b € L such that p<aVbandpVe £ aVb (sov(pVe)Lv(aVb)).
Now, since v(p) < v(aVb) = v(a) Vu(b and v(p) is an v(e)-prime element, we infer
that v(p) < v(a) or v(p) < v(b). Hence, p < a or p < b, and so p is an e-prime
element. (]

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F is a filter of a lattice (£, <), we define a relation on L,
given by x ~ y if and only if there exist a,b € F satisfying  Aa = y Ab. Then ~ is
an equivalence relation on £, and we denote the equivalence class of a by a A F' and
these collection of all equivalence classes by £L/F. We set up a partial order <¢g on
L/F as follows: for each a A F,bA F € L/F, we write a A F <g bA F if and only
if a < b. The following notation below will be used in this paper: It is straightfor-
ward to check that (L/F, <g) is a lattice with (a AF) Vg (bAF) = (aVb) AF and
(aANF)Ng (DAF) = (aNb)AF for all elements a A F,b A F € L/F. Note that
fAF =Fifand only if f € F (see [12, Remark 4.2 and Lemma 4.3]).

THEOREM 3.4. Let F be a filter of a lattice L and p € L. Then p is an e-prime
element of L if and only if p A F is an e A\ F-prime element of L/F.

PROOF. Assume that p is an e-prime element of £ and let v : L — L/F be
the order lattice epimorphism defined by v(xz) = 2 A F. Then by Theorem 3.3 (1),
v(p) = p A F is an v(e) = e A F-prime element of £L/F. Conversely, assume that
p A F is an e A F-prime element of £/F and let 2,y € £ such that p < zVy
and pVe £ zVy (so(pVe)ANF £g (xVy)AF). By the hypothesis, since
pAF <g (xANF)Vg (yAF), we conclude that pAF <g x AF or pAF <g yAF,
hence p < z or p < y, as required. O

If p is a proper element of L, then by a V-factorization of p we mean an
expression of p as a join Vj_;p; of e-prime elements. We call £ a V-lattice if every
proper element has a V-factorization.

THEOREM 3.5. Let F be a proper filter of a lattice L. If L is a V-lattice, then
L/F is a V-lattice.

PROOF. Suppose that £ is a V-lattice and let & be a proper element of £/F.
Then x = pAF for some proper element p of L. Let p = V] p; be a V-factorization
of p. Then z = (VI_1p)) ANF = (p1 ANF)Vg---Vg (pn A F). By Theorem 3.4, we
conclude that p; A F' is a e A F-prime element of L/F for each i € {1,2,--- ,n}. It
means that £/F is a V-lattice. O

Assume that (£)1,<1), (£)2,<2) are lattices and let £ = £1 x L2. We set up
a partial order <. on L as follows: for each x = (z1,22),y = (y1,¥2) € L, we write
x <.y if and only if z; <; y; for each i € {1,2}. The following notation below will
be used in this paper: It is straightforward to check that (£, <.) is a lattice with
xVey = (x1 Vyr,22Vye) and x Acy = (1 Ay1,x2 Ayz). In this case, we say that
L is a decomposable lattice.

Compare the next theorem with Theorem 3.7 in [16].
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THEOREM 3.6. Let L = L1 X Lo be a decomposable lattice and e = (e, e2),
where e; is an element of L;, i = 1,2. Then the e-prime elements of L have exactly
one of the following three types:

(1) (p1,p2), where p; is a proper element of L; with e; < p;, 1 = 1,2;

(2) (p1,0), where p1 is an e-prime element of L1 and es = 0;

(3) (0,p2), where py is an es-prime element of Lo and e; = 0.

