JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS/JOURNAL J. Int. Math. Virtual Inst., **15**(1)(2025), 65-85 DOI: 10.7251/JIMVI2501065T

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

SOME PROPERTIES OF EXTENDED *b*-METRIC PRESERVING FUNCTIONS AND GLUING LEMMA

Nihal Taş and Ayşenur Şen

ABSTRACT. In the literature, metric preserving and *b*-metric preserving functions are given with some basic properties. In this paper, we investigate some properties of extended *b*-metric preserving functions and give some relations between the known metric preserving functions and extended *b*-metric preserving functions. Also, we prove two gluing lemmas for this preserving function family.

1. Introduction

What does a metric function look like?

A definition for the metric function is that a topological space function that provides a value representing the distance between any two points in the space. The most general environment in which to examine many of the ideas of geometry and mathematical analysis is a metric space. Three-dimensional Euclidean space, with its typical concept of distance, is the most well-known example of a metric space. Metric spaces are a technique utilized in many different areas of mathematics because of their generality.

The concept of generalized metric spaces appears in the literature as a generalization of the concept of metric spaces. There are many examples of generalized metric spaces in the literature. Some of these examples are the concept of b-metric spaces and various generalizations of b-metric spaces. Fixed-point results are being

Communicated by Özgür Ege.

²⁰²⁰ Mathematics Subject Classification. Primary 54C50; Secondary 54E35, 54E40, 26A21, 26A99.

 $Key\ words\ and\ phrases.$ Extended b-metric space, extended b-metric preserving function, Gluing lemma, fixed point.

studied on these spaces (For example, see [7], [9], [16], [19], [21] and the references therein)

A new area of research for metric functions is the study of metric preserving functions. The idea of metric preserving functions appears to have been initially mentioned in the literature by [22]. Metric preserving functions have been the topic of a substantial body of literature. Afterwards, research on the idea of a metric preserving function for various generalized metric spaces started. The notion of the *b*-metric preserving function was proposed and several relationships between the concepts of the metric preserving function and the concept of *b*-metric space were investigated [13]. The weak-ultrametric notion was used to present a new metric preserving function concept to the literature, while certain aspects of the *b*-metric preserving function concept were still being investigated [14]. Two distinct Pasting Lemmas (or Gluing Lemmas) have been formulated and proven for *b*-metric preserving functions using a simple topological technique [15].

In this paper, we use the extended *b*-metric concept to offer a new notion of metric preserving function based on all the previously described motivations. We first describe the extended *b*-metric preserving function and look at the fundamental connections between it and certain concepts of metric maintaining functions that are known from the literature. Using a topological approach, we develop and prove two distinct Gluing Lemmas for extended *b*-metric preserving functions.

2. Preliminaries

In this section, we give some basic concepts related to metric and generalized metric preserving functions.

Let X be a nonempty set and $d: X \times X \to [0, \infty)$ a function. If the following conditions are satisfied for all $x, y, z \in X$, then d is called a metric:

(d1) d(x, y) = 0 if and only if x = y,

(d2) d(x,y) = d(y,x),

 $(d3) d(x,y) \leq d(x,z) + d(z,y).$

Then the pair (X, d) is said to be a metric space.

This metric space was generalized using different approaches as seen in the following notions:

DEFINITION 2.1. [1] Let X be a nonempty set and $d_s : X \times X \to [0, \infty)$ a function. If the following conditions are satisfied for all $x, y, z \in X$, then d_s is called a *b*-metric:

$$d_s(x,y) \leqslant s \left[d_s(x,z) + d_s(z,y) \right].$$

Then the pair (X, d_s) is said to be a *b*-metric space.

REMARK 2.1. The notion of a *b*-metric is a generalization of a metric. Indeed, we take s = 1 in Definition 2.1, then the concepts coincide. In the literature, there

exist some examples of *b*-metric which is not a metric. For example, let $X = l_p(\mathbb{R})$ with $p \in (0, 1)$ where

$$l_{p}(\mathbb{R}) = \left\{ \left\{ x_{n} \right\} \subset \mathbb{R} : \sum_{n=1}^{\infty} \left| x_{n} \right|^{p} < \infty \right\}.$$

Assume that for $x = \{x_n\}$ and $y = \{y_n\}$, the function $d_s : X \times X \to [0, \infty)$ is defined by

$$d_s(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}.$$

Then d_s is a *b*-metric with $s = 2^{\frac{1}{p}}$ (see, [2], [6] and [10] for more details).

The notions of a metric and a b-metric were generalized to an extended b-metric as follows:

DEFINITION 2.2. [12] Let X be a nonempty set, $\theta : X \times X \to [1, \infty)$ and $d_s : X \times X \to [0, \infty)$ be two functions. If the following conditions are satisfied for all $x, y, z \in X$, then d_{θ} is called an extended *b*-metric:

 $(d_{\theta}1) d_{\theta}(x,y) = 0$ if and only if x = y,

 $(d_{\theta}2) \ d_{\theta} (x, y) = d_{\theta} (y, x),$

 $(d_{\theta}3) \ d_{\theta}(x,y) \leq \theta(x,y) [d_{\theta}(x,z) + d_{\theta}(z,y)].$

Then the pair (X, d_{θ}) is said to be an extended *b*-metric space.

EXAMPLE 2.1. [11] Let $X = [0, \infty)$. Let us define the functions $\theta : X \times X \to [1, \infty)$ and $d_s : X \times X \to [0, \infty)$ for $x, y \in X$ as follows:

$$\theta\left(x,y\right) = x + y + 1$$

and

$$d_{\theta}\left(x,y\right) = \left\{ \begin{array}{rrr} x+y & ; & x\neq y \\ 0 & ; & x=y \end{array} \right.$$

Then (X, d_{θ}) is an extended *b*-metric space.

REMARK 2.2. If we take $\theta(x, y) = s$ for $s \ge 1$, then the concepts of a *b*-metric and an extended *b*-metric coincide.

The relationships among the notions of a metric space, a b-metric space and an extended b-metric space are as follows:

$$\begin{array}{c} \text{metric space} \\ \downarrow \\ b\text{-metric space} \\ \downarrow \end{array}$$

extended b-metric space

Using the concepts of a metric and a b-metric, the following definitions were introduced:

DEFINITION 2.3. [4] [18] [20] Let (X, d) be a metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then ψ is called metric preserving function if $\psi \circ d$ is a metric on X.

DEFINITION 2.4. [13] Let (X, d) be a metric space, (X, d_S) be a *b*-metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then

- (i) ψ is called a *b*-metric preserving function if $\psi \circ d_s$ is a *b*-metric on X.
- (*ii*) ψ is called a metric-*b*-metric preserving function if $\psi \circ d$ is a *b*-metric on *X*.

(*iii*) ψ is called a *b*-metric-metric preserving function if $\psi \circ d_s$ is a metric on X.

Let \mathcal{M} be the set of all metric preserving function, \mathcal{B} be the set of all *b*-metric preserving functions, \mathcal{MB} be the set of all metric-*b*-metric preserving functions and \mathcal{BM} be the set of all *b*-metric-metric preserving functions [13].

Now we recall the following basic notions:

- Let $\psi : [0, \infty) \to [0, \infty)$ and $I \subseteq [0, \infty)$. Then ψ is called
- increasing on I if $\psi(x) \leq \psi(y)$ for all $x, y \in I$ such that x < y,
- strictly increasing on I if $\psi(x) < \psi(y)$ for all $x, y \in I$ such that x < y,
- decreasing on I if $\psi(x) \ge \psi(y)$ for all $x, y \in I$ such that x < y,
- strictly decreasing on I if $\psi(x) > \psi(y)$ for all $x, y \in I$ such that x < y,
- amenable if $\psi^{-1}(\{0\}) = \{0\},\$

• tightly bounded on $(0, \infty)$ if there is v > 0 such that $\psi(x) \in [v, 2v]$ for all $x \in (0, \infty)$,

• subadditive if $\psi(a+b) \leq \psi(a) + \psi(b)$ for all $a, b \in [0, \infty)$,

• quasi-subadditive if there exists $s \ge 1$ such that $\psi(a+b) \le s[\psi(a) + \psi(b)]$ for all $a, b \in [0, \infty)$,

• convex if $\psi((1-t)x + ty) \leq (1-t)\psi(x) + t\psi(y)$ for all $x, y \in [0,\infty)$ and $t \in [0,1]$,

• concave if $\psi((1-t)x + ty) \ge (1-t)\psi(x) + t\psi(y)$ for all $x, y \in [0,\infty)$ and $t \in [0,1]$,

• linear if $\psi(a+b) = \psi(a) + \psi(b)$ and $\psi(ka) = k\psi(a)$ for all $a, b \in [0, \infty)$ with a constant k.

