JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS/JOURNAL J. Int. Math. Virtual Inst., **15**(1)(2025), 87-102 DOI: 10.7251/JIMVI2501087E

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

S-e-PRIME ELEMENT PROPERTY IN LATTICES

Shahabaddin Ebrahimi Atani

ABSTRACT. Let e be a fixed element of a bounded distributive lattice \mathcal{L} and S a join-subset of \mathcal{L} . Following the concept of S-F-prime filters [16], we define S-e-prime elements of \mathcal{L} as a new generalization of weakly S-prime elements [17]. Let p be a proper element of \mathcal{L} with $S \wedge p = 0$ (i.e. $s \wedge p = 0$ for all $s \in S$). We say that p is an S-e-prime element of \mathcal{L} if there is an element $s \in S$ such that for all $x, y \in \mathcal{L}$ if $p \leq x \lor y$ and $p \lor e \nleq x \lor y$, then $p \leq s \lor x$ or $p \leq s \lor y$. We will make an intensive investigate the basic properties and possible structures of these elements.

1. Introduction

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest element denoted by 1, in other words they are bounded. Recently, the study of algebraic structures, using the properties of lattice theory, tends to a useful research topic. Associating a lattice with an algebraic structure allows us to obtain characterizations and representations of special classes of algebraic structures in terms of lattices and vice versa (see for example [7, 9, 11-18]).

Various generalizations of prime ideals of commutative rings have been studied. Recall from [1], a prime ideal P of R is a proper ideal having the property that $ab \in P$ implies either $a \in P$ or $b \in P$ for each $a, b \in R$. In 2003, Anderson and Smith in [3] defined weakly prime ideals which is a generalization of prime ideals (also see [10]). A proper ideal P of a ring R is said to be a weakly prime if $0 \neq xy \in P$ for each $x, y \in R$ implies either $x \in P$ or $y \in P$. Thus every prime ideal is weakly prime. In 2020, Hamed and Malek [19] introduced the notion of an

²⁰²⁰ Mathematics Subject Classification. Primary 97H50; Secondary 06A11, 16G30, 06D25. Key words and phrases. Lattice, join subset, e-prime element, S-e-prime element. Communicated by Daniel A. Romano.

S-prime ideal (also see [18, 20]), i.e. let $S \subseteq R$ be a multiplicative set and I an ideal of R disjoint from S. We say that I is S-prime if there exists an $s \in S$ such that for all $a, b \in R$ with $ab \in I$, we have $sa \in I$ or $sb \in I$. Almahdi et. al. [4] introduced the notion of a weakly S-prime ideal as follows (also see [17]): We say that I is a weakly S-prime ideal of R if there is an element $s \in S$ such that for all $x, y \in R$ if $0 \neq xy \in I$, then $sx \in I$ or $sy \in I$. Akray and Hussein generalized the concept of *I*-prime submodules in [6] (also see [5]). Let R be a commutative ring and I be a fixed ideal of R. Then a proper submodule P of an R-module M is called *I*-prime submodule of *M* if $rm \in P - IP$ for all $r \in R$ and $m \in M$ implies that either $m \in P$ or $r \in (P :_R M)$, and a proper ideal P of R is I-prime if for $a, b \in R$ with $ab \in P - IP$ implies either $a \in P$ or $b \in P$. So every weakly prime is *I*-prime. Let \mathcal{L} be a bounded lattice. We say that a subset $S \subseteq \mathcal{L}$ is *join subset* if $0 \in S$ and $s_1 \lor s_2 \in S$ for all $s_1, s_2 \in S$. Let F be a fixed filter of a bounded distributive lattice \mathcal{L} and S a join subset of \mathcal{L} . In [16], the present author, introduced the concepts of F-prime filters and S-F-prime filters as a new generalizations of weakly prime filters and S-prime filters, respectively, i.e. A proper filter P of \mathcal{L} is *F*-prime if for $a, b \in \mathcal{L}$ with $a \lor b \in P - (F \lor P)$ implies either $a \in P$ or $b \in P$ and we say that a proper filter P of \mathcal{L} with $P \cap S = \emptyset$ is an S-F-prime filter if there is an element $s \in S$ such that for all $a, b \in \mathcal{L}$ if $a \lor b \in P - (P \lor F)$, then $s \lor a \in P$ or $s \lor b \in P$. Also, in [17], the present author, introduced the concepts of S-prime elements (as a new generalization of prime elements) and weakly S-prime elements (as a new generalization of weakly prime elements). A proper element p of \mathcal{L} is called *prime* (resp. weakly prime) if $p \leq x \lor y$ (resp. $p \leq x \lor y \neq 1$), then $p \leq x$ or $p \leq y$. Let S be a join subset of \mathcal{L} . An element p of \mathcal{L} satisfying $S \wedge p = 0$ is said to be S-prime (resp. weakly S-prime) if there exists an element $s \in S$ such that, whenever $x, y \in \mathcal{L}, p \leq x \lor y$ (resp. $p \leq x \lor y \neq 1$) implies $p \leq s \lor x$ or $p \leq s \lor y$.

Let e be a fixed element of \mathcal{L} . Among many other results in this paper, the first, preliminaries section contains elementary observations needed later on. Section 3 concentrates on some basic properties of e-prime elements of \mathcal{L} as a new generalization of weakly prime elements. A proper element p of \mathcal{L} is e-prime if for $a, b \in \mathcal{L}$ with $p \leq a \lor b$ and $p \lor e \leq a \lor b$ implies either $p \leq a$ or $p \leq b$. At first, some informations about the structure of such elements are given in Example 3.1, Example 3.2 and Example 3.3. We give an example (Example 3.2 (3)) of a *e*-prime element of \mathcal{L} that is not a weakly prime element (so it is not prime). Proposition 3.1 shows that if \mathcal{L} is a local complete lattice with unique coatom element c and $1 \neq p \in \mathcal{L}$, then c is an p-prime element. It is shown (Theorem 3.1) that if p is an e-prime element of \mathcal{L} that is not prime, then $e \leq p$. In the Corollary 3.2, we give a condition under which an *e*-prime element of \mathcal{L} is a prime element. In the Theorem 3.2, We give three other characterizations of e-prime elements. In the rest of this section, we investigate the properties of *e*-prime elements similar to prime elements. In particular, we investigate the behavior of e-prime elements under homomorphism, in factor lattices, V-lattice and in cartesian products of lattices (see Theorem 3.3, Theorem 3.4, Theorem 3.5 and Theorem 3.6).

Let S be a join subset of \mathcal{L} . Section 4 concentrates on some basic properties of S-e-prime elements of \mathcal{L} as a new generalization of S-prime elements. At first, we give the definition of S-e-prime element (Definition 4.1) and provide an example (Example 4.1 (5)) of an S-e-prime element of \mathcal{L} that is not an S-prime element. In the Theorem 4.1, We give a characterization of S-e-prime elements. We provide some conditions under which a join of a family of S-e-prime elements of \mathcal{L} is an S-e-prime element (see Theorem 4.2). It is proved (Theorem 4.3) that if S is a join subset of \mathcal{L} and p is an S-e-prime element of \mathcal{L} that is not S-prime, then $e \leq p$. The remaining part of this section is mainly devoted to investigate S-e-prime elements under various contexts of constructions such as homomorphism, in factor lattices, S-V-lattices, cartesian products of lattices and S-c-Noetherian lattices (see Theorem 4.4, Theorem 4.5, Theorem 4.6, Theorem 4.7, Theorem 4.8, Theorem 4.9 and Theorem 4.10).

2. Preliminaries

A poset (\mathcal{L}, \leq) is a *lattice* if $\sup\{a, b\} = a \lor b$ and $\inf\{a, b\} = a \land b$ exist for all $a, b \in \mathcal{L}$ (and call \land the *meet* and \lor the *join*).

DEFINITION 2.1. (1) A lattice \mathcal{L} is *complete* when each of its subsets X has a least upper bound and a greatest lower bound in \mathcal{L} . Setting $X = \mathcal{L}$, we see that any nonvoid complete lattice contains a least element 0 and greatest element 1 (in this case, we say that \mathcal{L} is a lattice with 0 and 1).

(2) A lattice \mathcal{L} is called a *distributive lattice* if $(x \lor y) \land z = (x \land z) \lor (y \land z)$ for all $x, y, z \in \mathcal{L}$ (equivalently, \mathcal{L} is distributive if $(x \land y) \lor z = (x \lor z) \land (y \lor z)$ for all $x, y, z \in \mathcal{L}$).

(3) An element x of a lattice \mathcal{L} is nontrivial (resp. proper) if $x \neq 0, 1$ (resp. $x \neq 1$).

(4) We say that an element x in a lattice \mathcal{L} is an *atom* (resp. *coatom*) if there is no $y \in \mathcal{L}$ such that 0 < y < x (resp. x < y < 1). The set of all coatom (resp. atom) elements of \mathcal{L} is denoted by $\mathcal{CA}(\mathcal{L})$ (resp. $\mathcal{A}(\mathcal{L})$).

(5) A lattice \mathcal{L} is called *local* if it has exactly one coatom element c that $x \leq c$ for each proper element x.

