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EXISTENCE OF POSITIVE SOLUTIONS FOR
SINGULAR FRACTIONAL DIFFERENTIAL

EQUATIONS

Nüket AYKUT HAMAL and Merve ÖZEL

Abstract. In this paper, we investigate the existence of positive solutions

for a singular fractional differential equation. Our analysis is based upon the
Avery Peterson fixed point theorem and the Leray-Schauder nonlinear alter-

native theorem. As applications, we present examples for the demonstration
of our main results

1. Introduction

Fractional differential equations describe many phenomena in various fields of
engineering and scientific disciplines such as physics, chemistry, biology, economics,
control theory, signal and image processing and so on see [7,14,16,17].

Singular fractional differential equations have high signifiance due to the va-
riety of applications in areas of mathematical and natural sciences. Many author
study on singular boundary value problems using diverse methods, such as the
Krasnoselskii fixed point theorem on cones, the Legett-Williams fixed point theo-
rem, the fixed point index theory in cones, the Avery-Peterson fixed point theorem.
For more details, see [2,5,8,9,12,15,18–25] and references there in.

In [12], the authors investigated positive solutions for the singular fractional
boundary value problem:

cDα
0+u(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1

u(0) = u′(1) = u′′(0) = 0,
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2 HAMAL AND ÖZEL

where 2 < α ⩽ 3, cDα
0+ is the Caputo derivative of order α and f(t, x, y) may

be singular at t = 0.
In [6], the authors established to existence and uniqueness of positive solution

for the singular fractional boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1

u(0) = u(1) = 0,

where 1 < α ⩽ 2, Dα
0+ is the Riemann-Liouville derivative of order α, f(t, x) is may

be singular at t = 0.
In [9], the authors investigated positive solutions for the singular fractional

boundary value problem:

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1

u(0) = u′(0) = · · · = u(n−2)(0) = 0

Dp
0+u(t)|t=1 =

m∑
i=1

aiD
q
0+u(t)|t=ξi ,

where λ is a positive parameter, n − 1 < α ⩽ n, n ∈ N, n ⩾ 3, ξi ∈ R for all
i = 1, 2, . . .m, 0 < ξ1 < · · · < ξm < 1 , p, q ∈ R, p ∈ [1, n− 2], q ∈ [0, p], Dα

0+ is the
Riemann-Liouville derivative of order α, f may change sign and may be singular at
t = 0 or t = 1.

The aim of this paper is to establish multiple positive solutions for the fractional
differential equation with Caputo derivative of order α ∈ (3, 4].

cDα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1)(1.1)

u
′′
(0) = u

′′′
(0) = 0, u

′
(0) = u(1) =

∞∑
j=1

ηj u(ξj)(1.2)

in which 0 < ξ1 < ξ2 < ... < ξj−1 < ξj < ... < 1, j = 1, 2, 3, ..., ηj > 0, f(t, u)
may be singular at t=0. In this paper we will suppose that the following conditions
hold.

(H1) 1−
∞∑
j=1

ηjξj > 0

(H2) f(t, x) : (0, 1] × [0,∞) → [0,∞) and there exists a constant 0 < σ < 1
such that tσf(t, x) is continuous in [0, 1]× [0,∞).

The organization of this paper is as follows. In section 2, we provide some definitions
and preliminary lemmas which are key tools for our main result. In section 3, we
give and prove our main results. Finally, we give examples to illustrate how the
main results can be used in practice.