PROOF. First we discuss these elements and show that they are e-prime ele-
ments, then we show that there are no more e-prime elements. Since (p1,p2) Ve
(61762) = (p1 Ve1,p2 Vea) = (p1,p2), we conclude that (pi,p2) is an e-prime
(by definition). Suppose that p; is an ej-prime element of £ and es = 0. If
(p1,0) <c (a,b)V (c d) = (aVe,bvd) and (p1,0)Ve(er,0) = (p1Ver,0) %¢ (aVe, bvd)
(so p1 V ey ﬁ aV c), then p; < aV c gives p; < a or p; < ¢ which implies that
(p1,0) < (a,b) or (pl,()) <. (e,d); so (p1,0) is e-prime. Similarly, (0, p2) is e-prime.
Now, we show that there are no more e-prime elements. Suppose that (g1, ¢2) is an
e-prime element of £ and let 2,y € £; such that ¢ < zVyand ¢ Ve £ zVy.
Then (¢1,¢2) <c (#,1)Ve(y,1) = (xVy,1) and (g1 Ver, g2 Ves) L. (zVy, 1) implies
that (q1,92) <c (#,1) or (q1,¢2) <¢ (y,1) and so q1 < z or q1 < y. Therefore, ¢; is
er-prime. Similarly, ¢o is eo-prime. If (q1,¢2) = (g1 V e1,42 V e2), then e; < ¢1 and

2 < g2 and so we are done. So we may assume that (¢1,¢2) # (q1 Ve1, g2 Vea), say
q1 # q1Ver (soq1 < q1Ver). Then (q1,¢2) <c (q1,0)Vc(0,¢2) and (g1 Ve, g2Ver) £
(q1,0) Ve (0, q2) gives (q1,92) <¢ (¢1,0) or (q1,92) <¢ (0,¢2); hence g2 < 0orq; <0
which implies that g; = 0 or g2 = g2 = 0. Let ¢ = 0. Then (0, ¢2) is e-prime,
where ¢o is an es-prime element of Ls. [l

COROLLARY 3.3. Let L = L1 X Lo be a decomposable lattice. Then the weakly
prime elements of L have exactly one of the following three types:

(1) (1,1);

(2) (p1,0), where py is a weakly prime element of L1;

(3) (0,p2), where Py is a weakly prime element of Ls.

PRrROOF. Take e = (1,1) in the Theorem 3.6. O

4. Characterization of S-e-prime elements

We continue to use the notation already established, so e is a fixed element of
L. In this section, we collect some basic properties concerning S-e-prime elements
and remind the reader the following definition.

DEFINITION 4.1. Let S be a join subset of £L. We say that a proper element p
of £ with S Ap =0 is an S-e-prime element if there is an element s € S such that
foralla,be Lifp<aVvbandpVeLaVb thenp<sVaorp<sVb.

ExaMPLE 4.1. (1) If S = {0}, then the e-prime and the S-e-prime elements of
L are the same.

(2) If p is a e-prime element of £ with SAp = 0, then p is an S-e-prime element.
Moreover, since every prime element is e-prime, we infer that every prime element
p of £ with S Ap=0is S-e-prime.
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(3) If p is a proper element of £, then p is always S-p-prime (by definition).

(4) Let p and ¢ be elements of £ with ¢ < p. If p is proper, then p is always
S-g-prime (by definition). In particular, p is always S-0-prime.

(5) Clearly, if p is an S-prime element of £, then p is an S-e-prime element.
However, the converse is not true in general. Indeed, let D = {a,b,c}. Then
L ={X : X C D} forms a distributive lattice under set inclusion with greatest
element D and least element () (note that if z,y € £, then z Vy = z Uy and
zAy=xNy). Set p={b,c}, e ={b} and S = {{a},0}. Then S is a join subset
of £ with S Ap = 0 and p is clearly an S-e-prime element of £ by (4). Since
p <A{b}Vv{c}, p £ {a} v{b} and p £ {a} V {c}, it follows that p is not a S-prime
element of £. Thus an S-e-prime element need not be an S-prime element.

PROPOSITION 4.1. Suppose that p is an element of L and let S be a join subset
of L with S Ap=20. The following assertions are equivalent:

(1) p is an S-e-prime element of L;

(2) There eatists s €S such that for all a,b two elements of L, if T(a) VT (b) C
T(p) and T(a b) € T(p) ), then sV T(a) C T(p) or sV T(b) CT(p).

