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Abstract. The logical environment of this text is the Intuitionistic Logic
- a logic without the principle of ’Tertium non datur’ and the principled-

philosophical orientation of the Bishop’s constructive algebra. This orienta-
tion enables us to construct algebraic structures on the relational structures
of the type (X,=, ̸=) as basic carriers where ′ ̸= ′ is a diversity relation
/ apartness. In the last forty years, many algebraic structures with apart-

ness have been analyzed. In this article, we will expose the recapitulation
of some of them and show some basic characteristics of the selected alge-
braic structures such as semigroups (ordered semigroup under co-quasiorder,
semillatice-ordered semigroups, inverse semigroups, implicative semigroups, Γ-

semigroups), groups (free Abalian groups, ordered group under co-order) rings
(commutative rings, semillatice-ordered semigrings, Γ-semirings, modules over
commutative rings).

1. Introduction

1.1. Logical Environment. Our setting is Bishop’s constructive mathemat-
ics [Bish] ([3], [4], [19] and [59]), mathematics developed with Constructive logic
(or Intuitionistic logic [IL] [59]) - logic without the Law of Excluded Middle P ∨ ¬P
[TND]. We have to note that ’the crazy axiom’ ¬P =⇒ (P =⇒ Q) is included in
the Constructive logic. Precisely, in Constructive logic the ’Double Negation Law’
P ⇐⇒ ¬¬P does not hold, but the following implication P =⇒ ¬¬P holds even in
Minimal logic. In Constructive logic ’Weak Law of Excluded Middle’ ¬P ∨ ¬¬P
does not hold as well. It is interesting, in Constructive logic the following deduction
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362 D. A. ROMANO

principle A ∨ B,¬A ⊢ B holds, but this is impossible to prove without ’the crazy
axiom’.

Bishop’s constructive mathematics includes the following two aspects:
(1) The Intuitionistic logic and
(2) The principled-philosophical orientations of constructivism.

1.2. Set with apartness. Intuitionistic logic does not accept the TND prin-
ciple as an axiom. In addition, Intuitionistic logic does not accept the validity of the
’double negation’ principle. This makes it possible to have a difference relation in
sets which is not a negation of equality relation. Dual of the equality relations ’=’
in a set A is diversity relation ’̸=’. Therefore, we accept that in Bishop’s construc-
tive mathematics we consider set A as one relational system (A,=, ̸=). Now, we
look at the carrier A as a relational system (A,=, ̸=), where ′ = ′ is the standard
equality, and ′ ̸= ′ is an apartness [3, 4]:

(∀x, y ∈ A)(x ̸= y =⇒ ¬(x = y)) (consistency);
(∀x, y ∈ A)(x ̸= y =⇒ y ̸= x) (symmetry);
(∀x, y, z ∈ A)(x ̸= z =⇒ (x ̸= y ∨ y ̸= z)) (co-transitivity).

This last relation is extensive in terms of equality in the following sense:
= ◦ ̸=⊆ ̸= and ̸= ◦ =⊆ ̸=

where ′ ◦ ′ is the standard mark for the composition of the relations. It is obvious
that the following connection between these relations is valid: =⊆ ¬ ̸=. In this
case for relations = and ̸= we say that they are associate. So, it’s quite natural to
ask the question: Is there the maximal relation ’̸=’ such that it is associated with
equality ’=’?

Generally speaking: Let S be a subset of set (A,=, ̸=) determined by a pred-
icate P. The first task is to construct a dual T of the set S so that the subsets
¬T = {a ∈ A : ¬(a ∈ T )} and its strong compliment T▹ = {a ∈ A : a ▹ T} have
property P where a▹ T means (∀t ∈ T )(t ̸= a). In addition, T▹ ⊆ ¬T holds.

If the relation ′ ̸= ′ satisfies only the first two conditions, then it is said to be
a ’diversity relation’. Let X and Y be subsets of A. Let us determine X ̸= Y if is
valid

(∃x ∈ X)¬(x ∈ Y ) ∨ (∃y ∈ Y )¬(y ∈ X).

Obviously, this relation is not an apartness relation in the family P(A) of all subsets
of A. In this collection, an analogous relation to an apartness relation in a set can
be introduced on axiomatic way as it is, for example, done in the [7] or, in the way
it is shown in article [16]. We will write X ◃▹ Y if it is

(∀x ∈ X)(x▹ Y ) ∧ (∀y ∈ Y )(y ▹X).

This relation is a diversity relation in the family P(A) of all subsets of A and it is
not an apartness, in the general case.

For example, if (A,=A, ̸=A) and (B,=B , ̸=B) are sets with apartnesses, then
at the A×B this relation is determined as follows

(∀x, x′ ∈ A)(∀y, y′ ∈ B)((x, y) ̸= (x′, y′) ⇐⇒ (x ̸=A x′ ∨ y ̸=B y′)).

For function f : A −→ B, it is said to be strongly extensive [54] if the following
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(∀x, y ∈ A)(f(x) ̸=B f(y) =⇒ x ̸=A y)

holds. For function f : A −→ B, it is said to be an embedding [54] if the following
(∀x, y ∈ A)(x ̸= y =⇒ f(x) ̸=B f(y))

holds.