In order to assert our main results, we will give Avery Peterson fixed point
theorem and Leray-Schauder nonlinear alternative theorem.
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Let φ and θ be nonnegative continuous convex functionals on P, ϕ be a non-
negative continuous concave functional on P and ψ be a nonnegative continuous
functional on P. Then, for positive numbers a,b,c,d, we define the following convex
sets:

P (φ, d) = {x ∈ P : φ(x) < d}
P (φ, ϕ, b, d) = {x ∈ P : ϕ(x) ⩾ b, φ(x) ⩽ d}

P (φ, θ, ϕ, b, c, d) = {x ∈ P : ϕ(x) ⩾ b, θ(x) ⩽ c, φ(x) ⩽ d}
R(φ,ψ, a, d) = {x ∈ P : ψ(x) ⩾ a, φ(x) ⩽ d}

Theorem 1.1. [4] Let P be a cone of E, φ and θ be nonnegative continuous
convex functionals on P, ϕ be a nonnegative continuous concave functional on P
and ψ be a nonnegative continuous functional on P. Provides ψ(lx) ⩽ lψ(x) for
l ∈ [0, 1] such that for some positive numbers d and K,

ϕ(x) ⩽ ψ(x) and ∥x∥ ⩽ Kφ(x)

for all x ∈ P (φ, d). In that case

T : P (φ, d) → P (φ, d)

is completely continuous, there are positive numbers a,b,c such that and a < b such
that it satisfies the following conditions:

(S1) {x ∈ P (φ, θ, ϕ, b, c, d) : ϕ(x) > b} ≠ ∅ and ϕ(Tx) > b for
x ∈ P (φ, θ, ϕ, b, c, d);

(S2) ϕ(Tx) > b for x ∈ P (φ, ϕ, b, d) with θ(Tx) > c;
(S3) 0 /∈ R(φ,ψ, a, d) and ψ(Tx) < a for x ∈ R(φ,ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points u1, u2, u3 ∈ P (φ, d), such that

φ(uj) ⩽ d, for j = 1, 2, 3

and

b < ϕ(u1), a < ψ(u2), ϕ(u2) < b, a > ψ(u3).

Theorem 1.2. [1,7] Let E be a Banach space, C is a closed, convex subset of
E, U an open subset of C and 0 ∈ U. Suppose that A : Ū → C is a continuous,
compact map.Then either

(A1) A has a fixed point in Ū ; or

(A2) There is a x ∈ ∂U and λ ∈ (0, 1) with x = λA(x).

2. Preliminaries

In this section, some lemmas and definitions required for fractional calculations
that will be used later are given in [3,10,11,13,14,17].
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Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

t∫
0

(t− s)α−1y(s)ds.

provided the right-hand is pointwise defined on (0,∞) and where Γ is the
gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function
y : (0,∞) → R is given by

cDα
0+y(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1y(n)(s)ds

where α is fractional number n = [α] + 1, provided that the right-hand side is
pointwise defined on (0,∞).

Lemma 2.1. Let n− 1 < α < n, u ∈ Cn[0, 1], then

Iα0+
cDα

0+u(t) = u(t)− c1 − c2t− ...− cnt
n−1

where n = [α] + 1, [α] is the smallest integer greater than or equal to α, ci ∈ R
(i = 1, 2, .., n)

Lemma 2.2. If y ∈ C[0, 1], then the fractional differential equation

cDα
0+u(t) + y(t) = 0, 0 < t < 1(2.1)

with the boundary condition (1.2) has a unique solution

u(t) =

1∫
0

G(t, s) y(s)ds, t ∈ [0, 1]

where,

G(t, s) = g(t, s) +
t

△

∞∑
j=1

ηjg(ξj , s)(2.2)

g(t, s) =
1

Γ(α)

{
(1− s)α−1 − (t− s)α−1, 0 ⩽ s ⩽ t ⩽ 1

(1− s)α−1, 0 ⩽ t ⩽ s ⩽ 1
(2.3)

and

△ = 1−
∞∑
j=1

ηjξj .
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Proof. The equation (2.1) can be translated into the following equations:

u(t) = c1 − c2t− c3t
2 − c4t

3 − 1

Γ(α)

t∫
0

(t− s)α−1y(s)ds.