DEFINITION 2.5. (i) [13] Let $a, b, c \ge 0$. A triple (a, b, c) is called a triangle triplet if

 $a \leq b + c, b \leq a + c \text{ and } c \leq a + b.$

(ii) [13] Let $s \ge 1$ and $a, b, c \ge 0$. A triple (a, b, c) is called an s-triangle triplet if

$$a \leq s(b+c), b \leq s(a+c) \text{ and } c \leq s(a+b).$$

(*iii*) [17] Let $\theta : X \times X \to [1, \infty)$ and $a, b, c \ge 0$. A triple (a, b, c) is called θ -triangle triplet if

$$a \leq \theta(x, y) (b + c), b \leq \theta(x, z) (a + c) \text{ and } c \leq \theta(z, y) (a + b),$$

for all $x, y, z \in X$.

Let Δ , Δ_s and Δ_{θ} be the set of all triangle triplets, s-triangle triplets and θ -triangle triplets, respectively.

LEMMA 2.1. [5] [8] If $\psi \in \mathcal{M}$, then ψ is amenable and subadditive.

LEMMA 2.2. [4] [5] [8] Assume that $\psi : [0, \infty) \to [0, \infty)$ is subadditive. Then for all positive integers n and for all $x \in [0, \infty)$, we have

$$\psi\left(nx\right)\leqslant n\psi\left(x\right).$$

LEMMA 2.3. [3] [5] [8] Suppose that $\psi : [0, \infty) \to [0, \infty)$ is amenable. Then the followings are equivalent:

(a) $\psi \in \mathcal{M}$.

(b) For each $(\alpha, \beta, \gamma) \in \Delta$, then $(\psi(\alpha), \psi(\beta), \psi(\gamma)) \in \Delta$.

LEMMA 2.4. [8]Let $\psi : [0, \infty) \to [0, \infty)$ be amenable. Then ψ is concave if and only if for all $t \ge 0$ and $x, y, z \in [0, t]$,

$$x + t = y + z \Longrightarrow \psi(x) + \psi(t) = \psi(y) + \psi(z).$$

3. Main results

In this section, we investigate some properties of extended b-metric preserving functions.

DEFINITION 3.1. Let (X, d) be a metric space, (X, d_S) be a *b*-metric space, (X, d_{θ}) be a extended *b*-metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then $(i) \ \psi$ is called an extended *b*-metric preserving function if $\psi \circ d_{\theta}$ is an extended

(i) ψ is called a metric-extended *b*-metric preserving function if $\psi \circ d$ is an extended *b*-metric or X [17]. *(ii)* ψ is called a metric-extended *b*-metric preserving function if $\psi \circ d$ is an

(*ii*) ψ is called a metric-extended *b*-metric preserving function if $\psi \circ d$ is an extended *b*-metric on *X*.

(*iii*) ψ is called an extended *b*-metric-metric preserving function if $\psi \circ d_{\theta}$ is a metric on X.

 $(iv) \psi$ is called a *b*-metric-extended *b*-metric preserving function if $\psi \circ d_S$ is an extended *b*-metric on *X*.

(v) ψ is called an extended *b*-metric-*b*-metric preserving function if $\psi \circ d_{\theta}$ is a *b*-metric on *X*.

Let \mathcal{E}_b be the set of all extended *b*-metric preserving function, \mathcal{ME}_b be the set of all metric-extended *b*-metric preserving functions, $\mathcal{E}_b\mathcal{M}$ be the set of all extended *b*-metric preserving functions, \mathcal{BE}_b be the set of all *b*-metric-extended *b*-metric preserving functions and $\mathcal{E}_b\mathcal{B}$ be the set of all extended *b*-metric-b-metric preserving functions.

THEOREM 3.1. Let n be a positive real number. Let us define $\psi : [0, \infty) \rightarrow [0, \infty)$ by

$$\psi\left(x\right) = x^{n}.$$

Then the followings are satisfied:

(a) If $n \in (0, 1]$, then $\psi \in \mathcal{M}$.

(b) If n > 1, then $\psi \in \mathcal{E}_b$, but $\psi \notin \mathcal{M}$.

PROOF. (a) It can be easily seen in the proof of Theorem 12 given in [13]. (b) Let n > 1. Let us define the function $\phi : [0, \infty) \to \mathbb{R}$ as

$$\phi(x) = \frac{(1+x)^n}{1+x^n}.$$

Then we get

$$\phi'(x) = \frac{n(1+x)^{n-1}(1-x^{n-1})}{(1+x^n)^2}$$

and

$$\phi'(x) \ge 0 \Leftrightarrow x \le 1.$$

Hence, we say that ϕ is increasing on [0, 1] and decreasing $[1, \infty)$. For all $x \in [0, \infty)$, we have

(3.1)
$$\phi(x) \leqslant \phi(1) = 2^{n-1}$$

To show $\psi \in \mathcal{E}_b$, let d_θ be an extended *b*-metric on X and $\theta : X \times X \to [1, \infty)$ be a function such that

$$d_{\theta}(x,y) \leq \theta(x,y) \left[d_{\theta}(x,z) + d_{\theta}(z,y) \right],$$

for all $x, y, z \in X$.

Now, we check that $\psi \circ d_{\theta}$ satisfies the conditions $(d_{\theta}1)$, $(d_{\theta}2)$ and $(d_{\theta}3)$ as follows:

 $(d_{\theta}1)$ For all $x, y \in X$, we get

$$\psi \circ d_{\theta}(x, y) = 0 \Leftrightarrow \psi (d_{\theta}(x, y)) = 0 \Leftrightarrow [d_{\theta}(x, y)]^{n} = 0$$
$$\Leftrightarrow d_{\theta}(x, y) = 0 \Leftrightarrow x = y.$$

 $(d_{\theta}2)$ For all $x, y \in X$, we have

$$\psi \circ d_{\theta} (x, y) = \psi \left(d_{\theta} (x, y) \right) = \psi \left(d_{\theta} (y, x) \right) = \psi \circ d_{\theta} (y, x) \,.$$

 $(d_{\theta}3)$ Let $x, y, z \in X$. If x = z, then it is clear that

$$\psi \circ d_{\theta}(x,y) \leqslant \left[\theta(x,y)\right]^{n} 2^{n-1} \left[\psi \circ d_{\theta}(x,z) + \psi \circ d_{\theta}(z,y)\right].$$

Assume that $x \neq z$. By (3.1), we obtain

$$\psi\left(\frac{d_{\theta}\left(z,y\right)}{d_{\theta}\left(x,z\right)}\right) \leqslant 2^{n-1}$$

and

(3.2)
$$\begin{bmatrix} d_{\theta}(x,z) + d_{\theta}(z,y) \end{bmatrix}^{n} \leq 2^{n-1} \begin{bmatrix} d_{\theta}(x,z)^{n} + d_{\theta}(z,y)^{n} \end{bmatrix} \\ = 2^{n-1} \begin{bmatrix} \psi \circ d_{\theta}(x,z) + \psi \circ d_{\theta}(z,y) \end{bmatrix}.$$

Using (3.2) and the properties of extended *b*-metric, we get

$$\psi \circ d_{\theta} (x, y) = [d_{\theta} (x, y)]^{n} \leq [\theta (x, y) (d_{\theta} (x, z) + d_{\theta} (z, y))]^{n}$$
$$\leq [\theta (x, y)]^{n} 2^{n-1} [\psi \circ d_{\theta} (x, z) + \psi \circ d_{\theta} (z, y)].$$

Consequently, $\psi \in \mathcal{E}_b$. It is easily seen in the proof of Theorem 12 given in [13] that $\psi \notin \mathcal{M}$.

EXAMPLE 3.1. Let us consider the usual metric space on $\mathbb R$ with the metric function

$$d\left(x,y\right) = \left|x-y\right|,$$

for all $x, y \in \mathbb{R}$. Then (X, d) is also an extended *b*-metric space $\theta(x, y) = 1$. Assume that the function $\psi : [0, \infty) \to [0, \infty)$ is defined by

$$\psi\left(x\right) = x^2.$$

Then $\psi \in \mathcal{E}_b$, but $\psi \notin \mathcal{M}$.