In the text that follows, in the writing of relations of equality and the relation
of apartnesses, we will always omit the indexes whenever it is possible and when it
will not allow a different understanding of what the author imagined.

1.3. Concept of co-equality relations. Let ρ be an equivalence relation on
the set A. For the relation q we say that it is a co-equivalence [25, 34] relation to
A if and only if the following is valid

q ⊆ ≠, (consistency), q−1 = q, (symmetric) and q ⊆ q ∗ q. (co-transitivity).

Here, ’∗’ is the filed product between relations defined by the following way: If α
and β are relations on set A, then filed product β ∗ α of relation α and β is the
relation given by {(x, z) ∈ A × A : (∀y ∈ A)((x, y) ∈ α ∨ (y, z) ∈ β)}. Of course,
the strong compliment q▹ of the relation q is an equivalence in A and the following

q▹ ⊆ ¬q, q ◦ q▹ ⊆ q and q▹ ◦ q ⊆ q

are valid. Although the evidence of this claim is known, we will again show it here
that the reader can gain an impression of the proof technique that is applied.

Proposition 1.1. The strong compliment q▹ of the relation q is an equivalence
in A and the following q▹ ⊆ ¬q, q ◦ q▹ ⊆ q and q▹ ◦ q ⊆ q holds.

Proof. Obviously, It is true that =⊆ q▹ and that q▹ is a symmetric relation.
We need to prove that q▹ is a transitive relation. Let x, y, z, u, v ∈ A arbitrary
elements such that (x.y)▹ q, (y, z)▹ q and (u, v) ∈ q. Then

(u, x) ∈ q ∨ (x, y) ∈ q ∨ (y, z) ∈ q ∨ (z, v) ∈ q

by co-transitivity of q. From here follows (u, x) ∈ q ⊆ ̸= and (z, v) ∈ q ⊆ ̸= by
consistency of q and by taking into account the hypothesis of this deduction. So,
u ̸= x and z ̸= v therefore (x, z) ̸= (u, v) ∈ q. Finally, we have (x, z) ▹ q. On this
way, the transitivity of the relation q is proven.

For the sake of illustration, we will prove inclusion q ◦ q▹ ⊆ q. The second
inclusion can be proven in an analogous way. Let x, z be arbitrary elements of A
such that (x, z) ∈ q ◦ q▹. Then there exists an element y ∈ A such that (x, y) ∈ q▹

and (y, x) ∈ q. Thus (y, x) ∈ q or (x, z) ∈ q by co-transitivity of q. Since, the first
option is impossible because q▹ is a symmetric relation on A and (y, x) ▹ q, we
have (x, z) ∈ q. �

As corollary of above Proposition 1.1 we can construct the quotient-set
A/(q▹, q) = {aq▹ : a ∈ A}

with aq▹ = bq▹ ⇐⇒ (a, b) ▹ q and aq▹ ̸= bq▹ ⇐⇒ (a, b) ∈ q. For the total
surjective function π : A −→ A/(q▹, q), defined by the π(a) = aq(a ∈ A), it is said
that the canonical mapping from A onto A/(q▹, q).

For the family {qx}x∈A, where qx = {y ∈ A : (x, y) ∈ q}, is true:
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(i) x▹ xq; (ii) xq = qx; (iii) (x, y) ∈ q =⇒ xq ∪ yq = A.

Before proceeding to a further analysis, we recall the term ’strictly extensional
subset of the set’: for a subset X of the set (A,=, ̸=) it is said that a strictly
extensional subset of the set A if

(∀x, y ∈ A)(x ∈ X =⇒ (x ̸= y ∨ y ∈ X)).

valid. Now, suppose that a family {Xt}t∈A of strongly extensional proper subsets
of A satisfies the following two conditions:

(a) For any t ∈ A there exists a strongly extensional subset Xt such that that
t▹Xt;

(b) Xt ̸= Xs =⇒ Xt ∪Xs = A for any t, s ∈ A.

Then the relation R on A defined by
(x, y) ∈ R ⇐⇒ (∃u ∈ A)(x ∈ Xu ∧ y ▹Xu)

is a co-equality in A ([34, 49]). For a set (A,=, ̸=) and a co-equality relation q on
A, the family {aq : a ∈ A} we will indicate with A : q. Without major difficulties,
it can be verified that there exists a surjective function θ : A −→ A : q, determined
by θ(a) = aq, and the bijection (= strongly extensional surjective, injective and
embedding function) h : A/(q▹, q) −→ A : q such that θ = h ◦ π and π = h−1 ◦ θ,
where π : A −→ A/(q▹, q) is the standard canonical surjective function.

Remark 1.1. When this result was first time published in 1996 [33], the aca-
demic public refused to accept that there were scientific needs for researching of
such families of subsets of a set with apartness. The difficulties encountered by re-
searchers of algebraic structures based on sets with apartness relations were nicely
described by Bauer in his recently published article [2]. Even today, many working
mathematicians are extremely reluctant to accept the possibility of existence an
academic interest in researching and developing of algebraic structures in a logical
environment that is not the Classic logic. Unfortunately, the existence of interest
in publishing the results of the research of algebraic structures based on sets with
apartness is still being classify in activity with the prefix of exoticism.