PROOF. (1) = ( ) By assumption, there exists an element s € S such that
forall a,be L,if p<aVbandpVeLaVb thenp < sVaorp<sVb On
the contrary, assume that for all ¢ € S, there are u;, w; two elements of £ with
T(u) VT(wy) C T(p) and T(uy) V T(wy) € T(p) V T(e), but ¢tV T(u) € T(p)
and t V T(w;) € T(p). Since s € S, we conclude that there exist us, ws two
elements of £ with T'(us) V T(ws) C T(p) and T'(us) V T(ws) € T(p) V T(e), but
sVT(us) € T(p) and sV T(ws) € T(p). This shows that there exist as, a, € T'(us)
and by, b, € T(w,) such that s Va, ¢ T(p) (sop £ sVas), sVbs & T(p) (so
p£sVbs)and a, VU, ¢ T(p)VT(e) (sopVesal,Vb,). It follows that
sV(asNay) = (sVas)A(sVal) & T(p),sV (bs ANb,) = (sVbs)A(sVD)) ¢ T(p)
and (as Aal) V (bs Ab,) = (as Vbs) A(al, Vbs) A(as VU, A(al, VI,) ¢ T(p)VT(e)
by Lemma 2.1 (1) which implies that p £ sV (as Aal), p £ sV (bs AD.), pVe £
(asNal)V (bs AD,) and p < (as Aal) V (bs AD,) which is a contradiction, as p is an
S-e-prime element, i.e. the result holds.

(2) = (1) Let x,y € [, such that p x \/ y and pVe £ xVy. Clearly,

T(z)VT(y) CT(p) and T(x y) L T(p . Then by (2), there exits s € S
such that sV € s VT (x) QT( ) or s\/y€ s\/T( ) € T'(p) which givesp < sV
or p < sVy,ie(l) holds. O

We next give a characterization of S-e-prime elements.

THEOREM 4.1. Suppose that p is an element of L and let S be a join subset of
L with S Ap=0. The following assertions are equivalent:

(1) p is an S-e-prime element of L;

(2) There exists s € S such that for all elementsay,- -+ ,an of L, if \/7_, T'(a;) C
T(p) and \/}_, T(a;) € T(p) VT (e), then sV T(a;) C T(p) for somei € {1,--- ,n}.

PrROOF. (1) = (2) Let p be an S-e-prime element of £. Then there is an
element s € S such that for all a,b € £, if p < zVyand pVe £ aVb, then
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p<sVaorp<sVb We use induction on n. We can take n = 2 as a base case by
Proposition 4.1. Let n > 3, assume that the property holds up to the order n—1 and
let ai,-- - ,a, be elements of £ such that \/""_, T(a;) = (V7= T(a;))VT(an) C T(p)
and (\/1:11 T(a;))VT(a,) € T(p)VT(e). Then by Proposition 4.1, sVT (a,) C T(p)
or (s VT(a1)) V (V1= T(a;)) € T(p). Since

(v T(@) v (\/ T(@)) £ T() VT,

we infer from the induction hypothesis that sV T'(a,) C T(p) or (sV sV T(ay) =
sV T(a1) C T(p) or sV T(a;) C T(p) for some i € {2,--- ,n —1}). In the same
way we prove that sV T(a;) C T(p) for some ¢ € {1,2,--- ,n}. The implication
(2) = (1) is clear. O

COROLLARY 4.1. Let p be a proper element of L. Then p is an e-prime el-
ement if and only if for all elements ay,--- ,an of L, if \/7—,T(a;) € T(p) and
Vi T(a;) € T(p) VT(e), then T(a;) C T(p) for some i€ {1, -+ ,n}.

PROOF. Take S = {0} in Theorem 4.1. O

COROLLARY 4.2. Assume that p is an element of L and let S be a join subset of
L with S Ap=0. Then p is an S-e-prime element if and only if there exists s € S
such that for all elements a1,az, -+ ,an of L, if p < \i_,a; andpVe £\ a;,
then p < sV a; for somei € {1, -+ ,n}.