LEMMA 3.1. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

(a) $\mathcal{E}_b\mathcal{M}\subseteq\mathcal{M}$.

(b) $\mathcal{E}_b \subseteq \mathcal{M}\mathcal{E}_b$.

PROOF. (a) Let $\psi \in \mathcal{E}_b \mathcal{M}$ and d be a metric on X. Since every metric is an extended b-metric, d is an extended b-metric on X. As $\psi \in \mathcal{E}_b \mathcal{M}$, then $\psi \circ d$ is a metric on X. Hence, we get $\psi \in \mathcal{M}$.

(b) Let $\psi \in \mathcal{E}_b$ and d be a metric on X. Since every metric is an extended b-metric, d is an extended b-metric on X. As $\psi \in \mathcal{E}_b$, then $\psi \circ d$ is an extended b-metric on X. Hence, we get $\psi \in \mathcal{ME}_b$.

LEMMA 3.2. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

$$\mathcal{M} \subseteq \mathcal{E}_b.$$

PROOF. Let $\psi \in \mathcal{M}$ and d_{θ} be an extended *b*-metric on *X*. We show that $\psi \circ d_{\theta}$ is an extended *b*-metric on *X* as follows:

 $(d_{\theta}1)$ Since $\psi \in \mathcal{M}$, then by Lemma 2.1, ψ is amenable. For all $x, y \in X$, we get

$$\psi \circ d_{\theta} (x, y) = 0 \Leftrightarrow \psi (d_{\theta} (x, y)) = 0$$
$$\Leftrightarrow d_{\theta} (x, y) = 0 \Leftrightarrow x = y.$$

 $(d_{\theta}2)$ For all $x, y \in X$, we find

$$\psi \circ d_{\theta}(x, y) = \psi \left(d_{\theta}(x, y) \right) = \psi \left(d_{\theta}(y, x) \right) = \psi \circ d_{\theta}(y, x).$$

 $(d_{\theta}3)$ For all $x, y, z \in X$, assume that

$$\alpha = d_{\theta}(x, y), \beta = d_{\theta}(x, z) \text{ and } \gamma = d_{\theta}(z, y).$$

Since d_{θ} is an extended *b*-metric on *X*, we have

$$d_{\theta}(x,y) \leq \theta(x,y) \left[d_{\theta}(x,z) + d_{\theta}(z,y) \right] \Longrightarrow \alpha \leq \theta(x,y) \left[\beta + c\gamma \right],$$

$$d_{\theta}(x,z) \leq \theta(x,z) \left[d_{\theta}(x,y) + d_{\theta}(y,z) \right] \Longrightarrow \beta \leq \theta(x,z) \left[\alpha + \gamma \right]$$

and

$$d_{\theta}(y,z) \leq \theta(y,z) \left[d_{\theta}(y,x) + d_{\theta}(x,z) \right] \Longrightarrow \gamma \leq \theta(y,z) \left[\alpha + \beta \right].$$

Let

$$\mathbf{V} = \sup \left\{ \theta \left(x, y \right) : x, y \in X \right\}$$

and n be a positive integer larger than N. Then, we have

1

 α

$$\leq \theta(x,y) [\beta + \gamma] \leq n (\beta + \gamma) = n\beta + n\gamma$$

and so $(\alpha, n\beta + n\gamma, n\beta + n\gamma)$ is a triangle triplet. Since $\psi \in \mathcal{M}$, by Lemmas 2.1, 2.2 and 2.3, we get

$$\begin{split} \psi\left(\alpha\right) &\leqslant \quad \psi\left(n\beta + n\gamma\right) + \psi\left(n\beta + n\gamma\right) = 2\psi\left(n\beta + n\gamma\right) \\ &\leqslant \quad 2\left[\psi\left(n\beta\right) + \psi\left(n\gamma\right)\right] \leqslant 2\left[n\psi\left(\beta\right) + n\psi\left(\gamma\right)\right] \\ &= \quad 2n\left[\psi\left(\beta\right) + \psi\left(\gamma\right)\right] \end{split}$$

and so

$$\psi \circ d_{\theta}(x, y) \leqslant 2n \left[\psi \circ d_{\theta}(x, z) + \psi \circ d_{\theta}(z, y) \right]$$

Consequently, $\psi \circ d_{\theta}$ is an extended *b*-metric with the function $\theta : X \times X \to [1, \infty)$ defined as

$$\theta\left(x,y\right) = 2n,$$

for all $x, y \in X$, that is, $\psi \in \mathcal{E}_b$.

From Lemma 3.1 and Lemma 3.2, we get the following corollary:

COROLLARY 3.1. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

$$\mathcal{E}_b\mathcal{M}\subseteq\mathcal{M}\subseteq\mathcal{E}_b\subseteq\mathcal{M}\mathcal{E}_b.$$

LEMMA 3.3. [17] Let (X, d_s) be a b-metric space, (X, d_θ) be an extended bmetric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

 $\mathcal{B} \subseteq \mathcal{E}_b.$

LEMMA 3.4. Let (X, d_s) be a b-metric space, (X, d_{θ}) be an extended b-metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

(a) $\mathcal{E}_b \mathcal{B} \subseteq \mathcal{B}$.

(b) $\mathcal{E}_b \subseteq \mathcal{B}\mathcal{E}_b$.

PROOF. (a) Let $\psi \in \mathcal{E}_b \mathcal{B}$ and d_s be a *b*-metric on *X*. Since every *b*-metric is an extended *b*-metric, d_s is an extended *b*-metric on *X*. As $\psi \in \mathcal{E}_b \mathcal{B}$, then $\psi \circ d_s$ is a *b*-metric on *X*. Hence, we get $\psi \in \mathcal{B}$.

(b) Let $\psi \in \mathcal{E}_b$ and d_s be a *b*-metric on *X*. Since every *b*-metric is an extended *b*-metric, d_s is an extended *b*-metric on *X*. As $\psi \in \mathcal{E}_b$, then $\psi \circ d_s$ is an extended *b*-metric on *X*. Hence, we get $\psi \in \mathcal{BE}_b$.

From Lemma 3.3 and Lemma 3.4, we get the following corollary:

COROLLARY 3.2. Let (X, d_s) be a b-metric space, (X, d_θ) be an extended bmetric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

$$\mathcal{E}_b \mathcal{B} \subseteq \mathcal{B} \subseteq \mathcal{E}_b \subseteq \mathcal{B} \mathcal{E}_b.$$

LEMMA 3.5. Let (X, d) be a metric space, (X, d_s) be a b-metric space, (X, d_{θ}) be an extended b-metric space and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

(a) $\mathcal{E}_b \mathcal{M} \subseteq \mathcal{E}_b \mathcal{B}$.

(b) $\mathcal{E}_b \mathcal{M} \subseteq \mathcal{B} \mathcal{E}_b$.

PROOF. (a) Let $\psi \in \mathcal{E}_b \mathcal{M}$ and d_θ be an extended b-metric on X. As $\psi \in \mathcal{E}_b \mathcal{M}$, then $\psi \circ d_\theta$ is a metric on X. Since every metric is a b-metric, $\psi \circ d_\theta$ is a b-metric on X. Hence, we get $\psi \in \mathcal{E}_b \mathcal{B}$.

(b) Let $\psi \in \mathcal{E}_b \mathcal{M}$ and d_s be a *b*-metric on *X*. Since every *b*-metric is an extended *b*-metric, d_s is an extended *b*-metric on *X*. As $\psi \in \mathcal{E}_b \mathcal{M}$, then $\psi \circ d_s$ is a metric on *X*. Also, since every metric is an extended *b*-metric, then we get $\psi \in \mathcal{B}\mathcal{E}_b$.

From Corollary 3.1, Corollary 3.2 and Lemma 3.5, we get the following corollary:

COROLLARY 3.3. Let (X, d) be a metric space, (X, d_s) be a b-metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$ be a function. Then we have

$$\mathcal{E}_b\mathcal{M}\subseteq\mathcal{E}_b\mathcal{B}\subseteq\mathcal{B}\subseteq\mathcal{E}_b\subseteq\mathcal{B}\mathcal{E}_b$$

and

$$\mathcal{E}_b\mathcal{M}\subseteq\mathcal{M}\subseteq\mathcal{B}\subseteq\mathcal{E}_b\subseteq\mathcal{M}\mathcal{E}_b$$

THEOREM 3.2. Let (X, d) be a metric space and (X, d_{θ}) be an extended bmetric space. Assume that $\psi : [0, \infty) \to [0, \infty)$ is amenable. Then the followings are equivalent:

(a) $\psi \in \mathcal{ME}_b$.

