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SOME PROPERTIES OF EXTENDED i-METRIC
PRESERVING FUNCTIONS AND GLUING LEMMA

Nihal Tas and Aysenur Sen

ABSTRACT. In the literature, metric preserving and b-metric preserving func-
tions are given with some basic properties. In this paper, we investigate some
properties of extended b-metric preserving functions and give some relations
between the known metric preserving functions and extended b-metric preserv-
ing functions. Also, we prove two gluing lemmas for this preserving function
family.

1. Introduction

What does a metric function look like?

A definition for the metric function is that a topological space function that
provides a value representing the distance between any two points in the space.
The most general environment in which to examine many of the ideas of geometry
and mathematical analysis is a metric space. Three-dimensional Euclidean space,
with its typical concept of distance, is the most well-known example of a metric
space. Metric spaces are a technique utilized in many different areas of mathematics
because of their generality.

The concept of generalized metric spaces appears in the literature as a gener-
alization of the concept of metric spaces. There are many examples of generalized
metric spaces in the literature. Some of these examples are the concept of b-metric
spaces and various generalizations of b-metric spaces. Fixed-point results are being

2020 Mathematics Subject Classification. Primary 54C50; Secondary 54E35, 54E40, 26A21,
26A99.

Key words and phrases. Extended b-metric space, extended b-metric preserving function,
Gluing lemma, fixed point.

Communicated by Ozgiir Ege.

65



66 N. TAS AND A. SEN

studied on these spaces (For example, see [7], [9], [16], [19], [21] and the references
therein)

A new area of research for metric functions is the study of metric preserving
functions. The idea of metric preserving functions appears to have been initially
mentioned in the literature by [22]. Metric preserving functions have been the topic
of a substantial body of literature. Afterwards, research on the idea of a metric
preserving function for various generalized metric spaces started. The notion of
the b-metric preserving function was proposed and several relationships between
the concepts of the metric preserving function and the concept of b-metric space
were investigated [13]. The weak-ultrametric notion was used to present a new
metric preserving function concept to the literature, while certain aspects of the b-
metric preserving function concept were still being investigated [14]. Two distinct
Pasting Lemmas (or Gluing Lemmas) have been formulated and proven for b-metric
preserving functions using a simple topological technique [15].

In this paper, we use the extended b-metric concept to offer a new notion of
metric preserving function based on all the previously described motivations. We
first describe the extended b-metric preserving function and look at the fundamental
connections between it and certain concepts of metric maintaining functions that
are known from the literature. Using a topological approach, we develop and prove
two distinct Gluing Lemmas for extended b-metric preserving functions.

2. Preliminaries

In this section, we give some basic concepts related to metric and generalized
metric preserving functions.

Let X be a nonempty set and d : X x X — [0,00) a function. If the following
conditions are satisfied for all z,y,z € X, then d is called a metric:

(dl) d(z,y) =0 if and only if z =y,

(d2) d(z,y) = d(y, ),

(d3) d(z,y) < d(z,z) +d(z,y).
Then the pair (X, d) is said to be a metric space.

This metric space was generalized using different approaches as seen in the
following notions:

DEFINITION 2.1. [1] Let X be a nonempty set and ds; : X x X — [0,00) a
function. If the following conditions are satisfied for all x,y,z € X, then dy is
called a b-metric:

(ds1) dg (z,y) = 0 if and only if x =y,

(dsz) ds (‘T7y) =ds (y71‘)7

(ds3) There is s > 1 such that

ds (z,y) < slds (2, 2) + ds (2,9)] -
Then the pair (X, ds) is said to be a b-metric space.

REMARK 2.1. The notion of a b-metric is a generalization of a metric. Indeed,
we take s = 1 in Definition 2.1, then the concepts coincide. In the literature, there
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exist some examples of b-metric which is not a metric. For example, let X = [, (R)
with p € (0,1) where

I, (R) = {{xn} CR:Y |zaf’ < oo}.

n=1
Assume that for = {z,} and y = {y,}, the function d; : X x X — [0,00) is
defined by

ds (z,y) = <Z |z — yn|p> :
n=1

Then d, is a b-metric with s = 2» (see, [2], [6] and [10] for more details).

The notions of a metric and a b-metric were generalized to an extended b-metric
as follows:

DEFINITION 2.2. [12] Let X be a nonempty set, § : X x X — [1,00) and
ds : X x X — [0,00) be two functions. If the following conditions are satisfied for
all x,y,2z € X, then dy is called an extended b-metric:

(dol) dp (x,y) = 0 if and only if z =y,

(d92) dg (x,y) =ds (y,l’),

(d93) do (2. y) < 8 (w,) [do (2, ) + do (2, ).

Then the pair (X, dy) is said to be an extended b-metric space.

EXAMPLE 2.1. [11] Let X = [0,00). Let us define the functions 6 : X x X —
[1,00) and ds : X x X — [0,00) for z,y € X as follows:
0(z,y)=a+y+1
and

T + R
doe) ={ T3 L ETY

Then (X, dy) is an extended b-metric space.

REMARK 2.2. If we take 0 (z,y) = s for s > 1, then the concepts of a b-metric
and an extended b-metric coincide.

