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SOME PROPERTIES OF EXTENDED b-METRIC
PRESERVING FUNCTIONS AND GLUING LEMMA

Nihal Taş and Ayşenur Şen

Abstract. In the literature, metric preserving and b-metric preserving func-
tions are given with some basic properties. In this paper, we investigate some

properties of extended b-metric preserving functions and give some relations

between the known metric preserving functions and extended b-metric preserv-
ing functions. Also, we prove two gluing lemmas for this preserving function

family.

1. Introduction

What does a metric function look like?
A definition for the metric function is that a topological space function that

provides a value representing the distance between any two points in the space.
The most general environment in which to examine many of the ideas of geometry
and mathematical analysis is a metric space. Three-dimensional Euclidean space,
with its typical concept of distance, is the most well-known example of a metric
space. Metric spaces are a technique utilized in many different areas of mathematics
because of their generality.

The concept of generalized metric spaces appears in the literature as a gener-
alization of the concept of metric spaces. There are many examples of generalized
metric spaces in the literature. Some of these examples are the concept of b-metric
spaces and various generalizations of b-metric spaces. Fixed-point results are being
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studied on these spaces (For example, see [7], [9], [16], [19], [21] and the references
therein)

A new area of research for metric functions is the study of metric preserving
functions. The idea of metric preserving functions appears to have been initially
mentioned in the literature by [22]. Metric preserving functions have been the topic
of a substantial body of literature. Afterwards, research on the idea of a metric
preserving function for various generalized metric spaces started. The notion of
the b-metric preserving function was proposed and several relationships between
the concepts of the metric preserving function and the concept of b-metric space
were investigated [13]. The weak-ultrametric notion was used to present a new
metric preserving function concept to the literature, while certain aspects of the b-
metric preserving function concept were still being investigated [14]. Two distinct
Pasting Lemmas (or Gluing Lemmas) have been formulated and proven for b-metric
preserving functions using a simple topological technique [15].

In this paper, we use the extended b-metric concept to offer a new notion of
metric preserving function based on all the previously described motivations. We
first describe the extended b-metric preserving function and look at the fundamental
connections between it and certain concepts of metric maintaining functions that
are known from the literature. Using a topological approach, we develop and prove
two distinct Gluing Lemmas for extended b-metric preserving functions.

2. Preliminaries

In this section, we give some basic concepts related to metric and generalized
metric preserving functions.

Let X be a nonempty set and d : X ×X → [0,∞) a function. If the following
conditions are satisfied for all x, y, z ∈ X, then d is called a metric:

(d1) d (x, y) = 0 if and only if x = y,
(d2) d (x, y) = d (y, x),
(d3) d (x, y) ⩽ d (x, z) + d (z, y).

Then the pair (X, d) is said to be a metric space.
This metric space was generalized using different approaches as seen in the

following notions:

Definition 2.1. [1] Let X be a nonempty set and ds : X × X → [0,∞) a
function. If the following conditions are satisfied for all x, y, z ∈ X, then ds is
called a b-metric:

(ds1) ds (x, y) = 0 if and only if x = y,
(ds2) ds (x, y) = ds (y, x),
(ds3) There is s ⩾ 1 such that

ds (x, y) ⩽ s [ds (x, z) + ds (z, y)] .

Then the pair (X, ds) is said to be a b-metric space.

Remark 2.1. The notion of a b-metric is a generalization of a metric. Indeed,
we take s = 1 in Definition 2.1, then the concepts coincide. In the literature, there
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exist some examples of b-metric which is not a metric. For example, let X = lp (R)
with p ∈ (0, 1) where

lp (R) =

{
{xn} ⊂ R :

∞∑
n=1

|xn|p <∞

}
.

Assume that for x = {xn} and y = {yn}, the function ds : X × X → [0,∞) is
defined by

ds (x, y) =

( ∞∑
n=1

|xn − yn|p
) 1

p

.

Then ds is a b-metric with s = 2
1
p (see, [2], [6] and [10] for more details).

The notions of a metric and a b-metric were generalized to an extended b-metric
as follows:

Definition 2.2. [12] Let X be a nonempty set, θ : X × X → [1,∞) and
ds : X ×X → [0,∞) be two functions. If the following conditions are satisfied for
all x, y, z ∈ X, then dθ is called an extended b-metric:

(dθ1) dθ (x, y) = 0 if and only if x = y,
(dθ2) dθ (x, y) = dθ (y, x),
(dθ3) dθ (x, y) ⩽ θ (x, y) [dθ (x, z) + dθ (z, y)].

Then the pair (X, dθ) is said to be an extended b-metric space.

Example 2.1. [11] Let X = [0,∞). Let us define the functions θ : X ×X →
[1,∞) and ds : X ×X → [0,∞) for x, y ∈ X as follows:

θ (x, y) = x+ y + 1

and

dθ (x, y) =

{
x+ y ; x ̸= y
0 ; x = y

.

Then (X, dθ) is an extended b-metric space.

Remark 2.2. If we take θ (x, y) = s for s ⩾ 1, then the concepts of a b-metric
and an extended b-metric coincide.

The relationships among the notions of a metric space, a b-metric space and
an extended b-metric space are as follows:

metric space
↓

b-metric space
↓

extended b-metric space

Using the concepts of a metric and a b-metric, the following definitions were
introduced:

Definition 2.3. [4] [18] [20] Let (X, d) be a metric space and ψ : [0,∞) →
[0,∞) be a function. Then ψ is called metric preserving function if ψ ◦d is a metric
on X.
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Definition 2.4. [13] Let (X, d) be a metric space, (X, dS) be a b-metric space
and ψ : [0,∞) → [0,∞) be a function. Then

(i) ψ is called a b-metric preserving function if ψ ◦ ds is a b-metric on X.
(ii) ψ is called a metric-b-metric preserving function if ψ ◦d is a b-metric on X.
(iii) ψ is called a b-metric-metric preserving function if ψ ◦ds is a metric on X.

Let M be the set of all metric preserving function, B be the set of all b-metric
preserving functions, MB be the set of all metric-b-metric preserving functions and
BM be the set of all b-metric-metric preserving functions [13].