(b) There exists a function $\theta: X \times X \to [1, \infty)$ such that $(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}$ for all $(x, y, z) \in \Delta$.

PROOF. Suppose that $\psi \in \mathcal{ME}_b$. Let d be a usual metric on \mathbb{R}^2 . Then $\psi \circ d$ is a extended b-metric and so there exists a function $\theta : X \times X \to [1, \infty)$ such that

$$\psi \circ d(u, w) \leqslant \theta(u, w) \left[\psi \circ d(u, v) + \psi \circ d(v, w)\right],$$

for all $u, v, w \in \mathbb{R}^2$. Let $(x, y, z) \in \Delta$. According to the Euclidean geometry, there are $u, v, w \in \mathbb{R}^2$ such that

$$x = d(u, w), y = d(u, v)$$
 and $z = d(v, w)$.

Then, we have

$$\begin{split} \psi \left(x \right) &= \psi \circ d \left(u, w \right) \leqslant \theta \left(u, w \right) \left[\psi \circ d \left(u, v \right) + \psi \circ d \left(v, w \right) \right] \\ &= \theta \left(u, w \right) \left[\psi \left(y \right) + \psi \left(z \right) \right], \\ \psi \left(y \right) &= \psi \circ d \left(u, v \right) \leqslant \theta \left(u, v \right) \left[\psi \circ d \left(u, w \right) + \psi \circ d \left(w, v \right) \right] \\ &= \theta \left(u, v \right) \left[\psi \left(x \right) + \psi \left(z \right) \right], \\ \psi \left(z \right) &= \psi \circ d \left(v, w \right) \leqslant \theta \left(v, w \right) \left[\psi \circ d \left(v, u \right) + \psi \circ d \left(u, w \right) \right] \\ &= \theta \left(v, w \right) \left[\psi \left(x \right) + \psi \left(y \right) \right] \end{split}$$

and so

$$(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}.$$

Assume that there exists a function $\theta: X \times X \to [1, \infty)$ such that

$$(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}$$

for all $(x, y, z) \in \Delta$. Let (X, d) be a metric space. Now we show that $\psi \circ d$ is an extended *b*-metric as follows:

 $(d_{\theta}1)$ Since ψ is amenable, for all $x, y \in X$, we have

$$\psi \circ d(x,y) = 0 \Longleftrightarrow \psi(d(x,y)) = 0 \Longleftrightarrow d(x,y) = 0 \Longleftrightarrow x = y.$$

 $(d_{\theta}2)$ For all $x, y \in X$, we get

$$\psi \circ d(x, y) = \psi \left(d(x, y) \right) = \psi \left(d(y, x) \right) = \psi \circ d(y, x)$$

 $(d_{\theta}3)$ Using hypothesis, since $(d\left(x,y\right),d\left(x,z\right),d\left(z,y\right))\in\Delta$ for all $x,y,z\in X,$ then

$$(\psi \circ d(x, y), \psi \circ d(x, z), \psi \circ d(z, y)) \in \Delta_{\theta},$$

that is,

$$\psi \circ d(x,y) \leqslant \theta(x,y) \left[\psi \circ d(x,z) + \psi \circ d(z,y) \right].$$

Consequently, $\psi \circ d$ is an extended *b*-metric and $\psi \in \mathcal{ME}_b$.

THEOREM 3.3. Let (X, d_s) be a b-metric space and (X, d_{θ}) be an extended bmetric space. Assume that $\psi : [0, \infty) \to [0, \infty)$ is amenable. Then the followings are equivalent:

(a) $\psi \in \mathcal{BE}_b$.

(b) There exists a function $\theta: X \times X \to [1, \infty)$ such that $(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}$ for all $(x, y, z) \in \Delta_s$.

PROOF. Suppose that $\psi \in \mathcal{BE}_b$. Let d_s be a usual metric on \mathbb{R}^2 . Since every metric is a *b*-metric, hence d_s is a *b*-metric. Then $\psi \circ d_s$ is a extended *b*-metric and so there exists a function $\theta : X \times X \to [1, \infty)$ such that

$$\psi \circ d_s(u, w) \leqslant \theta(u, w) \left[\psi \circ d_s(u, v) + \psi \circ d_s(v, w)\right],$$

for all $u, v, w \in \mathbb{R}^2$. Let $(x, y, z) \in \Delta_s$. Then we have

$$z \leq s(y+z), y \leq s(x+z) \text{ and } z \leq s(x+y).$$

Since d_s is a *b*-metric, there are $u, v, w \in \mathbb{R}^2$ such that

X

$$x = d_s(u, w), y = d_s(u, v) \text{ and } z = d_s(v, w).$$

Then, we have

$$\begin{split} \psi\left(x\right) &= \psi \circ d_{s}\left(u,w\right) \leqslant \theta\left(u,w\right) \left[\psi \circ d_{s}\left(u,v\right) + \psi \circ d_{s}\left(v,w\right)\right] \\ &= \theta\left(u,w\right) \left[\psi\left(y\right) + \psi\left(z\right)\right], \end{split}$$

$$\begin{split} \psi\left(y\right) &= \psi \circ d_{s}\left(u,v\right) \leqslant \theta\left(u,v\right) \left[\psi \circ d_{s}\left(u,w\right) + \psi \circ d_{s}\left(w,v\right)\right] \\ &= \theta\left(u,v\right) \left[\psi\left(x\right) + \psi\left(z\right)\right], \end{split}$$

$$\begin{split} \psi\left(z\right) &= \psi \circ d_{s}\left(v,w\right) \leqslant \theta\left(v,w\right) \left[\psi \circ d_{s}\left(v,u\right) + \psi \circ d_{s}\left(u,w\right)\right] \\ &= \theta\left(v,w\right) \left[\psi\left(x\right) + \psi\left(y\right)\right] \end{split}$$

and so

$$(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}.$$

Assume that there exists a function $\theta: X \times X \to [1, \infty)$ such that

$$(\psi(x), \psi(y), \psi(z)) \in \Delta_{\theta}$$

for all $(x, y, z) \in \Delta_s$. Let (X, d_s) be a *b*-metric space. Now we show that $\psi \circ d_s$ is an extended *b*-metric as follows:

 $(d_{\theta}1)$ Since ψ is amenable, for all $x, y \in X$, we have

$$\psi \circ d_s\left(x,y\right) = 0 \Longleftrightarrow \psi\left(d_s\left(x,y\right)\right) = 0 \Longleftrightarrow d_s(x,y) = 0 \Longleftrightarrow x = y.$$

 $(d_{\theta}2)$ For all $x, y \in X$, we get

 $\psi \circ d_{s}\left(x,y\right) = \psi\left(d_{s}\left(x,y\right)\right) = \psi\left(d_{s}\left(y,x\right)\right) = \psi \circ d_{s}\left(y,x\right).$

 $(d_{\theta}3)$ Using hypothesis, since $(d(x, y), d(x, z), d(z, y)) \in \Delta_s$ for all $x, y, z \in X$,

then

$$(\psi \circ d_{s}(x,y), \psi \circ d_{s}(x,z), \psi \circ d_{s}(z,y)) \in \Delta_{\theta},$$

with the function $\theta: X \times X \to [1, \infty)$ defined as $\theta(x, y) = s$ for all $x, y \in X$. Hence, we obtain

$$\psi \circ d_s(x,y) \leqslant \theta(x,y) \left[\psi \circ d_s(x,z) + \psi \circ d_s(z,y) \right].$$

Consequently, $\psi \circ d_s$ is an extended *b*-metric and $\psi \in \mathcal{BE}_b$.

THEOREM 3.4. Let (X, d) be a metric space and (X, d_{θ}) be an extended bmetric space. If $\psi : [0, \infty) \to [0, \infty)$ is increasing, quasi-subadditive and amenable on $[0, \infty)$, then $\psi \in \mathcal{ME}_b$.