The relationships among the notions of a metric space, a b-metric space and
an extended b-metric space are as follows:

metric space

I

b-metric space

1

extended b-metric space

Using the concepts of a metric and a b-metric, the following definitions were
introduced:

DEFINITION 2.3. [4] [18] [20] Let (X, d) be a metric space and 9 : [0,00) —
[0,00) be a function. Then % is called metric preserving function if ¢ od is a metric
on X.
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DEFINITION 2.4. [13] Let (X, d) be a metric space, (X, dg) be a b-metric space
and ¢ : [0,00) — [0, 00) be a function. Then

() ¢ is called a b-metric preserving function if @) o dy is a b-metric on X.

(#i) ¢ is called a metric-b-metric preserving function if ¥ od is a b-metric on X.

(4i7) v is called a b-metric-metric preserving function if 1) o dy is a metric on X.

Let M be the set of all metric preserving function, B be the set of all b-metric
preserving functions, MB be the set of all metric-b-metric preserving functions and
BM be the set of all b-metric-metric preserving functions [13].

Now we recall the following basic notions:

Let v : [0,00) — [0,00) and I C [0,00). Then ¢ is called

e increasing on I if ¢ (z) < ¥ (y) for all z,y € I such that z < y,

e strictly increasing on I if ¥ (z) < ¢ (y) for all z,y € I such that = < y,

o decreasing on I if ¢ (x) > ¢ (y) for all z,y € I such that z < y,

e strictly decreasing on I if 1 (x) > ¢ (y) for all 2,y € I such that x < y,

e amenable if =1 ({0}) = {0},

o tightly bounded on (0, 00) if there is v > 0 such that ¢ (z) € [v,2v] for all
x € (0, 00),

e subadditive if 1) (a +b) < ¢ (a) + ¢ (b) for all a,b € [0, 0),

e quasi-subadditive if there exists s > 1 such that ¢ (a + b) < s[¢ (a) + ¢ (b)]
for all a,b € [0, 00),

e convex if Y ((1 —t)x+ty) < (1 —t)v (z) + t (y) for all x,y € [0,00) and
t e0,1],

e concave if Y (1 —t)z+ty) = (1 —t)¢ (z) + ty (y) for all z,y € [0,00) and
t € 0,1],

e linear if ¥ (a+0b) = ¢ (a) + ¢ (b) and ¢ (ka) = kb (a) for all a,b € [0,00)
with a constant k.

_

DEFINITION 2.5. (i) [13] Let a,b,c > 0. A triple (a,b,c) is called a triangle

triplet if
a<b+c,b<a+candc<a+b.

(#) [18] Let s > 1 and a,b,c > 0. A triple (a,b,c) is called an s-triangle triplet

if
a<s(b+c),b<s(a+c) andc<s(a+b).

(#9i) [17] Let 0 : X x X — [1,00) and a,b,c > 0. A triple (a,b,c) is called

f-triangle triplet if
a<b(x,y)(b+c),b<O(x,2)(a+c) and ¢ < O(z,y) (a+ D),

for all z,y,z € X.

Let A, A; and Ay be the set of all triangle triplets, s-triangle triplets and
f-triangle triplets, respectively.

LEMMA 2.1. [5] [8] If ) € M, then v is amenable and subadditive.

LEMMA 2.2. [4] [5] [8] Assume that ¢ : [0,00) — [0,00) is subadditive. Then
for all positive integers n and for all x € [0,00), we have

¢ (nx) <nip () .
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LEMMA 2.3. [8] [5] [8] Suppose that v : [0,00) — [0,00) is amenable. Then
the followings are equivalent:

(a) ¥ e M.

(b) For each (a, B,7) € A, then (4 (@), (8) 4 () € A.

LEMMA 2.4. [8/Let ¢ : [0,00) — [0,00) be amenable. Then v is concave if and
only if for allt > 0 and z,y, z € [0,1],

r+t=y+z=1(x)+Y () =9y +v(2).

3. Main results

In this section, we investigate some properties of extended b-metric preserving
functions.

DEFINITION 3.1. Let (X,d) be a metric space, (X,ds) be a b-metric space,
(X,dp) be a extended b-metric space and v : [0,00) — [0,00) be a function. Then

() v is called an extended b-metric preserving function if ¥ o dy is an extended
b-metric on X [17].

(#) 1 is called a metric-extended b-metric preserving function if ¢ o d is an
extended b-metric on X.

(#i1) 1) is called an extended b-metric-metric preserving function if 1) o dy is a
metric on X.

(iv) 1 is called a b-metric-extended b-metric preserving function if 1) o dg is an
extended b-metric on X.

(v) ¢ is called an extended b-metric-b-metric preserving function if ¢ o dyg is a
b-metric on X.

Let &, be the set of all extended b-metric preserving function, ME} be the set of
all metric-extended b-metric preserving functions, £.M be the set of all extended b-
metric-metric preserving functions, BEy be the set of all b-metric-extended b-metric
preserving functions and &,B be the set of all extended b-metric-b-metric preserving
functions.

THEOREM 3.1. Let n be a positive real number. Let us define ¢ : [0,00) —
[0,00) by
¥ (z) =a".
Then the followings are satisfied:
(a) If n € (0,1], then ¢ € M.
(0) If n > 1, then ¢ € &, but ¥ ¢ M.