(6) If \mathcal{L} and \mathcal{L}' are lattices, then a *lattice homomorphism* $v : \mathcal{L} \to \mathcal{L}'$ is a map from \mathcal{L} to \mathcal{L}' satisfying $v(x \lor y) = v(x) \lor v(y)$ and $v(x \land y) = v(x) \land v(y)$ for $x, y \in \mathcal{L}$. A lattice homomorphism is said to be a *order lattice homomorphism* if $x \leqslant y$ if and only if $v(x) \leqslant v(y)$ for $x, y \in \mathcal{L}$.

(7) A non-empty subset F of a lattice \mathcal{L} is called a *filter*, if for $a \in F$, $b \in \mathcal{L}$, $a \leq b$ implies $b \in F$, and $x \wedge y \in F$ for all $x, y \in F$ (so if \mathcal{L} is a lattice with 1, then $1 \in F$ and $\{1\}$ is a filter of \mathcal{L}).

(8) Let D be subset of a lattice \mathcal{L} . Then the filter generated by D, denoted by T(D), is the intersection of all filters that is containing D. A filter F is called finitely generated (resp. cyclic) if there is a finite subset A of F (resp. if there is an element $a \in F$) such that F = T(A) (resp. $F = T(\{a\}) = T(a)$).

For undefined notations or terminologies in lattice theory, we refer the reader to [7, 9]. First we need the following easy observations proved in [11, 12, 13, 14].

LEMMA 2.1. Let \mathcal{L} be a lattice.

(1) A non-empty subset F of \mathcal{L} is a filter of \mathcal{L} if and only if $x \lor z \in F$ and $x \land y \in F$ for all $x, y \in F, z \in \mathcal{L}$. Moreover, since $x = x \lor (x \land y), y = y \lor (x \land y)$ and F is a filter, $x \land y \in F$ gives $x, y \in F$ for all $x, y \in \mathcal{L}$.

(2) Let A be an arbitrary non-empty subset of \mathcal{L} . Then

 $T(A) = \{ x \in \mathcal{L} : a_1 \land a_2 \land \dots \land a_n \leqslant x \text{ for some } a_i \in A \ (1 \leqslant i \leqslant n) \}.$

Moreover, if $a, b \in \mathcal{L}$, then $T(\{a\}) = T(a) = \{x \lor a : x \in \mathcal{L}\}$ and $a \leq b$ if and only if $T(b) \subseteq T(a)$.

(3) If \mathcal{L} is distributive, then $(G :_{\mathcal{L}} F) = \{x \in \mathcal{L} : x \lor F \subseteq G\}$ and $(F :_{\mathcal{L}} T(\{z\})) = (F :_{\mathcal{L}} z) = \{a \in \mathcal{L} : a \lor z \in F\}$ are filters of \mathcal{L} .

3. Characterization of *e*-prime elements

In this section, we collect some basic properties concerning e-prime elements and remind the reader the following definition.

DEFINITION 3.1. Let e be a fixed element of a lattice \mathcal{L} . A proper element p of \mathcal{L} is e-prime if for $a, b \in \mathcal{L}$ with $p \leq a \lor b$ and $p \lor e \leq a \lor b$ implies either $p \leq a$ or $p \leq b$.

EXAMPLE 3.1. (1) If p is a proper element of \mathcal{L} , then p is always p-prime (by definition).

(2) Let p and q be elements of \mathcal{L} with $q \leq p$. If p is proper, then p is always q-prime (by definition). In particular, p is always 0-prime.

EXAMPLE 3.2. (1) If e = 1, then the 1-prime and the weakly prime elements of \mathcal{L} are the same.

(2) Suppose that p is a weakly prime (i.e. 1-prime) element of \mathcal{L} and let e be an element of \mathcal{L} . Let $a, b \in \mathcal{L}$ such that $p \leq a \lor b$ and $p \lor e \leq a \lor b$; so $a \lor b \neq 1$ since always $p \lor e \leq 1$. It follows that $p \leq a$ or $p \leq b$. Thus, every weakly prime element (prime element) is e-prime.

(3) Let $\mathcal{L} = \{0, a, b, c, 1\}$ be a lattice with the relations $0 \leq a \leq c \leq 1$, $0 \leq b \leq c \leq 1$, $a \lor b = c$ and $a \land b = 0$. Then c is an a-prime element of \mathcal{L} by Example 3.1 (2). Also, c is not a weakly prime (prime) element of \mathcal{L} because $c \leq a \lor b = c \neq 1$, $c \leq a$ and $c \leq b$. Thus an e-prime element need not be a weakly prime element (prime element).

EXAMPLE 3.3. Let e and f be elements of \mathcal{L} such that $e \leq f$. Suppose that p is an f-prime element of \mathcal{L} and let $x, y \in \mathcal{L}$ such that $p \leq x \lor y$ and $p \lor e \nleq x \lor y$. Then $e \leq f$ gives $p \lor f \nleq x \lor y$ which implies that $p \leq x$ or $p \leq y$. Therefor, p is an e-prim element of \mathcal{L} . However, the converse is not true in general. Indeed, assume that \mathcal{L} is the lattice as in Example 3.2 (3) and let $a \leq 1$. Then p = c is an a-prime element of \mathcal{L} .

The proof of the following lemma can be found in [14, Lemma 2.1], but we give the details for convenience.

LEMMA 3.1. If p is a non-trivial element of a complete lattice \mathcal{L} , then $p \leq c$ for some coatom element c of \mathcal{L} .

PROOF. Set $\Omega = \{b : b \text{ is an element of } \mathcal{L} \text{ with } p \leq b < 1\}$. Then $\Omega \neq \emptyset$ since $p \in \Omega$. Moreover, (Ω, \leq) is a partial order. Clearly, Ω is closed under taking joins of chains and so Ω has at least one maximal element (coatom element) by Zorn's Lemma, say $p \leq c$, as needed.

PROPOSITION 3.1. Let \mathcal{L} be a local complete lattice with unique coatom element c. If p is a proper element of \mathcal{L} , then c is an p-prime element.

PROOF. Let p be a proper element of \mathcal{L} . If p = 0, we are done by Example 3.1 (2). So assume that $p \neq 0$. Then $p \leq c$ by Lemma 3.1, i.e. the result follows from Example 3.1 (2).

An element $p \in \mathcal{L}$ is called *irreducible* if $p = x \lor y$, then either $x \in T(p)$ or $y \in T(p)$. Compare the next example with Theorem 2.11 (2) and Theorem 2.11 (3) in [5].

EXAMPLE 3.4. Let \mathcal{L} be the lattice as in Example 3.2 (3). Then \mathcal{L} is a local complete lattice with unique coatom element c. Consider the filter $T(c) = \{1, c\}$.

(1) Since $c \leq a \lor b = c \neq 1$ with $c \leq a$ and $c \leq b$, we conclude that c is not a weakly prime (1-prime) element. Moreover, c is u-prime for every element $u \leq c$ of \mathcal{L} but it is not 1-prime.

(2) Since $c = a \lor b$ with $a, b \notin T(c)$, we infer that c is not an irreducible element, but it is u-prime by (1). Thus an u-prime element need not be irreducible.

Henceforth we will assume that e is a fixed element of \mathcal{L} .

THEOREM 3.1. Let p be an e-prime element of \mathcal{L} . If p is not prime, then $e \leq p$.

PROOF. Suppose that $e \nleq p$; we show that p is prime. Let $x, y \in \mathcal{L}$ such that $p \leqslant x \lor y$. If $p \lor e \nleq x \lor y$, then p is an e-prime gives $p \leqslant x$ or $p \leqslant y$. So we may assume that $p \lor e \leqslant x \lor y$. Since $e \nleq p = p \land (x \lor y)$, we conclude that $p \lor e \nleq p \land (x \lor y)$. Then $p \leqslant p \land (x \lor y) = (p \land x) \lor (p \land y)$ implies that $p \leqslant p \land x \leqslant x$ or $p \leqslant p \land y \leqslant y$, i.e. p is prime.

COROLLARY 3.1. Let p be an 1-prime element of \mathcal{L} . If p is not a prime element, then p = 1.

PROOF. By Theorem 3.1, $1 \leq p$, i.e. p = 1.

COROLLARY 3.2. Let p be an e-prime element of \mathcal{L} . If $e \leq p$, then p is a prime element of \mathcal{L} .

PROOF. This is a direct consequence of Theorem 3.1.

One can easily show that if $p, a \in \mathcal{L}$, then $\mathcal{A}_a(p) = \{x \in \mathcal{L} : p \leq x \lor a\}$ is a filter of \mathcal{L} . We next give three other characterizations of *e*-prime elements. Compare the next theorem with Theorem 3.2 in [16]. THEOREM 3.2. If p is a proper element of \mathcal{L} , then the following statements are equivalent:

(1) p is an e-prime element of \mathcal{L} ;

(2) For $p \nleq a$, $\mathcal{A}_a(p) = T(p) \cup \mathcal{A}_a(p \lor e)$;

(3) For $p \nleq a$, $\mathcal{A}_a(p) = T(p)$ or $\mathcal{A}_a(p) = \mathcal{A}_a(p \lor e)$;

(4) For elements x and y of \mathcal{L} with $T(x) \lor T(y) \subseteq T(p)$ and $T(x) \lor T(y) \nsubseteq T(p) \lor T(e)$, either $T(x) \subseteq T(p)$ or $T(y) \subseteq T(p)$.