By using the condition u
′′
(0) = u

′′′
(0) = 0, we obtain c3 = c4 = 0. Then we

can get that,

u(t) = c1 − c2t−
1

Γ(α)

t∫
0

(t− s)α−1y(s)ds.(2.4)

For the resulting function (2.4), then the condition u
′
(0) =

∞∑
j=1

ηju(ξj), we can

get that c2 =
∞∑
j=1

ηju(ξj).

By other condition u(1) =
∞∑
j=1

ηju(ξj), we obtain c1 = 1
Γ(α)

1∫
0

(1− s)α−1y(s)ds.

So, the unique solution of the problem (2.1) is given by

u(t) =
1

Γ(α)

1∫
0

(1− s)α−1y(s)ds+
t

Γ(α)△

∞∑
j=1

ηj

1∫
0

(1− s)α−1y(s)ds

− t

Γ(α)△

∞∑
j=1

ηj

ξj∫
0

(ξj − s)α−1y(s)ds− 1

Γ(α)

t∫
0

(t− s)α−1y(s)ds

=
1

Γ(α)

[ t∫
0

[
(1− s)α−1 − (t− s)α−1

]
y(s)ds+

1∫
t

(1− s)α−1y(s)ds

]

+
t

Γ(α)△

∞∑
j=1

ηj

[ ξj∫
0

[
(1− s)α−1 − (ξj − s)α−1

]
y(s)ds

+

1∫
ξj

(1− s)α−1y(s)ds

]
.

So,

u(t) =

1∫
0

[
g(t, s) +

t

△

∞∑
j=1

ηjg(ξj , s)

]
y(s)ds =

1∫
0

G(t, s)y(s)ds.

□
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Lemma 2.3. The function g(t, s) expressed by (2.3) involve the following prop-
erties:

a) g(t, s) is continuous and g(t, s) ⩾ 0, t,s ∈ [0, 1].
b) g(t, s) ⩽ γ(s), t, s ∈ [0, 1].
c) g(t, s) ⩾ ρ1γ(s), t ∈ [k, ζ], s ∈ [0, 1] where k, ζ ∈ (0, 1) with k < ζ,

and

γ(s) =
(1− s)α−1

Γ(α)
, ρ1 = 1− ζα−1.

Proof. a) By definition of the function g we deduce that g is a contin-
uous function and g(t, s) ⩾ 0, t, s ∈ [0, 1].

b) if s ⩽ t, we obtain,

g(t, s) =
(1− s)α−1 − (t− s)α−1

Γ(α)

⩽
(1− s)α−1

Γ(α)

= γ(s)

if t ⩽ s, we deduce,

g(t, s) =
(1− s)α−1

Γ(α)
= γ(s).

Hence, we conclude

g(t, s) ⩽ γ(s), t, s ∈ [0, 1].

c) if s ⩽ t, we obtain,

g(t, s) =
(1− s)α−1 − (t− s)α−1

Γ(α)

⩾
1

Γ(α)

[
(1− s)α−1 − (t− ts)α−1

]
=

1

Γ(α)

[
(1− s)α−1 − tα−1(1− s)α−1

]
=

1

Γ(α)
(1− s)α−1(1− tα−1)

⩾ γ(s)(1− ζα−1)

= ρ1γ(s)
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if t ⩽ s, we deduce

g(t, s) =
(1− s)α−1

Γ(α)

= γ(s)

⩾ γ(s)(1− ζα−1)

= ρ1γ(s).

Hence, we conclude

g(t, s) ⩾ ρ1γ(s), t ∈ [k, ζ] and s ∈ [0, 1].

□

Lemma 2.4. The function G given by (2.2) is a continuous function on [0, 1]×
[0, 1] and satisfies the inequalities:

a) G(t, s) ⩽ ρ2γ(s), t, s ∈ [0, 1] where ρ2 = 1 + 1
△

∞∑
j=1

ηj

b) G(t, s) ⩾ ρ1γ(s), t ∈ [k, ζ] and s ∈ [0, 1] where ρ1 = 1− ζα−1.