PROOF. (a) It can be easily seen in the proof of Theorem 12 given in [13].
(b) Let n > 1. Let us define the function ¢ : [0,00) — R as

C(I+a)”
0=
Then we get
, B n(1+x)n_1 (1—:17”71)
o' (x) = (a +:r”)2
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and
¢ (z) 2021,

Hence, we say that ¢ is increasing on [0, 1] and decreasing [1, 00). For all z € [0, 00),

we have

(3.1) o(2) <p(1) =2,

To show ¢ € &, let dg be an extended b-metric on X and 6 : X x X — [1,00) be

a function such that
d9 (I',y) < 0 (l',y) [d9 (l‘, Z) + d9 (Zay)] )
for all z,y,z € X.

Now, we check that 1 o dy satisfies the conditions (dypl), (d¢g2) and (dy3) as

follows:
(dgl) For all z,y € X, we get

podg(z,y) = 06 ¢(dy(x,y)) =0 [do(2,9)]" =0
& dy(x,y) =0 2=y
(dp2) For all z,y € X, we have
1/)0d9 (xay) - w(de (xay)) - 1/1(d9 (yax)) - djodg (yax)
(dp3) Let x,y,z € X. If x = 2, then it is clear that
pody(w,y) <10 (z,y)]" 2" [Yody (x,2) + 1o dy (2,y)].
Assume that = # z. By (3.1), we obtain

v(aes) <

[do (z,2) +dg (2,9)]" < 2"7'[dg (2,2)" +do (2,9)"]
(32) = 2" ' [ody(z,2) + v ody(zy)].
Using (3.2) and the properties of extended b-metric, we get

and

w o d9 (m,y) = [d9 (x’ y)]n < [9 (x’y) (d9 (1‘7 Z) + d9 (zvy))]n

< [0z y)]" 2" [ods (2,2) + Y ods (2,y)].

Consequently, ¥ € &,. It is easily seen in the proof of Theorem 12 given in [13]

that ¥ ¢ M.

O

EXAMPLE 3.1. Let us consider the usual metric space on R with the metric

function
d(.’lﬁ,y) = |.’IJ— y|a

for all z,y € R. Then (X, d) is also an extended b-metric space 6 (z,y) = 1. Assume

that the function v : [0, 00) — [0, 00) is defined by
Y (z) = 22
Then ¢ € &, but ¢ ¢ M.
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LEMMA 3.1. Let (X, d) be a metric space, (X, dp) be an extended b-metric space
and v : [0,00) — [0,00) be a function. Then we have

(a) M C M.

(b) & C ME&y.

PROOF. (a) Let ¢ € &M and d be a metric on X. Since every metric is an
extended b-metric, d is an extended b-metric on X. As ¢ € &M, then Y od is a
metric on X. Hence, we get ¢ € M.

(b) Let ¢ € & and d be a metric on X. Since every metric is an extended
b-metric, d is an extended b-metric on X. As ¢ € &, then 9 o d is an extended
b-metric on X. Hence, we get ¢ € ME,. O

LEMMA 3.2. Let (X, d) be a metric space, (X, dp) be an extended b-metric space
with the bounded function 8 and ¢ : [0,00) — [0,00) be a function. Then we have

M C&,.
PROOF. Let v € M and dy be an extended b-metric on X. We show that

1) o dy is an extended b-metric on X as follows:

(dgl) Since ¥ € M, then by Lemma 2.1, ¢ is amenable. For all z,y € X, we
get

’(/)Odg(l',y) = Oﬁw(dQ(a%y)):O
&S dyg(z,y) =0 x=y.
(dp2) For all z,y € X, we find
Yody(x,y) =1 (dg (z,y)) =1 (dy (y,2)) =Y ody(y, ).
(dg3) For all z,y, z € X, assume that
a=dp ({177:[/), ﬂ =dp ($7Z) and V= dg (Z7y>
Since dy is an extended b-metric on X, we have
do (z,y) < 0 (2,y) [do (x,2) +do (2,9)] = @ < 0 (z,y) [B+ 1],
do (z,2) < 0 (z,2) [dg (x,y) + dg (y,2)] = B <0 (x,2) [a+1]
and
do (y,2) < 0 (y,2) [do (y,2) + do (2, 2)] = v < 0 (y, 2) [ + f].
Let
N =sup{0(z,y): v,y € X}
and n be a positive integer larger than N. Then, we have
a<0(z,y)[f+7]<n(B+7)=nf+ny

and so (a,nB + ny,nfB + nvy) is a triangle triplet. Since ¥» € M, by Lemmas 2.1,
2.2 and 2.3, we get

¥ (a) ¥ (nf +ny) + 1 (nf +ny) = 2¢ (nf +nvy)
2[4 (nB) + ¢ ()] < 2[ny (B) + i ()]

2n [y (8) +¢ ()]

<
<
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and so
Yody(z,y) <2nfpody(z,2) +1pody(z,y)].
Consequently, ¥ o dy is an extended b-metric with the function 6 : X x X — [1, 00)
defined as
0 (x,y) = 2n,
for all x,y € X, that is, ¢ € &. O

From Lemma 3.1 and Lemma 3.2, we get the following corollary:

COROLLARY 3.1. Let (X, d) be a metric space, (X,dp) be an extended b-metric
space with the bounded function 0 and 1 : [0,00) — [0,00) be a function. Then we
have

EM M C & CME,.