Now we recall the following basic notions:
Let ψ : [0,∞) → [0,∞) and I ⊆ [0,∞). Then ψ is called
• increasing on I if ψ (x) ⩽ ψ (y) for all x, y ∈ I such that x < y,
• strictly increasing on I if ψ (x) < ψ (y) for all x, y ∈ I such that x < y,
• decreasing on I if ψ (x) ⩾ ψ (y) for all x, y ∈ I such that x < y,
• strictly decreasing on I if ψ (x) > ψ (y) for all x, y ∈ I such that x < y,
• amenable if ψ−1 ({0}) = {0},
• tightly bounded on (0,∞) if there is υ > 0 such that ψ (x) ∈ [υ, 2υ] for all

x ∈ (0,∞),
• subadditive if ψ (a+ b) ⩽ ψ (a) + ψ (b) for all a, b ∈ [0,∞),
• quasi-subadditive if there exists s ⩾ 1 such that ψ (a+ b) ⩽ s [ψ (a) + ψ (b)]

for all a, b ∈ [0,∞),
• convex if ψ ((1− t)x+ ty) ⩽ (1− t)ψ (x) + tψ (y) for all x, y ∈ [0,∞) and

t ∈ [0, 1],
• concave if ψ ((1− t)x+ ty) ⩾ (1− t)ψ (x) + tψ (y) for all x, y ∈ [0,∞) and

t ∈ [0, 1],
• linear if ψ (a+ b) = ψ (a) + ψ (b) and ψ (ka) = kψ (a) for all a, b ∈ [0,∞)

with a constant k.

Definition 2.5. (i) [13] Let a, b, c ⩾ 0. A triple (a, b, c) is called a triangle
triplet if

a ⩽ b+ c, b ⩽ a+ c and c ⩽ a+ b.

(ii) [13] Let s ⩾ 1 and a, b, c ⩾ 0. A triple (a, b, c) is called an s-triangle triplet
if

a ⩽ s (b+ c) , b ⩽ s (a+ c) and c ⩽ s (a+ b) .

(iii) [17] Let θ : X × X → [1,∞) and a, b, c ⩾ 0. A triple (a, b, c) is called
θ-triangle triplet if

a ⩽ θ (x, y) (b+ c) , b ⩽ θ (x, z) (a+ c) and c ⩽ θ (z, y) (a+ b) ,

for all x, y, z ∈ X.
Let ∆, ∆s and ∆θ be the set of all triangle triplets, s-triangle triplets and

θ-triangle triplets, respectively.

Lemma 2.1. [5] [8] If ψ ∈ M, then ψ is amenable and subadditive.

Lemma 2.2. [4] [5] [8] Assume that ψ : [0,∞) → [0,∞) is subadditive. Then
for all positive integers n and for all x ∈ [0,∞), we have

ψ (nx) ⩽ nψ (x) .
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Lemma 2.3. [3] [5] [8] Suppose that ψ : [0,∞) → [0,∞) is amenable. Then
the followings are equivalent:

(a) ψ ∈ M.
(b) For each (α, β, γ) ∈ ∆, then (ψ (α) , ψ (β) , ψ (γ)) ∈ ∆.

Lemma 2.4. [8]Let ψ : [0,∞) → [0,∞) be amenable. Then ψ is concave if and
only if for all t ⩾ 0 and x, y, z ∈ [0, t] ,

x+ t = y + z =⇒ ψ (x) + ψ (t) = ψ (y) + ψ (z) .

3. Main results

In this section, we investigate some properties of extended b-metric preserving
functions.

Definition 3.1. Let (X, d) be a metric space, (X, dS) be a b-metric space,
(X, dθ) be a extended b-metric space and ψ : [0,∞) → [0,∞) be a function. Then

(i) ψ is called an extended b-metric preserving function if ψ ◦dθ is an extended
b-metric on X [17].

(ii) ψ is called a metric-extended b-metric preserving function if ψ ◦ d is an
extended b-metric on X.

(iii) ψ is called an extended b-metric-metric preserving function if ψ ◦ dθ is a
metric on X.

(iv) ψ is called a b-metric-extended b-metric preserving function if ψ ◦ dS is an
extended b-metric on X.

(v) ψ is called an extended b-metric-b-metric preserving function if ψ ◦ dθ is a
b-metric on X.

Let Eb be the set of all extended b-metric preserving function, MEb be the set of
all metric-extended b-metric preserving functions, EbM be the set of all extended b-
metric-metric preserving functions, BEb be the set of all b-metric-extended b-metric
preserving functions and EbB be the set of all extended b-metric-b-metric preserving
functions.

Theorem 3.1. Let n be a positive real number. Let us define ψ : [0,∞) →
[0,∞) by

ψ (x) = xn.

Then the followings are satisfied:
(a) If n ∈ (0, 1], then ψ ∈ M.
(b) If n > 1, then ψ ∈ Eb, but ψ /∈ M.

Proof. (a) It can be easily seen in the proof of Theorem 12 given in [13].
(b) Let n > 1. Let us define the function ϕ : [0,∞) → R as

ϕ (x) =
(1 + x)

n

1 + xn
.

Then we get

ϕ′ (x) =
n (1 + x)

n−1 (
1− xn−1

)
(1 + xn)

2
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and

ϕ′ (x) ⩾ 0 ⇔ x ⩽ 1.

Hence, we say that ϕ is increasing on [0, 1] and decreasing [1,∞). For all x ∈ [0,∞),
we have

(3.1) ϕ (x) ⩽ ϕ (1) = 2n−1.

To show ψ ∈ Eb, let dθ be an extended b-metric on X and θ : X ×X → [1,∞) be
a function such that

dθ (x, y) ⩽ θ (x, y) [dθ (x, z) + dθ (z, y)] ,

for all x, y, z ∈ X.
Now, we check that ψ ◦ dθ satisfies the conditions (dθ1), (dθ2) and (dθ3) as

follows:
(dθ1) For all x, y ∈ X, we get

ψ ◦ dθ (x, y) = 0 ⇔ ψ (dθ (x, y)) = 0 ⇔ [dθ (x, y)]
n
= 0

⇔ dθ (x, y) = 0 ⇔ x = y.

(dθ2) For all x, y ∈ X, we have

ψ ◦ dθ (x, y) = ψ (dθ (x, y)) = ψ (dθ (y, x)) = ψ ◦ dθ (y, x) .
(dθ3) Let x, y, z ∈ X. If x = z, then it is clear that

ψ ◦ dθ (x, y) ⩽ [θ (x, y)]
n
2n−1 [ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)] .

