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S-e-PRIME ELEMENT PROPERTY IN LATTICES

Shahabaddin Ebrahimi Atani

Abstract. Let e be a fixed element of a bounded distributive lattice L and S
a join-subset of L. Following the concept of S-F -prime filters [16], we define

S-e-prime elements of L as a new generalization of weakly S-prime elements

[17]. Let p be a proper element of L with S ∧ p = 0 (i.e. s ∧ p = 0 for all
s ∈ S). We say that p is an S-e-prime element of L if there is an element

s ∈ S such that for all x, y ∈ L if p ⩽ x ∨ y and p ∨ e ≰ x ∨ y, then p ⩽ s ∨ x

or p ⩽ s ∨ y. We will make an intensive investigate the basic properties and
possible structures of these elements.

1. Introduction

All lattices considered in this paper are assumed to have a least element de-
noted by 0 and a greatest element denoted by 1, in other words they are bounded.
Recently, the study of algebraic structures, using the properties of lattice theory,
tends to a useful research topic. Associating a lattice with an algebraic struc-
ture allows us to obtain characterizations and representations of special classes of
algebraic structures in terms of lattices and vice versa (see for example [7, 9, 11-18]).

Various generalizations of prime ideals of commutative rings have been stud-
ied. Recall from [1], a prime ideal P of R is a proper ideal having the property
that ab ∈ P implies either a ∈ P or b ∈ P for each a, b ∈ R. In 2003, Anderson
and Smith in [3] defined weakly prime ideals which is a generalization of prime
ideals (also see [10]). A proper ideal P of a ring R is said to be a weakly prime if
0 ̸= xy ∈ P for each x, y ∈ R implies either x ∈ P or y ∈ P . Thus every prime
ideal is weakly prime. In 2020, Hamed and Malek [19] introduced the notion of an
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S-prime ideal (also see [18, 20]), i.e. let S ⊆ R be a multiplicative set and I an
ideal of R disjoint from S. We say that I is S-prime if there exists an s ∈ S such
that for all a, b ∈ R with ab ∈ I, we have sa ∈ I or sb ∈ I. Almahdi et. al. [4]
introduced the notion of a weakly S-prime ideal as follows (also see [17]): We say
that I is a weakly S-prime ideal of R if there is an element s ∈ S such that for all
x, y ∈ R if 0 ̸= xy ∈ I, then sx ∈ I or sy ∈ I. Akray and Hussein generalized the
concept of I-prime submodules in [6] (also see [5]). Let R be a commutative ring
and I be a fixed ideal of R. Then a proper submodule P of an R-module M is
called I-prime submodule of M if rm ∈ P − IP for all r ∈ R and m ∈ M implies
that either m ∈ P or r ∈ (P :R M), and a proper ideal P of R is I-prime if for
a, b ∈ R with ab ∈ P − IP implies either a ∈ P or b ∈ P . So every weakly prime is
I-prime. Let L be a bounded lattice. We say that a subset S ⊆ L is join subset if
0 ∈ S and s1 ∨ s2 ∈ S for all s1, s2 ∈ S. Let F be a fixed filter of a bounded dis-
tributive lattice L and S a join subset of L. In [16], the present author, introduced
the concepts of F -prime filters and S-F -prime filters as a new generalizations of
weakly prime filters and S-prime filters, respectively, i.e. A proper filter P of L is
F -prime if for a, b ∈ L with a ∨ b ∈ P − (F ∨ P ) implies either a ∈ P or b ∈ P and
we say that a proper filter P of L with P ∩ S = ∅ is an S-F -prime filter if there is
an element s ∈ S such that for all a, b ∈ L if a ∨ b ∈ P − (P ∨ F ), then s ∨ a ∈ P
or s ∨ b ∈ P . Also, in [17], the present author, introduced the concepts of S-prime
elements (as a new generalization of prime elements) and weakly S-prime elements
(as a new generalization of weakly prime elements). A proper element p of L is
called prime (resp. weakly prime) if p ⩽ x ∨ y (resp. p ⩽ x ∨ y ̸= 1), then p ⩽ x
or p ⩽ y. Let S be a join subset of L. An element p of L satisfying S ∧ p = 0 is
said to be S-prime (resp. weakly S-prime) if there exists an element s ∈ S such
that, whenever x, y ∈ L, p ⩽ x∨y (resp. p ⩽ x∨y ̸= 1) implies p ⩽ s∨x or p ⩽ s∨y.

Let e be a fixed element of L. Among many other results in this paper, the
first, preliminaries section contains elementary observations needed later on. Sec-
tion 3 concentrates on some basic properties of e-prime elements of L as a new
generalization of weakly prime elements. A proper element p of L is e-prime if for
a, b ∈ L with p ⩽ a ∨ b and p ∨ e ≰ a ∨ b implies either p ⩽ a or p ⩽ b. At first,
some informations about the structure of such elements are given in Example 3.1,
Example 3.2 and Example 3.3. We give an example (Example 3.2 (3)) of a e-prime
element of L that is not a weakly prime element (so it is not prime). Proposition
3.1 shows that if L is a local complete lattice with unique coatom element c and
1 ̸= p ∈ L, then c is an p-prime element. It is shown (Theorem 3.1) that if p is
an e-prime element of L that is not prime, then e ⩽ p. In the Corollary 3.2, we
give a condition under which an e-prime element of L is a prime element. In the
Theorem 3.2, We give three other characterizations of e-prime elements. In the rest
of this section, we investigate the properties of e-prime elements similar to prime
elements. In particular, we investigate the behavior of e-prime elements under ho-
momorphism, in factor lattices, ∨-lattice and in cartesian products of lattices (see
Theorem 3.3, Theorem 3.4, Theorem 3.5 and Theorem 3.6).
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Let S be a join subset of L. Section 4 concentrates on some basic properties of
S-e-prime elements of L as a new generalization of S-prime elements. At first, we
give the definition of S-e-prime element (Definition 4.1) and provide an example
(Example 4.1 (5)) of an S-e-prime element of L that is not an S-prime element.
In the Theorem 4.1, We give a characterization of S-e-prime elements. We provide
some conditions under which a join of a family of S-e-prime elements of L is an
S-e-prime element (see Theorem 4.2). It is proved (Theorem 4.3) that if S is a
join subset of L and p is an S-e-prime element of L that is not S-prime, then
e ⩽ p. The remaining part of this section is mainly devoted to investigate S-e-
prime elements under various contexts of constructions such as homomorphism,
in factor lattices, S-∨-lattices, cartesian products of lattices and S-c-Noetherian
lattices (see Theorem 4.4, Theorem 4.5, Theorem 4.6, Theorem 4.7, Theorem 4.8,
Theorem 4.9 and Theorem 4.10).

2. Preliminaries

A poset (L,⩽) is a lattice if sup{a, b} = a ∨ b and inf{a, b} = a ∧ b exist for all
a, b ∈ L (and call ∧ the meet and ∨ the join).

Definition 2.1. (1) A lattice L is complete when each of its subsets X has a
least upper bound and a greatest lower bound in L. Setting X = L, we see that
any nonvoid complete lattice contains a least element 0 and greatest element 1 (in
this case, we say that L is a lattice with 0 and 1).

(2) A lattice L is called a distributive lattice if (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
for all x, y, z ∈ L (equivalently, L is distributive if (x∧ y)∨ z = (x∨ z)∧ (y ∨ z) for
all x, y, z ∈ L).

(3) An element x of a lattice L is nontrivial (resp. proper) if x ̸= 0, 1 (resp.
x ̸= 1).