Proof. a) This property follows from the definition of function g and
Lemma 2.3,

G(t, s) = g(t, s) +
t

△

∞∑
j=1

ηjg(ξj , s)

⩽ γ(s) +
1

△

∞∑
j=1

ηjγ(s)

= γ(s)

[
1 +

1

△

∞∑
j=1

ηj

]
So,

G(t, s) ⩽ ρ2γ(s).

b) for t ∈ [k, ζ] and s ∈ [0, 1], we get

G(t, s) = g(t, s) +
t

△

∞∑
j=1

ηjg(ξj , s)

⩾ g(t, s)

⩾ ρ1γ(s).

So,

G(t, s) ⩾ ρ1γ(s).

Thus, the proof is completed.
□
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Let B= C [0,1] with the norm ∥u∥ = max
t∈[0,1]

∣∣u(t)∣∣ for u ∈ B. Define a cone,

P = {u ∈ E, u(t) ⩾ 0, t ∈ [0, 1], min
t∈[k,ζ]

u(t) ⩾
ρ1
ρ2

∥u∥}

an operator T : P → B given by

Tu(t) =

1∫
0

G(t, s)f(s, u(s))ds.

Lemma 2.5. T : P → P is completely continuous operator.

Proof. Firstly, let’s prove in that T (P ) ⊂ P. G(t, s) and sσf(s, u(s)) are
continuous functions for all t,s ∈ [0, 1] and s−σ is integrable on [0,1]. We know
Tu(t) ⩾ 0 from Lemma 2.4. Also, for all t ∈ [k, ζ] and for all s ∈ [0, 1], we obtain
that

∥Tu∥ ⩽ ρ2

1∫
0

γ(s)f(s, u(s))ds

So,

min
t∈[k,ζ]

Tu(t) = min
t∈[k,ζ]

1∫
0

G(t, s)f(s, u(s))ds

⩾ ρ1

1∫
0

γ(s)f(s, u(s))ds

⩾
ρ1
ρ2

∥Tu∥

Thus, T(P) ⊂ P.
According to Lemma 2.3 and for u ∈ P , it is clear that Tu(t) is nonnegative.

Also we can be saying that the T : P → P is continuous due to (H2).
Next, we will show that for bounded V ⊂ P , T(V) is relatively compact.There

is a M > 0 such that tσf(t, u(t)) ⩽M for t ∈ [0, 1] and for any u ∈ V .

Tu(t) =

1∫
0

G(t, s)f(s, u(s))ds =

1∫
0

G(t, s)s−σsσf(s, u(s))ds

⩽ ρ2M

1∫
0

γ(s)s−σds

=
ρ2MΓ(1− σ)

Γ(α+ 1− σ)
.
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Therefore,

∥Tu(t)∥ ⩽
ρ2MΓ(1− σ)

Γ(α+ 1− σ)
<∞, u ∈ V.

It show that T(V) is uniformly bounded. Finally, we show that T(V) is equicon-
tinuous. For u ∈ V and t1, t2 ∈ [0, 1] such that t1 < t2, we have

| Tu(t2)− Tu(t1) | =
∣∣∣∣

1∫
0

G(t2, s)f(s, u(s))−
1∫

0

G(t1, s)f(s, u(s))

∣∣∣∣
=

∣∣∣∣
1∫

0

G(t2, s)s
−σsσf(s, u(s))ds−

1∫
0

G(t1, s)s
−σsσf(s, u(s))ds

∣∣∣∣
=

∣∣∣∣
1∫

0

(
G(t2, s)−G(t1, s)

