JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4866, ISSN (0) 2303-4947
www.imvibl.org /JOURNALS/JOURNAL
J. Int. Math. Virtual Inst., 15(1)(2025), 103-119

DOI: 10.7251/JIMVI2501103A

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA
ISSN 0354-5792 (o), ISSN 1986-521X (p)

INVERSE PROBLEMS FOR DIRAC EQUATIONS WITH
A FINITE NUMBER OF TRANSMISSION CONDITIONS
DEPENDING HERGLOTZ-NEVANLINNA TYPE
FUNCTIONS

Merve Arslantas and Yalcgin Giildii

ABSTRACT. In this study, direct and inverse spectral problem is studied for
the system of Dirac equations with rational function of Herglotz-Nevanlinna
in boundary and transmission conditions. We give some spectral properties of
the problem and also show that the coefficients of the problem are uniquely
determined by the Weyl function and classical spectral data consisting of the
sequence of two different eigenvalues.

1. Introduction

In this work we consider the system of Dirac equation

(L.1) ty(z) = By'(z) + Qz)y(z) = My(z), 2 € [a,b]
_( 01 _( plx) q(x) _( n)
where B = ( 10 ) , Qz) = < o(z) r(z) ) ,y(x) = ( v () ) , real valued

functions p(z), ¢(z) and 7 (x) are considered within the space Ls(a,b), and X is
identified as the spectral parameter.

We denote by L the boundary value problem generated by equation (1.1) with
the following boundary and discontinuity conditions

(1.2) Uly) == ya(a) + fr(Nyi(a) =0
(1.3) V(y) == y2(b) + f2(A)y1(b) =0
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104 ARSLANTAS AND GULDU

(1.4) { y1(wi +0) — iyr(wi —0) =0

y2(w; +0) — a; 'ya(w; — 0) — hy (A) y1(w; —0) =0

where f1 (A), fa(A\) and h;(X) (i = 1,2,...,n) are Herglotz-Nevanlinna type func-
tions such that

N;
(1.5) SO =ah b -3 (219
k=1 A= G
Pi Uik
1. . = : ; — ¢ =1,2,.
( 6) hl ()\) ml)\—&-m ;)\*’Uﬁc’ (Z ) 4y an)

aj, bj, fiks ik, M, M, wip and vy, are real numbers, a1 < 0, fix < 0, az > 0,
f2k > 0, gi1 < gj2 < ... <ngj, m; >0, uip >0, , vi1 < v < ... < Vip,;, O ER+,
a<w <wsg<--- < wy, <b. Inspecial case, when f;(\) = oo, conditions (1.2) and
(1.3) turn to Dirichlet conditions y1(a) = y1(b) = 0 respectively. Moreover, when
h;i(X) = oo, conditions (1.4) turn to y1(w; +0) = y1(w; —0) =0,i=1,2,...,n.
Ri(N)y1(a) + R2(N)yz(a) = 0 is a boundary condition depending spectral pa-
rameter where R;(\) and Ra(\) are polynomials(In the specific case where f;()\) =
00, conditions (1.2) and (1.3) reduce to Dirichlet boundary conditions y;(a) =
y1(b) = 0 respectively. Similarly, if h;(\) = oo, the conditions (1.4) transform
into y1(w; +0) = y1(w; —0) = 0, ¢ = 1,2,...,n. The boundary condition
Ri(MN)y1(a) + R2(A)yz(a) = 0 depends on the spectral parameter, where R ()
and R2(A) are polynomials. If the degrees of R;(\) and Ra()\) are both 1, then this
condition is linearly dependent on the spectral parameter. Conversely, analyzing

higher-degree polynomials Rq () and R2(\) presents more difficulties. When g;gg

N
is a rational function of Herglotz—Nevanlinna type, with f (A\) =a\+b— > %
k=1 k

in boundary conditions, both direct and inverse problems for the Sturm-Liouville
operator have been explored. This paper addresses both the direct and inverse spec-
tral problems for systems of Dirac equations, focusing on cases where the boundary
and transmission conditions involve a rational function of Herglotz—Nevanlinna.