(4) We say that an element x in a lattice L is an atom (resp. coatom) if there
is no y ∈ L such that 0 < y < x (resp. x < y < 1). The set of all coatom (resp.
atom) elements of L is denoted by CA(L) (resp. A(L)).

(5) A lattice L is called local if it has exactly one coatom element c that x ⩽ c
for each proper element x.

(6) If L and L′ are lattices, then a lattice homomorphism v : L → L′ is a map
from L to L′ satisfying v(x∨y) = v(x)∨v(y) and v(x∧y) = v(x)∧v(y) for x, y ∈ L.
A lattice homomorphism is said to be a order lattice homomorphism if x ⩽ y if and
only if v(x) ⩽ v(y) for x, y ∈ L.

(7) A non-empty subset F of a lattice L is called a filter, if for a ∈ F , b ∈ L,
a ⩽ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if L is a lattice with 1, then
1 ∈ F and {1} is a filter of L).

(8) Let D be subset of a lattice L. Then the filter generated by D, denoted
by T (D), is the intersection of all filters that is containing D. A filter F is called
finitely generated (resp. cyclic) if there is a finite subset A of F (resp. if there is
an element a ∈ F ) such that F = T (A) (resp. F = T ({a}) = T (a)).

For undefined notations or terminologies in lattice theory, we refer the reader
to [7, 9]. First we need the following easy observations proved in [11, 12, 13, 14].
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Lemma 2.1. Let L be a lattice.
(1) A non-empty subset F of L is a filter of L if and only if x ∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y)
and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

(2) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an ⩽ x for some ai ∈ A (1 ⩽ i ⩽ n)}.

Moreover, if a, b ∈ L, then T ({a}) = T (a) = {x ∨ a : x ∈ L} and a ⩽ b if and only
if T (b) ⊆ T (a).

(3) If L is distributive, then (G :L F ) = {x ∈ L : x ∨ F ⊆ G} and (F :L
T ({z})) = (F :L z) = {a ∈ L : a ∨ z ∈ F} are filters of L.

3. Characterization of e-prime elements

In this section, we collect some basic properties concerning e-prime elements
and remind the reader the following definition.

Definition 3.1. Let e be a fixed element of a lattice L. A proper element p
of L is e-prime if for a, b ∈ L with p ⩽ a ∨ b and p ∨ e ≰ a ∨ b implies either p ⩽ a
or p ⩽ b.

Example 3.1. (1) If p is a proper element of L, then p is always p-prime (by
definition).

(2) Let p and q be elements of L with q ⩽ p. If p is proper, then p is always
q-prime (by definition). In particular, p is always 0-prime.

Example 3.2. (1) If e = 1, then the 1-prime and the weakly prime elements
of L are the same.

(2) Suppose that p is a weakly prime (i.e. 1-prime) element of L and let e be
an element of L. Let a, b ∈ L such that p ⩽ a ∨ b and p ∨ e ≰ a ∨ b; so a ∨ b ̸= 1
since always p ∨ e ⩽ 1. It follows that p ⩽ a or p ⩽ b. Thus, every weakly prime
element (prime element) is e-prime.

(3) Let L = {0, a, b, c, 1} be a lattice with the relations 0 ⩽ a ⩽ c ⩽ 1,
0 ⩽ b ⩽ c ⩽ 1, a ∨ b = c and a ∧ b = 0. Then c is an a-prime element of L
by Example 3.1 (2). Also, c is not a weakly prime (prime) element of L because
c ⩽ a ∨ b = c ̸= 1, c ≰ a and c ≰ b. Thus an e-prime element need not be a weakly
prime element (prime element).

Example 3.3. Let e and f be elements of L such that e ⩽ f . Suppose that p
is an f -prime element of L and let x, y ∈ L such that p ⩽ x ∨ y and p ∨ e ≰ x ∨ y.
Then e ⩽ f gives p∨ f ≰ x∨ y which implies that p ⩽ x or p ⩽ y. Therefor, p is an
e-prim element of L. However, the converse is not true in general. Indeed, assume
that L is the lattice as in Example 3.2 (3) and let a ⩽ 1. Then p = c is an a-prime
element of L but not an 1-prime element of L.

The proof of the following lemma can be found in [14, Lemma 2.1], but we give
the details for convenience.
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Lemma 3.1. If p is a non-trivial element of a complete lattice L, then p ⩽ c
for some coatom element c of L.

Proof. Set Ω = {b : b is an element of L with p ⩽ b < 1}. Then Ω ̸= ∅ since
p ∈ Ω. Moreover, (Ω,⩽) is a partial order. Clearly, Ω is closed under taking joins
of chains and so Ω has at least one maximal element (coatom element) by Zorn’s
Lemma, say p ⩽ c, as needed. □

Proposition 3.1. Let L be a local complete lattice with unique coatom element
c. If p is a proper element of L, then c is an p-prime element.

Proof. Let p be a proper element of L. If p = 0, we are done by Example 3.1
(2). So assume that p ̸= 0. Then p ⩽ c by Lemma 3.1, i.e. the result follows from
Example 3.1 (2). □

An element p ∈ L is called irreducible if p = x ∨ y, then either x ∈ T (p) or
y ∈ T (p). Compare the next example with Theorem 2.11 (2) and Theorem 2.11 (3)
in [5].

Example 3.4. Let L be the lattice as in Example 3.2 (3). Then L is a local
complete lattice with unique coatom element c. Consider the filter T (c) = {1, c}.

(1) Since c ⩽ a ∨ b = c ̸= 1 with c ≰ a and c ≰ b, we conclude that c is not a
weakly prime (1-prime) element. Moreover, c is u-prime for every element u ⩽ c of
L but it is not 1-prime.

(2) Since c = a∨b with a, b /∈ T (c), we infer that c is not an irreducible element,
but it is u-prime by (1). Thus an u-prime element need not be irreducible.

Henceforth we will assume that e is a fixed element of L.

Theorem 3.1. Let p be an e-prime element of L. If p is not prime, then e ⩽ p.

Proof. Suppose that e ≰ p; we show that p is prime. Let x, y ∈ L such that
p ⩽ x ∨ y. If p ∨ e ≰ x ∨ y, then p is an e-prime gives p ⩽ x or p ⩽ y. So we
may assume that p ∨ e ⩽ x ∨ y. Since e ≰ p = p ∧ (x ∨ y), we conclude that
p∨e ≰ p∧ (x∨y). Then p ⩽ p∧ (x∨y) = (p∧x)∨ (p∧y) implies that p ⩽ p∧x ⩽ x
or p ⩽ p ∧ y ⩽ y, i.e. p is prime. □

Corollary 3.1. Let p be an 1-prime element of L. If p is not a prime element,
then p = 1.

Proof. By Theorem 3.1, 1 ⩽ p, i.e. p = 1. □

Corollary 3.2. Let p be an e-prime element of L. If e ≰ p, then p is a prime
element of L.

Proof. This is a direct consequence of Theorem 3.1. □

One can easily show that if p, a ∈ L, then Aa(p) = {x ∈ L : p ⩽ x∨a} is a filter
of L. We next give three other characterizations of e-prime elements. Compare the
next theorem with Theorem 3.2 in [16].
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Theorem 3.2. If p is a proper element of L, then the following statements are
equivalent:

(1) p is an e-prime element of L;
(2) For p ≰ a, Aa(p) = T (p) ∪ Aa(p ∨ e);
(3) For p ≰ a, Aa(p) = T (p) or Aa(p) = Aa(p ∨ e);
(4) For elements x and y of L with T (x) ∨ T (y) ⊆ T (p) and T (x) ∨ T (y) ⊈

T (p) ∨ T (e), either T (x) ⊆ T (p) or T (y) ⊆ T (p).