PROOF. Assume that p is an S-e-prime element of £ and let a1, -+ ,a, € L
such that p < a1 V---Va, andpVe £ ay V---Va,. Therefore, \/_, T(a;) C T(p)
and \/;_, T(a;) € T(p) V T'(e). Then by Theorem 4.1, there exists s € S such that
sVa; € sVT({a;}) CT(p) for some i € {1,--- ,n} which implies that p < sV q;
for some ¢ € {1,--- ,n}. For the converse, take n = 2. O

COROLLARY 4.3. Assume that p is an element of L. Then p is an e-prime

element if and only if for all elements ai,az, -+ ,an of L, if p < \i_,a; and
pVe %\, ai, then p<a; for someie {1, ,n}.
ProOF. Take S = {0} in Corollary 4.2. O

Let S be a join subset of £. We say that S is a strongly join subset if for each
family {s;}ier of elements of S we have (N;erT(s;)) NS # 0 [15, 16].

THEOREM 4.2. Suppose that S is a strongly join subset of L and let {p;}icr be
a chain of S-e-prime elements of L. Then p =\/,.; p; is an S-e-prime element.

ProOF. Clearly, S Ap = 0. For each i € I, there exists s; € S such that for
all z,y € L with p; <z Vyandp; Ve fﬂ:\/y we have p; < s; Vx or p; < s; Vy.
Consider s € (N;erT(s;)) NS. Then for each i € I, s = s; V a;, where a; € L. Let
a,b € L such that p<aVb, pVe£aVb (soe£aVb)and suppose that p £ sV a.
It suffices to show that p < sV b. Since p £ sV a, we conclude that p; £ sV a for
some j € I. Let k € I. Then py, < p; or p; < pi. We split the proof into two cases.
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Case 1: p; < pj. Since pj % sV a, we infer that p, £ sV a = s Va,Va; so
pr £ sk V a. Clearly, pj < aVband p;j Ve« aVb. This shows that py < s,V b;
hence p < s Vag Vb= sVb. Therefore, p < sVb.

Case 2: pj, < p;. Since p; £ sV a=s; Va; Va, we infer that p; £ s; V a; so
p; < 85 Vb which gives pp, <sVb=s;Va; Vb, andsop <sVb. (]

THEOREM 4.3. Assume that S is a join subset of L and let p be an S-e-prime
element of L. If p is not S-prime, then e < p.

PROOF. Suppose that e £ p; we show that p is an S-prime element. Let a,b € £
such that p < aVb. If pVe £ aVb, Then p is an S-e-prime element implies that
p<tVaorp < tVvbforsomet € S. Sosuppose that pVe < aVb. By the hypothesis,
p<pA(aVvb)andpVe<LpA(aVb) (otherwise, e < pVe < p, a contradiction).
Since p < (pAa)V(pAb)=pA(aVvb)and pVe£pA (aVb), we conclude that
there is an element s € S such that p < sV (pAa)=(sVp)A(sVa)<sVaor
p<sV(pAb) =(sVp)A(sVDb) <sVb,ie. pis S-prime. O

COROLLARY 4.4. Let p be an S-1-prime element of L. If p is not an S-prime
element, then p = 1.

PROOF. This is a direct consequence of Theorem 4.3. O

COROLLARY 4.5. Let p be an S-e-prime element of L. If e £ p, then p is an
S-prime element of L.

PROOF. This is a direct consequence of Theorem 4.3. O

We continue this section with the investigation of the stability of S-e-prime
elements in various lattice-theoretic constructions.

THEOREM 4.4. Suppose that v : L — L' is an order lattice homomorphism such
that v(1) = 1 and v(0) = 0 and let S be a join subset of L. Then the following hold:

(1) If v is an epimorphism and p is an S-e-prime element of L, then v(p) is
an v(S)-v(e)-prime element of L'.

(2) If v(p) is an v(S)-v(e)-prime element of L', then p is an S-e-prime element.

ProoF. (1) Clearly, v(S) A v(p) = 0. Let x,y € £’ such that v(p) < zVy
and v(p Ve) = v(p) Vu(e) £ x Vy. Then there exist a,b € £ such that z = v(a),
y = v(b) and v(p) < v(aVb) =zVy (sop<aVd)and v(pVe) £ v(aVb) (so
pVe £ aVb). By the hypothesis, there exists s € S such that p < sVaorp < sVb
which implies that v(p) < v(s) Vo(a) = v(s) Vz or v(p) < v(s) Vu(b) =v(s) Vy),
i.e. the result holds.