Eigenvalue-dependent boundary conditions are a common feature in spectral
problems encountered across various application areas and mathematical contexts.
In 1973, Walter [22] initially focused on an expansion theorem related to this type of
eigenvalue problem. In 1977, Fulton explored the Sturm-Liouville eigenvalue prob-
lem as well. Various papers have discussed inverse problems for certain differential
operators that are linearly dependent on eigenvalues (see [1,2,8,12,14]). A wider
variety of boundary conditions is presented in references [3-5,9,10, 15, 18-21].
On another note, when f(\) takes the form of a rational function of Herglotz—
Nevanlinna type, the direct and inverse spectral problems for the Sturm—Liouville
operator were analyzed in [6,7,16,17]. In the work referenced as [13], the direct
and inverse spectral problems for the Dirac operator have been analyzed in the
context of f (\) being a rational function of Herglotz—Nevanlinna type.
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This study aims to present uniqueness theorems for the Dirac problem outlined
above, specifically when dealing with eigenvalue-dependent rational functions of
the Herglotz—Nevanlinna type, relevant to both boundary conditions and a finite
number of transmission conditions. We focus on the inverse problem related to
the reconstruction of the discussed boundary value problem by utilizing the Weyl
function and the spectral data {A,, i}, ;- Despite the fact that the boundary
and transmission conditions are not linearly dependent on the spectral parameter,
this situation allows for the eigenvalues to be real and normalizing numbers to be
defined.

2. Preliminaries

Let’s consider the space

H := Ly(a,b) ® Ly(a,b) & CM1+t g CN2tl ¢ C1 T @ CP2tl ¢ ... @ CPm T
and element Y in H is in the form Y = (y(x),v, 7, w1, we,...,w,) € H, where
y(l’) = (yl( ) yQ( ))a v = (Y17Y27"'7YN1+1)7 T = (W17W2a"'7WN2+1)a Wi =
(R R, RO,
uct defined by

) ,(1=1,2,...,n). H is a Hilbert space with the inner prod-

b

Yn, 12 W W
(Y, Z) ::/(ylfl + YoZa) dx — Nitlony+1 | W Na 1 W Np 41

ai az

n Ny
(2.1) + Z ai R“HRP . Z YiZh (J;)
+ZWka< >+ZZR(1)RZ)5;

i=1 k=1
for Y = (y(z), v, 7,wr,wa, ..., wy,) and Z = (z(x),v, 7/, wi,w}, ..., w).
Define an operator T with the domain

D(T)={Y € H: y(z) = (yl( 7) > € AC[a,b], ly € La(a,b),

y2(z)
y1(w; +0) —ayy1(w; —0) =0, (i =1,2,...,n)}
such that
(2.2) TY = (ly, Tv, T7,Twy, Tws,...,Tw,)
where
gli}/;_fliyl(a)a i:1127"'7N1

Ny
ya(a) +biyr (@) + > Y, i=Ni+1
k=1

92iWi — faiy1 (b)), i=1,2,..., N,

(2.4) Tr=TW; N2 )
yg(b)+b2y1 (b)+ Z Wk, Z:N2+1
k=1
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Tw, = TR
(25) UlkR](Cl) — WikY1 (UJ;) ) k= 1,2,... yP1

P1
—ya(wi) + a7 tye(wr) g (W) + LR, k=pi+1
=1

Tw, = TR
(2.6) U%Rz(f) — gy (W3 ) k=1,2,...,p2

P2
—yo(wi) + agtya(wy) + napn (w3) + X R, k=py+1
=1

Tw, = TR\
(2.7) vk Ry — oy (wy). k=1,2,...,pn
= Pn
—yo(w) + ap ya(wy) g (W) + 2 R, k=p,+1
=1

Accordingly, equality TY = AY corresponds to problem (1.1) — (1.4) under the
domain D(T') C H. The following theorem could be proved by using definition of
T.

THEOREM 2.1. The eigenvalue problem of operator T is adequate problem of
(1.1) — (1.4), i.e., eigenvalues of operator T and problem (1.1) — (1.4) coincide.