Proof. (1) ⇒ (2) Let p ≰ a. If z ∈ T (p), then p ⩽ z = p ∨ s ⩽ z ∨ a for some
s ∈ L gives z ∈ Aa(p); so T (p) ⊆ Aa(p). If z ∈ Aa(p ∨ e), then p ⩽ p ∨ e ⩽ z ∨ a
implies that z ∈ Aa(p). Therefore, T (p) ∪ Aa(p ∨ e) ⊆ Aa(p). For the reverse
inclusion, assume that z ∈ Aa(p) (so p ⩽ z ∨ a). If p∨ e ≰ z ∨ a, then p ⩽ z by (1)
which implies that z = z ∨ p ∈ T (p). If p∨ e ⩽ z ∨ a, then z ∈ Aa(p∨ e) and so we
have equality.

(2) ⇒ (3) Since Aa(p) ⊆ T (p) ∪ Aa(p ∨ e) by (2), we conclude that either
Aa(p) ⊆ T (p) or Aa(p) ⊆ Aa(p ∨ e) by [11, Remark 2.3 (i)], and so (3) holds.

(3) ⇒ (1) Let a, b ∈ L such that p ⩽ a ∨ b and p ∨ e ≰ a ∨ b. On the contrary,
assume that p ≰ a and p ≰ b. It suffices to show that p ∨ e ⩽ a ∨ b. Since p ≰ a
and b ∈ Aa(p), we infer that b ∈ T (p) or b ∈ Aa(p ∨ e) by (3). If b ∈ T (p), then
p ⩽ b = p ∨ c for some c ∈ L, a contradiction. If b ∈ Aa(p ∨ e), then p ∨ e ⩽ a ∨ b.

(3) ⇒ (4) On the contrary, assume that T (x) ⊈ T (p) and T (y) ⊈ T (p). It
suffices to show that T (x) ∨ T (y) ⊆ T (p) ∨ T (e). Let z ∈ T (x). If z /∈ T (p), then
z ∨ T (y) ⊆ T (p) implies that T (y) ⊆ Az(p). Now, T (y) ⊈ T (p) gives T (y) ⊆
Az(p∨ e) by (3); hence x∨ T (y) ⊆ T (p)∨ T (e). So we may assume that z ∈ T (P ).
By assumption, there exists z′ ∈ T (x) such that z′ /∈ T (p); thus z ∧ z′ /∈ T (p) and
z∧z′ ∈ T (x) by Lemma 2.1 (1). By an argument like that as above, (z∧z′)∨T (y) ⊆
T (p) ∨ T (e). Let u ∈ T (y). Then (z ∧ z′) ∨ u = (z ∨ u) ∧ (z′ ∨ u) ∈ T (p) ∨ T (e)
gives z ∨ u ∈ T (p) ∨ T (e) by lemma 2.1 (1); so z ∨ T (y) ⊆ T (p) ∨ T (e). Hence,
T (x) ∨ T (y) ⊆ T (p) ∨ T (e), as needed.

(4) ⇒ (1) Let a, b ∈ L such that p ⩽ a∨b and p∨e ≰ a∨b. Then T (a)∨T (b) ⊆
T (p) and T (a) ∨ T (b) ⊈ T (p) ∨ T (e) gives a ∈ T (a) ⊆ T (p) or b ∈ T (b) ⊆ T (p) by
(4); hence p ⩽ a or p ⩽ b, i.e. (1) holds. □

We continue this section with the investigation of the stability of e-prime filters
in various lattice-theoretic constructions.

Theorem 3.3. If v : L → L′ is an order lattice homomorphism such that
v(1) = 1 and v(0) = 0, then the following hold:

(1) If v is an epimorphism and p is an e-prime element of L, then v(p) is an
v(e)-prime element of L′.

(2) If v(p) is an v(e)-prime element of L′, then p is an e-prime element of L.

Proof. (1) Let x, y ∈ L′ such that v(p) ⩽ x∨y and v(p∨e) = v(p)∨v(e) ≰ x∨y.
Then there exist a, b ∈ L such that x = v(a), y = v(b) and v(p) ⩽ v(a ∨ b) = x ∨ y
and v(p ∨ e) ≰ v(a ∨ b) (so p ∨ e ≰ a ∨ b). By the hypothesis, p ⩽ a ∨ b gives p ⩽ a
or p ⩽ b which implies that v(p) ⩽ v(a) = x or v(p) ⩽ v(b) = y), as needed.
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(2) Let a, b ∈ L such that p ⩽ a ∨ b and p ∨ e ≰ a ∨ b (so v(p ∨ e) ≰ v(a ∨ b)).
Now, since v(p) ⩽ v(a∨ b) = v(a)∨ v(b and v(p) is an v(e)-prime element, we infer
that v(p) ⩽ v(a) or v(p) ⩽ v(b). Hence, p ⩽ a or p ⩽ b, and so p is an e-prime
element. □

Quotient lattices are determined by equivalence relations rather than by ideals
as in the ring case. If F is a filter of a lattice (L,⩽), we define a relation on L,
given by x ∼ y if and only if there exist a, b ∈ F satisfying x∧ a = y∧ b. Then ∼ is
an equivalence relation on L, and we denote the equivalence class of a by a∧F and
these collection of all equivalence classes by L/F . We set up a partial order ⩽Q on
L/F as follows: for each a ∧ F, b ∧ F ∈ L/F , we write a ∧ F ⩽Q b ∧ F if and only
if a ⩽ b. The following notation below will be used in this paper: It is straightfor-
ward to check that (L/F,⩽Q) is a lattice with (a∧F )∨Q (b∧F ) = (a∨ b)∧F and
(a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F for all elements a ∧ F, b ∧ F ∈ L/F . Note that
f ∧ F = F if and only if f ∈ F (see [12, Remark 4.2 and Lemma 4.3]).

Theorem 3.4. Let F be a filter of a lattice L and p ∈ L. Then p is an e-prime
element of L if and only if p ∧ F is an e ∧ F -prime element of L/F .

Proof. Assume that p is an e-prime element of L and let v : L → L/F be
the order lattice epimorphism defined by v(x) = x ∧ F . Then by Theorem 3.3 (1),
v(p) = p ∧ F is an v(e) = e ∧ F -prime element of L/F . Conversely, assume that
p ∧ F is an e ∧ F -prime element of L/F and let x, y ∈ L such that p ⩽ x ∨ y
and p ∨ e ≰ x ∨ y (so (p ∨ e) ∧ F ≰Q (x ∨ y) ∧ F ). By the hypothesis, since
p∧F ⩽Q (x∧F )∨Q (y ∧F ), we conclude that p∧F ⩽Q x∧F or p∧F ⩽Q y ∧F ;
hence p ⩽ x or p ⩽ y, as required. □

If p is a proper element of L, then by a ∨-factorization of p we mean an
expression of p as a join ∨n

i=1pi of e-prime elements. We call L a ∨-lattice if every
proper element has a ∨-factorization.

Theorem 3.5. Let F be a proper filter of a lattice L. If L is a ∨-lattice, then
L/F is a ∨-lattice.