)
s−σsσf(s, u(s))ds

∣∣∣∣
⩽M

∣∣∣∣∣
1∫

0

G(t2, s)s
−σds−

1∫
0

G(t1, s)s
−σds

∣∣∣∣∣
=M

∣∣∣∣∣
1∫

0

(1− s)α−1

Γ(α)
s−σds−

1∫
0

(1− s)α−1

Γ(α)
s−σds

− t1
△

∞∑
j=1

ηj

1∫
0

(1− s)α−1

Γ(α)
s−σds+

t2
△

∞∑
j=1

ηj

1∫
0

(1− s)α−1

Γ(α)
s−σds

−
t2∫
0

(t2 − s)α−1

Γ(α)
s−σds− t2

△

∞∑
j=1

ηj

t2∫
0

(t2 − s)α−1

Γ(α)
s−σds

+

t1∫
0

(t1 − s)α−1

Γ(α)
s−σds+

t1
△

∞∑
j=1

ηj

t1∫
0

(t1 − s)α−1

Γ(α)
s−σds

∣∣∣∣∣
=M

[
− t1B1

△Γ(α)

∞∑
j=1

ηj +
t2B1

△Γ(α)

∞∑
j=1

ηj + tα−σ
2 B2

− t2B2

△Γ(α)

∞∑
j=1

ηj − tα−σ
1 B2 +

t1B2

△Γ(α)

∞∑
j=1

ηj

]

So we get the result, | Tu(t2)− Tu(t1) |→ 0 when (t1 → t2).
Consequently, applying the Arzela-Ascoli theorem, we conclude that T : P → P

is a completely continuous operator.
□
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3. Main results

The prove that (1.1), (1.2) has three positive solutions the following three
functionals are defined by convex functional θ(u) = φ(u) = ψ(u) = ∥u∥ and the
concave functional ϕ(u) = min

t∈[k,ζ]
|u(t)|.

Theorem 3.1. Assume that there exist positive constants a,b,c,d with a < b,
c > max{ek, ρ2

ρ1
}b, d > br

ρ1N
and d ⩾ c and f holds the following conditions:

(H3) tσf(t, u) ⩽ d
r , (t, u) ∈ [0, 1]× [0, d]

(H4) f(t, u) > b
ρ1N

, (t, u) ∈ [k, ζ]× [b, c]

(H5) tσf(t, u) < a
r , (t, u) ∈ [0, 1]× [0, a]

where r = ρ2
1∫
0

γ(s)s−σds and N =
ζ∫
k

γ(s)ds.

Then the problem (1.1), (1.2) has at least three positive solutions u1, u2 and u3
such that

φ(uj) ⩽ d, for j = 1, 2, 3

and

b < ϕ(u1), a < ψ(u2), ϕ(u2) < b, a > ψ(u3).

Proof. First, we indicate that T: P (φ, d) → P (φ, d). If u ∈ P (φ, d), then
φ(u) ⩽ d, ∥u∥ ⩽ d. In view of (H3), we can get,

φ(Tu) = ∥Tu∥

= max
t∈[0,1]

∣∣∣∣∣
1∫

0

G(t, s)f(s, u(s))ds

∣∣∣∣∣
⩽

1∫
0

γ(s)ρ2s
−σsσf(s, u(s))ds

⩽
d

r
ρ2

1∫
0

γ(s)s−σds

= d

So, we obtain T : P (φ, d) → P (φ, d).
Next, we indicate that condition (S1) of Theorem 1.1 is fulfilled. Let’s choose

a function u(t) = bet for t ∈ [0, 1]. We have ϕ(u) > b for u ∈ P (φ, θ, ϕ, b, c, d),
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ϕ(u) = ϕ
(
bet

)
= min

t∈[k,ζ]

∣∣bet∣∣
⩾ bek

> b.

Hence, {u ∈ P (φ, θ, ϕ, b, c, d) : ϕ(u) > b} ̸= ∅. Choose u ∈ P (φ, θ, ϕ, b, c, d), then
this means u(t) ∈ [b, c] for any t ∈ [0, 1]. By (H4) we get,

ϕ(Tu) = min
t∈[k,ζ]

∣∣Tu(t)∣∣
= min

t∈[k,ζ]

∣∣∣∣∣
1∫

0

G(t, s)f(s, u(s))ds

∣∣∣∣∣
⩾ ρ1

1∫
0

γ(s)f(s, u(s))ds

⩾ ρ1

ζ∫
k

γ(s)f(s, u(s))ds

> ρ1
b

ρ1N

ζ∫
k

γ(s)ds

= b.