LEMMA 3.3. [17] Let (X,ds) be a b-metric space, (X,dg) be an extended b-
metric space and v : [0,00) — [0,00) be a function. Then we have

B C &.

LEMMA 3.4. Let (X,ds) be a b-metric space, (X,dp) be an extended b-metric
space and ¢ : [0,00) — [0,00) be a function. Then we have

(a) &B C B.

(b) & C BEy.

PROOF. (a) Let ¢ € &B and ds be a b-metric on X. Since every b-metric is
an extended b-metric, dg is an extended b-metric on X. As ¢ € &,B, then ¢ od; is
a b-metric on X. Hence, we get ¢ € B.

(b) Let ¢ € & and ds be a b-metric on X. Since every b-metric is an extended
b-metric, dg is an extended b-metric on X. As ¢ € &, then 9 o d, is an extended
b-metric on X. Hence, we get ¢ € BEy,. O

From Lemma 3.3 and Lemma 3.4, we get the following corollary:

COROLLARY 3.2. Let (X,ds) be a b-metric space, (X,dy) be an extended b-
metric space and 1 : [0,00) — [0,00) be a function. Then we have

EBCBCE C BE.

LEMMA 3.5. Let (X,d) be a metric space, (X, ds) be a b-metric space, (X, dyp)
be an extended b-metric space and v : [0,00) — [0,00) be a function. Then we have

(a) ng Q gbB

(b) &M C BEy,.

PROOF. (a) Let ¢ € &M and dp be an extended b-metric on X. As ¢ € &M,
then 1 o dy is a metric on X. Since every metric is a b-metric, 1) o dy is a b-metric
on X. Hence, we get ¢ € &B.

(b) Let ¢ € &M and d,; be a b-metric on X. Since every b-metric is an extended
b-metric, dg is an extended b-metric on X. As ¢ € &M, then ¥ o d, is a metric on
X. Also, since every metric is an extended b-metric,then we get ¥ € BEy,. O
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From Corollary 3.1, Corollary 3.2 and Lemma 3.5, we get the following corol-
lary:

COROLLARY 3.3. Let (X,d) be a metric space, (X,ds) be a b-metric space,
(X,dp) be an extended b-metric space with the bounded function 6 and ) : [0, 00) —
[0,00) be a function. Then we have

EMCEBCBCE CBE
and
EMCMCBCE CME.

THEOREM 3.2. Let (X,d) be a metric space and (X,dg) be an extended b-
metric space. Assume that ¢ : [0,00) — [0,00) is amenable. Then the followings
are equivalent:

(a) P € MEy.

(b) There exists a function 6 : X x X — [1,00) such that (¢ (z),9 (y),¢ (2)) €
Ay for all (z,y,2) € A.

PROOF. Suppose that 1) € MEy. Let d be a usual metric on R?. Then ¢ od is
a extended b-metric and so there exists a function § : X x X — [1,00) such that

Pod(u,w) <0 (u,w)pod(u,v)+1od(v,w),

for all u,v,w € R2. Let (z,y,2) € A. According to the Euclidean geometry, there
are u,v,w € R? such that

z=d(u,w),y=d(u,v) and z = d (v, w).
Then, we have
Y(z) = dod(u,w)<O(u,w)pod(u,v)+pod(v,w)
= O(u,w)[¥(y)+(2)],

Pv(y) = vod(u,v)<0(u,v)[tpod(u,w)+vod(w,v)]
= 0(u,0) [ (x) +¢(2)],

¥(2) = Yod(w,w)<O(v,w)[pod(v,u)+vod(u,w)
= 0(v,w)[¥ () + ¢ (y)]
and so

(¥ (2),4 (y) ¥ (2)) € Ao
Assume that there exists a function 6 : X x X — [1,00) such that
(¥ (2),% (y), ¥ (2) € Ag

for all (z,y,2) € A. Let (X,d) be a metric space. Now we show that ¢ o d is an
extended b-metric as follows:
(dgl) Since ¢ is amenable, for all z,y € X, we have

Yod(z,y) =0<= Y (d(z,y) =0<=d(z,y) =0<= 2z =1y.



74 N. TAS AND A. SEN

(dp2) For all z,y € X, we get

Yod(z,y) =9 (d(z,y) =9 (d(y,x)) =vpod(y ).

(dg3) Using hypothesis, since (d (z,y),d (z,2),d(z,y)) € A for all z,y,z € X,
then

(Yod(z,y),od(x, 2),9od(zy)) € A,
that is,
Yod(x,y) <O0(x,y)[pod(z,z)+¢od(zy).
Consequently, 1 o d is an extended b-metric and ¥ € MEj. O
THEOREM 3.3. Let (X,ds) be a b-metric space and (X,dg) be an extended b-

metric space. Assume that ¢ : [0,00) — [0,00) is amenable. Then the followings
are equivalent:

(a) ¥ € BEy.

(b) There exists a function 6 : X x X — [1,00) such that (¢ (z),9 (y),¢ (2)) €
Ag for all (z,y,z) € As.