Proof. Suppose that L is a ∨-lattice and let x be a proper element of L/F .
Then x = p∧F for some proper element p of L. Let p = ∨n

i=1pi be a ∨-factorization
of p. Then x = (∨n

i=1pi) ∧ F = (p1 ∧ F ) ∨Q · · · ∨Q (pn ∧ F ). By Theorem 3.4, we
conclude that pi ∧ F is a e ∧ F -prime element of L/F for each i ∈ {1, 2, · · · , n}. It
means that L/F is a ∨-lattice. □

Assume that (L)1,⩽1), (L)2,⩽2) are lattices and let L = L1 × L2. We set up
a partial order ⩽c on L as follows: for each x = (x1, x2), y = (y1, y2) ∈ L, we write
x ⩽c y if and only if xi ⩽i yi for each i ∈ {1, 2}. The following notation below will
be used in this paper: It is straightforward to check that (L,⩽c) is a lattice with
x ∨c y = (x1 ∨ y1, x2 ∨ y2) and x ∧c y = (x1 ∧ y1, x2 ∧ y2). In this case, we say that
L is a decomposable lattice.

Compare the next theorem with Theorem 3.7 in [16].
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Theorem 3.6. Let L = L1 × L2 be a decomposable lattice and e = (e1, e2),
where ei is an element of Li, i = 1, 2. Then the e-prime elements of L have exactly
one of the following three types:

(1) (p1, p2), where pi is a proper element of Li with ei ⩽ pi, i = 1, 2;
(2) (p1, 0), where p1 is an e1-prime element of L1 and e2 = 0;
(3) (0, p2), where p2 is an e2-prime element of L2 and e1 = 0.

Proof. First we discuss these elements and show that they are e-prime ele-
ments, then we show that there are no more e-prime elements. Since (p1, p2) ∨c

(e1, e2) = (p1 ∨ e1, p2 ∨ e2) = (p1, p2), we conclude that (p1, p2) is an e-prime
(by definition). Suppose that p1 is an e1-prime element of L1 and e2 = 0. If
(p1, 0) ⩽c (a, b)∨c(c, d) = (a∨c, b∨d) and (p1, 0)∨c(e1, 0) = (p1∨e1, 0) ≰c (a∨c, b∨d)
(so p1 ∨ e1 ≰ a ∨ c), then p1 ⩽ a ∨ c gives p1 ⩽ a or p1 ⩽ c which implies that
(p1, 0) ⩽c (a, b) or (p1, 0) ⩽c (c, d); so (p1, 0) is e-prime. Similarly, (0, p2) is e-prime.
Now, we show that there are no more e-prime elements. Suppose that (q1, q2) is an
e-prime element of L and let x, y ∈ L1 such that q1 ⩽ x ∨ y and q1 ∨ e1 ≰ x ∨ y.
Then (q1, q2) ⩽c (x, 1)∨c (y, 1) = (x∨y, 1) and (q1∨e1, q2∨e2) ≰c (x∨y, 1) implies
that (q1, q2) ⩽c (x, 1) or (q1, q2) ⩽c (y, 1) and so q1 ⩽ x or q1 ⩽ y. Therefore, q1 is
e1-prime. Similarly, q2 is e2-prime. If (q1, q2) = (q1 ∨ e1, q2 ∨ e2), then e1 ⩽ q1 and
e2 ⩽ q2 and so we are done. So we may assume that (q1, q2) ̸= (q1 ∨ e1, q2 ∨ e2), say
q1 ̸= q1∨e1 (so q1 < q1∨e1). Then (q1, q2) ⩽c (q1, 0)∨c(0, q2) and (q1∨e1, q2∨e2) ≰c

(q1, 0)∨c (0, q2) gives (q1, q2) ⩽c (q1, 0) or (q1, q2) ⩽c (0, q2); hence q2 ⩽ 0 or q1 ⩽ 0
which implies that q1 = 0 or q2 = q2 = 0. Let q1 = 0. Then (0, q2) is e-prime,
where q2 is an e2-prime element of L2. □

Corollary 3.3. Let L = L1 × L2 be a decomposable lattice. Then the weakly
prime elements of L have exactly one of the following three types:

(1) (1, 1);
(2) (p1, 0), where p1 is a weakly prime element of L1;
(3) (0, p2), where P2 is a weakly prime element of L2.

Proof. Take e = (1, 1) in the Theorem 3.6. □

4. Characterization of S-e-prime elements

We continue to use the notation already established, so e is a fixed element of
L. In this section, we collect some basic properties concerning S-e-prime elements
and remind the reader the following definition.

Definition 4.1. Let S be a join subset of L. We say that a proper element p
of L with S ∧ p = 0 is an S-e-prime element if there is an element s ∈ S such that
for all a, b ∈ L if p ⩽ a ∨ b and p ∨ e ≰ a ∨ b, then p ⩽ s ∨ a or p ⩽ s ∨ b.

Example 4.1. (1) If S = {0}, then the e-prime and the S-e-prime elements of
L are the same.

(2) If p is a e-prime element of L with S∧p = 0, then p is an S-e-prime element.
Moreover, since every prime element is e-prime, we infer that every prime element
p of L with S ∧ p = 0 is S-e-prime.
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(3) If p is a proper element of L, then p is always S-p-prime (by definition).
(4) Let p and q be elements of L with q ⩽ p. If p is proper, then p is always

S-q-prime (by definition). In particular, p is always S-0-prime.
(5) Clearly, if p is an S-prime element of L, then p is an S-e-prime element.

However, the converse is not true in general. Indeed, let D = {a, b, c}. Then
L = {X : X ⊆ D} forms a distributive lattice under set inclusion with greatest
element D and least element ∅ (note that if x, y ∈ L, then x ∨ y = x ∪ y and
x ∧ y = x ∩ y). Set p = {b, c}, e = {b} and S = {{a}, ∅}. Then S is a join subset
of L with S ∧ p = 0 and p is clearly an S-e-prime element of L by (4). Since
p ⩽ {b} ∨ {c}, p ≰ {a} ∨ {b} and p ≰ {a} ∨ {c}, it follows that p is not a S-prime
element of L. Thus an S-e-prime element need not be an S-prime element.

Proposition 4.1. Suppose that p is an element of L and let S be a join subset
of L with S ∧ p = 0. The following assertions are equivalent:

(1) p is an S-e-prime element of L;
(2) There exists s ∈ S such that for all a, b two elements of L, if T (a)∨T (b) ⊆

T (p) and T (a) ∨ T (b) ⊈ T (p) ∨ T (e), then s ∨ T (a) ⊆ T (p) or s ∨ T (b) ⊆ T (p).

Proof. (1) ⇒ (2) By assumption, there exists an element s ∈ S such that
for all a, b ∈ L, if p ⩽ a ∨ b and p ∨ e ≰ a ∨ b, then p ⩽ s ∨ a or p ⩽ s ∨ b. On
the contrary, assume that for all t ∈ S, there are ut, wt two elements of L with
T (ut) ∨ T (wt) ⊆ T (p) and T (ut) ∨ T (wt) ⊈ T (p) ∨ T (e), but t ∨ T (ut) ⊈ T (p)
and t ∨ T (wt) ⊈ T (p). Since s ∈ S, we conclude that there exist us, ws two
elements of L with T (us) ∨ T (ws) ⊆ T (p) and T (us) ∨ T (ws) ⊈ T (p) ∨ T (e), but
s∨ T (us) ⊈ T (p) and s∨ T (ws) ⊈ T (p). This shows that there exist as, a

′
s ∈ T (us)

and bs, b
′
s ∈ T (ws) such that s ∨ as /∈ T (p) (so p ≰ s ∨ as), s ∨ bs /∈ T (p) (so

p ≰ s ∨ bs) and a′s ∨ b′s /∈ T (p) ∨ T (e) (so p ∨ e ≰ a′s ∨ b′s). It follows that

s ∨ (as ∧ a′s) = (s ∨ as) ∧ (s ∨ a′s) /∈ T (p), s ∨ (bs ∧ b′s) = (s ∨ bs) ∧ (s ∨ b′s) /∈ T (p)

and (as ∧ a′s) ∨ (bs ∧ b′s) = (as ∨ bs) ∧ (a′s ∨ bs) ∧ (as ∨ b′s) ∧ (a′s ∨ b′s) /∈ T (p) ∨ T (e)
by Lemma 2.1 (1) which implies that p ≰ s ∨ (as ∧ a′s), p ≰ s ∨ (bs ∧ b′s), p ∨ e ≰
(as ∧ a′s)∨ (bs ∧ b′s) and p ⩽ (as ∧ a′s)∨ (bs ∧ b′s) which is a contradiction, as p is an
S-e-prime element, i.e. the result holds.