PROOF. Assume that ψ is increasing, quasi-subadditive and amenable. Let (X, d) be a metric space. Now, we show that $\psi \circ d$ is an extended *b*-metric as follows:

 $(d_{\theta}1)$ Since d is a metric and ψ is amenable, for all $x, y \in X$, we have

$$\psi \circ d\left(x,y\right) = 0 \Longleftrightarrow \psi\left(d\left(x,y\right)\right) = 0 \Longleftrightarrow d(x,y) = 0 \Longleftrightarrow x = y.$$

 $(d_{\theta}2)$ Since d is a metric, using the symmetry property of d, for all $x, y \in X$, we get

$$\psi \circ d(x, y) = \psi \left(d(x, y) \right) = \psi \left(d(y, x) \right) = \psi \circ d(y, x).$$

 $(d_{\theta}3)$ Since ψ is quasi-subadditive, there exists $s \ge 1$ such that

(3.3) $\psi(u+v) \leq s \left[\psi(u) + \psi(v) \right],$

for all $u, v \in [0, \infty)$. Let the function $\theta: X \times X \to [1, \infty)$ be defined as

$$\theta\left(x,y\right) = s,$$

for all $x, y \in X$. Using the increasing property and the inequality (3.3), we obtain

$$\begin{split} \psi \circ d\left(x,y\right) &= \psi\left(d\left(x,y\right)\right) \leqslant \psi\left(d\left(x,z\right) + d\left(z,y\right)\right) \\ \leqslant &s\left[\psi\left(d\left(x,z\right)\right) + \psi\left(d\left(z,y\right)\right)\right] \\ &= &\theta\left(x,y\right)\left[\psi \circ d\left(x,z\right) + \psi \circ d\left(z,y\right)\right], \end{split}$$

for all $x, y, z \in X$.

Consequently, $\psi \in \mathcal{ME}_b$.

THEOREM 3.5. Let (X, d_s) be a b-metric space and (X, d_{θ}) be an extended bmetric space. If $\psi : [0, \infty) \to [0, \infty)$ is increasing, linear and amenable on $[0, \infty)$, then $\psi \in \mathcal{BE}_b$.

75

N. TAŞ AND A. ŞEN

PROOF. Assume that ψ is increasing, linear and amenable. Let (X, d_s) be a *b*-metric space. Now, we show that $\psi \circ d_s$ is an extended *b*-metric as follows:

 $(d_{\theta}1)$ Since d_s is a *b*-metric and ψ is amenable, for all $x, y \in X$, we have

$$\psi \circ d_s \left(x, y \right) = 0 \Longleftrightarrow \psi \left(d_s \left(x, y \right) \right) = 0 \Longleftrightarrow d_s (x, y) = 0 \Longleftrightarrow x = y$$

 $(d_{\theta}2)$ Since d_s is a *b*-metric, using the symmetry property of d_s , for all $x, y \in X$, we get

$$\psi \circ d_s\left(x,y\right) = \psi\left(d_s\left(x,y\right)\right) = \psi\left(d_s\left(y,x\right)\right) = \psi \circ d_s\left(y,x\right).$$

 $(d_{\theta}3)$ Let the function $\theta: X \times X \to [1,\infty)$ be defined as

$$\theta\left(x,y\right) = s,$$

for all $x, y \in X$. Using the increasing and linear property, we obtain

$$\begin{split} \psi \circ d_s\left(x,y\right) &= \psi\left(d_s\left(x,y\right)\right) \leqslant \psi\left(s\left(d_s\left(x,z\right) + d_s\left(z,y\right)\right)\right) \\ &= s\psi\left(d_s\left(x,z\right)\right) + s\psi\left(d_s\left(z,y\right)\right) \\ &= s\left[\psi \circ d_s\left(x,z\right) + \psi \circ d_s\left(z,y\right)\right] \\ &= \theta\left(x,y\right)\left[\psi \circ d_s\left(x,z\right) + \psi \circ d_s\left(z,y\right)\right], \end{split}$$

for all $x, y, z \in X$.

Consequently, $\psi \in \mathcal{BE}_b$.

THEOREM 3.6. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$. If $\psi \in \mathcal{ME}_b$, then ψ is quasi-subadditive and amenable.

PROOF. Let $\psi \in \mathcal{ME}_b$ and d be a usual metric on \mathbb{R} . So, $\psi \circ d$ is an extended b-metric on \mathbb{R} . Then we get

$$\psi(0) = \psi(d(0,0)) = \psi \circ d(0,0) = 0.$$

Also, suppose that $x \in [0, \infty)$ and $\psi(x) = 0$. Hence, we obtain

$$0 = \psi(x) = \psi(d(x, 0)) = \psi \circ d(x, 0)$$

and

$$\psi \circ d\left(x,0\right) = 0.$$

Since $\psi \circ d$ is an extended *b*-metric, we have

$$x = 0$$

and

$$\psi^{-1}\left(\{0\}\right) = \{0\}\,,$$

that is, ψ is amenable.

Now, we show that ψ is quasi-subadditive. Since $\psi \circ d$ is an extended *b*-metric, there exists a function $\theta: X \times X \to [1, \infty)$ such that

$$\psi \circ d(x, y) \leqslant \theta(x, y) \left[\psi \circ d(x, z) + \psi \circ d(z, y) \right],$$

for all $x, y, z \in \mathbb{R}$. Let

$$S = \sup \left\{ \theta \left(x, y \right) : x, y \in X \right\}.$$

To show that ψ is quasi-subadditive, let $u, v \in [0, \infty)$. Thereby, we obtain

$$\begin{array}{ll} \psi\left(u+v\right) &\leqslant & \psi \circ d\left(0,u+v\right) \\ &\leqslant & \theta\left(0,u+v\right)\left[\psi \circ d\left(0,u\right)+\psi \circ d\left(u,u+v\right)\right] \\ &= & \theta\left(0,u+v\right)\left[\psi\left(u\right)+\psi\left(v\right)\right] \\ &\leqslant & S\left(\psi\left(u\right)+\psi\left(v\right)\right). \end{array}$$

Consequently, ψ is quasi-subadditive.

THEOREM 3.7. Let (X, d_s) be a b-metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$. If $\psi \in \mathcal{BE}_b$, then ψ is quasi-subadditive and amenable.

PROOF. We can see this readily by using the same reasoning as in the proof of Theorem 3.6. $\hfill \Box$

THEOREM 3.8. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space and $\psi : [0, \infty) \to [0, \infty)$. Then $\psi \in \mathcal{E}_b \mathcal{M}$ if and only if ψ is tightly bounded and amenable.

Proof. Suppose that ψ is tightly bounded and amenable. Let a>0 be a constant such that

$$(3.4) \qquad \qquad \psi(x) \in [a, 2a]$$

for all x > 0 and (X, d_{θ}) be an extended *b*-metric space. Now we show that $\psi \circ d_{\theta}$ is a metric as follows:

(d1) Since d_{θ} is an extended *b*-metric space and ψ is amenable, we have

$$\psi \circ d_{\theta}(x,y) = 0 \Longleftrightarrow \psi \left(d_{\theta}(x,y) \right) = 0 \Longleftrightarrow d_{\theta}(x,y) = 0 \Longleftrightarrow x = y,$$

for all $x, y \in X$.

(d2) Since d_{θ} is an extended *b*-metric space, we get

$$\psi \circ d_{\theta} (x, y) = \psi (d_{\theta} (x, y)) = \psi (d_{\theta} (y, x)) = \psi \circ d_{\theta} (y, x) = \psi \circ d_{\theta} ($$

for all $x, y \in X$.

(d3) Let $x, y, z \in X$. If x = y, x = z or y = z, then the following inequality is satisfied:

$$\psi \circ d_{\theta}(x, y) \leqslant \psi \circ d_{\theta}(x, z) + \psi \circ d_{\theta}(z, y).$$

Assume that $x \neq y$, $x \neq z$ and $y \neq z$. Then $d_{\theta}(x, y)$, $d_{\theta}(x, z)$ and $d_{\theta}(y, z)$ are positive. From (3.4), we obtain

$$\psi \circ d_{\theta}(x, y), \psi \circ d_{\theta}(x, z), \psi \circ d_{\theta}(z, y) \in [a, 2a].$$

Then, we get

$$\psi \circ d_{\theta}(x, y) \leq 2a = a + a \leq \psi \circ d_{\theta}(x, z) + \psi \circ d_{\theta}(z, y)$$

and so $\psi \circ d_{\theta}$ is a metric, that is, $\psi \in \mathcal{E}_b \mathcal{M}$.