Assume that x ̸= z. By (3.1), we obtain

ψ

(
dθ (z, y)

dθ (x, z)

)
⩽ 2n−1

and

[dθ (x, z) + dθ (z, y)]
n ⩽ 2n−1 [dθ (x, z)

n
+ dθ (z, y)

n
]

= 2n−1 [ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)] .(3.2)

Using (3.2) and the properties of extended b-metric, we get

ψ ◦ dθ (x, y) = [dθ (x, y)]
n ⩽ [θ (x, y) (dθ (x, z) + dθ (z, y))]

n

⩽ [θ (x, y)]
n
2n−1 [ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)] .

Consequently, ψ ∈ Eb. It is easily seen in the proof of Theorem 12 given in [13]
that ψ /∈ M. □

Example 3.1. Let us consider the usual metric space on R with the metric
function

d (x, y) = |x− y| ,
for all x, y ∈ R. Then (X, d) is also an extended b-metric space θ (x, y) = 1. Assume
that the function ψ : [0,∞) → [0,∞) is defined by

ψ (x) = x2.

Then ψ ∈ Eb, but ψ /∈ M.
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Lemma 3.1. Let (X, d) be a metric space, (X, dθ) be an extended b-metric space
and ψ : [0,∞) → [0,∞) be a function. Then we have

(a) EbM ⊆ M.
(b) Eb ⊆ MEb.

Proof. (a) Let ψ ∈ EbM and d be a metric on X. Since every metric is an
extended b-metric, d is an extended b-metric on X. As ψ ∈ EbM, then ψ ◦ d is a
metric on X. Hence, we get ψ ∈ M.

(b) Let ψ ∈ Eb and d be a metric on X. Since every metric is an extended
b-metric, d is an extended b-metric on X. As ψ ∈ Eb, then ψ ◦ d is an extended
b-metric on X. Hence, we get ψ ∈ MEb. □

Lemma 3.2. Let (X, d) be a metric space, (X, dθ) be an extended b-metric space
with the bounded function θ and ψ : [0,∞) → [0,∞) be a function. Then we have

M ⊆ Eb.

Proof. Let ψ ∈ M and dθ be an extended b-metric on X. We show that
ψ ◦ dθ is an extended b-metric on X as follows:

(dθ1) Since ψ ∈ M, then by Lemma 2.1, ψ is amenable. For all x, y ∈ X, we
get

ψ ◦ dθ (x, y) = 0 ⇔ ψ (dθ (x, y)) = 0

⇔ dθ (x, y) = 0 ⇔ x = y.

(dθ2) For all x, y ∈ X, we find

ψ ◦ dθ (x, y) = ψ (dθ (x, y)) = ψ (dθ (y, x)) = ψ ◦ dθ (y, x) .
(dθ3) For all x, y, z ∈ X, assume that

α = dθ (x, y) , β = dθ (x, z) and γ = dθ (z, y) .

Since dθ is an extended b-metric on X, we have

dθ (x, y) ⩽ θ (x, y) [dθ (x, z) + dθ (z, y)] =⇒ α ⩽ θ (x, y) [β + cγ] ,

dθ (x, z) ⩽ θ (x, z) [dθ (x, y) + dθ (y, z)] =⇒ β ⩽ θ (x, z) [α+ γ]

and

dθ (y, z) ⩽ θ (y, z) [dθ (y, x) + dθ (x, z)] =⇒ γ ⩽ θ (y, z) [α+ β] .

Let

N = sup {θ (x, y) : x, y ∈ X}
and n be a positive integer larger than N . Then, we have

α ⩽ θ (x, y) [β + γ] ⩽ n (β + γ) = nβ + nγ

and so (α, nβ + nγ, nβ + nγ) is a triangle triplet. Since ψ ∈ M, by Lemmas 2.1,
2.2 and 2.3, we get

ψ (α) ⩽ ψ (nβ + nγ) + ψ (nβ + nγ) = 2ψ (nβ + nγ)

⩽ 2 [ψ (nβ) + ψ (nγ)] ⩽ 2 [nψ (β) + nψ (γ)]

= 2n [ψ (β) + ψ (γ)]
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and so

ψ ◦ dθ (x, y) ⩽ 2n [ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)] .
Consequently, ψ ◦ dθ is an extended b-metric with the function θ : X ×X → [1,∞)
defined as

θ (x, y) = 2n,

for all x, y ∈ X, that is, ψ ∈ Eb. □

From Lemma 3.1 and Lemma 3.2, we get the following corollary:

Corollary 3.1. Let (X, d) be a metric space, (X, dθ) be an extended b-metric
space with the bounded function θ and ψ : [0,∞) → [0,∞) be a function. Then we
have

EbM ⊆ M ⊆ Eb ⊆ MEb.

Lemma 3.3. [17] Let (X, ds) be a b-metric space, (X, dθ) be an extended b-
metric space and ψ : [0,∞) → [0,∞) be a function. Then we have

B ⊆ Eb.

Lemma 3.4. Let (X, ds) be a b-metric space, (X, dθ) be an extended b-metric
space and ψ : [0,∞) → [0,∞) be a function. Then we have

(a) EbB ⊆ B.
(b) Eb ⊆ BEb.

Proof. (a) Let ψ ∈ EbB and ds be a b-metric on X. Since every b-metric is
an extended b-metric, ds is an extended b-metric on X. As ψ ∈ EbB, then ψ ◦ ds is
a b-metric on X. Hence, we get ψ ∈ B.

(b) Let ψ ∈ Eb and ds be a b-metric on X. Since every b-metric is an extended
b-metric, ds is an extended b-metric on X. As ψ ∈ Eb, then ψ ◦ ds is an extended
b-metric on X. Hence, we get ψ ∈ BEb. □

From Lemma 3.3 and Lemma 3.4, we get the following corollary:

Corollary 3.2. Let (X, ds) be a b-metric space, (X, dθ) be an extended b-
metric space and ψ : [0,∞) → [0,∞) be a function. Then we have

EbB ⊆ B ⊆ Eb ⊆ BEb.

Lemma 3.5. Let (X, d) be a metric space, (X, ds) be a b-metric space, (X, dθ)
be an extended b-metric space and ψ : [0,∞) → [0,∞) be a function. Then we have

(a) EbM ⊆ EbB.
(b) EbM ⊆ BEb.