PROOF. Suppose that 1 € BE,. Let d, be a usual metric on R?. Since every
metric is a b-metric, hence d is a b-metric. Then 1 od; is a extended b-metric and
so there exists a function 6 : X x X — [1,00) such that

Y ods (u,w) <0 (u,w) 1 ods (u,v) + 1 ods (v,w)],
for all u,v,w € R?. Let (r,y,2) € As. Then we have
r<s(y+z2),y<s(x+z2) and z<s(z+y).
Since d, is a b-metric, there are u,v,w € R? such that
z=ds (u,w), y=ds(u,v) and z = ds (v, w).
Then, we have

v(x) = Yods(u,w) <O (u,w)[Yods(u,v)+¢ods(v,w)]
= [¢(

V(z) = vods(v,w) <O(v,w)[thods(v,u)+ 1 ods (u,w)]
= 0(v,w) Y (x)+ v (y)]
and so

(¢ (2), ¢ (y), ¥ (2)) € Ao
Assume that there exists a function 6 : X x X — [1,00) such that
(¥ (2),% (y), ¥ (2) € Ag

for all (z,y,z2) € A,. Let (X, ds) be a b-metric space. Now we show that ¢ o d; is
an extended b-metric as follows:
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(dp1) Since v is amenable, for all z,y € X, we have
Yods(z,y) =0<= Y (ds (x,y)) =0 <= ds(z,y) =0 <=z =y.
(dg2) For all z,y € X, we get

ods(z,y) = (ds (2,y) =¥ (ds (y,2)) =Y ods (y, x).

(dp3) Using hypothesis, since (d (z,y) ,d (x,2),d(z,y)) € Asfor all z,y, 2z € X,

then
(wods (x7y) 7’(/)Ods (x’z) 7’(/}Od3 (Z7y)) e Ae’
with the function 6 : X x X — [1,00) defined as 6 (x,y) = s for all z,y € X. Hence,
we obtain
Yods(z,y) <O (x,y)[ods(x,2) +vods(z,y)].

Consequently, ¥ o dg is an extended b-metric and ¢ € BEy,. ]

THEOREM 3.4. Let (X,d) be a metric space and (X,dy) be an extended b-

metric space. If 1 : [0,00) — [0,00) is increasing, quasi-subadditive and amenable
on [0,00), then 1p € MEy.

PROOF. Assume that v is increasing, quasi-subadditive and amenable. Let
(X,d) be a metric space. Now, we show that ¥ o d is an extended b-metric as
follows:

(dpl) Since d is a metric and v is amenable, for all z,y € X, we have

Yod(z,y) =0y (d(r,y) =0=d(z,y) =0=x=y.

(dg2) Since d is a metric, using the symmetry property of d, for all z,y € X, we
get

Yod(z,y) =1 (d(z,y) =¢(dyx)) =vod(yx).
(dp3) Since ¢ is quasi-subadditive, there exists s > 1 such that

(3-3) P (u+v) <sl(u) +¢ ()],
for all u,v € [0,00). Let the function 6 : X x X — [1,00) be defined as
0 (z,y) = s,

for all 2,y € X. Using the increasing property and the inequality (3.3), we obtain

’(/}Od(ﬂ?,y) = w(d(‘rvy))<w<d($72)+d(zvy))
< s(d(z,2)+v(d(z,y))]
= O(z,y)[od(z,2)+vod(zy),

for all z,y,z € X.
Consequently, 1 € MEy. O

THEOREM 3.5. Let (X, ds) be a b-metric space and (X, dy) be an extended b-
metric space. If 1 : [0,00) — [0,00) is increasing, linear and amenable on [0, 00),
then ¢ € BEy.
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PROOF. Assume that v is increasing, linear and amenable. Let (X,ds) be a
b-metric space. Now, we show that 1 o dy is an extended b-metric as follows:
(dpl) Since dy is a b-metric and v is amenable, for all z,y € X, we have
Yods(z,y) =0= ¢ (ds(2,y) =0 = ds(z,y) =0 =z =y.

(dg2) Since ds is a b-metric, using the symmetry property of d, for all z,y € X,
we get

Yods(z,y) =¥ (ds (2,y)) = ¢ (ds (y,2)) = P ods (y, 7).
(dp3) Let the function 6 : X x X — [1,00) be defined as
0(,y) =s,

for all x,y € X. Using the increasing and linear property, we obtain

Yods(z,y) = ¥(ds(z,y) <U(s(ds(2,2) +ds (2,9)))
s (ds (z,2)) + s (ds (2, 9))

s[yods (z,2) +1ods(z,y)]

= 0(z,y)[Yods(z,2) +¢ods(2y)],

for all z,y,2z € X.
Consequently, ¢ € BEy,. (]

THEOREM 3.6. Let (X,d) be a metric space, (X,dp) be an extended b-metric
space with the bounded function 0 and 1 : [0,00) — [0,00). If » € MEy, then ) is
quasi-subadditive and amenable.