PROOF. (1) \Rightarrow (2) Let $p \nleq a$. If $z \in T(p)$, then $p \leqslant z = p \lor s \leqslant z \lor a$ for some $s \in \mathcal{L}$ gives $z \in \mathcal{A}_a(p)$; so $T(p) \subseteq \mathcal{A}_a(p)$. If $z \in \mathcal{A}_a(p \lor e)$, then $p \leqslant p \lor e \leqslant z \lor a$ implies that $z \in \mathcal{A}_a(p)$. Therefore, $T(p) \cup \mathcal{A}_a(p \lor e) \subseteq \mathcal{A}_a(p)$. For the reverse inclusion, assume that $z \in \mathcal{A}_a(p)$ (so $p \leqslant z \lor a$). If $p \lor e \nleq z \lor a$, then $p \leqslant z$ by (1) which implies that $z = z \lor p \in T(p)$. If $p \lor e \leqslant z \lor a$, then $z \in \mathcal{A}_a(p \lor e)$ and so we have equality.

 $(2) \Rightarrow (3)$ Since $\mathcal{A}_a(p) \subseteq T(p) \cup \mathcal{A}_a(p \lor e)$ by (2), we conclude that either $\mathcal{A}_a(p) \subseteq T(p)$ or $\mathcal{A}_a(p) \subseteq \mathcal{A}_a(p \lor e)$ by [11, Remark 2.3 (i)], and so (3) holds.

(3) \Rightarrow (1) Let $a, b \in \mathcal{L}$ such that $p \leq a \lor b$ and $p \lor e \leq a \lor b$. On the contrary, assume that $p \leq a$ and $p \leq b$. It suffices to show that $p \lor e \leq a \lor b$. Since $p \leq a$ and $b \in \mathcal{A}_a(p)$, we infer that $b \in T(p)$ or $b \in \mathcal{A}_a(p \lor e)$ by (3). If $b \in T(p)$, then $p \leq b = p \lor c$ for some $c \in \mathcal{L}$, a contradiction. If $b \in \mathcal{A}_a(p \lor e)$, then $p \lor e \leq a \lor b$.

(3) \Rightarrow (4) On the contrary, assume that $T(x) \notin T(p)$ and $T(y) \notin T(p)$. It suffices to show that $T(x) \lor T(y) \subseteq T(p) \lor T(e)$. Let $z \in T(x)$. If $z \notin T(p)$, then $z \lor T(y) \subseteq T(p)$ implies that $T(y) \subseteq \mathcal{A}_z(p)$. Now, $T(y) \notin T(p)$ gives $T(y) \subseteq \mathcal{A}_z(p \lor e)$ by (3); hence $x \lor T(y) \subseteq T(p) \lor T(e)$. So we may assume that $z \in T(P)$. By assumption, there exists $z' \in T(x)$ such that $z' \notin T(p)$; thus $z \land z' \notin T(p)$ and $z \land z' \in T(x)$ by Lemma 2.1 (1). By an argument like that as above, $(z \land z') \lor T(y) \subseteq$ $T(p) \lor T(e)$. Let $u \in T(y)$. Then $(z \land z') \lor u = (z \lor u) \land (z' \lor u) \in T(p) \lor T(e)$ gives $z \lor u \in T(p) \lor T(e)$ by lemma 2.1 (1); so $z \lor T(y) \subseteq T(p) \lor T(e)$. Hence, $T(x) \lor T(y) \subseteq T(p) \lor T(e)$, as needed.

 $\begin{array}{l} (4) \Rightarrow (1) \text{ Let } a, b \in \mathcal{L} \text{ such that } p \leqslant a \lor b \text{ and } p \lor e \nleq a \lor b. \text{ Then } T(a) \lor T(b) \subseteq \\ T(p) \text{ and } T(a) \lor T(b) \nsubseteq T(p) \lor T(e) \text{ gives } a \in T(a) \subseteq T(p) \text{ or } b \in T(b) \subseteq T(p) \text{ by} \\ (4); \text{ hence } p \leqslant a \text{ or } p \leqslant b, \text{ i.e. } (1) \text{ holds.} \end{array}$

We continue this section with the investigation of the stability of *e*-prime filters in various lattice-theoretic constructions.

THEOREM 3.3. If $v : \mathcal{L} \to \mathcal{L}'$ is an order lattice homomorphism such that v(1) = 1 and v(0) = 0, then the following hold:

(1) If v is an epimorphism and p is an e-prime element of \mathcal{L} , then v(p) is an v(e)-prime element of \mathcal{L}' .

(2) If v(p) is an v(e)-prime element of \mathcal{L}' , then p is an e-prime element of \mathcal{L} .

PROOF. (1) Let $x, y \in \mathcal{L}'$ such that $v(p) \leq x \lor y$ and $v(p \lor e) = v(p) \lor v(e) \nleq x \lor y$. Then there exist $a, b \in \mathcal{L}$ such that x = v(a), y = v(b) and $v(p) \leq v(a \lor b) = x \lor y$ and $v(p \lor e) \nleq v(a \lor b)$ (so $p \lor e \nleq a \lor b$). By the hypothesis, $p \leq a \lor b$ gives $p \leq a$ or $p \leq b$ which implies that $v(p) \leq v(a) = x$ or $v(p) \leq v(b) = y$), as needed.

(2) Let $a, b \in \mathcal{L}$ such that $p \leq a \lor b$ and $p \lor e \leq a \lor b$ (so $v(p \lor e) \leq v(a \lor b)$). Now, since $v(p) \leq v(a \lor b) = v(a) \lor v(b$ and v(p) is an v(e)-prime element, we infer that $v(p) \leq v(a)$ or $v(p) \leq v(b)$. Hence, $p \leq a$ or $p \leq b$, and so p is an e-prime element.

Quotient lattices are determined by equivalence relations rather than by ideals as in the ring case. If F is a filter of a lattice (\mathcal{L}, \leq) , we define a relation on \mathcal{L} , given by $x \sim y$ if and only if there exist $a, b \in F$ satisfying $x \wedge a = y \wedge b$. Then \sim is an equivalence relation on \mathcal{L} , and we denote the equivalence class of a by $a \wedge F$ and these collection of all equivalence classes by \mathcal{L}/F . We set up a partial order \leq_Q on \mathcal{L}/F as follows: for each $a \wedge F, b \wedge F \in \mathcal{L}/F$, we write $a \wedge F \leq_Q b \wedge F$ if and only if $a \leq b$. The following notation below will be used in this paper: It is straightforward to check that $(\mathcal{L}/F, \leq_Q)$ is a lattice with $(a \wedge F) \vee_Q (b \wedge F) = (a \vee b) \wedge F$ and $(a \wedge F) \wedge_Q (b \wedge F) = (a \wedge b) \wedge F$ for all elements $a \wedge F, b \wedge F \in \mathcal{L}/F$. Note that $f \wedge F = F$ if and only if $f \in F$ (see [12, Remark 4.2 and Lemma 4.3]).

THEOREM 3.4. Let F be a filter of a lattice \mathcal{L} and $p \in \mathcal{L}$. Then p is an e-prime element of \mathcal{L} if and only if $p \wedge F$ is an $e \wedge F$ -prime element of \mathcal{L}/F .

PROOF. Assume that p is an e-prime element of \mathcal{L} and let $v : \mathcal{L} \to \mathcal{L}/F$ be the order lattice epimorphism defined by $v(x) = x \wedge F$. Then by Theorem 3.3 (1), $v(p) = p \wedge F$ is an $v(e) = e \wedge F$ -prime element of \mathcal{L}/F . Conversely, assume that $p \wedge F$ is an $e \wedge F$ -prime element of \mathcal{L}/F and let $x, y \in \mathcal{L}$ such that $p \leq x \vee y$ and $p \vee e \leq x \vee y$ (so $(p \vee e) \wedge F \leq_Q (x \vee y) \wedge F$). By the hypothesis, since $p \wedge F \leq_Q (x \wedge F) \vee_Q (y \wedge F)$, we conclude that $p \wedge F \leq_Q x \wedge F$ or $p \wedge F \leq_Q y \wedge F$; hence $p \leq x$ or $p \leq y$, as required. \Box

If p is a proper element of \mathcal{L} , then by a \vee -factorization of p we mean an expression of p as a join $\vee_{i=1}^{n} p_i$ of e-prime elements. We call \mathcal{L} a \vee -lattice if every proper element has a \vee -factorization.

THEOREM 3.5. Let F be a proper filter of a lattice \mathcal{L} . If \mathcal{L} is a \vee -lattice, then \mathcal{L}/F is a \vee -lattice.

PROOF. Suppose that \mathcal{L} is a \vee -lattice and let x be a proper element of \mathcal{L}/F . Then $x = p \wedge F$ for some proper element p of \mathcal{L} . Let $p = \bigvee_{i=1}^{n} p_i$ be a \vee -factorization of p. Then $x = (\bigvee_{i=1}^{n} p_i) \wedge F = (p_1 \wedge F) \vee_Q \cdots \vee_Q (p_n \wedge F)$. By Theorem 3.4, we conclude that $p_i \wedge F$ is a $e \wedge F$ -prime element of \mathcal{L}/F for each $i \in \{1, 2, \cdots, n\}$. It means that \mathcal{L}/F is a \vee -lattice.