Proof. (a) Let ψ ∈ EbM and dθ be an extended b-metric on X. As ψ ∈ EbM,
then ψ ◦ dθ is a metric on X. Since every metric is a b-metric, ψ ◦ dθ is a b-metric
on X. Hence, we get ψ ∈ EbB.

(b) Let ψ ∈ EbM and ds be a b-metric onX. Since every b-metric is an extended
b-metric, ds is an extended b-metric on X. As ψ ∈ EbM, then ψ ◦ ds is a metric on
X. Also, since every metric is an extended b-metric,then we get ψ ∈ BEb. □



SOME PROPERTIES OF EXTENDED b-METRIC PRESERVING FUNCTIONS 73

From Corollary 3.1, Corollary 3.2 and Lemma 3.5, we get the following corol-
lary:

Corollary 3.3. Let (X, d) be a metric space, (X, ds) be a b-metric space,
(X, dθ) be an extended b-metric space with the bounded function θ and ψ : [0,∞) →
[0,∞) be a function. Then we have

EbM ⊆ EbB ⊆ B ⊆ Eb ⊆ BEb

and

EbM ⊆ M ⊆ B ⊆ Eb ⊆ MEb.

Theorem 3.2. Let (X, d) be a metric space and (X, dθ) be an extended b-
metric space. Assume that ψ : [0,∞) → [0,∞) is amenable. Then the followings
are equivalent:

(a) ψ ∈ MEb.
(b) There exists a function θ : X×X → [1,∞) such that (ψ (x) , ψ (y) , ψ (z)) ∈

∆θ for all (x, y, z) ∈ ∆.

Proof. Suppose that ψ ∈ MEb. Let d be a usual metric on R2. Then ψ ◦ d is
a extended b-metric and so there exists a function θ : X ×X → [1,∞) such that

ψ ◦ d (u,w) ⩽ θ (u,w) [ψ ◦ d (u, v) + ψ ◦ d (v, w)] ,

for all u, v, w ∈ R2. Let (x, y, z) ∈ ∆. According to the Euclidean geometry, there
are u, v, w ∈ R2 such that

x = d (u,w) , y = d (u, v) and z = d (v, w) .

Then, we have

ψ (x) = ψ ◦ d (u,w) ⩽ θ (u,w) [ψ ◦ d (u, v) + ψ ◦ d (v, w)]
= θ (u,w) [ψ (y) + ψ (z)] ,

ψ (y) = ψ ◦ d (u, v) ⩽ θ (u, v) [ψ ◦ d (u,w) + ψ ◦ d (w, v)]
= θ (u, v) [ψ (x) + ψ (z)] ,

ψ (z) = ψ ◦ d (v, w) ⩽ θ (v, w) [ψ ◦ d (v, u) + ψ ◦ d (u,w)]
= θ (v, w) [ψ (x) + ψ (y)]

and so

(ψ (x) , ψ (y) , ψ (z)) ∈ ∆θ.

Assume that there exists a function θ : X ×X → [1,∞) such that

(ψ (x) , ψ (y) , ψ (z)) ∈ ∆θ

for all (x, y, z) ∈ ∆. Let (X, d) be a metric space. Now we show that ψ ◦ d is an
extended b-metric as follows:

(dθ1) Since ψ is amenable, for all x, y ∈ X, we have

ψ ◦ d (x, y) = 0 ⇐⇒ ψ (d (x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.
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(dθ2) For all x, y ∈ X, we get

ψ ◦ d (x, y) = ψ (d (x, y)) = ψ (d (y, x)) = ψ ◦ d (y, x) .

(dθ3) Using hypothesis, since (d (x, y) , d (x, z) , d (z, y)) ∈ ∆ for all x, y, z ∈ X,
then

(ψ ◦ d (x, y) , ψ ◦ d (x, z) , ψ ◦ d (z, y)) ∈ ∆θ,

that is,

ψ ◦ d (x, y) ⩽ θ (x, y) [ψ ◦ d (x, z) + ψ ◦ d (z, y)] .
Consequently, ψ ◦ d is an extended b-metric and ψ ∈ MEb. □

Theorem 3.3. Let (X, ds) be a b-metric space and (X, dθ) be an extended b-
metric space. Assume that ψ : [0,∞) → [0,∞) is amenable. Then the followings
are equivalent:

(a) ψ ∈ BEb.
(b) There exists a function θ : X×X → [1,∞) such that (ψ (x) , ψ (y) , ψ (z)) ∈

∆θ for all (x, y, z) ∈ ∆s.

Proof. Suppose that ψ ∈ BEb. Let ds be a usual metric on R2. Since every
metric is a b-metric, hence ds is a b-metric. Then ψ ◦ ds is a extended b-metric and
so there exists a function θ : X ×X → [1,∞) such that

ψ ◦ ds (u,w) ⩽ θ (u,w) [ψ ◦ ds (u, v) + ψ ◦ ds (v, w)] ,

for all u, v, w ∈ R2. Let (x, y, z) ∈ ∆s. Then we have

x ⩽ s (y + z) , y ⩽ s (x+ z) and z ⩽ s (x+ y) .

Since ds is a b-metric, there are u, v, w ∈ R2 such that

x = ds (u,w) , y = ds (u, v) and z = ds (v, w) .

Then, we have

ψ (x) = ψ ◦ ds (u,w) ⩽ θ (u,w) [ψ ◦ ds (u, v) + ψ ◦ ds (v, w)]
= θ (u,w) [ψ (y) + ψ (z)] ,

ψ (y) = ψ ◦ ds (u, v) ⩽ θ (u, v) [ψ ◦ ds (u,w) + ψ ◦ ds (w, v)]
= θ (u, v) [ψ (x) + ψ (z)] ,

ψ (z) = ψ ◦ ds (v, w) ⩽ θ (v, w) [ψ ◦ ds (v, u) + ψ ◦ ds (u,w)]
= θ (v, w) [ψ (x) + ψ (y)]

and so

(ψ (x) , ψ (y) , ψ (z)) ∈ ∆θ.