For couple ρ and q of a an equality relation and a co-equality relation we say
it is associated if holds

ρ ◦ q ⊆ q and q ◦ ρ ⊆ q.

The question naturally arises: For the given equivalence relation ρ is there a max-
imal co-equality relation q associated with ρ?

1.4. The concept of co-quasiorder relations. On the other hand, some
relations can be derived from the co-equality concept by varying the conditions by
which this relation is determined. For example, for a relation σ on a set (A,=, ̸=)
we say that the relation is co-quasiorder if the following holds

σ ⊆ ̸=, and σ ⊆ σ ∗ σ.
The complement σ▹ of this relation is a quasi-order relation on A. As the inclusion
of =⊆ σ▹ is obvious, we show the transitivity of σ▹. Let x, y, z, u, v be arbitrary
elements of A such that (x, y) ▹ q, (y, z) ▹ q and (u, v) ∈ σ. Then (u, x) ∈ σ ⊆ ̸=
or (x, y) ∈ σ or (y, z) ∈ σ or (z, v) ∈ σ ⊆ ̸=. Thus u ̸= x ∨ z ̸= v and (x, z) ̸=
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(u, v) ∈ σ. So, the relation σ▹ is a transitive relation. Finally, the relation σ▹ is a
quasi-order on A.

In addition, for the relation σ on (A,=, ̸=) we say that it is a co-order relation
on A if the follows holds

σ ⊆ ̸=, σ ⊆ σ ∗ σ and ̸=⊆ σ ∪ σ−1.

If the relation ̸= is a tight apartness, then the complement σ▹ of this last relation
is an order relation on A. In both cases it is said that the set (A,=, ̸=) is ordered
under σ.

Analogously as the previous question, the natural question arises: For a given
relation (quasi-) order, is there the maximal co(-quasi)-order associated with the
first relation?

Let σ be a co-quasiorder on a set S. Then [49] (Proposition 3.1) classes aσ
and σb are strongly extensional subsets of A such that a▹ aσ and b▹ σb, for any
a, b ∈ A. Moreover, the following implications hold:

y ∈ aσ ∧ x ∈ A =⇒ x ∈ aσ ∨ (x, y) ∈ σ;
y ∈ σb ∧ x ∈ A =⇒ x ∈ σb ∨ (y, x) ∈ σ;
(a, b) ∈ σ =⇒ aσ ∪ σb.

This idea enables the introduction of the concept of co-ideals and co-filters in or-
dered algebraic structures.

We complete this subsection with the following terms. Let f : (A, σ) −→ (B, τ)
be a mapping between co-quasiordered sets. For f , it is said that isotone if

(∀x, y ∈ A)((x, y) ∈ σ =⇒ (f(x), f(y)) ∈ τ)

holds. Tha mapping f is a reverse isotone if
(∀x, y ∈ A)((f(x), f(y)) ∈ τ =⇒ (x, y) ∈ σ)

is valid.

1.5. Concept of groupoids with apartness. For set (A,=, ̸=) it is called
a groupoid with apartness if there exist a strongly extensional total function w :
A× A −→ A. This means that for each pair x, y of elements in A there exists the
unique element w(x, y) in A such that the following are valid:

(∀x, y, x′, y′ ∈ A)((x, y) = (x′, y′) =⇒ w(x, y) = w(x′, y′) and
(∀x, y, x′, y′ ∈ A)(w(x, y) ̸= w(x′, y′) =⇒ (x ̸= x′ ∨ y ̸= y′)).

We will write (A, ·) for this groupoid instead of ((A,=, ̸=), ·) and xy instead of
w(x, y), if it does not lead to misunderstanding.

We use this opportunity to emphasize the complexity of the algebraic concept
’groupoid with apartness’. A subset B of A is subgroupoid of A if holds

(∀x, y ∈ A)(x ∈ B ∧ y ∈ B =⇒ xy ∈ B).

The dual of this notion is introduced as follows: For a subset F of groupoid A we
say that the co-subgroupoid of A if holds

(∀x, y ∈ A)(xy ∈ F =⇒ (x ∈ F ∨ y ∈ F )).

Speaking by classical algebra language, a subset F is a co-subgropoid of A if it is
a prime subset of A.

Further, for a subset J of a groupid A it is said that it is:
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- a right ideal in A if (∀x, y ∈ A)(x ∈ J =⇒ xy ∈ J) holds;
- a left ideal in A if (∀x, y ∈ A)(y ∈ A =⇒ xy ∈ J) holds; and
- an ideal in A if (∀x, y ∈ A)(x ∈ J ∨ y ∈ J =⇒ xy ∈ J) holds.

The duals of these concepts are introduced in the following way: A subset K of a
groupoid A with apartness is

- a left co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ x ∈ K) holds;
- a right co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ y ∈ K) holds; and
- a co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ (x ∈ K ∧ y ∈ K)) holds.

Without major difficulties, it is checked that ¬K and K▹ are ideals in A such that
K▹ ⊆ ¬K is valid. Speaking by classical algebra language, a subset K is a co-ideal
of A if it is a consistent subset of A.