PROOF. Assume that A is an eigenvalue of T and
Y = (y(x),v, 7, wi,wa,...,w,) € H is the eigenvector corresponding to A. Since
Y € D(T), it is obvious that the condition y;(w; + 0) — a;y1(w; — 0) = 0 and
equation (1.1) hold. On the other hand, boundary conditions (1.2) — (1.3) and the
second condition of (1.4) are satisfied by the following equalities;

Tv=TY; = g1.Y; — fuiy1 (@) = \Y;, i=1,2,..., Ny,

Ny
TYN, 41 = y2(a) + biya (@) + D Y = —a1y1 (@) A,
k=1

TT=TW; = g2iW; — fasy1 (b)) = AW, i=1,2,..., Ny,
N2
TWh,41 = y2(b) + bay1 (b) + D Wi = —agy: (b) A,
k=1
Tw, = TR,(:) = vlkR,(cl) — U1kY1 (wl_) , k=1,2,...,p1,
TEY.  — o (wt —1, (- SRR Ol IO N =\
o1l = —Y2(wi) + oy ye(wy) +may (wr) + ngl = —mayr (wr) A,
T’LU2 = TRI(CQ) = UQkRI(CQ) — U2rY1 (wg) 5 k= ].7 2, vy P2,

b2
— — — 2 —
patl = —y2(wF) + a3 Y2 (wy) + noy (wy)+ 2 R;(g) = —maoy1 (w3 ) A,
k=1
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Twy = TR](Cn) = ’UnkR](Cn) — UnkY1 (w;) ) k= 1,2, .. pn,

Pn
TR, = —yo(wi) + aiya(wy) + nayr (W) + 35 B = —mays (i) A,
k=1

FAN=ygjx (j =1,2and k = 1,2,...,N;) are eigenvalues of operator T,
then, from above equalities and the domain of T, equalities (1.1), y1(a, g1x) = 0,
y1(b, gor) = 0 and (1.4) are satisfied.

Moreover, if A = vy (i =1,2and k = 1,2, ..., p;) are eigenvalues of operator T,
from above equalities and the domain of T', equations (1.1) —(1.3) and y1 (w; , vik) =
+

0 = y1(w;", vi) are valid. In that case, A is also an eigenvalue of L.

Conversely, let A be an eigenvalue of L and < zl Ei’ i; > be an eigenfunction
2 )
corresponding to A. If X\ # g;x and X\ # vy then, it is clear that A\ is an eigenvalue
of T" and the vector

Y = (1 @),92 (@), 525 01(0), 525w (@), 522500 (@)~ (a),
Ty (0), S50 0), S (b), —aays ()

sy (@) sy (W), By (wr) —mayn (i)
ey (wy ) 2y Wy ) sy (wy ) —man (wy )

Sy () 52 @), sy ()~ (7))

is the eigenvector corresponding to A.
If A = g1, then

Y = (y1($)7y2(x)aY17}/27 e 7YN1707W1aW2; .. -aWNza WN2+17

1 1 1 2 2 2 n n n
R§>,R§),...,R;IL1,R§),Rg),...,Rz(,?Ll,...,Rg>,R§),...7R;n>+1),
0, i1#k
Y; = ,# Li=1,2,..., N
—ya2(a), i=k
is the eigenvector of T' corresponding to gi.
If A = gok, then
Y:(yl(x)va(x)aylv}/Qw"7YN17YN1+17W17W27~~~7WN2707
1 1 1 2 2 2
Rg>,Rg>,...,R;3H,Rg>,Rg),...,R;ZLD...,Rgm,Rg”L...,R;?H),
0, ik
W, = ,7& Li=1,2,..., Ny
—y2(b), 1=k

is the eigenvector of T' corresponding to go.
Furthermore, if A = vy, then

Y = (yl(x)7y2($)3Y17}/Q7 s 7YN17YN1+17W17W27 ceey WNza WN2+17

1 1 1 2 2 2 n n n
RV RY, . RW,0,RP.RP. ... R, ... R Ry >,...,R§,n>+1),
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RO R,
y(wf) —ary(wr), i=k
is the eigenvector of T' corresponding to vyy.

If A\ = v, then

Y = (yl(x)va(x)a Yh}/Qa cee 7YN1,YN1+17 Wla WQa teey WN23 WNz—i—la
R, R, ... RW. RV, RV RV, RS RV

P12 tp1+10
2 2 2 n n n
RELRD, LRG0, RIREY, R ),
0, i £k
R® = o ,# i=1,2,...,pn
Ya(wy ) —ag y2(wy), i=k

is the eigenvector of T' corresponding to vay.
If it continues like this, A\ = v,, then

Y= (yl(x)va(x)aYh}/Qa"' YNUYN1+1>W17W2’~-~7WN23WN2+17
1 1 1 1 2 2 2
RV, R, .. RY.RY RP RY...RY. R, R, .. R,E’,?,o)