(2) Let a,b € £ such that p < aVband pVe % aVb Now, since v(p) <
v(aVb)=v(a) Vo), v(pVe)£wv(aVb) and v(p) is an v(S)-v(e)-prime element,
we infer that there exists s € S such that v(p) < v(s) Vv(a) = v(sVa) or v(p) <
v(s) Vou(b) =v(sVb). Hence, p< sVaorp<sVb, and so p is an S-e-prime. [

An element x of L is called identity join of a lattice L, if there exists 1 #y € L
such that 2V y = 1. The set of all identity joins of a lattice £ is denoted by I(L).
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Suppose that G is a filter of £ and let S be a join subset of £. An easy inspection
will show that Sg(G) = {s A G :s € S} is a join subset of L/G.

PROPOSITION 4.2. Assume that p is an element of L and let S be a join subset
of L with S Ap =0 such that Sq(T(e)) NI(L/T(e)) = 0. The following assertions
are equivalent:

(1) p is an S-e-prime element of L;

(2) As(p) is an T(e)-prime filter of L for some s € S.

PROOF. (1) = (2) Since p is an S-e-prime element, we conclude that there is
an element s € S such that for all z,y € L withp < axVyandpVe £ zVy we
have p < sV z or p < sV y. Now, we show that As(p) is an T(e)-prime filter of
L. Let x,y € L such that x Vy € As;(p) — As(p) VT(e). Then x Vy ¢ T(e) gives
(xVy)AT(e) # 1NT(e). If zVyVs € T(e), then ((zVy)AT(e))Va(sAT(e)) = 1AT(e)
by [12, Remark 4.2] implies that sAT (e) € Sq(T'(e))NI(L/T(e)) which is impossible.
So we may assume that xVyVs ¢ T(e) (soe L xzVyVs; hencepVeLazVyVs).
Therefore, p <z VyVsgivesp<aeVsVs=xVsorp<yVs which means that
xz € Ag(p) or y € As(p). Thus As(p) is an T'(e)-prime filter of L.

(2) = (1) Suppose that A;(p) is an T'(e)-prime filter of £ for some s € S and
let a,b € L such that p<aVbandpVeLaVb(soefaVbandp<aVbVs).
Since Sq(T'(e))NI(L/T(e)) = 0 and a Vb ¢ T'(e), we conclude that aVbV s ¢ T'(e);
so aVbe Ay(p) — As(p) VT(e). Now, As(p) is an T'(e)-prime gives p < sV a or
p < sV b, as required. O

LEMMA 4.1. Suppose that p is an element of L and let S be a join subset of L.
Then the following hold:

(1) p is an S-e-prime element if and only if T'(p) is an S-T(e)-prime filter.

(2) p is an e-prime element if and only if T'(p) is an T (e)-prime filter;

PROOF. (1) Suppose that p is an S-e-prime element of £ and let a,b € £ such
that aVb € T'(p) (sop < aVb)and aVd ¢ T(p)VT(e) (soaVb¢T(e);ie.
e £ aVb). Since p is S-e-prime, we conclude that there exists s € S such that
p<sVaorp<sVb; hence sVaeT(p)or sVbeT(p). Conversely, assume that
z,y € L such that p < zVy and pVe £ zVy. It follows that z Vy € T(p) and
xVy ¢ T(p)VT(e) which implies that ¢t Va € T(p) or t Vy € T(p) for some t € S,
ie. p<tVaxorp<itVy.

(2) Take S = {0} in (1). O

In the following theorem, we give a condition under which the e-prime and the
S-e-prime elements coincide.

THEOREM 4.5. Assume that p is an element of L and let S be a join subset
of L with S ANp =0 such that Sq(T'(e)) NI(L/T(e)) =0 = So(T'(p)) NI(L/T(p)).
Then p is e-prime if and only if p is S-e-prime.