77

Let $\psi \in \mathcal{E}_b \mathcal{M}$. From Corollary 3.1, we have $\psi \in \mathcal{M}$ and so since ψ is a metric preserving function, by Lemma 2.1, ψ is amenable. To show that ψ is tightly bounded, assume that d is a usual metric on \mathbb{R} and

 $d_{\theta} = \varsigma \circ d,$

where

$$\varsigma\left(x\right) = x^{n} \ \left(n > 1\right),$$

for all $x \in [0, \infty)$. From Theorem 3.1, we say that

$$d_{\theta}\left(x,y\right) = \left|x-y\right|^{\prime}$$

is an extended *b*-metric. Since $\psi \in \mathcal{E}_b \mathcal{M}$, then $\psi \circ d_\theta$ is a metric. Using the similar approaches given in Theorem 24 in [13], it can be easily proved that ψ is tightly bounded.

THEOREM 3.9. Let (X, d) be a metric space, (X, d_{θ}) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$. Then ψ is a metricextended b-metric preserving function if and only if ψ is an extended b-metric preserving function, that is,

$$\mathcal{ME}_b = \mathcal{E}_b$$

PROOF. From Lemma 3.1, we have

 $\mathcal{E}_b \subseteq \mathcal{M}\mathcal{E}_b.$

Now, we show

$$\mathcal{ME}_b \subseteq \mathcal{E}_b$$

Let $\psi \in \mathcal{ME}_b$. We prove that $\psi \in \mathcal{E}_b$, that is, $\psi \circ d_\theta$ is an extended *b*-metric. By Theorem 3.6, ψ is amenable and quasi-subadditive. Then, we can easily see that $\psi \circ d_\theta$ satisfies the conditions of an extended *b*-metric as follows:

 $(d_{\theta}1)$ Since ψ is amenable, for all $x, y \in X$, we have

$$\psi \circ d_{\theta}(x, y) = 0 \Longleftrightarrow \psi (d_{\theta}(x, y)) = 0 \Longleftrightarrow d_{\theta}(x, y) = 0 \Longleftrightarrow x = y.$$

 $(d_{\theta}2)$ For all $x, y \in X$, we get

$$\psi \circ d_{\theta}(x, y) = \psi \left(d_{\theta}(x, y) \right) = \psi \left(d_{\theta}(y, x) \right) = \psi \circ d_{\theta}(y, x).$$

 $(d_{\theta}3)$ Since ψ is quasi-subadditive, there exists $s \ge 1$ such that

(3.5)
$$\psi(u+v) \leqslant s \left[\psi(u) + \psi(v)\right],$$

for all $u, v \in [0, \infty)$. Since d_{θ} is an extended *b*-metric, by hypothesis, there exists a bounded function θ_1 such that

$$d_{\theta}(x, y) \leqslant \theta_1(x, y) \left[d_{\theta}(x, z) + d_{\theta}(z, y) \right],$$

for all $x, y, z \in X$. Let

$$n_1 = \sup \left\{ \theta_1 \left(x, y \right) : x, y \in X \right\}.$$

Then, there exists $m \in \mathbb{N}$ such that $m > n_1$ and

(3.6) $d_{\theta}(x,y) \leqslant m \left[d_{\theta}(x,z) + d_{\theta}(z,y) \right].$

Since $\psi \in \mathcal{ME}_b$, by Theorem 3.2 and hypothesis, there exists a bounded function θ_2 such that

$$(\psi(u),\psi(v),\psi(w)) \in \Delta_{\theta_2}$$

for each $(u, v, w) \in \Delta$. Let

$$n_2 = \sup \left\{ \theta_2 \left(x, y \right) : x, y \in X \right\}$$

and

$$n = 2n_2 m s^m.$$

Assume that

 $u = d_{\theta}(x, y), v = d_{\theta}(x, z) \text{ and } w = d_{\theta}(z, y),$

for all $u, v, w \in X$. From the inequality (3.6), we have

$$u \leqslant mv + mw$$

and so we get

$$(u, mv + mw, mv + mw) \in \Delta$$

By Theorem 3.2, we find

$$(\psi(u), \psi(mv + mw), \psi(mv + mw)) \in \Delta_{\theta_2}$$

and we obtain

(3.7)

$$\psi(u) = \psi \circ d_{\theta}(x, y) \leq \theta_{2}(x, y) [\psi(mv + mw) + \psi(mv + mw)]$$

$$= 2\theta_{2}(x, y) \psi(m(v + w))$$

$$\leq 2n_{2}\psi(m(v + w)).$$

Now, we show that

(3.8)
$$\psi(\alpha x) = \alpha s^{\alpha - 1} \psi(x),$$

for all $x \in [0, \infty)$ and $\alpha \in \mathbb{N}$. To do this, we apply mathematical induction on α . For $\alpha = 1$, it is clear that the equality (3.8) is satisfied. Let $\alpha \ge 1$ and assume that the equality (3.8) is satisfied for α . Since $\alpha \ge 1$, we have

$$\alpha s^{\alpha - 1} + 1 \leq (\alpha + 1) s^{\alpha - 1}$$

By the inequality (3.5) and the induction hypothesis, we obtain

$$\psi\left(\left(\alpha+1\right)x\right) \leqslant s\left[\psi\left(\alpha x\right)+\psi\left(x\right)\right] \leqslant s\left[\alpha s^{\alpha-1}\psi\left(x\right)+\psi\left(x\right)\right]$$
$$= s\left(\alpha s^{\alpha-1}+1\right)\psi\left(x\right) \leqslant s\left(\alpha+1\right)s^{\alpha-1}\psi\left(x\right)$$
$$= (\alpha+1)s^{\alpha}\psi\left(x\right).$$

Hence, the inequality (3.8) is satisfied. By (3.5), (3.7) and (3.8), we get

$$\begin{split} \psi \circ d_{\theta} \left(x, y \right) &\leqslant 2n_{2}\psi \left(m \left(v + w \right) \right) \leqslant 2n_{2}ms^{m-1}\psi \left(v + w \right) \\ &\leqslant 2n_{2}ms^{m-1}s \left[\psi \left(v \right) + \psi \left(w \right) \right] \\ &= 2n_{2}ms^{m} \left[\psi \left(v \right) + \psi \left(w \right) \right] \\ &= n \left[\psi \circ d_{\theta} \left(x, z \right) + \psi \circ d_{\theta} \left(z, y \right) \right]. \end{split}$$

If we take $\theta(x, y) = n$ for all $x, y \in X$, then the condition $(d_{\theta}3)$ is satisfied. Consequently, $\psi \circ d_{\theta}$ is an extended *b*-metric on *X*.

THEOREM 3.10. Let (X, d_s) be a b-metric space, (X, d_{θ}) be an extended bmetric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$. Then ψ is a b-metric-extended b-metric preserving function if and only if ψ is an extended b-metric preserving function, that is,

$$\mathcal{BE}_b = \mathcal{E}_b.$$

PROOF. We can demonstrate this readily by applying the same reasoning that were used in the Theorem 3.9 proof. $\hfill \Box$

4. Gluing lemmas for extended *b*-metric preserving functions

In this section, we prove two gluing lemmas for extended b-metric preserving functions.

THEOREM 4.1. (A gluing lemma for functions in \mathcal{E}_b and $\mathcal{M}\mathcal{E}_b$) Let (X, d) be a metric space, (X, d_θ) be an extended b-metric space with the bounded function θ and $\psi : [0, \infty) \to [0, \infty)$. Suppose that $\psi_1, \psi_2 \in \mathcal{E}_b, \varepsilon > 0$ and $\psi_1(\varepsilon) = \psi_2(\varepsilon)$. Let us define the function $\psi : [0, \infty) \to [0, \infty)$ as

$$\psi(x) = \begin{cases} \psi_1(x) & ; \quad x \in [0, \varepsilon) \\ \psi_2(x) & ; \quad x \in [\varepsilon, \infty) \end{cases}$$

for all $x \in [0,\infty)$. Assume that ψ_1 is a concave and increasing function such that

$$|x-y| \leq \varepsilon \Longrightarrow |\psi_2(x) - \psi_2(y)| \leq \psi_1(|x-y|),$$

for all $x, y \in [\varepsilon, \infty)$. Then

$$\psi \in \mathcal{E}_b$$

PROOF. Since $\psi_1, \psi_2 \in \mathcal{E}_b$, by Theorems 3.2 and 3.9, there exist the bounded functions $\theta_1, \theta_2 : X \times X \to [1, \infty)$ such that

$$(\psi_1(a), \psi_1(b), \psi_1(c)) \in \Delta_{\theta_1}$$

and

$$(\psi_2(a), \psi_2(b), \psi_2(c)) \in \Delta_{\theta_2},$$

for all $(a,b,c) \in \Delta$. Let $(a,b,c) \in \Delta$ and the function $\theta : X \times X \to [1,\infty)$ be defined as

 $\theta(x, y) = \max \left\{ \theta_1(x, y), \theta_2(x, y) \right\},\$

for all $x, y \in X$. Keeping generality intact, suppose

$$(4.1) 0 \leqslant a \leqslant b \leqslant c \leqslant a+b$$

If $a, b, c \in [0, \varepsilon)$, then we get

$$(\psi(a),\psi(b),\psi(c)) = (\psi_1(a),\psi_1(b),\psi_1(c)) \in \Delta_{\theta_1} \subseteq \Delta_{\theta}.$$

If $a, b, c \in [\varepsilon, \infty)$, then we obtain

$$(\psi(a), \psi(b), \psi(c)) = (\psi_2(a), \psi_2(b), \psi_2(c)) \in \Delta_{\theta_2} \subseteq \Delta_{\theta}.$$

Consider the scenarios in which a, b and c do not fall inside the same interval.