Assume that $(\mathcal{L})_1, \leq_1$, $(\mathcal{L})_2, \leq_2$) are lattices and let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$. We set up a partial order \leq_c on \mathcal{L} as follows: for each $x = (x_1, x_2), y = (y_1, y_2) \in \mathcal{L}$, we write $x \leq_c y$ if and only if $x_i \leq_i y_i$ for each $i \in \{1, 2\}$. The following notation below will be used in this paper: It is straightforward to check that (\mathcal{L}, \leq_c) is a lattice with $x \vee_c y = (x_1 \vee y_1, x_2 \vee y_2)$ and $x \wedge_c y = (x_1 \wedge y_1, x_2 \wedge y_2)$. In this case, we say that \mathcal{L} is a *decomposable lattice*.

Compare the next theorem with Theorem 3.7 in [16].

EBRAHIMI ATANI

THEOREM 3.6. Let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ be a decomposable lattice and $e = (e_1, e_2)$, where e_i is an element of \mathcal{L}_i , i = 1, 2. Then the e-prime elements of \mathcal{L} have exactly one of the following three types:

(1) (p_1, p_2) , where p_i is a proper element of \mathcal{L}_i with $e_i \leq p_i$, i = 1, 2;

(2) $(p_1, 0)$, where p_1 is an e_1 -prime element of \mathcal{L}_1 and $e_2 = 0$;

(3) $(0, p_2)$, where p_2 is an e_2 -prime element of \mathcal{L}_2 and $e_1 = 0$.

PROOF. First we discuss these elements and show that they are e-prime elements, then we show that there are no more e-prime elements. Since $(p_1, p_2) \vee_c$ $(e_1, e_2) = (p_1 \lor e_1, p_2 \lor e_2) = (p_1, p_2)$, we conclude that (p_1, p_2) is an *e*-prime (by definition). Suppose that p_1 is an e_1 -prime element of \mathcal{L}_1 and $e_2 = 0$. If $(p_1, 0) \leq_c (a, b) \lor_c (c, d) = (a \lor c, b \lor d) \text{ and } (p_1, 0) \lor_c (e_1, 0) = (p_1 \lor e_1, 0) \nleq_c (a \lor c, b \lor d)$ (so $p_1 \vee e_1 \nleq a \vee c$), then $p_1 \leqslant a \vee c$ gives $p_1 \leqslant a$ or $p_1 \leqslant c$ which implies that $(p_1, 0) \leq_c (a, b)$ or $(p_1, 0) \leq_c (c, d)$; so $(p_1, 0)$ is *e*-prime. Similarly, $(0, p_2)$ is *e*-prime. Now, we show that there are no more *e*-prime elements. Suppose that (q_1, q_2) is an *e*-prime element of \mathcal{L} and let $x, y \in \mathcal{L}_1$ such that $q_1 \leq x \lor y$ and $q_1 \lor e_1 \nleq x \lor y$. Then $(q_1, q_2) \leq_c (x, 1) \lor_c (y, 1) = (x \lor y, 1)$ and $(q_1 \lor e_1, q_2 \lor e_2) \nleq_c (x \lor y, 1)$ implies that $(q_1, q_2) \leq_c (x, 1)$ or $(q_1, q_2) \leq_c (y, 1)$ and so $q_1 \leq x$ or $q_1 \leq y$. Therefore, q_1 is e_1 -prime. Similarly, q_2 is e_2 -prime. If $(q_1, q_2) = (q_1 \lor e_1, q_2 \lor e_2)$, then $e_1 \leqslant q_1$ and $e_2 \leq q_2$ and so we are done. So we may assume that $(q_1, q_2) \neq (q_1 \lor e_1, q_2 \lor e_2)$, say $q_1 \neq q_1 \lor e_1 \text{ (so } q_1 < q_1 \lor e_1 \text{)}.$ Then $(q_1, q_2) \leq_c (q_1, 0) \lor_c (0, q_2)$ and $(q_1 \lor e_1, q_2 \lor e_2) \not\leq_c$ $(q_1, 0) \lor_c (0, q_2)$ gives $(q_1, q_2) \leqslant_c (q_1, 0)$ or $(q_1, q_2) \leqslant_c (0, q_2)$; hence $q_2 \leqslant 0$ or $q_1 \leqslant 0$ which implies that $q_1 = 0$ or $q_2 = q_2 = 0$. Let $q_1 = 0$. Then $(0, q_2)$ is *e*-prime, where q_2 is an e_2 -prime element of \mathcal{L}_2 .

COROLLARY 3.3. Let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ be a decomposable lattice. Then the weakly prime elements of \mathcal{L} have exactly one of the following three types:

(1)(1,1);

(2) $(p_1, 0)$, where p_1 is a weakly prime element of \mathcal{L}_1 ; (3) $(0, p_2)$, where P_2 is a weakly prime element of \mathcal{L}_2 .

PROOF. Take e = (1, 1) in the Theorem 3.6.

4. Characterization of S-e-prime elements

We continue to use the notation already established, so e is a fixed element of \mathcal{L} . In this section, we collect some basic properties concerning S-e-prime elements and remind the reader the following definition.

DEFINITION 4.1. Let S be a join subset of \mathcal{L} . We say that a proper element p of \mathcal{L} with $S \wedge p = 0$ is an S-e-prime element if there is an element $s \in S$ such that for all $a, b \in \mathcal{L}$ if $p \leq a \lor b$ and $p \lor e \leq a \lor b$, then $p \leq s \lor a$ or $p \leq s \lor b$.

EXAMPLE 4.1. (1) If $S = \{0\}$, then the *e*-prime and the *S*-*e*-prime elements of \mathcal{L} are the same.

(2) If p is a e-prime element of \mathcal{L} with $S \wedge p = 0$, then p is an S-e-prime element. Moreover, since every prime element is e-prime, we infer that every prime element p of \mathcal{L} with $S \wedge p = 0$ is S-e-prime. (3) If p is a proper element of \mathcal{L} , then p is always S-p-prime (by definition).

(4) Let p and q be elements of \mathcal{L} with $q \leq p$. If p is proper, then p is always S-q-prime (by definition). In particular, p is always S-0-prime.

(5) Clearly, if p is an S-prime element of \mathcal{L} , then p is an S-e-prime element. However, the converse is not true in general. Indeed, let $D = \{a, b, c\}$. Then $\mathcal{L} = \{X : X \subseteq D\}$ forms a distributive lattice under set inclusion with greatest element D and least element \emptyset (note that if $x, y \in \mathcal{L}$, then $x \lor y = x \cup y$ and $x \land y = x \cap y$). Set $p = \{b, c\}$, $e = \{b\}$ and $S = \{\{a\}, \emptyset\}$. Then S is a join subset of \mathcal{L} with $S \land p = 0$ and p is clearly an S-e-prime element of \mathcal{L} by (4). Since $p \leq \{b\} \lor \{c\}, p \not\leq \{a\} \lor \{b\}$ and $p \not\leq \{a\} \lor \{c\}$, it follows that p is not a S-prime element of \mathcal{L} . Thus an S-e-prime element need not be an S-prime element.

PROPOSITION 4.1. Suppose that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$. The following assertions are equivalent:

(1) p is an S-e-prime element of \mathcal{L} ;

(2) There exists $s \in S$ such that for all a, b two elements of \mathcal{L} , if $T(a) \lor T(b) \subseteq T(p)$ and $T(a) \lor T(b) \notin T(p) \lor T(e)$, then $s \lor T(a) \subseteq T(p)$ or $s \lor T(b) \subseteq T(p)$.

PROOF. (1) \Rightarrow (2) By assumption, there exists an element $s \in S$ such that for all $a, b \in \mathcal{L}$, if $p \leq a \lor b$ and $p \lor e \leq a \lor b$, then $p \leq s \lor a$ or $p \leq s \lor b$. On the contrary, assume that for all $t \in S$, there are u_t, w_t two elements of \mathcal{L} with $T(u_t) \lor T(w_t) \subseteq T(p)$ and $T(u_t) \lor T(w_t) \not\subseteq T(p) \lor T(e)$, but $t \lor T(u_t) \not\subseteq T(p)$ and $t \lor T(w_t) \not\subseteq T(p)$. Since $s \in S$, we conclude that there exist u_s, w_s two elements of \mathcal{L} with $T(u_s) \lor T(w_s) \subseteq T(p)$ and $T(u_s) \lor T(w_s) \not\subseteq T(p) \lor T(e)$, but $s \lor T(u_s) \not\subseteq T(p)$ and $s \lor T(w_s) \not\subseteq T(p)$. This shows that there exist $a_s, a'_s \in T(u_s)$ and $b_s, b'_s \in T(w_s)$ such that $s \lor a_s \notin T(p)$ (so $p \not\leq s \lor a_s$), $s \lor b_s \notin T(p)$ (so $p \not\leq s \lor b_s$) and $a'_s \lor b'_s \notin T(p) \lor T(e)$ (so $p \lor e \not\leq a'_s \lor b'_s$). It follows that

 $s \lor (a_s \land a'_s) = (s \lor a_s) \land (s \lor a'_s) \notin T(p), s \lor (b_s \land b'_s) = (s \lor b_s) \land (s \lor b'_s) \notin T(p)$

and $(a_s \wedge a'_s) \vee (b_s \wedge b'_s) = (a_s \vee b_s) \wedge (a'_s \vee b_s) \wedge (a_s \vee b'_s) \wedge (a'_s \vee b'_s) \notin T(p) \vee T(e)$ by Lemma 2.1 (1) which implies that $p \nleq s \vee (a_s \wedge a'_s), p \nleq s \vee (b_s \wedge b'_s), p \vee e \nleq (a_s \wedge a'_s) \vee (b_s \wedge b'_s)$ and $p \leqslant (a_s \wedge a'_s) \vee (b_s \wedge b'_s)$ which is a contradiction, as p is an *S-e*-prime element, i.e. the result holds.