PrOOF. Clearly, if p is a e-prime element of £ with S A p = 0, then p is
an S-e-prime element. Conversely, assume that p is an S-e-prime element. It
suffices to show that T'(p) = A,(p) for all s € S by Proposition 4.2 and Lemma



S-e-PRIME ELEMENT PROPERTY IN LATTICES 99

41. Let s € S. If © € T(p), then p < & < x V s gives T(p) C A,(p). For the
reverse inclusion, let y € A(p). Then p < sV y; so s Vy € T(p) which implies that

(sAT(p))VQ(yAT(p)) = (sVy) AT (p) = 1AT(p). Since So(T'(p)) NI(L/T(p)) =0,
we conclude that y AT(p) =1 AT(p); so x € T(p) by [12, Remark 4.2]. O

THEOREM 4.6. Assume that p is an element of L and let S be a join subset of
L with SANp=0. If F is a filter L, then p is an S-e-prime element of L if and
only if p A F is an Sq(F)-(e A F)-prime element of L/F.

PROOF. Suppose that p is an S-e-prime element of £ and let v: L — L/F be
the order lattice epimorphism defined by v(z) = 2 A F. Then by Theorem 4.4 (1),
v(p) =p A F is an v(S)-v(e) = Sqg(F)-(e A F)-prime element of L/F. Conversely,
assume that p A F' is an Sg(F)-(e A F)-prime element of £/F and let =,y € £ such
that p<zVyandpVe £ zVy (so (pVe)AF £g (xVy)AF). By the hypothesis,
since pAF <q (x AF) Vg (yAF), we conclude that there exists sAF € Sg(F) such
that pAF <g (sVa)AF or pAF <g (sVy)AF;hencep< sVzorp<svy. O

If p is a proper element of £, then by a S-V-factorization of p we mean an
expression of p as a join Vi_;p; of S-e-prime elements. We call £ a S-V-lattice if

every proper element has a S-V-factorization.

THEOREM 4.7. Let F be a proper filter of a lattice L. If L is a S-V-lattice,
then L/F is a Sq(F)-V-lattice.

PROOF. Suppose that £ is a S-V-lattice and let = be a proper element of £/F'.
Then # = p A F for some proper element p of £. Let p = VI_;p; be a S-V-
factorization of p. Then z = (VI_p;)) AF = (p1 AF) Vg --- Vg (pn A F). By
Theorem 4.6, we infer that p; A F' is a Sg(F)-e A F-prime element of £/F for each
i€{1,2,---,n}. It means that £L/F is a Sg(F)-V-lattice. O

THEOREM 4.8. Let L = L1 X Lo be a decomposable lattice, p = (p1,p2), e =
(e1,e2) and S = 51 x Sa, where p;, e; are elements of L; and S; is a join subset of
L;, i =1,2. Then the following hold:

(1) If p; is a proper element of L; with e; < p;, 1 = 1,2, then p is an S-e-element
of L;

(2) If p1 is an Si-e1-prime element of L1 and ea = 0, then (p1,0) is an S-e-
element of L;

(3) If pa is an Sa-es-prime element of Lo and e; = 0, then (0,p2) is an S-e-
element of L.

PRrOOF. (1) Since pV.e = (p1 Ve1,p2 V ea) = (p1,p2) = p, we infer that p is
an S-e-prime (by definition).

(2) Suppose that p; is an Si-e;-prime element of £; and let e; = 0. Let
(a,b), (¢,d) € L such that (p1,0) <. (a,b)V.(c,d) = (aVe,bVd) (sopr < aVe) and
(p1,0) Ve (e1,0) = (p1 Ve1,0) £ (aVe,bVd) (sopi Ver £aVe). Thenp <aVe
and p1 V ey j<_ a V c gives there exists s; € S1 such that p; < s;Vaorp <s;Ve
which implies that (p1,0) <. (s1,0) V. (a,b) or (p1,0) <. (s1,0) V¢ (¢,d), where
(51,0) € S; 50 (p1,0) is an S-e-prime.

(3) The proof is similar to that in case (2) and we omit it. O
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THEOREM 4.9. Let £L = L1 X Lo be a decomposable lattice, p = (p1,p2), € =
(e1,e2) and S = S1 x Sy, where p;, e; are elements of L; and S; is a join subset of
Li,1=1,2. If p is an S-e-prime element of L, then py is an S1-e1-prime element
of L1 and Sa Apy # 0 or ps is an Se-ex-prime element of Lo and S1 Apy # 0 or py
is an S1-e1-prime element of L1 and ps is an Sy-eo-prime element of Lo.