(2) ⇒ (1) Let x, y ∈ L such that p ⩽ x ∨ y and p ∨ e ≰ x ∨ y. Clearly,
T (x)∨ T (y) ⊆ T (p) and T (x)∨ T (y) ⊈ T (p)∨ T (e). Then by (2), there exits s ∈ S
such that s ∨ x ∈ s ∨ T (x) ⊆ T (p) or s ∨ y ∈ s ∨ T (y) ⊆ T (p) which gives p ⩽ s ∨ x
or p ⩽ s ∨ y, i.e.(1) holds. □

We next give a characterization of S-e-prime elements.

Theorem 4.1. Suppose that p is an element of L and let S be a join subset of
L with S ∧ p = 0. The following assertions are equivalent:

(1) p is an S-e-prime element of L;
(2) There exists s ∈ S such that for all elements a1, · · · , an of L, if

∨n
i=1 T (ai) ⊆

T (p) and
∨n

i=1 T (ai) ⊈ T (p)∨T (e), then s∨T (ai) ⊆ T (p) for some i ∈ {1, · · · , n}.

Proof. (1) ⇒ (2) Let p be an S-e-prime element of L. Then there is an
element s ∈ S such that for all a, b ∈ L, if p ⩽ x ∨ y and p ∨ e ≰ a ∨ b, then
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p ⩽ s∨ a or p ⩽ s∨ b. We use induction on n. We can take n = 2 as a base case by
Proposition 4.1. Let n ⩾ 3, assume that the property holds up to the order n−1 and
let a1, · · · , an be elements of L such that

∨n
i=1 T (ai) = (

∨n−1
i=1 T (ai))∨T (an) ⊆ T (p)

and (
∨n−1

i=1 T (ai))∨T (an) ⊈ T (p)∨T (e). Then by Proposition 4.1, s∨T (an) ⊆ T (p)

or (s ∨ T (a1)) ∨ (
∨n−1

i=2 T (ai)) ⊆ T (p). Since

(s ∨ T (a1)) ∨ (

n−1∨
i=2

T (ai)) ⊈ T (p) ∨ T (e),

we infer from the induction hypothesis that s ∨ T (an) ⊆ T (p) or (s ∨ s ∨ T (a1) =
s ∨ T (a1) ⊆ T (p) or s ∨ T (ai) ⊆ T (p) for some i ∈ {2, · · · , n − 1}). In the same
way we prove that s ∨ T (ai) ⊆ T (p) for some i ∈ {1, 2, · · · , n}. The implication
(2) ⇒ (1) is clear. □

Corollary 4.1. Let p be a proper element of L. Then p is an e-prime el-
ement if and only if for all elements a1, · · · , an of L, if

∨n
i=1 T (ai) ⊆ T (p) and∨n

i=1 T (ai) ⊈ T (p) ∨ T (e), then T (ai) ⊆ T (p) for some i ∈ {1, · · · , n}.

Proof. Take S = {0} in Theorem 4.1. □

Corollary 4.2. Assume that p is an element of L and let S be a join subset of
L with S ∧ p = 0. Then p is an S-e-prime element if and only if there exists s ∈ S
such that for all elements a1, a2, · · · , an of L, if p ⩽

∨n
i=1 ai and p ∨ e ≰

∨n
i=1 ai,

then p ⩽ s ∨ ai for some i ∈ {1, · · · , n}.

Proof. Assume that p is an S-e-prime element of L and let a1, · · · , an ∈ L
such that p ⩽ a1 ∨ · · · ∨ an and p∨ e ≰ a1 ∨ · · · ∨ an. Therefore,

∨n
i=1 T (ai) ⊆ T (p)

and
∨n

i=1 T (ai) ⊈ T (p) ∨ T (e). Then by Theorem 4.1, there exists s ∈ S such that
s ∨ ai ∈ s ∨ T ({ai}) ⊆ T (p) for some i ∈ {1, · · · , n} which implies that p ⩽ s ∨ ai
for some i ∈ {1, · · · , n}. For the converse, take n = 2. □

Corollary 4.3. Assume that p is an element of L. Then p is an e-prime
element if and only if for all elements a1, a2, · · · , an of L, if p ⩽

∨n
i=1 ai and

p ∨ e ≰
∨n

i=1 ai, then p ⩽ ai for some i ∈ {1, · · · , n}.

Proof. Take S = {0} in Corollary 4.2. □

Let S be a join subset of L. We say that S is a strongly join subset if for each
family {si}i∈I of elements of S we have (∩i∈IT (si)) ∩ S ̸= ∅ [15, 16].

Theorem 4.2. Suppose that S is a strongly join subset of L and let {pi}i∈I be
a chain of S-e-prime elements of L. Then p =

∨
i∈I pi is an S-e-prime element.

Proof. Clearly, S ∧ p = 0. For each i ∈ I, there exists si ∈ S such that for
all x, y ∈ L with pi ⩽ x ∨ y and pi ∨ e ≰ x ∨ y we have pi ⩽ si ∨ x or pi ⩽ si ∨ y.
Consider s ∈ (∩i∈IT (si)) ∩ S. Then for each i ∈ I, s = si ∨ ai, where ai ∈ L. Let
a, b ∈ L such that p ⩽ a∨ b, p∨ e ≰ a∨ b (so e ≰ a∨ b) and suppose that p ≰ s∨ a.
It suffices to show that p ⩽ s ∨ b. Since p ≰ s ∨ a, we conclude that pj ≰ s ∨ a for
some j ∈ I. Let k ∈ I. Then pk ⩽ pj or pj ⩽ pk. We split the proof into two cases.
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Case 1: pj ⩽ pk. Since pj ≰ s ∨ a, we infer that pk ≰ s ∨ a = sk ∨ ak ∨ a; so
pk ≰ sk ∨ a. Clearly, pj ⩽ a ∨ b and pj ∨ e ≰ a ∨ b. This shows that pk ⩽ sk ∨ b;
hence pk ⩽ sk ∨ ak ∨ b = s ∨ b. Therefore, p ⩽ s ∨ b.

Case 2: pk ⩽ pj . Since pj ≰ s ∨ a = sj ∨ aj ∨ a, we infer that pj ≰ sj ∨ a; so
pj ⩽ sj ∨ b which gives pk ⩽ s ∨ b = sj ∨ aj ∨ b, and so p ⩽ s ∨ b. □

Theorem 4.3. Assume that S is a join subset of L and let p be an S-e-prime
element of L. If p is not S-prime, then e ⩽ p.