Since if $c \in [0, \varepsilon)$ then by (4.1), we have $a, b \in [0, \varepsilon)$, we only investigate the following cases:

Case 1: Let $a, b \in [0, \varepsilon)$ and $c \in [\varepsilon, \infty)$. Then we have

(4.2)
$$\psi(a) = \psi_1(a) \leqslant \psi_1(b) = \psi(b) \leqslant \psi(b) + \psi(c) \leqslant \theta(x, y) (\psi(b) + \psi(c))$$

Since

$$|\varepsilon - c| = c - \varepsilon \leqslant a + b - \varepsilon < \varepsilon + \varepsilon - \varepsilon,$$

we get

$$\left|\psi_{1}\left(\varepsilon\right)-\psi_{2}\left(c\right)\right|=\left|\psi_{2}\left(\varepsilon\right)-\psi_{2}\left(c\right)\right|\leqslant\psi_{1}\left(\left|\varepsilon-c\right|\right)=\psi_{1}\left(c-\varepsilon\right).$$

Then we find

(4.3)
$$-\psi_1 \left(c - \varepsilon \right) \leqslant \psi_1 \left(\varepsilon \right) - \psi_2 \left(c \right) \leqslant \psi_1 \left(c - \varepsilon \right)$$
 and

$$\psi_1(\varepsilon) - \psi_1(c - \varepsilon) \leqslant \psi_2(c) \,.$$

Since

$$c \leq a+b,$$

we have

$$c - \varepsilon \leqslant a + b - \varepsilon \leqslant a.$$

Using the increasing property of ψ_1 , we get

$$\psi_1\left(c-\varepsilon\right)\leqslant\psi_1\left(a\right)$$

and so

(4.4)

$$\psi(b) = \psi_1(b) \leqslant \psi_1(\varepsilon) \leqslant \psi_1(\varepsilon) + \psi_1(a) - \psi_1(c - \varepsilon)$$

$$= [\psi_1(\varepsilon) - \psi_1(c - \varepsilon)] + \psi_1(a)$$

$$\leqslant \psi_2(c) + \psi_1(a) = \psi(c) + \psi(a)$$

$$\leqslant \theta(x, y) [\psi(c) + \psi(a)].$$

For $t = \varepsilon$, $x = a + b - \varepsilon$, y = a and z = b, since ψ_1 is concave, we get

$$\psi_1 \left(a + b - \varepsilon \right) + \psi_1 \left(\varepsilon \right) \leqslant \psi_1 \left(a \right) + \psi_1 \left(b \right).$$

By (4.3), we obtain

$$\psi_{2}(c) \leq \psi_{1}(\varepsilon) + \psi_{1}(c - \varepsilon)$$

 $\quad \text{and} \quad$

(4.5)

$$\begin{aligned}
\psi(c) &= \psi_2(c) \leqslant \psi_1(\varepsilon) + \psi_1(c - \varepsilon) \leqslant \psi_1(\varepsilon) + \psi_1(a + b - \varepsilon) \\
&\leqslant \psi_1(a) + \psi_1(b) = \psi(a) + \psi(b) \\
&\leqslant \theta(x, y) [\psi(a) + \psi(b)].
\end{aligned}$$

Using (4.2), (4.4) and (4.5), we have

$$(\psi(a), \psi(b), \psi(c)) \in \Delta_{\theta}.$$

Case 2: Let $a \in [0, \varepsilon)$ and $b, c \in [\varepsilon, \infty)$. Since

$$(\psi_2(\varepsilon), \psi_2(b), \psi_2(c)) \in \Delta_{\theta_2},$$

we get

$$\varepsilon \leqslant b + c, \, b \leqslant c \leqslant c + \varepsilon, \, c \leqslant a + b \leqslant \varepsilon + b$$

and so

 $(\varepsilon, b, c) \in \Delta.$

Then we have

(4.6)
$$\psi(a) = \psi_1(a) \leqslant \psi_1(\varepsilon) = \psi_2(\varepsilon) \leqslant \theta_2(x, y) [\psi_2(b) + \psi_2(c)]$$
$$\leqslant \quad \theta(x, y) [\psi_2(b) + \psi_2(c)] = \theta(x, y) [\psi(b) + \psi(c)].$$

Since

$$|b-c| = c - b \leqslant \varepsilon,$$

we find

$$\begin{aligned} |\psi_2(b) - \psi_2(c)| &\leq \psi_1(|b - c|) = \psi_1(c - b), \\ -\psi_1(c - b) &\leq \psi_2(b) - \psi_2(c) \leq \psi_1(c - b), \\ \psi(b) &= \psi_2(b) \leq \psi_1(c - b) + \psi_2(c) \leq \psi_1(a) + \psi_2(c) \\ &= \psi(a) + \psi(c) \leq \theta(x, y) [\psi(a) + \psi(c)] \end{aligned}$$
(4.7)

and

(4.8)
$$\psi(c) = \psi_2(c) \leqslant \psi_1(c-b) + \psi_2(b) \leqslant \psi_1(a) + \psi_2(b) = \psi(a) + \psi(b) \leqslant \theta(x,y) [\psi(a) + \psi(b)].$$

By (4.6), (4.7) and (4.8), we get

$$(\psi(a), \psi(b), \psi(c)) \in \Delta_{\theta}$$

Under the all cases, we say

$$(\psi(a), \psi(b), \psi(c)) \in \Delta_{\theta}.$$

Consequently, by Theorems 3.2 and 3.9, we see that

 $\psi \in \mathcal{E}_b.$

THEOREM 4.2. (A gluing lemma for functions in $\mathcal{E}_b\mathcal{M}$) Let (X, d) be a metric space, (X, d_θ) be an extended b-metric space with the bounded function θ and ψ : $[0, \infty) \to [0, \infty)$. Suppose that $\psi_1, \psi_2 \in \mathcal{E}_b\mathcal{M}, \varepsilon > 0$ and $\psi_1(\varepsilon) = \psi_2(\varepsilon)$. Let us define the function $\psi: [0, \infty) \to [0, \infty)$ as

$$\psi(x) = \begin{cases} \psi_1(x) & ; & x \in [0, \varepsilon) \\ \psi_2(x) & ; & x \in [\varepsilon, \infty) \end{cases},$$

for all $x \in [0, \infty)$. Let

$$A = \sup_{x \in (0,\infty)} \psi(x)$$

and

$$B = \inf_{x \in (0,\infty)} \psi(x) \,.$$

Then we have

(4.9)
$$A = \max\left\{\sup_{x \in (0,r)} \psi_1(x), \sup_{x \in [r,\infty)} \psi_2(x)\right\},\$$

、

(4.10)
$$B = \min\left\{\inf_{x \in (0,r)} \psi_1\left(x\right), \inf_{x \in [r,\infty)} \psi_2\left(x\right)\right\}$$

,

and the followings are equivalent:

(i)
$$\psi \in \mathcal{E}_b \mathcal{M}$$
,
(ii) $A \leq 2B$,
(iii) $\sup_{x \in (0,r)} \psi_1(x) \leq 2 \inf_{x \in [r,\infty)} \psi_2(x)$ and $\sup_{x \in [r,\infty)} \psi_2(x) \leq 2 \inf_{x \in (0,r)} \psi_1(x)$.