PROOF. Let p be an S-e-prime element of £ and assume that s = (s1,s2) € S
satisfies the S-e-prime condition. Since P A'S = 0, we have either S; Ap; = 0 or
So Apy = 0. If S; Apr # 0, we will show that py is an Si-eo-prime element of
Lo. Let pp <z Vyand pa Vey £ zVy for some z,y € Lo (so ea £ 2V y). Then
(p1,p2) <c (Lz) Ve (Ly) = (LzVy) and pVee = (p1 Ver,pa Vez) ﬁc (L,zVy)
gives p <c sV (L,z) = (1,52 V) or p <. sVe(1l,y) = (1,s2 Vy. This shows that
P2 < SoVxor po < s9Vy. Hence, po is an Sy-eo-prime element of Lo, Similarly, if
So Aps # 0, then p; is an Si-ep-prime element of £1. Now assume that S; Ap; =0
= S5 A ps. We will show that p; is an Si-e;-prime element of £ and ps is an
So-eo-prime element of Lo. Suppose that p; is not an Si-e;-prime element of L.
Then there exist a,b € £4 such that p; < aVband p1Ve; £ aVb (soer £ aVb)but
p1 £ s1Vaand p; £ s1Vb. Thenp <, (a,0)V.(b,1) = (aVb,1) and pVe £, (aVb,1)
gives p <. s Ve (a,0) = (81 Va,s2 0r p<e8Ve(b1)=(s1Vb1);80p; <81 Vaor
p1 < 81V b which is a contradiction. Therefor, p; is an Si-e;-prime element of L.
Similarly, ps is an Ss-eo-prime element of L. [l

A lattice £ is said to be a cyclic filter lattice (c-lattice for short) precisely when
every filter G of L generated by some a € G (i.e. G = T(a) for some a € G). Let
F(L) be the set of all filters of L.

EXAMPLE 4.2. Let £ be the lattice as in Example 3.2 (3). An inspection will
show that the nontrivial filters (i.e. different from £ and {1}) of £ are T'(¢) = {1, ¢},
T(a) ={1,¢,a} and T(b) = {1,¢,b}. Thus L is a c-lattice.

DEFINITION 4.2. Suppose that L is a c-lattice and let S be a join subset of L.

(1) We say that a filter G of L is S-cyclic if s VG C K C G for some cyclic
filter K of £ and some s € S.

(2) We say that an element p of £ is S-cyclic if and only if T'(p) is a S-cyclic
filter of L.

(3) We say that L is S-c-Noetherian if each element of £ is S-cyclic.

PROPOSITION 4.3. Suppose that L is a c-lattice and let S be a join subset of
L. Then the following hold:

(1) p is a minimal element (L, <) if and only if T(p) is a maximal element of
(F(£),C).

(2) Let p be an element of L which is minimal among all non-S-cyclic elements
of L. Then p is a prime element of L. In particular, p is an e-prime element of L.

PROOF. (1) Suppose that p is a minimal element (£, <) and let T'(p) C T'(c)
for some filter T'(¢) of £. Then p € T'(p) gives ¢ < p = ¢V a for some a € L; so
p = c. Hence, T'(p) = T(c). In the same way, the opposite direction can be proved.
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(2) By (1), T(p) is a filter of £ which is maximal among all non-S-cyclic filters
of £. On the contrary, assume that p is not prime. Then there are elements a,b € L
such that p <aVbwithp £ aand p £ b (soaVbeT(p),a¢ T(p) and b ¢ T(p)).
Since T'(p) & T'(pAa) and T(p) G (T'(p) :z a), we conclude that there exist s,t € S,
uee Land ¢ € (T'(p) :z a) such that sVT(pAa) CT((pAa)Vu) CT(pAa) and
tV(T(p):ca) CT(c) C(T(p):ca)(socVacT(p)).