Proof. Suppose that e ≰ p; we show that p is an S-prime element. Let a, b ∈ L
such that p ⩽ a ∨ b. If p ∨ e ≰ a ∨ b, Then p is an S-e-prime element implies that
p ⩽ t∨a or p ⩽ t∨b for some t ∈ S. So suppose that p∨e ⩽ a∨b. By the hypothesis,
p ⩽ p ∧ (a ∨ b) and p ∨ e ≰ p ∧ (a ∨ b) (otherwise, e ⩽ p ∨ e ⩽ p, a contradiction).
Since p ⩽ (p ∧ a) ∨ (p ∧ b) = p ∧ (a ∨ b) and p ∨ e ≰ p ∧ (a ∨ b), we conclude that
there is an element s ∈ S such that p ⩽ s ∨ (p ∧ a) = (s ∨ p) ∧ (s ∨ a) ⩽ s ∨ a or
p ⩽ s ∨ (p ∧ b) = (s ∨ p) ∧ (s ∨ b) ⩽ s ∨ b, i.e. p is S-prime. □

Corollary 4.4. Let p be an S-1-prime element of L. If p is not an S-prime
element, then p = 1.

Proof. This is a direct consequence of Theorem 4.3. □

Corollary 4.5. Let p be an S-e-prime element of L. If e ≰ p, then p is an
S-prime element of L.

Proof. This is a direct consequence of Theorem 4.3. □

We continue this section with the investigation of the stability of S-e-prime
elements in various lattice-theoretic constructions.

Theorem 4.4. Suppose that v : L → L′ is an order lattice homomorphism such
that v(1) = 1 and v(0) = 0 and let S be a join subset of L. Then the following hold:

(1) If v is an epimorphism and p is an S-e-prime element of L, then v(p) is
an v(S)-v(e)-prime element of L′.

(2) If v(p) is an v(S)-v(e)-prime element of L′, then p is an S-e-prime element.

Proof. (1) Clearly, v(S) ∧ v(p) = 0. Let x, y ∈ L′ such that v(p) ⩽ x ∨ y
and v(p ∨ e) = v(p) ∨ v(e) ≰ x ∨ y. Then there exist a, b ∈ L such that x = v(a),
y = v(b) and v(p) ⩽ v(a ∨ b) = x ∨ y (so p ⩽ a ∨ b) and v(p ∨ e) ≰ v(a ∨ b) (so
p∨ e ≰ a∨ b). By the hypothesis, there exists s ∈ S such that p ⩽ s∨a or p ⩽ s∨ b
which implies that v(p) ⩽ v(s) ∨ v(a) = v(s) ∨ x or v(p) ⩽ v(s) ∨ v(b) = v(s) ∨ y),
i.e. the result holds.

(2) Let a, b ∈ L such that p ⩽ a ∨ b and p ∨ e ≰ a ∨ b. Now, since v(p) ⩽
v(a ∨ b) = v(a) ∨ v(b), v(p ∨ e) ≰ v(a ∨ b) and v(p) is an v(S)-v(e)-prime element,
we infer that there exists s ∈ S such that v(p) ⩽ v(s) ∨ v(a) = v(s ∨ a) or v(p) ⩽
v(s) ∨ v(b) = v(s ∨ b). Hence, p ⩽ s ∨ a or p ⩽ s ∨ b, and so p is an S-e-prime. □

An element x of L is called identity join of a lattice L, if there exists 1 ̸= y ∈ L
such that x ∨ y = 1. The set of all identity joins of a lattice L is denoted by I(L).
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Suppose that G is a filter of L and let S be a join subset of L. An easy inspection
will show that SQ(G) = {s ∧G : s ∈ S} is a join subset of L/G.

Proposition 4.2. Assume that p is an element of L and let S be a join subset
of L with S ∧ p = 0 such that SQ(T (e)) ∩ I(L/T (e)) = ∅. The following assertions
are equivalent:

(1) p is an S-e-prime element of L;
(2) As(p) is an T (e)-prime filter of L for some s ∈ S.

Proof. (1) ⇒ (2) Since p is an S-e-prime element, we conclude that there is
an element s ∈ S such that for all x, y ∈ L with p ⩽ x ∨ y and p ∨ e ≰ x ∨ y we
have p ⩽ s ∨ x or p ⩽ s ∨ y. Now, we show that As(p) is an T (e)-prime filter of
L. Let x, y ∈ L such that x ∨ y ∈ As(p) − As(p) ∨ T (e). Then x ∨ y /∈ T (e) gives
(x∨y)∧T (e) ̸= 1∧T (e). If x∨y∨s ∈ T (e), then ((x∨y)∧T (e))∨Q(s∧T (e)) = 1∧T (e)
by [12, Remark 4.2] implies that s∧T (e) ∈ SQ(T (e))∩I(L/T (e)) which is impossible.
So we may assume that x∨ y ∨ s /∈ T (e) (so e ≰ x∨ y ∨ s; hence p∨ e ≰ x∨ y ∨ s).
Therefore, p ⩽ x ∨ y ∨ s gives p ⩽ x ∨ s ∨ s = x ∨ s or p ⩽ y ∨ s which means that
x ∈ As(p) or y ∈ As(p). Thus As(p) is an T (e)-prime filter of L.

(2) ⇒ (1) Suppose that As(p) is an T (e)-prime filter of L for some s ∈ S and
let a, b ∈ L such that p ⩽ a ∨ b and p ∨ e ≰ a ∨ b (so e ≰ a ∨ b and p ⩽ a ∨ b ∨ s).
Since SQ(T (e))∩ I(L/T (e)) = ∅ and a∨ b /∈ T (e), we conclude that a∨ b∨s /∈ T (e);
so a ∨ b ∈ As(p) − As(p) ∨ T (e). Now, As(p) is an T (e)-prime gives p ⩽ s ∨ a or
p ⩽ s ∨ b, as required. □

Lemma 4.1. Suppose that p is an element of L and let S be a join subset of L.
Then the following hold:

(1) p is an S-e-prime element if and only if T (p) is an S-T (e)-prime filter.
(2) p is an e-prime element if and only if T (p) is an T (e)-prime filter;

Proof. (1) Suppose that p is an S-e-prime element of L and let a, b ∈ L such
that a ∨ b ∈ T (p) (so p ⩽ a ∨ b) and a ∨ b /∈ T (p) ∨ T (e) (so a ∨ b /∈ T (e); i.e.
e ≰ a ∨ b). Since p is S-e-prime, we conclude that there exists s ∈ S such that
p ⩽ s ∨ a or p ⩽ s ∨ b; hence s ∨ a ∈ T (p) or s ∨ b ∈ T (p). Conversely, assume that
x, y ∈ L such that p ⩽ x ∨ y and p ∨ e ≰ x ∨ y. It follows that x ∨ y ∈ T (p) and
x ∨ y /∈ T (p) ∨ T (e) which implies that t ∨ x ∈ T (p) or t ∨ y ∈ T (p) for some t ∈ S,
i.e. p ⩽ t ∨ x or p ⩽ t ∨ y.

(2) Take S = {0} in (1). □

In the following theorem, we give a condition under which the e-prime and the
S-e-prime elements coincide.

Theorem 4.5. Assume that p is an element of L and let S be a join subset
of L with S ∧ p = 0 such that SQ(T (e)) ∩ I(L/T (e)) = ∅ = SQ(T (p)) ∩ I(L/T (p)).
Then p is e-prime if and only if p is S-e-prime.