In Bishop’s constructive algebra we always encounter the following two prob-
lems:

(a) How to choose a predicate (or more predicates) between several classically
equivalent ones by which an algebraic concept is determined;

(b) Since every predicate has at least one of its duals, how to construct a dual
of the algebraic concept defined with a given predicate(s).

For the illustration, we give the following example. The relation q called co-
congruence on a groupoid (A,=, ̸=, ·) if it is strongly extensional (or, it is cancella-
tive with respect to apartness) in the following sense:

(∀x, y, u,∈ A(((ux, uy) ∈ q ∨ (xu, yu) ∈ q) =⇒ (x, y) ∈ q).

The following example is inspiring in recognizing, understanding and accepting the
duality of an algebraic concept. Let (A,=, ̸=,+, 0, ·, 1) be a commutative ring with
apartness. A subset K of A is a co-ideal of the ring A ([27], Definition 2) if and
only if for any a, b ∈ A the following is valid

0▹K,
a+ b ∈ K =⇒ a ∈ K ∨ b ∈ K,
−a ∈ K =⇒ a ∈ K,
ab ∈ K =⇒ a ∈ K ∧ b ∈ K.

In this case, the relation q, defined with (a, b) ∈ q ⇐⇒ a−b ∈ K is a co-congruence
on the ring A and holds a ∈ K ⇐⇒ (a, 0) ∈ q ([27], Proposition 2.5).

The concept of co-ideals of commutative rings with apartness was first in-
troduced and analyzed by W. Ruitenberg in 1982 in his dissertation [54]. This
author also took a considerable part in the development of the ideas of co-ideals
in commutative rings with apartness in his dissertation [25] and with his first
publications available to the entire international academic public (see for example
[27, 29, 36, 37]). The reader can find some elements of these ideas in the Chapter
’Algebra’ in the book [59], too.

1.6. Our intention in this article. By choosing the Intuitionistic logic in-
stead of the Classic logic as a logic background, when looking at and developing
possible algebraic structures, the first opens much more possibilities than is the
case with the Classic algebra. The obligation of mathematicians is to recognize
them, describe them and correctly point out their properties and, if possible, prove
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them in a logically acceptable way. When asked if it might be interesting to most
working mathematicians, it must be answer no. The designed material on logically
possible ideas and concepts and their relationships with each other should be ac-
ceptable to those who affect the perception of the logic of the possible structures
that it allows by prior orientation. The vast majority of mathematicians adhere
to the orientation that Constructive Mathematics has the meaning in the following
sense: The procedures and algorithms used in proving within its aspects must be
constructive in the colloquial sense of the word. This attitude greatly narrows the
scope of this domain. Perhaps this belief has a temporary (and only partial) justifi-
cation in the research of applied mathematical theories, such as Analysis. Speaking
in a colloquial language, it is rather unusual (it can also be said astoundingly) that
the academic community for a long time was reluctant to accept the possibilities
that offer the choice of the Intuicionistic logic for background in the perception,
understanding and development of algebraic structures.

This article is designed in the following way: Chapter just behind the In-
troduction is a brief recapitulation of our knowledge of semigroups with apartness
relation. The following is the Chapter 3 on ordered semigroups under co-quasiorder
relations. Chapter 5 will be a brief introduction to groups with apartness and the
last chapter, Chapter 5, is devoted to commutative rings with apartness.

2. Semigroups with apartness

2.1. Concept of semigroups with apartness. Let ((A. =, ̸=), ·) be a gro-
upoid with apartness where the internal operation is strongly extensional in the
following sense

(∀a, b, x, y ∈ A)((ay ̸= by =⇒ a ̸= b) ∧ (xa ̸= xb =⇒ a ̸= b)).

It is equivalent with the following condition
(∀a, b, x, y ∈ A)(ax ̸= by =⇒ (a ̸= b ∨ x ̸= y)).

If the internal binary operation ′ · ′ in A is associative, that is, if the following
formula

(∀x, y, z ∈ A)(x(yz) = (xy)z)

is valid, then for (A, ·) we say that it is semigroup with apartness.
Semigroups with apartness are in the focus of interest of one group of re-

searchers. In addition to the texts of this author (Banja Luka) (see, for example:
[38, 39, 40, 42, 49]) devoted to this topic, S. Crvenković (Novi Sad) (see, for
example: [9, 10, 11, 21]), M. Mitrović (Nis) (see, for example: [10, 11, 21])
and A. Cherubini and A. Frigeri (Milan) ([8]) took part in the consideration and
development of this class of semigroups and some other authors.

A subset K of a semigroup A with apartness is
- a left co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ x ∈ K) holds;
- a right co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ y ∈ K) holds; and
- a co-ideal of A if (∀x, y ∈ A)(xy ∈ K =⇒ (x ∈ K ∧ y ∈ K)) holds.

The following theorem can be easily proved by direct verification.



368 D. A. ROMANO

Theorem 2.1. Let {Ki}i∈I be a family of (left, right) co-ideals of a semigroup
A. Then the set

∪
i∈I Ki is a co-ideal in A.

From this theorem one can easily deduce the following theorem.

Theorem 2.2. Let A be a semigroup with apartness. Then the family of all
(left, right) co-ideals if A forms a completely lattice.