PROOF. Let ¥ € ME&;, and d be a usual metric on R. So, ¥ o d is an extended
b-metric on R. Then we get

¥ (0) =4 (d(0,0)) = 10 d(0,0) = 0.
Also, suppose that « € [0,00) and ¢ (z) = 0. Hence, we obtain

0= () =1 (d(2,0)=¢od(z,0)

and
Yod(x,0)=0.
Since v o d is an extended b-metric, we have
z=0
and

o7t ({0}) = {0},
that is, ¢ is amenable.
Now, we show that v is quasi-subadditive. Since 1 od is an extended b-metric,
there exists a function 6 : X x X — [1,00) such that

Yod(z,y) <0 (z,y)[Yod(x,z)+1pod(zy),
for all x,y,z € R. Let
S =sup{0(z,y) :z,y € X}.
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To show that v is quasi-subadditive, let u,v € [0, 00). Thereby, we obtain

Gu+v) < vod(0,utwv)
< 00, u+v)[vod(0,u)+vod(u,u+v)
= 00, ut0)[Y(u) +¢(v)]
< S (W) +9(v).
Consequently, v is quasi-subadditive. O

THEOREM 3.7. Let (X, ds) be a b-metric space, (X, dg) be an extended b-metric
space with the bounded function 6 and ¢ : [0,00) — [0,00). If ¢ € BEy, then ¢ is
quasi-subadditive and amenable.

PROOF. We can see this readily by using the same reasoning as in the proof of
Theorem 3.6. (]

THEOREM 3.8. Let (X,d) be a metric space, (X,dy) be an extended b-metric
space and 1) : [0,00) — [0,00). Then ¢ € EM if and only if ¥ is tightly bounded
and amenable.

PRrROOF. Suppose that 1 is tightly bounded and amenable. Let a > 0 be a
constant such that

(3.4) ¢ (x) € a,2d],

for all x > 0 and (X, dy) be an extended b-metric space. Now we show that ) o dy
is a metric as follows:
(d1) Since dy is an extended b-metric space and v is amenable, we have

Yod(z,y) =0<+= 1 (do(2,9)) =0+=dp(z,y) =0 =z =1y,

for all z,y € X.
(d2) Since dy is an extended b-metric space, we get

Yody (a?,y) :w(de (x,y)) :w(d9 (y,x)) =¢Od9(y79€)a

for all z,y € X.
(d3) Let z,y,z € X. f . =y, x = z or y = z, then the following inequality is
satisfied:
Yody(z,y) <Yody(z,z)+vods(z,y).

Assume that ¢ # y,  # z and y # z. Then dy (x,y), dg (z,2) and dy (y,z) are
positive. From (3.4), we obtain

Yody(z,y),ody(x,2),¢ods(zy) € a,2a].
Then, we get
Yodg(z,y) <2a=a+a<Pody(z,z)+1pody(z,y)
and so 9 o dy is a metric, that is, ¥ € EM.
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Let ¢ € & M. From Corollary 3.1, we have ¥ € M and so since v is a metric
preserving function, by Lemma 2.1, ¢ is amenable. To show that 1 is tightly
bounded, assume that d is a usual metric on R and

dg =g od,
where
s(z)y=2a" (n>1),
for all z € [0,00). From Theorem 3.1, we say that

dG (.T, y) = ‘x - y|"
is an extended b-metric. Since ¥ € &M, then i o dy is a metric. Using the similar

approaches given in Theorem 24 in [13], it can be easily proved that 1 is tightly
bounded. (]

THEOREM 3.9. Let (X,d) be a metric space, (X,dg) be an extended b-metric
space with the bounded function 6 and i : [0,00) — [0,00). Then ¢ is a metric-
extended b-metric preserving function if and only if 1 is an extended b-metric pre-
serving function, that is,

MEy = &.
PrOOF. From Lemma 3.1, we have
Ey T MEy.
Now, we show
MEy C &.

Let v € ME,. We prove that ¥ € &, that is, ¥ o dy is an extended b-metric. By
Theorem 3.6, ¥ is amenable and quasi-subadditive. Then, we can easily see that
1) o dy satisfies the conditions of an extended b-metric as follows:

(dgl) Since 1 is amenable, for all z,y € X, we have

Yody(x,y) =0<= ¥ (dg(x,y)) =0<=dg(z,y) =0<=z =y.
(dg2) For all z,y € X, we get
Yody (z,y) = (dg (x,y)) = (do (y,x)) = Y odg(y,2).
(dp3) Since 1 is quasi-subadditive, there exists s > 1 such that
(3.5) ¥ (u+v) < sy (u) + ()],

for all u,v € [0,00). Since dy is an extended b-metric, by hypothesis, there exists a
bounded function #; such that

do (,y) < 01 (z,y) [do (z,2) + do (2,9)],
for all x,y,z € X. Let
ny =sup {61 (z,y) : z,y € X}.
Then, there exists m € N such that m > n; and
(3.6) dg (z,y) < m[dg (x,2) +do (2,y)] -



SOME PROPERTIES OF EXTENDED b-METRIC PRESERVING FUNCTIONS 79

Since ¢ € MEyp, by Theorem 3.2 and hypothesis, there exists a bounded function
05 such that

(11[} (u) 37;[] (U) 7"/) (w)) € A02
for each (u,v,w) € A. Let
ny = sup {6 (z,y) : z,y € X}
and
n = 2noms™.
Assume that
u = d6’ (.’1,‘7y)7 v = d9 ((E,Z) and w = d@ (27y)7
for all w,v,w € X. From the inequality (3.6), we have
u < mu + mw
and so we get
(u, mv + mw, mv + mw) € A.
By Theorem 3.2, we find