Assume that there exists a function θ : X ×X → [1,∞) such that

(ψ (x) , ψ (y) , ψ (z)) ∈ ∆θ

for all (x, y, z) ∈ ∆s. Let (X, ds) be a b-metric space. Now we show that ψ ◦ ds is
an extended b-metric as follows:
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(dθ1) Since ψ is amenable, for all x, y ∈ X, we have

ψ ◦ ds (x, y) = 0 ⇐⇒ ψ (ds (x, y)) = 0 ⇐⇒ ds(x, y) = 0 ⇐⇒ x = y.

(dθ2) For all x, y ∈ X, we get

ψ ◦ ds (x, y) = ψ (ds (x, y)) = ψ (ds (y, x)) = ψ ◦ ds (y, x) .

(dθ3) Using hypothesis, since (d (x, y) , d (x, z) , d (z, y)) ∈ ∆s for all x, y, z ∈ X,
then

(ψ ◦ ds (x, y) , ψ ◦ ds (x, z) , ψ ◦ ds (z, y)) ∈ ∆θ,

with the function θ : X×X → [1,∞) defined as θ (x, y) = s for all x, y ∈ X. Hence,
we obtain

ψ ◦ ds (x, y) ⩽ θ (x, y) [ψ ◦ ds (x, z) + ψ ◦ ds (z, y)] .
Consequently, ψ ◦ ds is an extended b-metric and ψ ∈ BEb. □

Theorem 3.4. Let (X, d) be a metric space and (X, dθ) be an extended b-
metric space. If ψ : [0,∞) → [0,∞) is increasing, quasi-subadditive and amenable
on [0,∞), then ψ ∈ MEb.

Proof. Assume that ψ is increasing, quasi-subadditive and amenable. Let
(X, d) be a metric space. Now, we show that ψ ◦ d is an extended b-metric as
follows:

(dθ1) Since d is a metric and ψ is amenable, for all x, y ∈ X, we have

ψ ◦ d (x, y) = 0 ⇐⇒ ψ (d (x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y.

(dθ2) Since d is a metric, using the symmetry property of d, for all x, y ∈ X, we
get

ψ ◦ d (x, y) = ψ (d (x, y)) = ψ (d (y, x)) = ψ ◦ d (y, x) .
(dθ3) Since ψ is quasi-subadditive, there exists s ⩾ 1 such that

(3.3) ψ (u+ v) ⩽ s [ψ (u) + ψ (v)] ,

for all u, v ∈ [0,∞). Let the function θ : X ×X → [1,∞) be defined as

θ (x, y) = s,

for all x, y ∈ X. Using the increasing property and the inequality (3.3), we obtain

ψ ◦ d (x, y) = ψ (d (x, y)) ⩽ ψ (d (x, z) + d (z, y))

⩽ s [ψ (d (x, z)) + ψ (d (z, y))]

= θ (x, y) [ψ ◦ d (x, z) + ψ ◦ d (z, y)] ,

for all x, y, z ∈ X.
Consequently, ψ ∈ MEb. □

Theorem 3.5. Let (X, ds) be a b-metric space and (X, dθ) be an extended b-
metric space. If ψ : [0,∞) → [0,∞) is increasing, linear and amenable on [0,∞),
then ψ ∈ BEb.
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Proof. Assume that ψ is increasing, linear and amenable. Let (X, ds) be a
b-metric space. Now, we show that ψ ◦ ds is an extended b-metric as follows:

(dθ1) Since ds is a b-metric and ψ is amenable, for all x, y ∈ X, we have

ψ ◦ ds (x, y) = 0 ⇐⇒ ψ (ds (x, y)) = 0 ⇐⇒ ds(x, y) = 0 ⇐⇒ x = y.

(dθ2) Since ds is a b-metric, using the symmetry property of ds, for all x, y ∈ X,
we get

ψ ◦ ds (x, y) = ψ (ds (x, y)) = ψ (ds (y, x)) = ψ ◦ ds (y, x) .
(dθ3) Let the function θ : X ×X → [1,∞) be defined as

θ (x, y) = s,

for all x, y ∈ X. Using the increasing and linear property, we obtain

ψ ◦ ds (x, y) = ψ (ds (x, y)) ⩽ ψ (s (ds (x, z) + ds (z, y)))

= sψ (ds (x, z)) + sψ (ds (z, y))

= s [ψ ◦ ds (x, z) + ψ ◦ ds (z, y)]
= θ (x, y) [ψ ◦ ds (x, z) + ψ ◦ ds (z, y)] ,

for all x, y, z ∈ X.
Consequently, ψ ∈ BEb. □

Theorem 3.6. Let (X, d) be a metric space, (X, dθ) be an extended b-metric
space with the bounded function θ and ψ : [0,∞) → [0,∞). If ψ ∈ MEb, then ψ is
quasi-subadditive and amenable.

Proof. Let ψ ∈ MEb and d be a usual metric on R. So, ψ ◦ d is an extended
b-metric on R. Then we get

ψ (0) = ψ (d (0, 0)) = ψ ◦ d (0, 0) = 0.

Also, suppose that x ∈ [0,∞) and ψ (x) = 0. Hence, we obtain

0 = ψ (x) = ψ (d (x, 0)) = ψ ◦ d (x, 0)

and

ψ ◦ d (x, 0) = 0.

Since ψ ◦ d is an extended b-metric, we have

x = 0

and

ψ−1 ({0}) = {0} ,
that is, ψ is amenable.

Now, we show that ψ is quasi-subadditive. Since ψ ◦ d is an extended b-metric,
there exists a function θ : X ×X → [1,∞) such that

ψ ◦ d (x, y) ⩽ θ (x, y) [ψ ◦ d (x, z) + ψ ◦ d (z, y)] ,

for all x, y, z ∈ R. Let
S = sup {θ (x, y) : x, y ∈ X} .
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To show that ψ is quasi-subadditive, let u, v ∈ [0,∞). Thereby, we obtain

ψ (u+ v) ⩽ ψ ◦ d (0, u+ v)

⩽ θ (0, u+ v) [ψ ◦ d (0, u) + ψ ◦ d (u, u+ v)]

= θ (0, u+ v) [ψ (u) + ψ (v)]

⩽ S (ψ (u) + ψ (v)) .

Consequently, ψ is quasi-subadditive. □

Theorem 3.7. Let (X, ds) be a b-metric space, (X, dθ) be an extended b-metric
space with the bounded function θ and ψ : [0,∞) → [0,∞). If ψ ∈ BEb, then ψ is
quasi-subadditive and amenable.