(2) \Rightarrow (1) Let $x, y \in \mathcal{L}$ such that $p \leq x \lor y$ and $p \lor e \nleq x \lor y$. Clearly, $T(x) \lor T(y) \subseteq T(p)$ and $T(x) \lor T(y) \nsubseteq T(p) \lor T(e)$. Then by (2), there exits $s \in S$ such that $s \lor x \in s \lor T(x) \subseteq T(p)$ or $s \lor y \in s \lor T(y) \subseteq T(p)$ which gives $p \leq s \lor x$ or $p \leq s \lor y$, i.e.(1) holds.

We next give a characterization of S-e-prime elements.

THEOREM 4.1. Suppose that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$. The following assertions are equivalent:

(1) p is an S-e-prime element of \mathcal{L} ;

(2) There exists $s \in S$ such that for all elements a_1, \dots, a_n of \mathcal{L} , if $\bigvee_{i=1}^n T(a_i) \subseteq T(p)$ and $\bigvee_{i=1}^n T(a_i) \notin T(p) \lor T(e)$, then $s \lor T(a_i) \subseteq T(p)$ for some $i \in \{1, \dots, n\}$.

PROOF. (1) \Rightarrow (2) Let p be an *S*-e-prime element of \mathcal{L} . Then there is an element $s \in S$ such that for all $a, b \in \mathcal{L}$, if $p \leq x \lor y$ and $p \lor e \nleq a \lor b$, then

 $p \leq s \lor a$ or $p \leq s \lor b$. We use induction on n. We can take n = 2 as a base case by Proposition 4.1. Let $n \geq 3$, assume that the property holds up to the order n-1 and let a_1, \dots, a_n be elements of \mathcal{L} such that $\bigvee_{i=1}^n T(a_i) = (\bigvee_{i=1}^{n-1} T(a_i)) \lor T(a_n) \subseteq T(p)$ and $(\bigvee_{i=1}^{n-1} T(a_i)) \lor T(a_n) \notin T(p) \lor T(e)$. Then by Proposition 4.1, $s \lor T(a_n) \subseteq T(p)$ or $(s \lor T(a_1)) \lor (\bigvee_{i=2}^{n-1} T(a_i)) \subseteq T(p)$. Since

$$(s \lor T(a_1)) \lor (\bigvee_{i=2}^{n-1} T(a_i)) \nsubseteq T(p) \lor T(e),$$

we infer from the induction hypothesis that $s \vee T(a_n) \subseteq T(p)$ or $(s \vee s \vee T(a_1) = s \vee T(a_1) \subseteq T(p)$ or $s \vee T(a_i) \subseteq T(p)$ for some $i \in \{2, \dots, n-1\}$). In the same way we prove that $s \vee T(a_i) \subseteq T(p)$ for some $i \in \{1, 2, \dots, n\}$. The implication $(2) \Rightarrow (1)$ is clear.

COROLLARY 4.1. Let p be a proper element of \mathcal{L} . Then p is an e-prime element if and only if for all elements a_1, \dots, a_n of \mathcal{L} , if $\bigvee_{i=1}^n T(a_i) \subseteq T(p)$ and $\bigvee_{i=1}^n T(a_i) \nsubseteq T(p) \lor T(e)$, then $T(a_i) \subseteq T(p)$ for some $i \in \{1, \dots, n\}$.

PROOF. Take
$$S = \{0\}$$
 in Theorem 4.1.

COROLLARY 4.2. Assume that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$. Then p is an S-e-prime element if and only if there exists $s \in S$ such that for all elements a_1, a_2, \dots, a_n of \mathcal{L} , if $p \leq \bigvee_{i=1}^n a_i$ and $p \vee e \nleq \bigvee_{i=1}^n a_i$, then $p \leq s \vee a_i$ for some $i \in \{1, \dots, n\}$.

PROOF. Assume that p is an S-e-prime element of \mathcal{L} and let $a_1, \dots, a_n \in \mathcal{L}$ such that $p \leq a_1 \vee \dots \vee a_n$ and $p \vee e \leq a_1 \vee \dots \vee a_n$. Therefore, $\bigvee_{i=1}^n T(a_i) \subseteq T(p)$ and $\bigvee_{i=1}^n T(a_i) \not\subseteq T(p) \vee T(e)$. Then by Theorem 4.1, there exists $s \in S$ such that $s \vee a_i \in s \vee T(\{a_i\}) \subseteq T(p)$ for some $i \in \{1, \dots, n\}$ which implies that $p \leq s \vee a_i$ for some $i \in \{1, \dots, n\}$. For the converse, take n = 2.

COROLLARY 4.3. Assume that p is an element of \mathcal{L} . Then p is an e-prime element if and only if for all elements a_1, a_2, \dots, a_n of \mathcal{L} , if $p \leq \bigvee_{i=1}^n a_i$ and $p \lor e \leq \bigvee_{i=1}^n a_i$, then $p \leq a_i$ for some $i \in \{1, \dots, n\}$.

PROOF. Take
$$S = \{0\}$$
 in Corollary 4.2.

Let S be a join subset of \mathcal{L} . We say that S is a *strongly join subset* if for each family $\{s_i\}_{i \in I}$ of elements of S we have $(\bigcap_{i \in I} T(s_i)) \cap S \neq \emptyset$ [15, 16].

THEOREM 4.2. Suppose that S is a strongly join subset of \mathcal{L} and let $\{p_i\}_{i \in I}$ be a chain of S-e-prime elements of \mathcal{L} . Then $p = \bigvee_{i \in I} p_i$ is an S-e-prime element.

PROOF. Clearly, $S \wedge p = 0$. For each $i \in I$, there exists $s_i \in S$ such that for all $x, y \in \mathcal{L}$ with $p_i \leq x \vee y$ and $p_i \vee e \leq x \vee y$ we have $p_i \leq s_i \vee x$ or $p_i \leq s_i \vee y$. Consider $s \in (\bigcap_{i \in I} T(s_i)) \cap S$. Then for each $i \in I$, $s = s_i \vee a_i$, where $a_i \in \mathcal{L}$. Let $a, b \in \mathcal{L}$ such that $p \leq a \vee b$, $p \vee e \leq a \vee b$ (so $e \leq a \vee b$) and suppose that $p \leq s \vee a$. It suffices to show that $p \leq s \vee b$. Since $p \leq s \vee a$, we conclude that $p_j \leq s \vee a$ for some $j \in I$. Let $k \in I$. Then $p_k \leq p_j$ or $p_j \leq p_k$. We split the proof into two cases. **Case 1:** $p_j \leq p_k$. Since $p_j \leq s \lor a$, we infer that $p_k \leq s \lor a = s_k \lor a_k \lor a$; so $p_k \leq s_k \lor a$. Clearly, $p_j \leq a \lor b$ and $p_j \lor e \leq a \lor b$. This shows that $p_k \leq s_k \lor b$; hence $p_k \leq s_k \lor a_k \lor b = s \lor b$. Therefore, $p \leq s \lor b$.

Case 2: $p_k \leq p_j$. Since $p_j \leq s \lor a = s_j \lor a_j \lor a$, we infer that $p_j \leq s_j \lor a$; so $p_j \leq s_j \lor b$ which gives $p_k \leq s \lor b = s_j \lor a_j \lor b$, and so $p \leq s \lor b$.

THEOREM 4.3. Assume that S is a join subset of \mathcal{L} and let p be an S-e-prime element of \mathcal{L} . If p is not S-prime, then $e \leq p$.

PROOF. Suppose that $e \nleq p$; we show that p is an S-prime element. Let $a, b \in \mathcal{L}$ such that $p \leqslant a \lor b$. If $p \lor e \nleq a \lor b$, Then p is an S-e-prime element implies that $p \leqslant t \lor a$ or $p \leqslant t \lor b$ for some $t \in S$. So suppose that $p \lor e \leqslant a \lor b$. By the hypothesis, $p \leqslant p \land (a \lor b)$ and $p \lor e \nleq p \land (a \lor b)$ (otherwise, $e \leqslant p \lor e \leqslant p$, a contradiction). Since $p \leqslant (p \land a) \lor (p \land b) = p \land (a \lor b)$ and $p \lor e \nleq p \land (a \lor b)$, we conclude that there is an element $s \in S$ such that $p \leqslant s \lor (p \land a) = (s \lor p) \land (s \lor a) \leqslant s \lor a$ or $p \leqslant s \lor (p \land b) = (s \lor p) \land (s \lor b) \leqslant s \lor b$, i.e. p is S-prime.

COROLLARY 4.4. Let p be an S-1-prime element of \mathcal{L} . If p is not an S-prime element, then p = 1.

PROOF. This is a direct consequence of Theorem 4.3.

COROLLARY 4.5. Let p be an S-e-prime element of \mathcal{L} . If $e \nleq p$, then p is an S-prime element of \mathcal{L} .

PROOF. This is a direct consequence of Theorem 4.3.

We continue this section with the investigation of the stability of *S*-*e*-prime elements in various lattice-theoretic constructions.