(¢ (u), 9 (mv + mw) , P (mv + mw)) € Ay,

and we obtain

Y(u) = vYody(z,y) <02(z,y) [ (mv+mw)+ 1 (mo+muw))
= 203 (z,y) ¢ (m(v+w))
(3.7) < 2n0y (m(v+w)).
Now, we show that
(3.8) ¥ (ax) = as® e (2),

for all z € [0,00) and o € N. To do this, we apply mathematical induction on «.
For a = 1, it is clear that the equality (3.8) is satisfied. Let o > 1 and assume that
the equality (3.8) is satisfied for a. Since o > 1, we have

as® P 1< (a4 1) s
By the inequality (3.5) and the induction hypothesis, we obtain
Pllat)a) < s[p(an)+ 9 @) < 5 [0 (@) + § ()]
= s(as* '+1)¢Y(2) <s(a+1)s" Y (2)
= (ot 1) ().
Hence, the inequality (3.8) is satisfied. By (3.5), (3.7) and (3.8), we get
Yody(r,y) < 2ney (m(v+w)) < 2nams™ M (v+w)
< 2nams™ s [ (v) + ¥ (w)]
= 2noms™ [¢ (v) + ¢ (w)]
= npody(x,z)+1vody(z,vy)].

If we take 0 (z,y) = n for all z,y € X, then the condition (d¢3) is satisfied.
Consequently, 1 o dy is an extended b-metric on X. (]
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THEOREM 3.10. Let (X,ds) be a b-metric space, (X,dg) be an extended b-
metric space with the bounded function 6 and v : [0,00) — [0,00). Then ) is
a b-metric-extended b-metric preserving function if and only if ¥ is an extended
b-metric preserving function, that is,

BEy = &.

Proor. We can demonstrate this readily by applying the same reasoning that
were used in the Theorem 3.9 proof. O

4. Gluing lemmas for extended b-metric preserving functions

In this section, we prove two gluing lemmas for extended b-metric preserving
functions.

THEOREM 4.1. (A gluing lemma for functions in & and MEy) Let (X, d) be a
metric space, (X,dy) be an extended b-metric space with the bounded function 0
and ) : [0,00) — [0,00). Suppose that 1,1%e € &, € > 0 and 11 (€) = 2 (). Let
us define the function 1 : [0,00) — [0,00) as

_ P (.’L’) 5 .’L‘E[O,E)
w(x){wi(m) i x €lg,00)

for all x € [0,00). Assume that ¢ is a concave and increasing function such that

[z -yl <e=[va2 () =2 ()| <1 (|2 —yl),
for all x,y € [e,00). Then
€ &.

PROOF. Since 91,15 € &, by Theorems 3.2 and 3.9, there exist the bounded
functions 61,602 : X x X — [1,00) such that
(1 (a) b1 (b) s3h1 (c)) € Ay,

and

(Y2 (a) 92 (b) 92 (c)) € Ag,,
for all (a,b,c) € A. Let (a,b,c) € A and the function 6 : X x X — [1,00) be
defined as

0 (z,y) = max {6y (z,y),02 (z,y)},
for all z,y € X. Keeping generality intact, suppose
(4.1) 0<a<s<b<c<ga+b.
If a,b,c € [0,¢), then we get

(¥ (a),1 (b),¢ () = (1 (a) ;91 (b) ;1 (c)) € Ag, T A

If a,b, c € [e,00), then we obtain

(¢ (a), ¥ (b), ¥ () = (Y2 (a) ,¥2 (b) ;Y2 (c)) € Ag, C Ay.
Consider the scenarios in which a, b and ¢ do not fall inside the same interval.
Since if ¢ € [0,¢) then by (4.1), we have a,b € [0,¢), we only investigate the
following cases:
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Case 1: Let a,b € [0,¢) and ¢ € [¢,00). Then we have
(4.2)  ¥(a) =¢1(a) <ehr (b)) =¥ (b) <Y (b) + ¢ (c) <O (z,y) (¥ (0) + ¢ (c)).

Since

e—c/=c—e<a+b—ec<et+ec—e¢,
we get

[1(e) =2 (o)) = W2 () — b2 ()| <Y1 (le —¢]) =1 (c—¢).
Then we find
(4.3) —th1 (c—¢e) <1 (e) —ta(c) < th1(c—e)
and
Y1 (e) =1 (c—¢) <o (c).
Since
c<a+b,

we have
c—e<a+b—e<a.

Using the increasing property of 11, we get
Y1 (c—¢) <91 (a)

and so
Y() = P1(b) <P1(e) <thi(e) +¢1(a) =91 (c—e)
= [Y1(e) =1 (c—¢e)] + 1 (a)
< Y2 (e) +¢1(a) =9 (c) + 4 (a)
(4.4) < O(z,y) [ (c) + ¥ (a)].

Fort=¢,x=a+b—¢, y=aand z =0, since 17 is concave, we get
Y1(a+b—e)+v1(e) <thi(a) +1h1 (D).

By (4.3), we obtain
Y2 (c) <11 (e) +ehr(c—¢)

and
Y(c) = tolc) <Yi(e) +hi(c—e) <thi(e) +eh1(a+b—e)
< Yi(a) + 1 (b) =9 (a) + ¢ (b)
(4.5) < O(x,y) [Y(a) +4(b)].