Proof. If {Ki}i∈I is the family of all (left, right) co-ideals of A, then
∪

i∈I Ki

is a (left, right) co-ideal in A by previous theorem. Let X be the family of all (left,
right) co-ideals included in the intersection

∩
i∈I Ki. Then

∪
X is a (left, right)

co-ideal in A too. If we put ⊔Ki =
∪

i∈I Ki and ⊓Ki =
∪
X, then (A,⊔,⊓) is

completely lattice. �
A coequality relation q on a semigroup A with apartness is called co-congruence

on A or coequality relation compatible with the semigroup operation on A if the
following is valid

(a) (∀a, b, x, y ∈ A)((ax, by) ∈ q) =⇒ ((a, b) ∈ q ∨ (x, y) ∈ q)).

If we take a = b in the preceding formula, we get it
(b) (∀a, x, y ∈ A)((ax, ay) ∈ q) =⇒ (x, y) ∈ q).

Also, if we take x = y in the first formula, we get it
(c) (∀a, b, x ∈ A)((ax, bx) ∈ q) =⇒ (a, b) ∈ q).

Of course, vice versa also applies: (b) ∧ (c) =⇒ (a). Indeed, let for the selected
elements a, v, x, y ∈ A be valid (ax, by) ∈ q. Thus (ax, bx) ∈ q ∨ (bx, by) ∈ q by
co-transitivity of the relation q. From here, it follows (a) due to (c) and (b).

We will start with the following theorem in which we give a very important
property of any co-congruence q on a semigroup A:

Theorem 2.3. Let q be a co-congruence on a semigroup A with apartness.
Then the relation q▹ is a congruence on A associate with q.

Although the evidence of this claim is known, we will again show it here that
the reader can gain an impression of the proof technique that is applied.

Proof. Since the first part of this claim is proven in the Proposition 1.1, it
remains to show that the relation q▹ is compatible with the internal operation in
the semigroup A.

Let a, b, u, v ∈ A arbitrary elements such that (a, b) ▹ q and (u, v) ∈ q. Then
(u, ax) ∈ q or (ax, bx) ∈ q or (bx, v) ∈ q ny co-transitivity of q. Thus, we have
u ̸= ax or bx ̸= v because (ax, bx) ∈ q implies (a, b) ∈ q what is impossible. So,
(ax, bx)▹ q. The implication (a, b)▹ q =⇒ (xa, xb)▹ q can be proven analogously
to the evidence of the previous implication. �

The preceding theorem enables the construction of factor-semigroup A/(q▹, q)
with apartness:

Theorem 2.4 ([38], Theorem 2). If q is an co-congruence on a semigroup A
with apartness, then the set A/(q▹, q) is a semigroup with

aq▹ = bq▹ ⇐⇒ (a, b)▹ q, aq ̸= bq ⇐⇒ (a, b) ∈ q and aq▹ · bq▹ = abq◃.
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The next assertion is the specificity of this aspect of semigroup studying which
have not a counterpart in the classical semigroup theory.

Theorem 2.5 ([38], Theorem 3). Let q be a co-congruence on a semigroup A
with apartness. Then the set A : q = {aq : a ∈ A} is a semigroup with

aq = bq ⇐⇒ (a, b)▹ q aq ̸= bq ⇐⇒ (a, b) ∈ q and aq · bq = abq.

This section we will finish with the following results. By the first we will give
a construction of co-congruence on semigroup based on given coequality relation.

Theorem 2.6 ([38], Theorem 5). Let q be a coequality relation on a semigroup
A with apartness. Then the relation

q∗ = {(x, y) ∈ A×A : (∃a, b ∈ A)((axb, ayb) ∈ q)}
is a co-congruence on A such that q ⊆ q∗. If κ is a co-congruence on A such that
q ⊆ κ, then q∗ ⊆ κ.

Let A and B semigroups with apartness. A strongly extensional mapping
f : A −→ B is a homomorphism if

(∀x, y ∈ A)(f(xy) = f(x)f(y)).

Let us recall that the following formulas are valid
(∀x, y ∈ A)(x = y =⇒ f(x) = f(y)) and (∀x,∈ A)(f(x) ̸= f(y) =⇒ x ̸= y).

Without major difficulties, it can be verified ([38], Theorem 4) that Coker(f) =
{(x, y) ∈ A × A : f(x) ̸= f(y)} is a co-congruence on A compatible with the
congruence Ker(f).

Mapping π : A −→ A/(q▹, q), θ : A −→ A : q and h : A/(q▹, q) −→ A : q
appears in Subsection 1.3 are homomorphisms between semigroups with apartness.
The following theorem can be seen as the First theorem of isomorphism between
semigroups with apartness.

Theorem 2.7. Let f : A −→ B be a homomorphism between semigroups
with apartness. Then there exists the strongly extensional injective and embed-
ding homomorphism g : A/(Ker(f), Coker(f)) −→ B such that f = g ◦ π where
π : A −→ A/(Ker(f), Coker(f)) is the canonical epimorphism.

Keeping in mind the result in Theorem 2.5, the following theorem can also be
viewed as the First theorem on isomorphism between semigroups with apartness.
This assertion stems from the specificity of the constructive algebra and does not
have its counterpart in the classical semigroup theory.