THEOREM 4.4. Suppose that $v : \mathcal{L} \to \mathcal{L}'$ is an order lattice homomorphism such that v(1) = 1 and v(0) = 0 and let S be a join subset of \mathcal{L} . Then the following hold:

(1) If v is an epimorphism and p is an S-e-prime element of \mathcal{L} , then v(p) is an v(S)-v(e)-prime element of \mathcal{L}' .

(2) If v(p) is an v(S)-v(e)-prime element of \mathcal{L}' , then p is an S-e-prime element.

PROOF. (1) Clearly, $v(S) \wedge v(p) = 0$. Let $x, y \in \mathcal{L}'$ such that $v(p) \leq x \lor y$ and $v(p \lor e) = v(p) \lor v(e) \nleq x \lor y$. Then there exist $a, b \in \mathcal{L}$ such that x = v(a), y = v(b) and $v(p) \leqslant v(a \lor b) = x \lor y$ (so $p \leqslant a \lor b$) and $v(p \lor e) \nleq v(a \lor b)$ (so $p \lor e \nleq a \lor b$). By the hypothesis, there exists $s \in S$ such that $p \leqslant s \lor a$ or $p \leqslant s \lor b$ which implies that $v(p) \leqslant v(s) \lor v(a) = v(s) \lor x$ or $v(p) \leqslant v(s) \lor v(b) = v(s) \lor y$), i.e. the result holds.

(2) Let $a, b \in \mathcal{L}$ such that $p \leq a \lor b$ and $p \lor e \leq a \lor b$. Now, since $v(p) \leq v(a \lor b) = v(a) \lor v(b), v(p \lor e) \leq v(a \lor b)$ and v(p) is an v(S)-v(e)-prime element, we infer that there exists $s \in S$ such that $v(p) \leq v(s) \lor v(a) = v(s \lor a)$ or $v(p) \leq v(s) \lor v(b) = v(s \lor b)$. Hence, $p \leq s \lor a$ or $p \leq s \lor b$, and so p is an S-e-prime. \Box

An element x of \mathcal{L} is called identity join of a lattice \mathcal{L} , if there exists $1 \neq y \in \mathcal{L}$ such that $x \lor y = 1$. The set of all identity joins of a lattice \mathcal{L} is denoted by $I(\mathcal{L})$.

Suppose that G is a filter of \mathcal{L} and let S be a join subset of \mathcal{L} . An easy inspection will show that $S_Q(G) = \{s \land G : s \in S\}$ is a join subset of \mathcal{L}/G .

PROPOSITION 4.2. Assume that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$ such that $S_Q(T(e)) \cap I(\mathcal{L}/T(e)) = \emptyset$. The following assertions are equivalent:

(1) p is an S-e-prime element of \mathcal{L} ;

(2) $\mathcal{A}_s(p)$ is an T(e)-prime filter of \mathcal{L} for some $s \in S$.

PROOF. (1) \Rightarrow (2) Since p is an S-e-prime element, we conclude that there is an element $s \in S$ such that for all $x, y \in \mathcal{L}$ with $p \leq x \lor y$ and $p \lor e \nleq x \lor y$ we have $p \leq s \lor x$ or $p \leq s \lor y$. Now, we show that $\mathcal{A}_s(p)$ is an T(e)-prime filter of \mathcal{L} . Let $x, y \in \mathcal{L}$ such that $x \lor y \in \mathcal{A}_s(p) - \mathcal{A}_s(p) \lor T(e)$. Then $x \lor y \notin T(e)$ gives $(x \lor y) \land T(e) \neq 1 \land T(e)$. If $x \lor y \lor s \in T(e)$, then $((x \lor y) \land T(e)) \lor_Q(s \land T(e)) = 1 \land T(e)$ by [12, Remark 4.2] implies that $s \land T(e) \in S_Q(T(e)) \cap I(\mathcal{L}/T(e))$ which is impossible. So we may assume that $x \lor y \lor s \notin T(e)$ (so $e \nleq x \lor y \lor s$; hence $p \lor e \nleq x \lor y \lor s$). Therefore, $p \leq x \lor y \lor s$ gives $p \leq x \lor s \lor s = x \lor s$ or $p \leq y \lor s$ which means that $x \in \mathcal{A}_s(p)$ or $y \in \mathcal{A}_s(p)$. Thus $\mathcal{A}_s(p)$ is an T(e)-prime filter of \mathcal{L} .

 $(2) \Rightarrow (1) \text{ Suppose that } \mathcal{A}_s(p) \text{ is an } T(e)\text{-prime filter of } \mathcal{L} \text{ for some } s \in S \text{ and} \\ \text{let } a, b \in \mathcal{L} \text{ such that } p \leqslant a \lor b \text{ and } p \lor e \nleq a \lor b \text{ (so } e \nleq a \lor b \text{ and } p \leqslant a \lor b \lor s). \\ \text{Since } S_Q(T(e)) \cap I(\mathcal{L}/T(e)) = \emptyset \text{ and } a \lor b \notin T(e), \text{ we conclude that } a \lor b \lor s \notin T(e); \\ \text{so } a \lor b \in \mathcal{A}_s(p) - \mathcal{A}_s(p) \lor T(e). \text{ Now, } \mathcal{A}_s(p) \text{ is an } T(e)\text{-prime gives } p \leqslant s \lor a \text{ or} \\ p \leqslant s \lor b, \text{ as required.} \qquad \Box$

LEMMA 4.1. Suppose that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} . Then the following hold:

- (1) p is an S-e-prime element if and only if T(p) is an S-T(e)-prime filter.
- (2) p is an e-prime element if and only if T(p) is an T(e)-prime filter;

PROOF. (1) Suppose that p is an S-e-prime element of \mathcal{L} and let $a, b \in \mathcal{L}$ such that $a \lor b \in T(p)$ (so $p \leq a \lor b$) and $a \lor b \notin T(p) \lor T(e)$ (so $a \lor b \notin T(e)$; i.e. $e \nleq a \lor b$). Since p is S-e-prime, we conclude that there exists $s \in S$ such that $p \leq s \lor a$ or $p \leq s \lor b$; hence $s \lor a \in T(p)$ or $s \lor b \in T(p)$. Conversely, assume that $x, y \in \mathcal{L}$ such that $p \leq x \lor y$ and $p \lor e \nleq x \lor y$. It follows that $x \lor y \in T(p)$ and $x \lor y \notin T(p) \lor T(e)$ which implies that $t \lor x \in T(p)$ or $t \lor y \in T(p)$ for some $t \in S$, i.e. $p \leq t \lor x$ or $p \leq t \lor y$.

(2) Take $S = \{0\}$ in (1).

In the following theorem, we give a condition under which the e-prime and the S-e-prime elements coincide.

THEOREM 4.5. Assume that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$ such that $S_Q(T(e)) \cap I(\mathcal{L}/T(e)) = \emptyset = S_Q(T(p)) \cap I(\mathcal{L}/T(p))$. Then p is e-prime if and only if p is S-e-prime.

PROOF. Clearly, if p is a e-prime element of \mathcal{L} with $S \wedge p = 0$, then p is an S-e-prime element. Conversely, assume that p is an S-e-prime element. It suffices to show that $T(p) = \mathcal{A}_s(p)$ for all $s \in S$ by Proposition 4.2 and Lemma

4.1. Let $s \in S$. If $x \in T(p)$, then $p \leq x \leq x \lor s$ gives $T(p) \subseteq \mathcal{A}_s(p)$. For the reverse inclusion, let $y \in \mathcal{A}_s(p)$. Then $p \leq s \lor y$; so $s \lor y \in T(p)$ which implies that $(s \land T(p)) \lor_Q (y \land T(p)) = (s \lor y) \land T(p) = 1 \land T(p)$. Since $S_Q(T(p)) \cap I(\mathcal{L}/T(p)) = \emptyset$, we conclude that $y \land T(p) = 1 \land T(p)$; so $x \in T(p)$ by [12, Remark 4.2]. \Box

THEOREM 4.6. Assume that p is an element of \mathcal{L} and let S be a join subset of \mathcal{L} with $S \wedge p = 0$. If F is a filter \mathcal{L} , then p is an S-e-prime element of \mathcal{L} if and only if $p \wedge F$ is an $S_Q(F)$ -($e \wedge F$)-prime element of \mathcal{L}/F .

PROOF. Suppose that p is an S-e-prime element of \mathcal{L} and let $v : \mathcal{L} \to \mathcal{L}/F$ be the order lattice epimorphism defined by $v(x) = x \land F$. Then by Theorem 4.4 (1), $v(p) = p \land F$ is an v(S)- $v(e) = S_Q(F)$ - $(e \land F)$ -prime element of \mathcal{L}/F . Conversely, assume that $p \land F$ is an $S_Q(F)$ - $(e \land F)$ -prime element of \mathcal{L}/F and let $x, y \in \mathcal{L}$ such that $p \leq x \lor y$ and $p \lor e \leq x \lor y$ (so $(p \lor e) \land F \leq_Q (x \lor y) \land F$). By the hypothesis, since $p \land F \leq_Q (x \land F) \lor_Q (y \land F)$, we conclude that there exists $s \land F \in S_Q(F)$ such that $p \land F \leq_Q (s \lor x) \land F$ or $p \land F \leq_Q (s \lor y) \land F$; hence $p \leq s \lor x$ or $p \leq s \lor y$. \Box

If p is a proper element of \mathcal{L} , then by a $S \cdot \lor \text{-}factorization$ of p we mean an expression of p as a join $\lor_{i=1}^{n} p_i$ of S-e-prime elements. We call \mathcal{L} a $S \cdot \lor \text{-}lattice$ if every proper element has a $S \cdot \lor \text{-}factorization$.