(n) _ 07 7: # k .
Ri - + —1 _ . 72_1723"'7pn
y2(wn)_an y2(wn)7 i=k
is the eigenvector of T' corresponding to v,- O

It is possible to write f;(\) (j = 1,2) as follows:
fi(A) = Z;(f\% fa(N) = 2283, where

N1 Nl Nl
ar(\) = (@A +b1) [T A=gu) = 22 II fie (A —g1x)s
k=1 k=1 j=1(j#k)

Ny
a2(/\) = kl;ll ()\ - glk) )

N2 N2 N2
bi(A) = (a2A +b2) [T A —g2x) — 2= II  far (A — g21)s
k=1 k=1j=1(j#k)

Ny
ba(A) = IT (A —gax) .-
k=1
Assume that b1 (\) and by(A) do not have common zeros.
Let the functions p(z,A\) = p;(x,\) = (goil(:v,/\),%g(:c,)\))T and ¥(z,\) =

Yvi(x, N) = (Q/Jil(x,/\),wig(x,)\))T, x € (wi,wit1), (1=0,1,...,n) be solutions of
equation (1.1) satisfying the initial conditions

e (-
T e ()-G)
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and the transmission conditions (1.4) such that ¢(z,A) = ;(z,A), v; < x <
wir1, (1 = 0,1,...,n), ¥(z,\) = Yi(x, ), w; < x < wir1,(i =n,n—1,...,1)
where wy = a, wy4+1 = .

Then it can be easily proven that ¢(z, A) and ¥ (z, A) are the solutions of the
following integral equations:

fori=1,2,...,n
i (x, N) = aipi—1,1(wi, A) cos A (z — w;)
— (a7 i 12(Wi A) + hi () @im11(wi, V) sind (2 — w;)

+f[p t)sin X (x —t) + q(t) cos A (z — t)] i1 (t, \)dt

—|—f t)sin A (x —t) +r(t) cos A (z — t)] pia(t, N)dt,

@i2(,\) = aipi—1,1(wi, A) sin A (z — w;)
+ (07 gim12(win A) + i (A) 9511 (wi, V) cos A (& — w;)

xT

+ [ [=p(t)cos A (x —t) + q(t) sin A (z — t)] i1 (¢, \)dt

+ f (t)cos A (x —t) + r(t)sin A (z — t)] pia(t, N)dt,
forz:n,n—l,...,l;

Vit (2, 0) = a; "hir 1 (wi, A) cos A (w; — )
+(itit12(wis A) = hi (A) Yig11(wi, A)) sin Api—y (wi — )

,pr t)sin X (x —t) + q(t) cos A (z — t)] i1 (¢, \)dt

- f t)sin X (x —t) +r(t) cos A (z — t)] wia(t, \)dt,

1/%2(96, /\) = *a;1¢¢+1,1(w¢, )\) sin A ( :E)
+ (ithiz1,2(wis A) — hi (A) Pig1,1(wi, X)) cos A (w; — )

+ f [p(t) cos A (z —t) — q(t)sin X (x — t)] 1 (¢, N)dt
+ f Yeos A (z —t) — r(t)sin A (x — t)] ia(t, A)dt

LEMMA 2.1. 30(1', )‘) = (@il(ﬂ?, )‘)7 4101'2(1‘7 A))T » T € (wivwi-‘rl) ’ (7' =0,1,..., Tl)
are entire functions in A and the following asymptotic relations are true for these
solutions as |\| — oo.

wo1(z,\) = —ar AN sin M@ — a) + oAV exp | ImA| (x — a)),
wo2(z,\) = a; A\M T cos Az — a) + o AN T exp [ ImA| (x — a) po),
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o11(2, A) = m,a; XN P+ 25in A (wy — a)sin A (z — wy)
+o( AN P12 exp | ImA| (w1 — a) + (z — wy)),
©12(x, A)=—m, a; AN P12 5in \(w; — a) cosA(z—w; )

+o(AN1HP1+2 exp | ImA| (w1 —a) + (z—w1)),

1 (2, A) = (=1)" T g AN TP P2t A pn (H mi) sin AMwy—a) sin A (z — wy) x
i=1

I1 sin A (w; — w;—1)+o(AN1HPitpetetpatntl oxn | ImA| (b — wy, )+ (wi — wi1)),
i=2 =1

2

Ona(x, ) = (=1)" g AN1HPitp2teApatnitl (H mi) sin A(wy — a) cos A (z — wy) X
i=1

n

n
T sin A (w; — w;i—1)+o(AN1#PiFPetetpatntl o | ImA| (b — wp)+ Y. (Wi — wi1)),
i=2

i=1

where A=mri+ro+--- 41, .
LEMMA 2.2. ¢(£’A) = (wil(x7A)7wi2('ra A))Ta YRS (wiawi-‘rl)a (7' = Oa 17' . 'an)

are entire functions in A and the following asymptotic relations are true for these
solutions as |\| — oo.