Now, let z € T'(p). Then sV € sVT(pAa)) gives sV = (sVx)V((pAa)Vw) =
(sVazVpVw)A(sVaeVwVa) e T(p) for some w € L;s0 sVeVwVaceT(p)
by Lemma 2.1 (1). It follows that y = sV Vw € (T(p) :z a) which implies
that t Vy € (T'(p) :£ a) € T(c). Therefor, t Vy = ¢V e for some e € L; thus
tVy=tVyVe So,sVazVt=(sVeVwVpVEt)A(sVazVwVaVt) =
tVyVp)A(tVyVa)=(tVyVpVe)A(tVyVeVva) e T(p)NT(pA(cVa)) which
gives (sVE)VT(p) CT(pA(cVa)) CT(p); hence T(p) is S-cyclic, a contradiction.
Thus p is a prime element. The ”in particular” statement is clear. O

LEMMA 4.2. Suppose that L is a complete c-lattice and let S be a join subset
of L. If {pi}ien is a chain of elements of L such that p = N\,.x ps is S-cyclic, then
p; is S-cyclic for i € A.

PROOF. By the hypothesis, s VT(p) C T(c) C T(p) for some s € S and ¢ € L.
Now, we show that p; is S-cyclic. Since sV p; € sV T(p;) C sV T(p) C T(c), we
conclude that sV p; = ¢V a for some a € £ which implies that sVp;, =sVp; Vp; =
cVp;Va € T(cVp;). Therefore, sV T(p;) C T(cV p;). We claim that either
pi < /\#jeApj or /\#jeApj < pi- On the contrary, assume that p; £ /\#jeApj
and A\, _;jcapj £ pi- Since p; £ N\, jcppj, we infer that p; £ py for some i #
k € A which gives /\#jeApj < pr < pi, a contradiction (i.e. the claim holds). If
P < /\i?ﬁje/\pj7 then ¢ € T(¢) C T(p) gives ¢ = (p; A (/\#jeApj)) Vb=p; Vb
for some b € £ which implies that ¢V p;, = p; Vp; Vb =p; Vb € T(p;). If
NizjenPi < Pi, then ¢ € T(c) € T(p) gives ¢ = (\;jeppj) V € for some e € L;
so ¢V p; = (NigjeaPi) VeVp; =eVp; €T(p;). Therefore, T(cV p;) C T(p;). It
follows that sV T'(p;) C T(cV p;) € T(p;), as needed. O

We obtain the following S-c-version of Cohen’s Theorem [8].

THEOREM 4.10. Let S be a join subset of L. Suppose that L is a complete
c-lattice and let S be a join subset of L. The following assertions are equivalent:

(1) L is S-c-Noetherian;

(2) Every S-e-prime element of L is S-cyclic;

(8) Every e-prime element of L is S-cyclic.

PROOF. (1) = (2) This is clear.

(2) = (3) Let p be an e-prime element of L (so it is an S-e-element of £). If
S Ap # 0, then there is an element s € S such that s Ap # 0; so sV T(p) C
T(sV p) C T(p) which implies that T'(p) is S-cyclic. If S A p =0, then by (2), p is
S-cyclic.

(3) = (1) On the contrary, assume That £ is not S-c-Noetherian. Then the
set Q@ = {a € L : a is non-S-cyclic} is not empty. Moreover, (£, <’) is a partial
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order and  is inductive, where b <’ a if and only if @ < b. Indeed, if {p;}ica is
a chain of elements of €2, then by Lemma 4.2, p = A,;_, p; is not S-cyclic; hence
p € Q is an upper bound for the chain. Then by Zorn’s Lemma, {2 has a maximal
element ¢ for 7<’” and so ¢ is an element of £ which is minimal among all non-
S-cyclic elements of £. Then Proposition 4.3 shows that ¢ is an e-prime element.
If S A q # 0, then then there exists s € S such that s A g # 0 (so sV ¢ =# 0); so
sVT(q) € T(sVq) C T(q) which implies that T'(¢q) is S-cyclic, a contradiction.
Thus S A ¢ = 0. Now, by assumption, T'(q) is S-cyclic which is impossible since
q € Q. Thus L is S-c-Noetherian. O
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