THEOREM 4.7. Let F be a proper filter of a lattice \mathcal{L} . If \mathcal{L} is a S- \lor -lattice, then \mathcal{L}/F is a $S_Q(F)$ - \lor -lattice.

PROOF. Suppose that \mathcal{L} is a S- \vee -lattice and let x be a proper element of \mathcal{L}/F . Then $x = p \wedge F$ for some proper element p of \mathcal{L} . Let $p = \bigvee_{i=1}^{n} p_i$ be a S- \vee -factorization of p. Then $x = (\bigvee_{i=1}^{n} p_i) \wedge F = (p_1 \wedge F) \vee_Q \cdots \vee_Q (p_n \wedge F)$. By Theorem 4.6, we infer that $p_i \wedge F$ is a $S_Q(F)$ - $e \wedge F$ -prime element of \mathcal{L}/F for each $i \in \{1, 2, \cdots, n\}$. It means that \mathcal{L}/F is a $S_Q(F)$ - \vee -lattice.

THEOREM 4.8. Let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ be a decomposable lattice, $p = (p_1, p_2)$, $e = (e_1, e_2)$ and $S = S_1 \times S_2$, where p_i , e_i are elements of \mathcal{L}_i and S_i is a join subset of \mathcal{L}_i , i = 1, 2. Then the following hold:

(1) If p_i is a proper element of \mathcal{L}_i with $e_i \leq p_i$, i = 1, 2, then p is an S-e-element of \mathcal{L} ;

(2) If p_1 is an S_1 - e_1 -prime element of \mathcal{L}_1 and $e_2 = 0$, then $(p_1, 0)$ is an S-e-element of \mathcal{L} ;

(3) If p_2 is an S_2 - e_2 -prime element of \mathcal{L}_2 and $e_1 = 0$, then $(0, p_2)$ is an S-eelement of \mathcal{L} .

PROOF. (1) Since $p \lor_c e = (p_1 \lor e_1, p_2 \lor e_2) = (p_1, p_2) = p$, we infer that p is an S-e-prime (by definition).

(2) Suppose that p_1 is an S_1 - e_1 -prime element of \mathcal{L}_1 and let $e_2 = 0$. Let $(a, b), (c, d) \in \mathcal{L}$ such that $(p_1, 0) \leq_c (a, b) \vee_c (c, d) = (a \vee c, b \vee d)$ (so $p_1 \leq a \vee c$) and $(p_1, 0) \vee_c (e_1, 0) = (p_1 \vee e_1, 0) \nleq (a \vee c, b \vee d)$ (so $p_1 \vee e_1 \nleq a \vee c$). Then $p_1 \leq a \vee c$ and $p_1 \vee e_1 \nleq a \vee c$ gives there exists $s_1 \in S_1$ such that $p_1 \leq s_1 \vee a$ or $p_1 \leq s_1 \vee c$ which implies that $(p_1, 0) \leq_c (s_1, 0) \vee_c (a, b)$ or $(p_1, 0) \leq_c (s_1, 0) \vee_c (c, d)$, where $(s_1, 0) \in S$; so $(p_1, 0)$ is an S-e-prime.

(3) The proof is similar to that in case (2) and we omit it.

EBRAHIMI ATANI

THEOREM 4.9. Let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ be a decomposable lattice, $p = (p_1, p_2)$, $e = (e_1, e_2)$ and $S = S_1 \times S_2$, where p_i , e_i are elements of \mathcal{L}_i and S_i is a join subset of \mathcal{L}_i , i = 1, 2. If p is an S-e-prime element of \mathcal{L} , then p_1 is an S₁-e₁-prime element of \mathcal{L}_1 and $S_2 \wedge p_2 \neq 0$ or p_2 is an S₂-e₂-prime element of \mathcal{L}_2 and $S_1 \wedge p_1 \neq 0$ or p_1 is an S₁-e₁-prime element of \mathcal{L}_1 and p_2 is an S₂-e₂-prime element of \mathcal{L}_2 .

PROOF. Let p be an S-e-prime element of \mathcal{L} and assume that $s = (s_1, s_2) \in S$ satisfies the S-e-prime condition. Since $P \wedge S = 0$, we have either $S_1 \wedge p_1 = 0$ or $S_2 \wedge p_2 = 0$. If $S_1 \wedge p_1 \neq 0$, we will show that p_2 is an S_2 - e_2 -prime element of \mathcal{L}_2 . Let $p_2 \leq x \lor y$ and $p_2 \lor e_2 \leq x \lor y$ for some $x, y \in \mathcal{L}_2$ (so $e_2 \leq x \lor y$). Then $(p_1, p_2) \leq_c (1, x) \lor_c (1, y) = (1, x \lor y) \text{ and } p \lor_c e = (p_1 \lor e_1, p_2 \lor e_2) \nleq_c (1, x \lor y)$ gives $p \leq_c s \lor_c (1, x) = (1, s_2 \lor x)$ or $p \leq_c s \lor_c (1, y) = (1, s_2 \lor y)$. This shows that $p_2 \leqslant s_2 \lor x$ or $p_2 \leqslant s_2 \lor y$. Hence, p_2 is an S_2 - e_2 -prime element of \mathcal{L}_2 . Similarly, if $S_2 \wedge p_2 \neq 0$, then p_1 is an S_1 - e_1 -prime element of \mathcal{L}_1 . Now assume that $S_1 \wedge p_1 = 0$ $= S_2 \wedge p_2$. We will show that p_1 is an S_1 - e_1 -prime element of \mathcal{L}_1 and p_2 is an S_2 - e_2 -prime element of \mathcal{L}_2 . Suppose that p_1 is not an S_1 - e_1 -prime element of \mathcal{L}_1 . Then there exist $a, b \in \mathcal{L}_1$ such that $p_1 \leq a \lor b$ and $p_1 \lor e_1 \nleq a \lor b$ (so $e_1 \nleq a \lor b$) but $p_1 \nleq s_1 \lor a$ and $p_1 \nleq s_1 \lor b$. Then $p \leqslant_c (a, 0) \lor_c (b, 1) = (a \lor b, 1)$ and $p \lor e \nleq_c (a \lor b, 1)$ gives $p \leq_c s \lor_c (a, 0) = (s_1 \lor a, s_2 \text{ or } p \leq_c s \lor_c (b, 1) = (s_1 \lor b, 1)$; so $p_1 \leq s_1 \lor a$ or $p_1 \leq s_1 \vee b$ which is a contradiction. Therefor, p_1 is an S_1 - e_1 -prime element of \mathcal{L}_1 . Similarly, p_2 is an S_2 - e_2 -prime element of \mathcal{L}_2 .

A lattice \mathcal{L} is said to be a *cyclic filter lattice* (*c-lattice for short*) precisely when every filter G of \mathcal{L} generated by some $a \in G$ (i.e. G = T(a) for some $a \in G$). Let $\mathbb{F}(\mathcal{L})$ be the set of all filters of \mathcal{L} .

EXAMPLE 4.2. Let \mathcal{L} be the lattice as in Example 3.2 (3). An inspection will show that the nontrivial filters (i.e. different from \mathcal{L} and $\{1\}$) of \mathcal{L} are $T(c) = \{1, c\}$, $T(a) = \{1, c, a\}$ and $T(b) = \{1, c, b\}$. Thus \mathcal{L} is a *c*-lattice.

DEFINITION 4.2. Suppose that \mathcal{L} is a *c*-lattice and let *S* be a join subset of \mathcal{L} .

(1) We say that a filter G of \mathcal{L} is S-cyclic if $s \vee G \subseteq K \subseteq G$ for some cyclic filter K of \mathcal{L} and some $s \in S$.

(2) We say that an element p of \mathcal{L} is S-cyclic if and only if T(p) is a S-cyclic filter of \mathcal{L} .

(3) We say that \mathcal{L} is *S*-*c*-Noetherian if each element of \mathcal{L} is *S*-cyclic.

PROPOSITION 4.3. Suppose that \mathcal{L} is a c-lattice and let S be a join subset of \mathcal{L} . Then the following hold:

(1) p is a minimal element (\mathcal{L}, \leq) if and only if T(p) is a maximal element of $(\mathbb{F}(\mathcal{L}), \subseteq)$.

(2) Let p be an element of \mathcal{L} which is minimal among all non-S-cyclic elements of \mathcal{L} . Then p is a prime element of \mathcal{L} . In particular, p is an e-prime element of \mathcal{L} .

PROOF. (1) Suppose that p is a minimal element (\mathcal{L}, \leq) and let $T(p) \subseteq T(c)$ for some filter T(c) of \mathcal{L} . Then $p \in T(p)$ gives $c \leq p = c \lor a$ for some $a \in \mathcal{L}$; so p = c. Hence, T(p) = T(c). In the same way, the opposite direction can be proved.