Yo1(z, A) = (=1)" agAN2FPitpateFpatntl (H mi) sin \(z — wy)sin A (b — wy,) X

i=1

n n
T sin A (w; — w;—1)+o(AN2tPitpettpatntl oxp | Im\| (2 — wi)+ Y. (Wi — wi1)),
=2 i=1

Po2(z,A) = (=1)" agAN2FPitpete Apatntl (H mi) sin A(b — wy) cos A (z — wy) X

i=1

n n
[T sin A (w; — w;—1)+o(ANetPrtpatetpatntl oy | ImA| ((x — wi1)+ Y (wi — wi1)),
i=2 1=1

Yp-11(x, ) = —m ax\V2 P2 5in A\(b — w,,) sin A (w,, — z)
oA+ xp [T (b — wn) + (wn — ),
Yp_12(x, ) = —m ag AN P+ 2gin A\(b — w,,) cos A (w, — )

Fo(NNe++2 exp [TmA| (b — ) + (0 — 7)),
Y1 (z,N) = axAM2 T sin \(b — 2) + o(AN2H exp [ Im)| (b — 2)),
Yo (2, N) = ax A2 cos A(b — z) + o(AN2H exp [ ImA| (b — z)).
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On the other hand, the Wronskian of the functions ¢(z, A) and ¢ (x, A) is defined
by w W’ QO] = A(A) = ¢1 (.I‘, A)¢2($7 )‘) —¥1 (.’13, A)¢2($a A) Since

OA(N)
or

= (@, M) 2 (2, 2) + b1 (2, A) @ (2, )

=5 (@, ) o1 (@, A) — 2 (2,A) 91 (7, )

= [g(@)n (2, 2) + r(@)s (@, ) = Mba (2, V)] 2 (, A)
+[=p(@)er (2, 3) = g(@)ps (2, A) + Aor (2, )] ¥ (2,0)

= [=p(2)1 (2, A) — q(@)h2 (2, A) + A (2, A)] @1 (2, A)
—[g(@)p1 (2, X) + (@) (2,A) = Aps (2, V)] W2 (2,A) = 0
and

Aw; +0) =1y (w; +0,A) v2 (w~+ 0, ) — 2 (w; + 0, A) 1 (w; + 0, \)
= aghr (wi = 0,A) [ "2 (wi = 0,A) + hi (A) o1 (wi — 0, A)]
= [a; M2 (Wi = 0,A) + hi (N) 91 (i = 0,N)] aieon (wi =0, )
=1 (wi = 0,1) 2 (wi — 0,%) = ¢ha (Wi = 0, ) 1 (i = 0, 1)
= Aw; — 0).

W [, ¢] does not depend on x and ¢(x, ), ¥(x, A) are linearly independent iff
W [, @] # 0. The characteristic function of the problem (1.1) — (1.4) is defined as
following:

AA) = 1(b, A)p2(b, A) — P2(b, N1 (b, A)
= Y1(a, N)pz2(a, A) — t2(a, N1 (a, A)
= —ba (A) p2(b,A) — b1 (A) @1(b, )
= a1 (N) ¥1(a,A) + a2 (A) P2(a, A).

A()) is analytic function in A and it’s zeros are precisely eigenvalues of the
problem L. Numbers {ay}, ., are called the normalizing constant of the problem



112 ARSLANTAS AND GULDU

(1.1) — (1.4) such that
b
an o=l = [ (AR s

_(arpi(a, M) (—arpi(a, An))
ay
L (Fae b, )\n)()l(—azw(ba An))

—mip1(w; M) ((—mapr (Wi, An)))

. ?( ) (R
§
RS )(‘fizwi$;3”>>f;
L < ) R
b

= / (03 + ¢3) dz — @3 (a, An) f1 (An)

a

+¢1 (0, An) )+ Z ;¢ (w ()‘n) ‘

LEMMA 2.3. The following equality holds for each eigenvalue A\,
A (An) = 7Bnan7
where {Bn},cy 15 the sequence that provides the equation ¥(x, \,) = Bnp(x, Ap).