Proof. We can see this readily by using the same reasoning as in the proof of
Theorem 3.6. □

Theorem 3.8. Let (X, d) be a metric space, (X, dθ) be an extended b-metric
space and ψ : [0,∞) → [0,∞). Then ψ ∈ EbM if and only if ψ is tightly bounded
and amenable.

Proof. Suppose that ψ is tightly bounded and amenable. Let a > 0 be a
constant such that

(3.4) ψ (x) ∈ [a, 2a] ,

for all x > 0 and (X, dθ) be an extended b-metric space. Now we show that ψ ◦ dθ
is a metric as follows:

(d1) Since dθ is an extended b-metric space and ψ is amenable, we have

ψ ◦ dθ (x, y) = 0 ⇐⇒ ψ (dθ (x, y)) = 0 ⇐⇒ dθ (x, y) = 0 ⇐⇒ x = y,

for all x, y ∈ X.
(d2) Since dθ is an extended b-metric space, we get

ψ ◦ dθ (x, y) = ψ (dθ (x, y)) = ψ (dθ (y, x)) = ψ ◦ dθ (y, x) ,

for all x, y ∈ X.
(d3) Let x, y, z ∈ X. If x = y, x = z or y = z, then the following inequality is

satisfied:

ψ ◦ dθ (x, y) ⩽ ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y) .
Assume that x ̸= y, x ̸= z and y ̸= z. Then dθ (x, y), dθ (x, z) and dθ (y, z) are
positive. From (3.4), we obtain

ψ ◦ dθ (x, y) , ψ ◦ dθ (x, z) , ψ ◦ dθ (z, y) ∈ [a, 2a] .

Then, we get

ψ ◦ dθ (x, y) ⩽ 2a = a+ a ⩽ ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)

and so ψ ◦ dθ is a metric, that is, ψ ∈ EbM.



78 N. TAŞ AND A. ŞEN

Let ψ ∈ EbM. From Corollary 3.1, we have ψ ∈ M and so since ψ is a metric
preserving function, by Lemma 2.1, ψ is amenable. To show that ψ is tightly
bounded, assume that d is a usual metric on R and

dθ = ς ◦ d,

where

ς (x) = xn (n > 1) ,

for all x ∈ [0,∞). From Theorem 3.1, we say that

dθ (x, y) = |x− y|n

is an extended b-metric. Since ψ ∈ EbM, then ψ ◦ dθ is a metric. Using the similar
approaches given in Theorem 24 in [13], it can be easily proved that ψ is tightly
bounded. □

Theorem 3.9. Let (X, d) be a metric space, (X, dθ) be an extended b-metric
space with the bounded function θ and ψ : [0,∞) → [0,∞). Then ψ is a metric-
extended b-metric preserving function if and only if ψ is an extended b-metric pre-
serving function, that is,

MEb = Eb.

Proof. From Lemma 3.1, we have

Eb ⊆ MEb.

Now, we show

MEb ⊆ Eb.
Let ψ ∈ MEb. We prove that ψ ∈ Eb, that is, ψ ◦ dθ is an extended b-metric. By
Theorem 3.6, ψ is amenable and quasi-subadditive. Then, we can easily see that
ψ ◦ dθ satisfies the conditions of an extended b-metric as follows:

(dθ1) Since ψ is amenable, for all x, y ∈ X, we have

ψ ◦ dθ (x, y) = 0 ⇐⇒ ψ (dθ (x, y)) = 0 ⇐⇒ dθ (x, y) = 0 ⇐⇒ x = y.

(dθ2) For all x, y ∈ X, we get

ψ ◦ dθ (x, y) = ψ (dθ (x, y)) = ψ (dθ (y, x)) = ψ ◦ dθ (y, x) .

(dθ3) Since ψ is quasi-subadditive, there exists s ⩾ 1 such that

(3.5) ψ (u+ v) ⩽ s [ψ (u) + ψ (v)] ,

for all u, v ∈ [0,∞). Since dθ is an extended b-metric, by hypothesis, there exists a
bounded function θ1 such that

dθ (x, y) ⩽ θ1 (x, y) [dθ (x, z) + dθ (z, y)] ,

for all x, y, z ∈ X. Let

n1 = sup {θ1 (x, y) : x, y ∈ X} .

Then, there exists m ∈ N such that m > n1 and

(3.6) dθ (x, y) ⩽ m [dθ (x, z) + dθ (z, y)] .
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Since ψ ∈ MEb, by Theorem 3.2 and hypothesis, there exists a bounded function
θ2 such that

(ψ (u) , ψ (v) , ψ (w)) ∈ ∆θ2

for each (u, v, w) ∈ ∆. Let

n2 = sup {θ2 (x, y) : x, y ∈ X}
and

n = 2n2ms
m.

Assume that
u = dθ (x, y) , v = dθ (x, z) and w = dθ (z, y) ,

for all u, v, w ∈ X. From the inequality (3.6), we have

u ⩽ mv +mw

and so we get
(u,mv +mw,mv +mw) ∈ ∆.

By Theorem 3.2, we find

(ψ (u) , ψ (mv +mw) , ψ (mv +mw)) ∈ ∆θ2

and we obtain

ψ (u) = ψ ◦ dθ (x, y) ⩽ θ2 (x, y) [ψ (mv +mw) + ψ (mv +mw)]

= 2θ2 (x, y)ψ (m (v + w))

⩽ 2n2ψ (m (v + w)) .(3.7)

Now, we show that

(3.8) ψ (αx) = αsα−1ψ (x) ,

for all x ∈ [0,∞) and α ∈ N. To do this, we apply mathematical induction on α.
For α = 1, it is clear that the equality (3.8) is satisfied. Let α ⩾ 1 and assume that
the equality (3.8) is satisfied for α. Since α ⩾ 1, we have

αsα−1 + 1 ⩽ (α+ 1) sα−1.

By the inequality (3.5) and the induction hypothesis, we obtain

ψ ((α+ 1)x) ⩽ s [ψ (αx) + ψ (x)] ⩽ s
[
αsα−1ψ (x) + ψ (x)

]
= s

(
αsα−1 + 1

)
ψ (x) ⩽ s (α+ 1) sα−1ψ (x)

= (α+ 1) sαψ (x) .