(2) By (1), T(p) is a filter of \mathcal{L} which is maximal among all non-S-cyclic filters of \mathcal{L} . On the contrary, assume that p is not prime. Then there are elements $a, b \in \mathcal{L}$ such that $p \leq a \lor b$ with $p \leq a$ and $p \leq b$ (so $a \lor b \in T(p)$, $a \notin T(p)$ and $b \notin T(p)$). Since $T(p) \subsetneqq T(p \land a)$ and $T(p) \subsetneqq (T(p) :_{\mathcal{L}} a)$, we conclude that there exist $s, t \in S$, $u \in \in \mathcal{L}$ and $c \in (T(p) :_{\mathcal{L}} a)$ such that $s \lor T(p \land a) \subseteq T((p \land a) \lor u) \subseteq T(p \land a)$ and $t \lor (T(p) :_{\mathcal{L}} a) \subseteq T(c) \subseteq (T(p) :_{\mathcal{L}} a)$ (so $c \lor a \in T(p)$).

Now, let $x \in T(p)$. Then $s \lor x \in s \lor T(p \land a)$) gives $s \lor x = (s \lor x) \lor ((p \land a) \lor w) = (s \lor x \lor p \lor w) \land (s \lor x \lor w \lor a) \in T(p)$ for some $w \in \mathcal{L}$; so $s \lor x \lor w \lor a \in T(p)$ by Lemma 2.1 (1). It follows that $y = s \lor x \lor w \in (T(p) :_{\mathcal{L}} a)$ which implies that $t \lor y \in (T(p) :_{\mathcal{L}} a) \subseteq T(c)$. Therefor, $t \lor y = c \lor e$ for some $e \in \mathcal{L}$; thus $t \lor y = t \lor y \lor c$. So, $s \lor x \lor t = (s \lor x \lor w \lor p \lor t) \land (s \lor x \lor w \lor a \lor t) = (t \lor y \lor p) \land (t \lor y \lor a) = (t \lor y \lor p \lor c) \land (t \lor y \lor c \lor a) \in T(p) \cap T(p \land (c \lor a))$ which gives $(s \lor t) \lor T(p) \subseteq T(p \land (c \lor a)) \subseteq T(p)$; hence T(p) is S-cyclic, a contradiction. Thus p is a prime element. The "in particular" statement is clear.

LEMMA 4.2. Suppose that \mathcal{L} is a complete c-lattice and let S be a join subset of \mathcal{L} . If $\{p_i\}_{i \in \Lambda}$ is a chain of elements of \mathcal{L} such that $p = \bigwedge_{i \in \Lambda} p_i$ is S-cyclic, then p_i is S-cyclic for $i \in \Lambda$.

PROOF. By the hypothesis, $s \vee T(p) \subseteq T(c) \subseteq T(p)$ for some $s \in S$ and $c \in \mathcal{L}$. Now, we show that p_i is S-cyclic. Since $s \vee p_i \in s \vee T(p_i) \subseteq s \vee T(p) \subseteq T(c)$, we conclude that $s \vee p_i = c \vee a$ for some $a \in \mathcal{L}$ which implies that $s \vee p_i = s \vee p_i \vee p_i = c \vee p_i \vee a \in T(c \vee p_i)$. Therefore, $s \vee T(p_i) \subseteq T(c \vee p_i)$. We claim that either $p_i \leq \bigwedge_{i \neq j \in \Lambda} p_j$ or $\bigwedge_{i \neq j \in \Lambda} p_j \leq p_i$. On the contrary, assume that $p_i \nleq \bigwedge_{i \neq j \in \Lambda} p_j$ and $\bigwedge_{i \neq j \in \Lambda} p_j \not\leq p_i$. Since $p_i \nleq \bigwedge_{i \neq j \in \Lambda} p_j$, we infer that $p_i \not\leq p_k$ for some $i \neq k \in \Lambda$ which gives $\bigwedge_{i \neq j \in \Lambda} p_j \leq p_k \leq p_i$, a contradiction (i.e. the claim holds). If $p_i \leqslant \bigwedge_{i \neq j \in \Lambda} p_j$, then $c \in T(c) \subseteq T(p)$ gives $c = (p_i \wedge (\bigwedge_{i \neq j \in \Lambda} p_j)) \vee b = p_i \vee b$ for some $b \in \mathcal{L}$ which implies that $c \vee p_i = p_i \vee p_i \vee b = p_i \vee b \in T(p_i)$. If $\bigwedge_{i \neq j \in \Lambda} p_j \leqslant p_i$, then $c \in T(c) \subseteq T(p)$ gives $c = (\bigwedge_{i \neq j \in \Lambda} p_j) \vee e$ for some $e \in \mathcal{L}$; so $c \vee p_i = (\bigwedge_{i \neq j \in \Lambda} p_j) \vee e \vee p_i = e \vee p_i \in T(p_i)$. Therefore, $T(c \vee p_i) \subseteq T(p_i)$. It follows that $s \vee T(p_i) \subseteq T(c \vee p_i) \subseteq T(p_i)$, as needed.

We obtain the following S-c-version of Cohen's Theorem [8].

THEOREM 4.10. Let S be a join subset of \mathcal{L} . Suppose that \mathcal{L} is a complete c-lattice and let S be a join subset of \mathcal{L} . The following assertions are equivalent:

(1) \mathcal{L} is S-c-Noetherian;

(2) Every S-e-prime element of \mathcal{L} is S-cyclic;

(3) Every e-prime element of \mathcal{L} is S-cyclic.

PROOF. $(1) \Rightarrow (2)$ This is clear.

 $(2) \Rightarrow (3)$ Let p be an e-prime element of \mathcal{L} (so it is an S-e-element of \mathcal{L}). If $S \land p \neq 0$, then there is an element $s \in S$ such that $s \land p \neq 0$; so $s \lor T(p) \subseteq T(s \lor p) \subseteq T(p)$ which implies that T(p) is S-cyclic. If $S \land p = 0$, then by (2), p is S-cyclic.

 $(3) \Rightarrow (1)$ On the contrary, assume That \mathcal{L} is not *S*-*c*-Noetherian. Then the set $\Omega = \{a \in \mathcal{L} : a \text{ is non-S-cyclic}\}$ is not empty. Moreover, (Ω, \leq') is a partial

EBRAHIMI ATANI

order and Ω is inductive, where $b \leq a$ if and only if $a \leq b$. Indeed, if $\{p_i\}_{i \in \Lambda}$ is a chain of elements of Ω , then by Lemma 4.2, $p = \bigwedge_{i \in \Lambda} p_i$ is not S-cyclic; hence $p \in \Omega$ is an upper bound for the chain. Then by Zorn's Lemma, Ω has a maximal element q for " \leq' " and so q is an element of \mathcal{L} which is minimal among all non-S-cyclic elements of \mathcal{L} . Then Proposition 4.3 shows that q is an e-prime element. If $S \wedge q \neq 0$, then then there exists $s \in S$ such that $s \wedge q \neq 0$ (so $s \lor q = \neq 0$); so $s \lor T(q) \subseteq T(s \lor q) \subseteq T(q)$ which implies that T(q) is S-cyclic, a contradiction. Thus $S \wedge q = 0$. Now, by assumption, T(q) is S-cyclic which is impossible since $q \in \Omega$. Thus \mathcal{L} is S-c-Noetherian.

References

- M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
- [2] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), 4407-4416.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003), 831-840.
- [4] F. A. A. Almahdi, E. M. Bouba, and M. Tamekkante, On weakly S-prime ideals of commutative rings, An. St. Univ. Ovidius Constanta 29 (2) (2021), 173-186.
- [5] I. Akray, I-prime ideals, J. Algebra Relat. Topics 4 (2) (2016), 41-47.
- [6] I. Akray and H. S. Hussein, *I-prime submodules*, Acta Math. Acad. Paedagog. Nyházi. 33 (2017), 165-173.
- [7] G. Birkhoff, Lattice theory, Amer. Math. Soc., 1973.
- [8] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42.
- [9] G. Călugăreanu, Lattice Concepts of Module Theory, Kluwer Academic Publishers, 2000.
- [10] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), 423-429.
- [11] S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, On 2-absorbing filters of lattices, Discuss. Math. Gen. Algebra Appl. 36 (2016), 157-168.
- [12] S. Ebrahimi Atani, G-Supplemented property in the lattices, Mathematica Bohemica 147 (4) (2022), 525-545.
- [13] S. Ebrahimi Atani, Note on weakly 1-absorbing prime filters, Bull. Int. Math. Virtual Inst. 13 (3) (2023), 465-478.
- [14] S. Ebrahimi Atani, Co-identity join graph of lattices, Caspian J. of Math. Sci. 13 (2) (2024), 228-245.
- [15] S. Ebrahimi Atani, On S-2-absorbing filters of lattices, Bull. Int. Math. Virtual Inst. 14 (1) (2024), 115-128.
- [16] S. Ebrahimi Atani, S-F-prime filter property in lattices, J. Int. Math. Virtual Inst. 14 (1) (2024), 125-140.
- [17] S. Ebrahimi Atani, On weakly S-prime elements of lattices, J. Indones. Soc. 30 (1) (2024) 89-99.
- [18] S. Ebrahimi Atani, S-prime property in lattices, Mathematica 66 (89), No. 2 (2024), 168-187.
- [19] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61
 (2020), 533-542.
- [20] E. S. Sevim, T. Arabaci, Ü. Tekir, and S. Koc, On S-prime submodules, Turk. J. Math. 43
 (2) (2019), 1036-1046.

Received by editors 13.11.2024; Revised version 23.4.2025; Available online 31.5.2025.

Shahabaddin Ebrahimi Atani, Department of Pure Mathematics, Guilan University, Rasht, Iran

Email address: ebrahimi@guilan.ac.ir