PROOF. Since
P3(2, An) + p(2)p1 (2, An) + q(@)p2(, M) = Anpr(w, An),
Ua(@, ) + p(@)r (2, A) + q(@)a(z,A) = My(@,N)
and
—@1(x: An) + (@)1 (2, An) + (@) p2(2, M) = Anpa(z,An)
— (2, 0) + g(@) 1 (2, A) + r(@)a(e,A) = Mo(a,A)

we obtain
P, An)a (@, X) = pa (@, M) (2, A) (150 + 192+ 4+ [2,)
b

— (=) / (o1 (2, A )01 (2, A) — (2, A )i (a2, V)]

a
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After adding and subtracting A(XA) on the left hand side of last equality and
by using (1.2) — (1.4) we can obtain

b

/ (o1& An)ths (2, 3) — 2, An)ia (2, V)] e

a

+ Z aithr(wy s A1 (w;, An) (hi (A) = hi (An))

—p1(a, An)Y1(a, A) (fr (A) = f1 (An))
+¢1(b, An) b1 (b, ) (f2 () — f2 (An))
+f2 (An) ¥1(b, N)p1(b, M)
—az(An)2(a, A) — az(An)
+as(N)ha(a, N) + as(N) f1 (A) ¥1(a, M)

AN A M)
A=A

+
<
=

=
=
S

)

—
S
>
N

For A = A\, A (An) = —Bnay, is obtained by using the equalities ¥ (z, A\,,) =
Brp(z, Ay) and (2.1). O

It can easily be seen from the above lemma that the eigenvalues of the problem
L are simple.

3. Inverse problem

From the asymptotic formulas of p(z, A) and 1 (x, \), the following asymptotic
formulas hold as |\| = oo :

n
AN) = (=1)" agag AN N2 tP1FP2t Apatnt2 (H ml> sin A(wy — a)sin A (b — wy,)

i=1

X Hsm)\( —wi—1)
1=2

_|_0(/\N1+N2+p1+p2+...+Pn+n+2 exp |Im)\| ((b—wy,) + Z (wi —wi_1)).

Let 6 > 0 be sufficiently small and fixed. Denote
Gs={A:|]A=A)| =6, n=0,41,4+2,...}.

IAN)| = Cy [NV N2 tPrtpet At 2 o0 171 b, A € Gy, A = A

for sufficiently large A* = A\* (9) .

_ oy (:,C, >‘)

Let @ (z,\) = < s (. \)

11(®) = 1, lo(®) = 0 and transmission conditions (1.4). Denote W [p, ®] as the
Wronskian of ¢ (2, ) and ® (z, \).

) be solution of equation (1.1) under the conditions
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The Wronskian W [p, ®] does not depend on x. Taking x = a we get
Wip,®]|,—, =®1(a;A)P2(a,\) —p2(a, ) P1(a,))
= —asg ()\) <I>2 (a, )\) — ax ()\) (I)l (CL, )\)

= —Aas ()\) (1 “+ a1 ()\) q)l (a, )\)) aq ()\) cI)l (a, )\) =1.

-1
az (A)
Thus,
Wlp, @ = 1.
Since lo(®) = l2(¥) = 0, we may suppose ® (x,A) = k¥ (z, ), where k is a
constant independent of x. By the relation I (®) = 1, we obtain

klai (A) W1 (a,A) +az (A) U2 (a, A)] =1

In view of
A ()\) = —ll(\I/) = —ai ()\) \Ifl (a, )\) — as ()\) \1/2 (a, )\) = —=
we get @ (xz,\) = — A( T ie. @; (z,\) = _Fi@) (1=1,2) for A # A,.
Let S (z,\) ( ) and C(z,\) = ( g; Ei:i; ) be solutions of

(1.1) satify the conditions S(a,A) = ( (1)
conditions (1.4).

Denote

) , C(a,\) = ( (1) > and transmission

Z(2.3) = 55 (S 0.0) + M (o 2.).