Theorem 2.8. Let f : A −→ B be a homomorphism between semigroups with
apartness. Then there exists the strongly extensional injective and embedding homo-
morphism φ : A : Coker(f) −→ B such that f = φ◦θ where θ : A −→ A : Coker(f)
is the strongly extensional standard epimorphism defined by θ(a) = aCoker(f) (a ∈
A).

The next proposition is a standard claim and it can be proved by direct verifi-
cation.
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Proposition 2.1. Let g : ((A,=, ̸=), ·, 1A) −→ ((B,=, ̸=), ·, 1B) be a semi-
group homomorphism, Then

- f(1A) = 1B;
- If L is an ideal of the semigroup B, then f−1(L) is an ideal in A;
- If M is a co-ideal of the semigroup B, then f−1(M) is a co-ideal in A.

If we wish to have strongly extensional consistent classes of co-congruence on
a semigroup with apartness we need another condition:

Theorem 2.9. Let q be a co-congruence on semigroup A. Then classes aq
(a ∈ A) are strongly extensional consistent subsets of A if and only if

(∀a, b ∈ A)((ab, a)▹ q) ∧ (ab, b)▹ q)

holds.

Proof. (1) Let the condition (∀a, b ∈ A)((ab, a) ▹ q) ∧ (ab, b) ▹ q) holds in
semigroup A and let a be an arbitrary element of A. Let xy be element of aq, i.e.
(xy, a) ∈ q. Thus from (xy, x) ∈ q or (x, a) ∈ q and (xy, y) ∈ q or (y, a) ∈ q we
conclude that x ∈ aq and y ∈ aq. So, the subset aq is a consistent subset of A.

(2) Opposite, suppose that the class aq is a consistent subset of A for every a
in A. Let (u, v) be an arbitrary element of q. Then from (u, ab) ∈ q or (ab, a) ∈ q
or (a, v) ∈ q follows (u, v) ̸= (ab, a) or the implication ab ∈ aq =⇒ a ∈ aq ∧ b ∈ aq
holds. Last implication is impossible because a▹aq holds. Hence, we have (u, v) ̸=
(ab, a), i.e. the condition (∀a, b ∈ A)((ab, a) ▹ q) holds. The second part we get
analogously. �

2.2. Inverse semigroups with apartness. In their recently published pa-
per [8], A. Cherubini and A. Frigeri introduced a definition of inverse semigroups
with apartness, a useful tool to describe partial symmetries in sets with apartness.
They proved the constructive analogue of the isomorphism theorem for inverse
semigroups, and provide a characterisation of the co-congruences on inverse semi-
groups.

An inverse semigroup with apartness is a tuple ((A,=, ̸=), ·,−1 ), where

- (A,=, ̸=) os an inhabited set with apartness:

- ′ · ′ is an internal binary operation on A such that:
(a) (∀x, y, z ∈ A)(x · (y · z) = (x · y) · z) and
(b) (∀x, y, u, v ∈ A)(x · u ̸= y · v =⇒ (x ̸= y ∨ u ̸= v))

- −1 is a unary operation such that:
(c) (∀x ∈ A)((x−1)−1 = x) and (d) (∀x, y ∈ A)(x−1 ̸= y−1 =⇒ x ̸= y);

- (∀x ∈ A)(x · x−1 · x = x) and

- (∀x, y ∈ A)(x · x−1 · y · y−1 = y · y−1 · x · x−1).

The first result refers to the recognition of inverse semigroups with apartness.

Theorem 2.10 ([8], Proposition 2). A semigroup with apartness ((A,=, ̸=), ·)
is an inverse semigroup if and only if the relation

{(x, y) ∈ A×A : x = xyx ∧ y = yxyg}
is a strongly extensional mapping from A to A.
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A partial apartness bijection on A is an apartness bijection from X to Y , where
X and Y are subsets of A. As usual, the setsX and Y are called respectively domain
and image of f and denoted by Dom(f) and Im(f). We call a partial apartness
bijection, whose domain and codomain are detachable subsets of A, a d-partial
bijection on A. We denote by IA the set of all d-partial bijections on A. On IA we
define an equality as usual. We define ̸= by

Dom(f) ̸= Dom(g) ∨ (∃x)(f(x) ̸= g(x))

Theorem 2.11 ([8], Theorem 2). Let (A,=, ̸=) be a set with apartness. Then
((IA,=, ̸=, ), ◦,−1 ) is an inverse semigroup with apartness, where where ′ ◦ ′ is the
usual product of relations and ′.−1 ′ denotes the inverse relation.

There remains an open question as to how to determine the co-quasiorder
relation (or co-order relation) in such semigroups compatible with the semigroup
operation in a natural and acceptable way.

2.3. Γ-semigroups with apartness. In this subsection we interested in Γ -
semigroups with apartness. Also, we will find and analyze some doubles of sub-
structures of these semigroups. Our investigation the concept of Γ-semigroups with
appartness consists of the observation of specificities that arise by placing the clas-
sically defined algebraic structure of Γ-semigroups ([55, 56]) into a different logical
environment and using specific Bishop’s constructive algebra tools. The concept of
Γ-semigroups with apartness was introduced and analyzed in our recently published
article [51]. In addition, we introduced the concepts of co-ideals in such semigroups
and give some properties of the family of such substructures. In addition to intro-
ducing the concept of Γ - cocongruences of Γ - semigroup, we also by analyzing the
connection between strong extensional homomorphisms of Γ - semigroups and con-
gruences and co-congruences, we proved some assertions in related with co-ideals
in such semigroups.