Using (4.2), (4.4) and (4.5), we have
(d] (a) ?'(/J (b) 7’(/} (C)> € AO-
Case 2: Let a € [0,¢) and b, ¢ € [g,00). Since
(V2 (€), 42 (b) ,¥2 (c)) € Auy,

we get
e<b+ce,b<c<c+e,c<a+b<Le+d

81
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and so
(e,b,¢c) € A.
Then we have

Y(a) = ti(a) <i(e) =v2(e) < b2(z,y) Y2 (b) + 92 ()]
(4.6) < O (2,y) W2 (b) + b2 (c)] = 0 (2, y) [ (b) + 9 (c)] .
Since
|[b—cl=c—b<e¢,

we find

12 (b) — 2 ()| <91 (|b—c]) =1 (c—b),

=11 (¢ = b) <aha (b) =42 (c) <Y1 (c—b),

¥ (b) P2 (b) < b1 (¢ —b) + 92 (c) < 21 (a) + 92 ()

(4.7) Y (a) + ¢ (c) <0 (z,y) [ (a) + ()]
and

V() = P2(c) <Y1(c—b)+ 2 (b) <¥i(a)+ 2 (b)
(4.8) = Y(a) +¢(b) <O(x,y) [ (a) +v (D).
By (4.6), (4.7) and (4.8), we get

(¥ (a), ¢ (b),4(c) € Ap.

Under the all cases, we say

(¢ (a), ¥ (b), 9 (c)) € Ao
Consequently, by Theorems 3.2 and 3.9, we see that

1/)65(,.
O

THEOREM 4.2. (A gluing lemma for functions in E M) Let (X, d) be a metric
space, (X,dg) be an extended b-metric space with the bounded function 0 and v :
[0,00) — [0,00). Suppose that 1,93 € EpM, € > 0 and 11 (g) = o (¢). Let us
define the function ¢ : [0,00) — [0,00) as

_ P (SL’) ;T E [075)
w(x)—{ w;(x) i x € lg,00)
for all x € [0,00). Let
A= sup ¢ (z)

z€(0,00)
and

B= inf )7,/1 (z).

z€(0,00
Then we have

(4.9) A= max{ sup Y1 (x), sup e (a:)} ,

z€(0,r) z€[r,00)
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(4.10) B:min{ inf by (), inf by (:z:)}

z€(0,r) zE€[r,00)

and the followings are equivalent:

(i) & € &M,

(i) A < 2B,

(#i1) sup 91 () <2 inf o (x) and sup Yo (z) <2 inf Yy (z).

z€(0,r) z€[r,00) z€[r,00) z€(0,r)
PROOF. Using Theorem 3.8, sup ; (z), sup s (x), inf ¢ (z)and inf s (2)
z€(0,r) x€[r,00) z€(0,r) z€[r,00)

exist. The satisfaction of conditions (4.9) and (4.10) is evident.

By Theorem 3.8, we say that 1 is tightly bounded and amenable. So, there
exists a v > 0 such that

Then we get

Hence
2B>2v> A
and the condition (i7) is satisfied. On the contrary, we suppose that the second
requirement is satisfied. For all z € (0, 00), we obtain
B= inf ¢(z)<¢(x)< sup ¥ (z)=A+2B.
z€(0,00) 2€(0,00)
Then we see that 1) is tightly bounded. By Theorem 3.8, since 1,1y € M, the
functions 7 and 5 are amenable. So v is amenable. Again using Theorem 3.8,
we say ¢ € M. Then the conditions (i) and (i¢) are equivalent.
We now assume that the second condition (i7) holds true. We obtain

sup ¥ (¢) < max{ sup vy (), sup v <x>}

ze(0,r) z€(0,r) T€[r,00)
= A<K2B
= 2min{ inf o (z), inf o (Cﬂ)}
ze(0,7) zE€[r,00)
< 2 inf 4 (x)
z€[r,00)

and
sup Yo () K AL 2B <2 inf ¢ (x).
z€[r,00) z€(0,7)
Thus, the requirement (ii¢) is met. Now, we consider the following cases for the
converse statement:
Case 1: We have

sup 1 (z) = sup 2 (2)
z€(0,r) z€[r,00)

and so

A= sup 91 (z).

z€(0,r)
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Since 1 € &M, utilizing the comparable justifications provided in the proof of
(1) = (i1), we get
sup 1 (¢) <2 inf oy (x)
z€(0,r) z€(0,r)
and by (i7i), we have
sup 1 (v) <2 inf 9o (z).
2€(0,r) x€[r,00)
Therefore, we acquire

A < min{Q inf ¢ (z),2 inf wg(a:)}

z€(0,r) zE€[r,00)

= 2min{ inf ¢ (z), inf 1/)2(33)}223.

z€(0,r) z€[r,00)

Case 2: Here, we have

sup 1y (z) < sup 1ty (x)
ze(0,r) x€[r,00)

and
A= sup ¢y (z).
z€[r,00)

Since 19 € &, M, we obtain
sup o (z) <2 inf 4y (x).

z€[r,00) z€[r,00)

From (iii), we get
sup Yo (z) <2 inf ¥y (z).

z€[r,00) z€(0,r)
Under the all cases, we show A < 2B. O
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