Let us show that Z (z,A) = @ (z, A). Indeed

210 0) = 5 (51 (@ 0) + M (Vo1 (a.0) = =M ()
Z(a.) = 5 (S2(a ) + M (V) g (0.3)
1
= oy LM a ()

and consequently
hWZ =as ()\) Zo (a, )\) + aq ()\) A (CL, )\)

=az (A) (52 (a,A) + M (A) 2 (a,A)) —MNa (M) =1

b

ag (/\)
Thus, the functions Z (z,\) and @ (z, \) satisfy equation (1.1) and Z(a,\) =

¢ (a, A), hence

b

az (A)
The function ® (z, A) is called Weyl solution and the function M (A) = @4 (a, \)

is called Weyl function. The functions Z(x,\) and ® (x, \) satisfy equation (1.1)

D (z,\) = (S (z,A) + @1 (a, A) @ (z,N)).
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and Z; (a,A) = @1 (a,A), Z2(a,\) = P (a,N) for all z € [a,w). Moreover, for w;
(1=1,2,...,n) and for z € [a,}]

Z (wi + 0, )\) =w; 0 (wi -0, )\) =o;P (wi -0, )\) =P, (wi + 0, )\) R
Zo (Wi +0,0) = a; Zy(w; —0,\) — hi (\) Zy (w; —0,\)
= 0; 'y (wi — 0,) = hi (A) @1 (w; — 0, A) = g (w; +0,A).

We get Z (x,\) = ® (x,\). Hence

®(x, ) = (S (2, A) + M (M) @ (2,)) -

as ()\)

In this section, we investigate the inverse problem of the reconstruction of a
boundary value problem L from the Weyl function and two different eigenvalues
sequences.

Let us consider the boundary value problem

(Y (2)]:=BY"(z) + Q)Y (z) = \Y (2), z € [a,b],

hy @ =

ya(a) + fi(\)y1(a) = 0,
by : =)+ L(Nun(b) =0,
Ly @ =yi(wi+0) — &y (w; —0) =0,
Ly : =yalwi +0) — & ‘ya(w; — 0) — by (\) g1 (w; — 0) = 0.

~ ~ ~ o~ ~ ﬁ(:c) q(:v) ) ) .
L = L(Q, f; () ,w;, a;, h; (X)), where Q(z) = Z . It is assumed in
what follows that if a certain symbol s denotes an object related to the problem L

then s denotes the coresponding object related to the problem L.

THEOREM 3.1. The boundary value problem L is uniquely detemined bgj the
Weyl function, i.e., if M(A) = M(X), a; (A) = a; (A) (¢ = 1,2), then Q(z) = Q(z),
a.e., f2(A) = fa(N), as = s, hi (\) = h; (A) fori=1,2,... n.

PrOOF. Introduce a matrix P(z,\) = [P;;(z, A)] by the formula

(3.1) P(z,2) = ¢(,\)¢ ™ (2, A),
T ~ b T, A
prle ) B ) mquﬁQQ
where ¢(z,\) = A and ¢(z,\) = !
@MJ)%“) &1(z, ) Yu(@, )
A(N) s AN
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Write (3.1) openly

Pu(z, ) = ga(z,N) 7:[;15(1:/,\;\) — @A) MA%)A)
, Pis(e,) = Gal(, \) 1?%? Lot %ﬁf;?)
Poi(z,)) = pi(z,\) 1/)15(?3) — @A) wlA(?i)A)
Pp(z,)) = @a(z, A)%A((x/{; ) ’”\WN(J(;’A)A)
Since LN — g, (0,0) = = [ (5, (@.0) + M () 1 (2,1)] and

wi(x,A) =aa (N) Ci (2, N) + a1 (N) S; (x,\),i=1,2, M(\) = M()\), the relations
(2, \)S2(x, ) = Ca(, ) Si (2, )

Pio(xz,\) = Co(x,N)S2(z,\) — Cz(x A)Sa(z, A)

(@, A )S1(, A)

)

&

Pgl(x, )\) = 51 Z, )Sl(LE, )\) Cl($ A Sl X
PQQ(LL', )\) = Cl (3?, /\)gg(it, )\) 02(33‘ )\)Sl ({,E A
are obtained from (3.2). Hence the functions P;;(x, A) are entire on A as M(X\) =

M (A). In addition, P;;(x, \) are bounded with respect to A. Therefore, it is obvious
from Liouville’s theorem that, these functions depend only on =x.
On the other hands, from (3.2),

P, ) — 1= ga(a, \) (‘“(W - W“)) N @) )