Let (S,=, ̸=) and (Γ,=, ̸=) be two non-empty sets with apartness. Then A is
called a Γ - semigroup with apartness if there exist a strongly extensional mapping
from A× Γ× S ∋ (x, a, y) 7−→ xay ∈ S satisfying the condition

(∀x, y, z ∈ S)(∀a, b ∈ Γ)((xay)bz = xa(ybz)).

We recognize immediately that the following implications

(∀x, y, u, v ∈ A)(∀a, b ∈ Γ)(xay ̸= ubv =⇒ (x ̸= u ∨ a ̸= b ∨ y ̸= v)),

(∀x, y ∈ A)(∀a, b ∈ Γ)(xay ̸= xby =⇒ a ̸= b)

are valid, because f is a strongly extensional function.

Let A be a Γ-semigroup with apartness. A subset T of A is said to be a Γ-
cosubsemigroup of A if the following holds

(∀x, y ∈ A)(∀a ∈ Γ)(xay ∈ T =⇒ (x ∈ T ∨ y ∈ T )).

We will assume that the empty set ∅ is a Γ - cosubsemigroup of a Γ - semigroup A
by definition.
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Now, We will introduce the concept of a (left, right) Γ - coideal in a Γ -
semigroup. A strongly extensional subset B of a Γ - semigroup with apartness A
is said to be a left Γ - coideal of A if the following implication holds

(∀x, y ∈ A)(∀a ∈ Γ)(xay ∈ B =⇒ y ∈ B).

A strongly extensional subset B of a Γ - semigroup A with apartness is said to be
a right Γ - coideal of A if the following implication is valid

(∀x, y ∈ A)(∀a ∈ B)(xay ∈ B =⇒ x ∈ B).

A strongly extensional subset B of a Γ - semigroup A with apartness is said to be
a (two side) Γ- coideal of A if the following implication is valid

(∀x, y ∈ A)(∀a ∈ B)(xay ∈ B =⇒ (x ∈ B ∧ y ∈ B)).

From this definition, it immediately follows that if B is a left Γ - coideal of a Γ -
semigroup with apartness A, then B is a Γ - cosubsemigroup of A.

Proposition 2.2 ([51], Proposition 2.4, 2.5 and 2.6). If B is a (left, right) Γ
- coideal of a Γ - semigroup S, then the set B▹ is a (left, right) Γ - ideal of S.

The proof of the following theorem is obtained by direct verification.

Theorem 2.12 ([51], Theorem 2.2, 2.3 and 2.4). The family of all (left, right)
Γ-coideal of Γ-semigroup A forms a completely lattice.

In our intention to show one form of the first theorem on isomorphism between
such semi-groups, we will first determine notions of Γ-homomorphisms and Γ-co-
congruences. Let A be a Γ-semigroup with apartness. A coequality relation q ⊆
A×A is called a Γ - cocongruence on A if the following holds

(∀x, y, u, v ∈ A)(∀a, b ∈ Γ)((xau, ybv) ∈ q =⇒ ((x, y) ∈ q ∨ a ̸= b ∨ (u, v) ∈ q)).

It is obvious that the following implication
(∀x, y ∈ A)(∀a, b ∈ Γ)((xay, xby) ∈ q =⇒ a ̸= b)

is valid. Without major difficulties, it can be checked

Proposition 2.3 ([51], Proposition 2.8). If q is a Γ - cocongruence on a Γ-
semigroup with apartness A, then the relation q▹ is a Γ - congruence on A.

Then any class xq, generated by the element x ∈ A, is a strongly extensional
subset of A.

Theorem 2.13. If q is a Γ - cocongruence on a Γ-semigroup with apartness A,
then the family A : q of all classes of q is Γ - semigroup with (xq)a(yq) = (xay)q
for any x, y ∈ A and a ∈ Γ.

Let A is a Γ-semigroup and B a Λ - semigroups with apartness. A pair (f, φ)
of strongly extensional functions f : A −→ B and φ : Γ −→ Λ is called a homo-
morphism from Γ-semigroup A to Λ - semigroup B if the following holds

(∀x, y ∈ A)(∀a ∈ Γ)((f, φ)(xay) = f(x)φ(a)f(y)).
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It is easily verified that (f, φ) is a correctly determined strongly extensive function.
Also, it is easy to see that Coker(f, φ) = {(x, y) : (f, φ)(x) ̸= (f, φ)(y)} is a Γ -
cocongruence on A and (f, φ)(A) is a Λ - subsemigroup of Λ - semigroup B.

In our last theorem in this subsection, we show that the family A : q of all
classes of Γ - cocongruence q in a Γ-semigroups A plays a significant role in the
so-called first isomorphism theorem.