Hence, the inequality (3.8) is satisfied. By (3.5), (3.7) and (3.8), we get

ψ ◦ dθ (x, y) ⩽ 2n2ψ (m (v + w)) ⩽ 2n2ms
m−1ψ (v + w)

⩽ 2n2ms
m−1s [ψ (v) + ψ (w)]

= 2n2ms
m [ψ (v) + ψ (w)]

= n [ψ ◦ dθ (x, z) + ψ ◦ dθ (z, y)] .
If we take θ (x, y) = n for all x, y ∈ X, then the condition (dθ3) is satisfied.

Consequently, ψ ◦ dθ is an extended b-metric on X. □
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Theorem 3.10. Let (X, ds) be a b-metric space, (X, dθ) be an extended b-
metric space with the bounded function θ and ψ : [0,∞) → [0,∞). Then ψ is
a b-metric-extended b-metric preserving function if and only if ψ is an extended
b-metric preserving function, that is,

BEb = Eb.

Proof. We can demonstrate this readily by applying the same reasoning that
were used in the Theorem 3.9 proof. □

4. Gluing lemmas for extended b-metric preserving functions

In this section, we prove two gluing lemmas for extended b-metric preserving
functions.

Theorem 4.1. (A gluing lemma for functions in Eb and MEb) Let (X, d) be a
metric space, (X, dθ) be an extended b-metric space with the bounded function θ
and ψ : [0,∞) → [0,∞). Suppose that ψ1, ψ2 ∈ Eb, ε > 0 and ψ1 (ε) = ψ2 (ε). Let
us define the function ψ : [0,∞) → [0,∞) as

ψ (x) =

{
ψ1 (x) ; x ∈ [0, ε)
ψ2 (x) ; x ∈ [ε,∞)

,

for all x ∈ [0,∞). Assume that ψ1 is a concave and increasing function such that

|x− y| ⩽ ε =⇒ |ψ2 (x)− ψ2 (y)| ⩽ ψ1 (|x− y|) ,
for all x, y ∈ [ε,∞). Then

ψ ∈ Eb.

Proof. Since ψ1, ψ2 ∈ Eb, by Theorems 3.2 and 3.9, there exist the bounded
functions θ1, θ2 : X ×X → [1,∞) such that

(ψ1 (a) , ψ1 (b) , ψ1 (c)) ∈ ∆θ1

and
(ψ2 (a) , ψ2 (b) , ψ2 (c)) ∈ ∆θ2 ,

for all (a, b, c) ∈ ∆. Let (a, b, c) ∈ ∆ and the function θ : X × X → [1,∞) be
defined as

θ (x, y) = max {θ1 (x, y) , θ2 (x, y)} ,
for all x, y ∈ X. Keeping generality intact, suppose

(4.1) 0 ⩽ a ⩽ b ⩽ c ⩽ a+ b.

If a, b, c ∈ [0, ε), then we get

(ψ (a) , ψ (b) , ψ (c)) = (ψ1 (a) , ψ1 (b) , ψ1 (c)) ∈ ∆θ1 ⊆ ∆θ.

If a, b, c ∈ [ε,∞), then we obtain

(ψ (a) , ψ (b) , ψ (c)) = (ψ2 (a) , ψ2 (b) , ψ2 (c)) ∈ ∆θ2 ⊆ ∆θ.

Consider the scenarios in which a, b and c do not fall inside the same interval.
Since if c ∈ [0, ε) then by (4.1), we have a, b ∈ [0, ε), we only investigate the

following cases:
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Case 1: Let a, b ∈ [0, ε) and c ∈ [ε,∞). Then we have

(4.2) ψ (a) = ψ1 (a) ⩽ ψ1 (b) = ψ (b) ⩽ ψ (b) + ψ (c) ⩽ θ (x, y) (ψ (b) + ψ (c)).

Since

|ε− c| = c− ε ⩽ a+ b− ε < ε+ ε− ε,

we get

|ψ1 (ε)− ψ2 (c)| = |ψ2 (ε)− ψ2 (c)| ⩽ ψ1 (|ε− c|) = ψ1 (c− ε) .

Then we find

(4.3) −ψ1 (c− ε) ⩽ ψ1 (ε)− ψ2 (c) ⩽ ψ1 (c− ε)

and

ψ1 (ε)− ψ1 (c− ε) ⩽ ψ2 (c) .

Since

c ⩽ a+ b,

we have

c− ε ⩽ a+ b− ε ⩽ a.

Using the increasing property of ψ1, we get

ψ1 (c− ε) ⩽ ψ1 (a)

and so

ψ (b) = ψ1 (b) ⩽ ψ1 (ε) ⩽ ψ1 (ε) + ψ1 (a)− ψ1 (c− ε)

= [ψ1 (ε)− ψ1 (c− ε)] + ψ1 (a)

⩽ ψ2 (c) + ψ1 (a) = ψ (c) + ψ (a)

⩽ θ (x, y) [ψ (c) + ψ (a)] .(4.4)

For t = ε, x = a+ b− ε, y = a and z = b, since ψ1 is concave, we get

ψ1 (a+ b− ε) + ψ1 (ε) ⩽ ψ1 (a) + ψ1 (b) .

By (4.3), we obtain

ψ2 (c) ⩽ ψ1 (ε) + ψ1 (c− ε)

and

ψ (c) = ψ2 (c) ⩽ ψ1 (ε) + ψ1 (c− ε) ⩽ ψ1 (ε) + ψ1 (a+ b− ε)

⩽ ψ1 (a) + ψ1 (b) = ψ (a) + ψ (b)

⩽ θ (x, y) [ψ (a) + ψ (b)] .(4.5)

Using (4.2), (4.4) and (4.5), we have

(ψ (a) , ψ (b) , ψ (c)) ∈ ∆θ.

Case 2: Let a ∈ [0, ε) and b, c ∈ [ε,∞). Since

(ψ2 (ε) , ψ2 (b) , ψ2 (c)) ∈ ∆θ2 ,

we get

ε ⩽ b+ c, b ⩽ c ⩽ c+ ε, c ⩽ a+ b ⩽ ε+ b
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and so

(ε, b, c) ∈ ∆.