AN A(X) A(X) ’

Pes(a, 3) = Ga(a ) (wi(fi?) ) 1#25(3(3:\;\)> _ e ) (pa(,) = Ga(, V)

Pgl(x,)\) L,Ol(.’li )\) ( ! —

AN A(A’)
_ i@ ) @A)\ (@) (pr (@A) — G, N)
. 1/%(957)\) & _ . )
Since — OB D, (z,)\) = 2 ) (Si(x, A) + M (N) @i(x, N)),

vi(z,A) = az (AN) C; (x,\) + a1 (A) S; (z,A) and M(\) = M(/\)
Pii(z, ) = Cy (#,0) Sa (2, A) — Cy (2, A) Sy (z,\)
Plg(l‘, )\) = CQ ( ,)\) 52 (:1?7 )\) — ég (l‘, /\) SQ (1‘, )\)
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Poy(z,A) = Cy (2,0) S (z,A) — Cy (z,A) Sy (2, \)

ng(l‘, )\) = Cl (LL', )\) Sg (.’1?, )\) — 52 (3?, /\) Sl (.’L‘, )\) .

Therefore, due to the fact that,

lim Z/JQ(x )‘)( ( 7)‘) 901(‘7"’ )‘)) -0
AER, A 00 A(N) ’
Pi(@,A)  a(@ A}
Aenl,  #2l@:A) ( AN A(N) ) =0

for all = € [a, b]

)\Eﬂ%}gl_mo [Pri(z,A) = 1] =0

uniformly with respect to x. Thus Pii(xz,\) = 1 and similarly, Py(z,A) = 1
Pia(z,\) = Py (2, \) = 0. Substituate these relations in (3.2), to get

4101(‘%7)‘) = ()Ao;l(x’)‘>7 @2(1‘7)‘) = (‘Ei(x,)\)’
¢1($,)\) _ 1/)1(37,)\) wg(l‘,/\) _ wg(ﬂ?,)\)
A AN T AN T AN

Hence Q(z) = Q(z), a.c., since Zbis(ﬂ;\;\) = wé(:z’)\;\), for i = 1,2 and

{ ba (A) ¥2(b, A) + b1 (A) 1 (b, ):
by (A) (b, A) + by (A) 1 (b, A) =0
by (A) b (A) — bz (A) by (A) = 0. Since by (A), b (A) as well as by (A), bz (A) do not

by
have common zeros, by (A) = by (A), by (A) = by (A) ie., fo(A) = f2(\). From
transmission conditions (1.4), since ¢; (z,\) = @; (x,A), i = 1,2, we get o; = a;,
hi (A) = h; (\) for i =1,2,...,n. Thus, L = L. O
Consider the following boundary value problem L;(Q(x), f1 (A), f2 (A)):

(ly(@)] = BY' (&) + Q)Y (2) = M(2)Y (@), @ € [a,8],

Ly == y1(a) =0,
lay == ya(b) + f: () 1(b) =0,
ZSy = yl(w + )_azyl(wz_o) _O

lay == ya(w; +0) — oy yg(wl —0)—h; (AN y1(w; —0) =0.
Let {ftn }n>0 be the eigenvalues of the problem L;. It is clear that,
A1 (A) =W [wv S} = '(/)1 (Cl, )‘) S? (CL, )‘) - 1/)2 (Cl, )‘) Sl (CL, )‘) = wl (aa )‘)
is the characteristic function of L.
THEOREM 3.2. If A\, = Xn and py, = fin for all n € Z, a; ()\) = a;(
(i=1,2), a2 = Gz and m; = m; (i=1,2,...,n) then Qz) = Uz), a.e., fo(A
f2 ()\), hz()\) = hi ()\)7 o = &Z‘, (Z = 1,2,...,77,).

)

A
)
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~ A A
PROOF. Since A\, = A\, and p,, = fi,, then ﬁ and ~17(/\) are entire function
AN A

in A. On the other hand, since lim ﬂ = lim %1()\)

AﬁfooA()\) A——o0 Al()\)

and A1(A) = Ay(N). Therefore, ¥ (a, \) = ¥1(a, A) and then M(A) = M()\) from
v

Dy (x,)) = —Z(zc)’\))\) and M (\) = ®; (a,\). Thus, the proof is completed by

Theorem 3.1. (]

=1, then A(\) = A())
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