Thus, condition (S1) of Theorem 3.1 holds.
Let’s get u ∈ P (φ, ϕ, b, d). So we have, θ(Tu) = ∥Tu∥ > c. Since Tu ∈ P , from

the definition of cone and from ρ2

ρ1
b < c , we get

ϕ(Tu) = min
t∈[k,ζ]

∣∣Tu(t)∣∣
⩾
ρ1
ρ2

∥Tu∥

>
ρ1
ρ2

c

> b

So, (S2) holds.
Since a > 0, 0 is not member of R(φ,ψ, a, d) with ψ(u) = a, then using (H5), we
get
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ψ(Tu) = max
t∈[0,1]

∣∣∣∣∣
1∫

0

G(t, s)f(s, u(s))ds

∣∣∣∣∣
⩽

1∫
0

ρ2 γ(s)s
−σsσf(s, u(s))ds

< ρ2
a

r

1∫
0

γ(s)s−σds

= a

So, the condition (S3) holds. By Theorem 3.1, we can get that (1.1) , (1.2) has at
the least three positive solutions u1, u2, u3 satisfying:

φ(uj) ⩽ d, for j = 1, 2, 3

and

b < ϕ(u1), a < ψ(u2), b > ϕ(u2), a > ψ(u3).

□

Theorem 3.2. Let f(t, x) : (0, 1] × [0,∞) → [0,∞) and 0 < σ < 1 such that
tσf(t, x) is continuous in [0, 1]× [0,∞)

(H6) There exist a function p ∈ C([0, 1], (0,∞)) and a nondecreasing function
q : (0,∞) → (0,∞) such that

tσf(t, u) ⩽ p(t)q(∥u∥) for all (t, u) ∈ [0, 1]× [0,∞)

(H7) There exists a constant r > 0 such that

rΓ(α+1−σ)
ρ2Γ(1−σ)∥p∥q(r) > 1

Then, the problem (1.1), (1.2) has at least one positive solution on [0,1].

Proof. The first step is to show that the operator T maps bounded sets into
bounded set in E. For a positive number v, let Bv = {u ∈ E : ∥u∥ ⩽ v} be a
bounded set in E.
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Then

|Tu(t)| =
∣∣∣∣

1∫
0

G(t, s)f(s, u(s))ds

∣∣∣∣
=

∣∣∣∣
1∫

0

G(t, s)sσs−σf(s, u(s))ds

∣∣∣∣
⩽

1∫
0

ρ2γ(s)s
−σp(s)q(∥u∥)ds

⩽ ρ2
Γ(1− σ)

Γ(α+ 1− σ)
∥p∥q(v)

and consequently,

∥Tu∥ ⩽ ρ2
Γ(1− σ)

Γ(α+ 1− σ)
∥p∥q(v)

Hence, T (Bv) is uniformly bounded.
The next step is to verify that the operator T maps bounded sets into equicon-

tinuous sets of E. Let t1 < t2 and t1, t2 ∈ [0, 1] for u ∈ Bv. So we have,

∣∣Tu(t2)− Tu(t1)
∣∣ ⩽ 1∫

0

∣∣G(t2, s)−G(t1, s)
∣∣sσs−σf(s, u(s))ds

⩽ ∥p∥q(v)

[
− t1B1

△Γ(α)

∞∑
j=1

ηj +
t2B1

△Γ(α)

∞∑
j=1

ηj + tα−σ
2 B2

− t2B2

△Γ(α)

∞∑
j=1

ηj − tα−σ
1 B2 +

t1B2

△Γ(α)

∞∑
j=1

ηj

]

Hence, by Arzela-Ascoli theorem, the operator T is completely continuous since
the right hand side tends to zero independent of u ∈ Bv as t2 → t1.