Proof. Clearly, if p is a e-prime element of L with S ∧ p = 0, then p is
an S-e-prime element. Conversely, assume that p is an S-e-prime element. It
suffices to show that T (p) = As(p) for all s ∈ S by Proposition 4.2 and Lemma



S-e-PRIME ELEMENT PROPERTY IN LATTICES 99

4.1. Let s ∈ S. If x ∈ T (p), then p ⩽ x ⩽ x ∨ s gives T (p) ⊆ As(p). For the
reverse inclusion, let y ∈ As(p). Then p ⩽ s∨ y; so s∨ y ∈ T (p) which implies that
(s∧T (p))∨Q (y∧T (p)) = (s∨y)∧T (p) = 1∧T (p). Since SQ(T (p))∩I(L/T (p)) = ∅,
we conclude that y ∧ T (p) = 1 ∧ T (p); so x ∈ T (p) by [12, Remark 4.2]. □

Theorem 4.6. Assume that p is an element of L and let S be a join subset of
L with S ∧ p = 0. If F is a filter L, then p is an S-e-prime element of L if and
only if p ∧ F is an SQ(F )-(e ∧ F )-prime element of L/F .

Proof. Suppose that p is an S-e-prime element of L and let v : L → L/F be
the order lattice epimorphism defined by v(x) = x ∧ F . Then by Theorem 4.4 (1),
v(p) = p ∧ F is an v(S)-v(e) = SQ(F )-(e ∧ F )-prime element of L/F . Conversely,
assume that p∧F is an SQ(F )-(e∧F )-prime element of L/F and let x, y ∈ L such
that p ⩽ x∨ y and p∨ e ≰ x∨ y (so (p∨ e)∧F ≰Q (x∨ y)∧F ). By the hypothesis,
since p∧F ⩽Q (x∧F )∨Q (y∧F ), we conclude that there exists s∧F ∈ SQ(F ) such
that p∧F ⩽Q (s∨x)∧F or p∧F ⩽Q (s∨ y)∧F ; hence p ⩽ s∨x or p ⩽ s∨ y. □

If p is a proper element of L, then by a S-∨-factorization of p we mean an
expression of p as a join ∨n

i=1pi of S-e-prime elements. We call L a S-∨-lattice if
every proper element has a S-∨-factorization.

Theorem 4.7. Let F be a proper filter of a lattice L. If L is a S-∨-lattice,
then L/F is a SQ(F )-∨-lattice.

Proof. Suppose that L is a S-∨-lattice and let x be a proper element of L/F .
Then x = p ∧ F for some proper element p of L. Let p = ∨n

i=1pi be a S-∨-
factorization of p. Then x = (∨n

i=1pi) ∧ F = (p1 ∧ F ) ∨Q · · · ∨Q (pn ∧ F ). By
Theorem 4.6, we infer that pi ∧F is a SQ(F )-e∧F -prime element of L/F for each
i ∈ {1, 2, · · · , n}. It means that L/F is a SQ(F )-∨-lattice. □

Theorem 4.8. Let L = L1 × L2 be a decomposable lattice, p = (p1, p2), e =
(e1, e2) and S = S1 × S2, where pi, ei are elements of Li and Si is a join subset of
Li, i = 1, 2. Then the following hold:

(1) If pi is a proper element of Li with ei ⩽ pi, i = 1, 2, then p is an S-e-element
of L;

(2) If p1 is an S1-e1-prime element of L1 and e2 = 0, then (p1, 0) is an S-e-
element of L;

(3) If p2 is an S2-e2-prime element of L2 and e1 = 0, then (0, p2) is an S-e-
element of L.

Proof. (1) Since p ∨c e = (p1 ∨ e1, p2 ∨ e2) = (p1, p2) = p, we infer that p is
an S-e-prime (by definition).

(2) Suppose that p1 is an S1-e1-prime element of L1 and let e2 = 0. Let
(a, b), (c, d) ∈ L such that (p1, 0) ⩽c (a, b)∨c (c, d) = (a∨c, b∨d) (so p1 ⩽ a∨c) and
(p1, 0) ∨c (e1, 0) = (p1 ∨ e1, 0) ≰ (a ∨ c, b ∨ d) (so p1 ∨ e1 ≰ a ∨ c). Then p1 ⩽ a ∨ c
and p1 ∨ e1 ≰ a ∨ c gives there exists s1 ∈ S1 such that p1 ⩽ s1 ∨ a or p1 ⩽ s1 ∨ c
which implies that (p1, 0) ⩽c (s1, 0) ∨c (a, b) or (p1, 0) ⩽c (s1, 0) ∨c (c, d), where
(s1, 0) ∈ S; so (p1, 0) is an S-e-prime.

(3) The proof is similar to that in case (2) and we omit it. □
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Theorem 4.9. Let L = L1 × L2 be a decomposable lattice, p = (p1, p2), e =
(e1, e2) and S = S1 × S2, where pi, ei are elements of Li and Si is a join subset of
Li, i = 1, 2. If p is an S-e-prime element of L, then p1 is an S1-e1-prime element
of L1 and S2 ∧ p2 ̸= 0 or p2 is an S2-e2-prime element of L2 and S1 ∧ p1 ̸= 0 or p1
is an S1-e1-prime element of L1 and p2 is an S2-e2-prime element of L2.

Proof. Let p be an S-e-prime element of L and assume that s = (s1, s2) ∈ S
satisfies the S-e-prime condition. Since P ∧ S = 0, we have either S1 ∧ p1 = 0 or
S2 ∧ p2 = 0. If S1 ∧ p1 ̸= 0, we will show that p2 is an S2-e2-prime element of
L2. Let p2 ⩽ x ∨ y and p2 ∨ e2 ≰ x ∨ y for some x, y ∈ L2 (so e2 ≰ x ∨ y). Then
(p1, p2) ⩽c (1, x) ∨c (1, y) = (1, x ∨ y) and p ∨c e = (p1 ∨ e1, p2 ∨ e2) ≰c (1, x ∨ y)
gives p ⩽c s ∨c (1, x) = (1, s2 ∨ x) or p ⩽c s ∨c (1, y) = (1, s2 ∨ y. This shows that
p2 ⩽ s2 ∨ x or p2 ⩽ s2 ∨ y. Hence, p2 is an S2-e2-prime element of L2. Similarly, if
S2 ∧ p2 ̸= 0, then p1 is an S1-e1-prime element of L1. Now assume that S1 ∧ p1 = 0
= S2 ∧ p2. We will show that p1 is an S1-e1-prime element of L1 and p2 is an
S2-e2-prime element of L2. Suppose that p1 is not an S1-e1-prime element of L1.
Then there exist a, b ∈ L1 such that p1 ⩽ a∨b and p1∨e1 ≰ a∨b (so e1 ≰ a∨b) but
p1 ≰ s1∨a and p1 ≰ s1∨b. Then p ⩽c (a, 0)∨c(b, 1) = (a∨b, 1) and p∨e ≰c (a∨b, 1)
gives p ⩽c s ∨c (a, 0) = (s1 ∨ a, s2 or p ⩽c s ∨c (b, 1) = (s1 ∨ b, 1); so p1 ⩽ s1 ∨ a or
p1 ⩽ s1 ∨ b which is a contradiction. Therefor, p1 is an S1-e1-prime element of L1.
Similarly, p2 is an S2-e2-prime element of L2. □

A lattice L is said to be a cyclic filter lattice (c-lattice for short) precisely when
every filter G of L generated by some a ∈ G (i.e. G = T (a) for some a ∈ G). Let
F(L) be the set of all filters of L.