Then we have

ψ (a) = ψ1 (a) ⩽ ψ1 (ε) = ψ2 (ε) ⩽ θ2 (x, y) [ψ2 (b) + ψ2 (c)]

⩽ θ (x, y) [ψ2 (b) + ψ2 (c)] = θ (x, y) [ψ (b) + ψ (c)] .(4.6)

Since

|b− c| = c− b ⩽ ε,

we find

|ψ2 (b)− ψ2 (c)| ⩽ ψ1 (|b− c|) = ψ1 (c− b) ,

−ψ1 (c− b) ⩽ ψ2 (b)− ψ2 (c) ⩽ ψ1 (c− b) ,

ψ (b) = ψ2 (b) ⩽ ψ1 (c− b) + ψ2 (c) ⩽ ψ1 (a) + ψ2 (c)

= ψ (a) + ψ (c) ⩽ θ (x, y) [ψ (a) + ψ (c)](4.7)

and

ψ (c) = ψ2 (c) ⩽ ψ1 (c− b) + ψ2 (b) ⩽ ψ1 (a) + ψ2 (b)

= ψ (a) + ψ (b) ⩽ θ (x, y) [ψ (a) + ψ (b)] .(4.8)

By (4.6), (4.7) and (4.8), we get

(ψ (a) , ψ (b) , ψ (c)) ∈ ∆θ.

Under the all cases, we say

(ψ (a) , ψ (b) , ψ (c)) ∈ ∆θ.

Consequently, by Theorems 3.2 and 3.9, we see that

ψ ∈ Eb.
□

Theorem 4.2. (A gluing lemma for functions in EbM) Let (X, d) be a metric
space, (X, dθ) be an extended b-metric space with the bounded function θ and ψ :
[0,∞) → [0,∞). Suppose that ψ1, ψ2 ∈ EbM, ε > 0 and ψ1 (ε) = ψ2 (ε). Let us
define the function ψ : [0,∞) → [0,∞) as

ψ (x) =

{
ψ1 (x) ; x ∈ [0, ε)
ψ2 (x) ; x ∈ [ε,∞)

,

for all x ∈ [0,∞). Let

A = sup
x∈(0,∞)

ψ (x)

and

B = inf
x∈(0,∞)

ψ (x) .

Then we have

(4.9) A = max

{
sup

x∈(0,r)

ψ1 (x) , sup
x∈[r,∞)

ψ2 (x)

}
,
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(4.10) B = min

{
inf

x∈(0,r)
ψ1 (x) , inf

x∈[r,∞)
ψ2 (x)

}
and the followings are equivalent:

(i) ψ ∈ EbM,
(ii) A ⩽ 2B,
(iii) sup

x∈(0,r)

ψ1 (x) ⩽ 2 inf
x∈[r,∞)

ψ2 (x) and sup
x∈[r,∞)

ψ2 (x) ⩽ 2 inf
x∈(0,r)

ψ1 (x).

Proof. Using Theorem 3.8, sup
x∈(0,r)

ψ1 (x), sup
x∈[r,∞)

ψ2 (x), inf
x∈(0,r)

ψ1 (x) and inf
x∈[r,∞)

ψ2 (x)

exist. The satisfaction of conditions (4.9) and (4.10) is evident.
By Theorem 3.8, we say that ψ is tightly bounded and amenable. So, there

exists a υ > 0 such that
υ ⩽ ψ (x) ⩽ 2υ.

Then we get
υ ⩽ B ⩽ A ⩽ 2υ.

Hence
2B ⩾ 2υ ⩾ A

and the condition (ii) is satisfied. On the contrary, we suppose that the second
requirement is satisfied. For all x ∈ (0,∞), we obtain

B = inf
x∈(0,∞)

ψ (x) ⩽ ψ (x) ⩽ sup
x∈(0,∞)

ψ (x) = A+ 2B.

Then we see that ψ is tightly bounded. By Theorem 3.8, since ψ1, ψ2 ∈ EbM, the
functions ψ1 and ψ2 are amenable. So ψ is amenable. Again using Theorem 3.8,
we say ψ ∈ EbM. Then the conditions (i) and (ii) are equivalent.

We now assume that the second condition (ii) holds true. We obtain

sup
x∈(0,r)

ψ1 (x) ⩽ max

{
sup

x∈(0,r)

ψ1 (x) , sup
x∈[r,∞)

ψ2 (x)

}
= A ⩽ 2B

= 2min

{
inf

x∈(0,r)
ψ1 (x) , inf

x∈[r,∞)
ψ2 (x)

}
⩽ 2 inf

x∈[r,∞)
ψ2 (x)

and
sup

x∈[r,∞)

ψ2 (x) ⩽ A ⩽ 2B ⩽ 2 inf
x∈(0,r)

ψ1 (x) .

Thus, the requirement (iii) is met. Now, we consider the following cases for the
converse statement:

Case 1: We have
sup

x∈(0,r)

ψ1 (x) ⩾ sup
x∈[r,∞)

ψ2 (x)

and so
A = sup

x∈(0,r)

ψ1 (x) .
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Since ψ1 ∈ EbM, utilizing the comparable justifications provided in the proof of
(i) =⇒ (ii), we get

sup
x∈(0,r)

ψ1 (x) ⩽ 2 inf
x∈(0,r)

ψ1 (x)

and by (iii), we have

sup
x∈(0,r)

ψ1 (x) ⩽ 2 inf
x∈[r,∞)

ψ2 (x) .

Therefore, we acquire

A ⩽ min

{
2 inf
x∈(0,r)

ψ1 (x) , 2 inf
x∈[r,∞)

ψ2 (x)

}
= 2min

{
inf

x∈(0,r)
ψ1 (x) , inf

x∈[r,∞)
ψ2 (x)

}
= 2B.

Case 2: Here, we have

sup
x∈(0,r)

ψ1 (x) < sup
x∈[r,∞)

ψ2 (x)

and

A = sup
x∈[r,∞)

ψ2 (x) .

Since ψ2 ∈ EbM, we obtain

sup
x∈[r,∞)

ψ2 (x) ⩽ 2 inf
x∈[r,∞)

ψ2 (x) .

From (iii), we get

sup
x∈[r,∞)

ψ2 (x) ⩽ 2 inf
x∈(0,r)

ψ1 (x) .

Under the all cases, we show A ⩽ 2B. □
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