Let U = {u ∈ E : ∥u∥ < r}. We claim that there is no u ∈ ∂U, such that
u = λ(Tu) for λ ∈ (0, 1).

Let’s admit that u = λ(Tu) for all λ ∈ (0, 1) and for t ∈ [0, 1].
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∥u∥ = ∥λ(Tu)∥

= max
t∈[0,1]

∣∣∣∣∣λ
1∫

0

G(t, s)f(s, u(s))ds

∣∣∣∣∣
= max

t∈[0,1]

∣∣∣∣∣λ
1∫

0

G(t, s)sσs−σf(s, u(s))ds

∣∣∣∣∣
⩽ ρ2

1∫
0

γ(s)s−σp(s)q(∥u∥)ds

⩽ ρ2

[
Γ(1− σ)

Γ(α+ 1− σ)
∥p∥q(r)

]
This gives

rΓ(α+ 1− σ)

ρ2Γ(1− σ)∥p∥q(r)
⩽ 1

which is contradiction with (H7). There is no u ∈ ∂U that can satisfy u = λ(Tu) for
λ ∈ (0, 1). By the nonlinear alternative theorem of Leray Schauder type (Theorem
1.2) we deduce that T has a fixed point u ∈ U which is a solution of the problem
(1.1), (1.2).

This completes the proof.
□

Example 3.1. Consider the following boundary value problem:


cD

7
2

0+u(t) + f(t, u(t)) = 0, 0 < t < 1

u
′′
(0) = u

′′′
(0) = 0,

u
′
(0) = u(1) =

∞∑
j=1

1
2j+4u

(
1− 1

2j

)
,

(3.1)

where

f(t, u) =


19

12
√
t

(
1 + 3

√
u
)
, (t, u) ∈ (0,1] x [0,2]

300 6
√
u√

πt
, (t, u) ∈ (0,1] x [4,9]

299√
t
, (t, u) ∈ (0,1] x [100,∞)

α = 7
2 , σ = 1

2 , k = 1
4 , ζ = 2

4 , ηj = 1
2j+4 , ξj = 1 − 1

2j , △ ≈ 0, 95833,

γ(s) = 8(1−s)
5
2

15
√
π

, r ≈ 0, 3147359, N ≈ 0, 0238184, ρ1 ≈ 0, 82322, ρ2 ≈ 1, 06521.
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Let we choose a= 2, b=4, c=9, d=300.

We see that all the conditions of Theorem 3.1 are satisfied. Namely, the problem
(3.1) has at least three positive solutions satisfying u1,u2 and u3

φ(uj) ⩽ 300, for j = 1, 2, 3

and

4 < ϕ(u1), 2 < ψ(u2), ϕ(u2) < 4, 2 > ψ(u3).

Example 3.2. Consider the following boundary value problem:


cD

15
4

0+u(t) + f(t, u(t)) = 0, 0 < t < 1

u
′′
(0) = u

′′′
(0) = 0,

u
′
(0) = u(1) =

∞∑
j=1

1
2j+4 u

(
1− 1

2j

)(3.2)

where f(t, u) = e−t+2
3√t

(u + 5), α = 15
4 , σ = 1

3 , ηj = 1
2j+4 , ξj = 1 − 1

2j .

So, we get ∆ ≈ 0, 95833, ρ2 ≈ 1, 06522. Clearly t1/3f(t, u) ⩽ p(t)q(r) with
p(t) = e−t + 2, q(r) = r + 5. Consequently,

rΓ(α+ 1− σ)

ρ2Γ(1− σ)∥p∥q(r)
=

rΓ( 5312 )

(1, 06522)Γ( 23 )3(r + 5)
> 1

is holds when r > 3, 58092. So, Theorem 3.2 all conditions of satisifed. Thus, this
problem has at least one positive solution.
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