Example 4.2. Let L be the lattice as in Example 3.2 (3). An inspection will
show that the nontrivial filters (i.e. different from £ and {1}) of L are T (c) = {1, c},
T (a) = {1, c, a} and T (b) = {1, c, b}. Thus L is a c-lattice.

Definition 4.2. Suppose that L is a c-lattice and let S be a join subset of L.
(1) We say that a filter G of L is S-cyclic if s ∨ G ⊆ K ⊆ G for some cyclic

filter K of L and some s ∈ S.
(2) We say that an element p of L is S-cyclic if and only if T (p) is a S-cyclic

filter of L.
(3) We say that L is S-c-Noetherian if each element of L is S-cyclic.

Proposition 4.3. Suppose that L is a c-lattice and let S be a join subset of
L. Then the following hold:

(1) p is a minimal element (L,⩽) if and only if T (p) is a maximal element of
(F(L),⊆).

(2) Let p be an element of L which is minimal among all non-S-cyclic elements
of L. Then p is a prime element of L. In particular, p is an e-prime element of L.

Proof. (1) Suppose that p is a minimal element (L,⩽) and let T (p) ⊆ T (c)
for some filter T (c) of L. Then p ∈ T (p) gives c ⩽ p = c ∨ a for some a ∈ L; so
p = c. Hence, T (p) = T (c). In the same way, the opposite direction can be proved.
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(2) By (1), T (p) is a filter of L which is maximal among all non-S-cyclic filters
of L. On the contrary, assume that p is not prime. Then there are elements a, b ∈ L
such that p ⩽ a ∨ b with p ≰ a and p ≰ b (so a ∨ b ∈ T (p), a /∈ T (p) and b /∈ T (p)).
Since T (p) ⫋ T (p∧a) and T (p) ⫋ (T (p) :L a), we conclude that there exist s, t ∈ S,
u ∈∈ L and c ∈ (T (p) :L a) such that s ∨ T (p ∧ a) ⊆ T ((p ∧ a) ∨ u) ⊆ T (p ∧ a) and
t ∨ (T (p) :L a) ⊆ T (c) ⊆ (T (p) :L a) (so c ∨ a ∈ T (p)).

Now, let x ∈ T (p). Then s∨x ∈ s∨T (p∧a)) gives s∨x = (s∨x)∨((p∧a)∨w) =
(s ∨ x ∨ p ∨ w) ∧ (s ∨ x ∨ w ∨ a) ∈ T (p) for some w ∈ L; so s ∨ x ∨ w ∨ a ∈ T (p)
by Lemma 2.1 (1). It follows that y = s ∨ x ∨ w ∈ (T (p) :L a) which implies
that t ∨ y ∈ (T (p) :L a) ⊆ T (c). Therefor, t ∨ y = c ∨ e for some e ∈ L; thus
t ∨ y = t ∨ y ∨ c. So, s ∨ x ∨ t = (s ∨ x ∨ w ∨ p ∨ t) ∧ (s ∨ x ∨ w ∨ a ∨ t) =
(t∨ y ∨ p)∧ (t∨ y ∨ a) = (t∨ y ∨ p∨ c)∧ (t∨ y ∨ c∨ a) ∈ T (p)∩T (p∧ (c∨ a)) which
gives (s∨ t)∨T (p) ⊆ T (p∧ (c∨ a)) ⊆ T (p); hence T (p) is S-cyclic, a contradiction.
Thus p is a prime element. The ”in particular” statement is clear. □

Lemma 4.2. Suppose that L is a complete c-lattice and let S be a join subset
of L. If {pi}i∈Λ is a chain of elements of L such that p =

∧
i∈Λ pi is S-cyclic, then

pi is S-cyclic for i ∈ Λ.

Proof. By the hypothesis, s ∨ T (p) ⊆ T (c) ⊆ T (p) for some s ∈ S and c ∈ L.
Now, we show that pi is S-cyclic. Since s ∨ pi ∈ s ∨ T (pi) ⊆ s ∨ T (p) ⊆ T (c), we
conclude that s∨ pi = c∨ a for some a ∈ L which implies that s∨ pi = s∨ pi ∨ pi =
c ∨ pi ∨ a ∈ T (c ∨ pi). Therefore, s ∨ T (pi) ⊆ T (c ∨ pi). We claim that either
pi ⩽

∧
i ̸=j∈Λ pj or

∧
i ̸=j∈Λ pj ⩽ pi. On the contrary, assume that pi ≰

∧
i ̸=j∈Λ pj

and
∧

i̸=j∈Λ pj ≰ pi. Since pi ≰
∧

i ̸=j∈Λ pj , we infer that pi ≰ pk for some i ̸=
k ∈ Λ which gives

∧
i ̸=j∈Λ pj ⩽ pk ⩽ pi, a contradiction (i.e. the claim holds). If

pi ⩽
∧

i ̸=j∈Λ pj , then c ∈ T (c) ⊆ T (p) gives c = (pi ∧ (
∧

i ̸=j∈Λ pj)) ∨ b = pi ∨ b

for some b ∈ L which implies that c ∨ pi = pi ∨ pi ∨ b = pi ∨ b ∈ T (pi). If∧
i ̸=j∈Λ pj ⩽ pi, then c ∈ T (c) ⊆ T (p) gives c = (

∧
i̸=j∈Λ pj) ∨ e for some e ∈ L;

so c ∨ pi = (
∧

i ̸=j∈Λ pj) ∨ e ∨ pi = e ∨ pi ∈ T (pi). Therefore, T (c ∨ pi) ⊆ T (pi). It

follows that s ∨ T (pi) ⊆ T (c ∨ pi) ⊆ T (pi), as needed. □

We obtain the following S-c-version of Cohen’s Theorem [8].

Theorem 4.10. Let S be a join subset of L. Suppose that L is a complete
c-lattice and let S be a join subset of L. The following assertions are equivalent:

(1) L is S-c-Noetherian;
(2) Every S-e-prime element of L is S-cyclic;
(3) Every e-prime element of L is S-cyclic.

Proof. (1) ⇒ (2) This is clear.
(2) ⇒ (3) Let p be an e-prime element of L (so it is an S-e-element of L). If

S ∧ p ̸= 0, then there is an element s ∈ S such that s ∧ p ̸= 0; so s ∨ T (p) ⊆
T (s ∨ p) ⊆ T (p) which implies that T (p) is S-cyclic. If S ∧ p = 0, then by (2), p is
S-cyclic.

(3) ⇒ (1) On the contrary, assume That L is not S-c-Noetherian. Then the
set Ω = {a ∈ L : a is non-S-cyclic} is not empty. Moreover, (Ω,⩽′) is a partial
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order and Ω is inductive, where b ⩽′ a if and only if a ⩽ b. Indeed, if {pi}i∈Λ is
a chain of elements of Ω, then by Lemma 4.2, p =

∧
i∈Λ pi is not S-cyclic; hence

p ∈ Ω is an upper bound for the chain. Then by Zorn’s Lemma, Ω has a maximal
element q for ”⩽′” and so q is an element of L which is minimal among all non-
S-cyclic elements of L. Then Proposition 4.3 shows that q is an e-prime element.
If S ∧ q ̸= 0, then then there exists s ∈ S such that s ∧ q ̸= 0 (so s ∨ q = ̸= 0); so
s ∨ T (q) ⊆ T (s ∨ q) ⊆ T (q) which implies that T (q) is S-cyclic, a contradiction.
Thus S ∧ q = 0. Now, by assumption, T (q) is S-cyclic which is impossible since
q ∈ Ω. Thus L is S-c-Noetherian. □
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