PROOF. Using Theorem 3.8, $\sup_{x \in (0,r)} \psi_1(x)$, $\sup_{x \in [r,\infty)} \psi_2(x)$, $\inf_{x \in (0,r)} \psi_1(x)$ and $\inf_{x \in [r,\infty)} \psi_2(x)$

exist. The satisfaction of conditions (4.9) and (4.10) is evident.

By Theorem 3.8, we say that ψ is tightly bounded and amenable. So, there exists a $\upsilon>0$ such that

$$\upsilon \leqslant \psi\left(x\right) \leqslant 2\upsilon.$$

Then we get

$$v \leqslant B \leqslant A \leqslant 2v.$$

Hence

$$2B \geqslant 2\upsilon \geqslant A$$

and the condition (ii) is satisfied. On the contrary, we suppose that the second requirement is satisfied. For all $x \in (0, \infty)$, we obtain

$$B = \inf_{x \in (0,\infty)} \psi(x) \leqslant \psi(x) \leqslant \sup_{x \in (0,\infty)} \psi(x) = A + 2B.$$

Then we see that ψ is tightly bounded. By Theorem 3.8, since $\psi_1, \psi_2 \in \mathcal{E}_b \mathcal{M}$, the functions ψ_1 and ψ_2 are amenable. So ψ is amenable. Again using Theorem 3.8, we say $\psi \in \mathcal{E}_b \mathcal{M}$. Then the conditions (i) and (ii) are equivalent.

We now assume that the second condition (ii) holds true. We obtain

$$\sup_{x \in (0,r)} \psi_1(x) \leqslant \max \left\{ \sup_{x \in (0,r)} \psi_1(x), \sup_{x \in [r,\infty)} \psi_2(x) \right\}$$
$$= A \leqslant 2B$$
$$= 2\min \left\{ \inf_{x \in (0,r)} \psi_1(x), \inf_{x \in [r,\infty)} \psi_2(x) \right\}$$
$$\leqslant 2\inf_{x \in [r,\infty)} \psi_2(x)$$

and

$$\sup_{x \in [r,\infty)} \psi_2(x) \leqslant A \leqslant 2B \leqslant 2 \inf_{x \in (0,r)} \psi_1(x) \,.$$

Thus, the requirement (iii) is met. Now, we consider the following cases for the converse statement:

Case 1: We have

$$\sup_{x \in (0,r)} \psi_1\left(x\right) \ge \sup_{x \in [r,\infty)} \psi_2\left(x\right)$$

and so

$$A = \sup_{x \in (0,r)} \psi_1\left(x\right).$$

Since $\psi_1 \in \mathcal{E}_b \mathcal{M}$, utilizing the comparable justifications provided in the proof of $(i) \Longrightarrow (ii)$, we get

$$\sup_{x \in (0,r)} \psi_1(x) \leq 2 \inf_{x \in (0,r)} \psi_1(x)$$

and by (iii), we have

$$\sup_{x\in(0,r)}\psi_{1}\left(x\right)\leqslant2\inf_{x\in[r,\infty)}\psi_{2}\left(x\right).$$

Therefore, we acquire

$$A \leq \min \left\{ 2 \inf_{x \in (0,r)} \psi_1(x), 2 \inf_{x \in [r,\infty)} \psi_2(x) \right\} \\ = 2 \min \left\{ \inf_{x \in (0,r)} \psi_1(x), \inf_{x \in [r,\infty)} \psi_2(x) \right\} = 2B.$$

Case 2: Here, we have

$$\sup_{x \in (0,r)} \psi_1\left(x\right) < \sup_{x \in [r,\infty)} \psi_2\left(x\right)$$

and

$$A = \sup_{x \in [r,\infty)} \psi_2(x) \,.$$

Since $\psi_2 \in \mathcal{E}_b \mathcal{M}$, we obtain

$$\sup_{x \in [r,\infty)} \psi_2(x) \leq 2 \inf_{x \in [r,\infty)} \psi_2(x)$$

From (iii), we get

$$\sup_{x \in [r,\infty)} \psi_2(x) \leqslant 2 \inf_{x \in (0,r)} \psi_1(x) \, .$$

Under the all cases, we show $A \leq 2B$.

5. Acknowledgment

This work is supported by the Scientific Research Projects Unit of Balıkesir University under the project number 2023/031.

References

- I. A. Bakhtin, The contraction mapping principle in almost metric spaces. Functional Analysis, 30 (1989), 26-37.
- [2] V. Berinde, Generalized contractions in quasi metric spaces. In Seminar on Fixed Point Theory; Babes-Bolyai University: Cluj-Napoca, Romania, (1993), 3-9.
- [3] J. Borsik and J. Dobos, Functions whose composition with every metric is a metric. Mathematica Slovaca, 31 (1981), 3-12.
- [4] J. Borsik and J. Dobos, On metric preserving functions. Real Analysis Exchange, 13 (1987-88), 285-293.
- [5] P. Corazza, Introduction to metric-preserving functions. The American Mathematical Monthly, 106 (4) (1999), 309-323.
- [6] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces. Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia, 46 (1998), 263-276.
- [7] M. Dhanraj, A. J. Gnanaprakasam, G. Mani, Ö. Ege, and M. De la Sen, Solution to integral equation in an O-Complete branciari b-metric spaces. Axioms, 11 (2022) 728.

84

85

- [8] J. Dobos, Metric preserving functions. Online Lecture Notes available at http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/03/mpf1.pdf
- [9] A. J. Gnanaprakasam, S. K. Prakasam, G. Mani, and O. Ege, Fixed point results via O-F_ρ contraction and applications to Fredholm and integro-differential equations. Filomat, 38 (29) (2024), 10323-10344.
- [10] J. Heinonen, Lectures on analysis on metric spaces. Springer: Berlin, Germany, (2001).
- [11] H. Huang, Y. M. Singh, M. S. Khan, and S. Radenovic, Rational type contractions in extended b-metric spaces. Symmetry 13 (2021), 614.
- [12] T. Kamran, M. Samreen, and Q. U. Ain, A generalization of b-metric space and some fixed point theorems. *Mathematics* 5 (2017), 19.
- [13] T. Khemaratchatakumthorn and P. Pongsriiam, Remarks on b-metric and metric-preserving functions. Mathematica Slovaca, 68 (5) (2018), 1009-1016.
- [14] T. Khemaratchatakumthorn, P. Pongsriiam, and S. Samphavat, Further remarks on b-metrics, metric-preserving functions, and other related metrics. *International Journal of Mathematics* and Computer Science, 14 (2) (2019), 473-480.
- [15] T. Khemaratchatakumthorn and D. Siriwan, Pasting lemmas for b-metric preserving and related functions. International Journal of Mathematics and Computer Science, 16 (4) (2021), 1591-1598.
- [16] G. Mani, A. J. Gnanaprakasam, Ö. Ege, N. Fatima, and N. Mlaiki, Solution of Fredholm integral equation via common fixed point theorem on bicomplex valued b-metric space. *Sym*metry, 15 (2) (2023), 297.
- [17] R. Martinez-Cruz and E. Hernandez-Pina, Extended b-metric-preserving functions and other related metrics. Publicacion Semestral Padi, 9 (18) (2022), 47-55.
- [18] A. Petruşel, I. A. Rus, and M. A. Şerban, The role of equivalent metrics in fixed point theory. *Topological Methods in Nonlinear Analysis*, 41 (2013), 85-112.
- [19] S. K. Prakasam, A. J. Gnanaprakasam, Ö. Ege, G. Mani, S. Haque, and N. Mlaiki, Fixed point for an Ogg-c in O-complete b-metric-like spaces. AIMS Mathematics, 8 (1) (2023), 1022-1039.
- [20] P. Pongsriiam and I. Termwuttipong, On metric-preserving functions and fixed point theorems. Fixed Point Theory and Applications, 179 (2014), 14.
- [21] W. Shatanawi, K. Abodayeh, and A. Mukheimer, Some fixed point theorems in extended b-metric spaces. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 80 (4) (2018), 71-78.
- [22] W. A. Wilson, On certain types of continuous transformations of metric spaces. American Journal of Mathematics, 57 (1935), 62-68.

Received by editors 7.2.2025; Revised version 5.3.2025; Available online 31.5.2025.

NIHAL TAŞ, BALIKESIR UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10145 BALIKESIR, TURKEY

Email address: nihaltas@balikesir.edu.tr

Ayşenur ŞEN, Balikesir University, Department of Mathematics, 10145 Balikesir, Turkey

Email address: ayseenursenn@gmail.com