Lemma 2.1. If q is a Γ - cocongruence on a Γ-semigroup A, then the pair
(θ, i) is a homomorphism between Γ-semigroup A onto Γ - semigroup A : q where
θ : A −→ A : q is a canonical surjection and i is the identity function on Γ.

Theorem 2.14 ([51], Theorem 2.12). Let A be a Γ - semigroup and B be Λ -
semigroups and (f, φ) : A −→ B be a homomorphism.

(1) Then there is a strongly extensional isomorphism
(g, φ) : A/(Ker(f, φ), Coker(f, φ)) −→ (f, φ)(A) ⊆ B

such that (f, φ) = (g, φ) ◦ ((Ker(f, φ))♮, i) holds, where (Ker(f, φ))♮ : A −→
A/(Ker(f, φ), Coker(f, φ)) is the natural epimorphism.

(2) Then there is a strongly extensional isomorphism
(h, φ) : A : Coker(f, φ) −→ (f, φ)(A) ⊆ B

such that (f, φ) = (h, φ) ◦ (θ, i) holds.

3. Ordered semigroups under co-quasiorder

Ordered semigroups with apartness under co-quasiorder has been studied by
this author himself or in cooperation with others in several of his articles (see, for
example:[9, 38, 40, 42, 49, 52]).

Let A = ((A,=, ̸=), ·) be a semigroup with apartness. A relation σ on A is a
co-quasiorder (co-order) on A if it is a co-quasiorder (co-order) on the set A and
the following holds

(∀x, y, z ∈ A)(((xz, yz) ∈ σ ∨ (zx, zy) ∈ σ) =⇒ (x, y) ∈ σ).

Speaking by the language of the classical algebra, the σ is a left and right can-
cellative relation. In both cases, for the semigroup A with apartness is said to be
ordered in under the co-quasiorder (co-order).

Example 3.1. ([9], Example 2) Let T be a strongly extensional consistent
subset of a semigroup A. Then the relation σ ⊆ A×A, defined by

(∀a, b ∈ A)((a, b) ∈ σ ⇐⇒ (a ̸= b ∧ a ∈ T ),

is a co-quasiorder relation on A but it is not a co-order on A.

Example 3.2. ([9], Lemma 2.0) Let T be a strongly extensional subset of a
semigroup A. Then, the relation σ ⊆ A×A, defined by

(∀a, b ∈ A)((a, b) ∈ σ ⇐⇒ (∃x, y ∈ A ∪ {1})(xby ∈ T ∧ xay ▹ T ),

is a co-quasiorder relation on A.

Let A = ((A,=, ̸=), ·) be a semigroup with apartness and σ be a co-quasiorder
relation on A. Our first proposition shows the existence of the co-quasiorder Q on
A/(q▹, q) and A : q, where q = σ ∪ σ−1.
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Lemma 3.1. Let A be a semigroup with apartness ordered under a co-quasiorder
σ. Then the relation q = σ ∪ σ−1 is a co-congruence on A.

Proposition 3.1 ([40], Lemma 1). Let A be a semigroup with apartness and
σ be a co-quasiorder relation on A. The relation Q on A/(q▹, q) and A : q, where
q = σ ∪ σ−1, defined by

(∀a, b ∈ A)((aq, bq) ∈ Q ⇐⇒ (a, b) ∈ σ)

is a consistent, co-transitive and linear relation on semigroups S/(q▹, q) and A : q
compatible with the semigroup operation on A/(q▹, q) and A : q respectively.

We will start this section with the following statement.

Proposition 3.2 ([49], Proposition 2.1). Let σ be a co-quasiorder on a semi-
group A with apartness. Then the left class L(a) and the right class R(b) are
strongly extensional subsets of A such that a▹L(a) and b▹R(b), for any a, b ∈ A.
Moreover, the following implications hold:

- Classes L(a) and R(b) are co-subsemigroups of semigroup A;
- (∀x, y ∈ A)(y ∈ L(a) =⇒ (x ∈ L(a) ∨ (x, y) ∈ σ));
- (∀x, y ∈ A)(y ∈ R(b) =⇒ (x ∈ R(b) ∨ (y, x) ∈ σ)); and
- (∀a, b ∈ A)((a, b) ∈ σ =⇒ L(a) ∪R(b) = A).

Previous analysis justifies the introduction of the following notions. Here-
inafter, we intend to describe some substructures of a ordered semigroup A under
a co-quasiorder σ. For a subset K of A , it is said that co-ideal [9] of A if the
following holds

(∀x, y ∈ A)(xy ∈ K =⇒ (x ∈ K ∨ y ∈ K)) and
(∀x, y ∈ A)((y ∈ K =⇒ (y, x) ∈ σ ∨ x ∈ K)).

So, the subset R(a) is a principal co-ideal of A generated by the element a.
The concept of co-filters in an ordered semigroup A is introduced by the fol-

lowing definition [49]. For a subset G of A it is said that it is a co-filter in A
if

(∀x, y ∈ A)(xy ∈ G =⇒ (x ∈ G ∨ y ∈ G)) and
(∀x, y ∈ A)((y ∈ G =⇒ (x, y) ∈ σ ∨ x ∈ G)).

So, the subset L(a) is a principal co-filter of A generated by the element a. Ac-
cording to the first property, the co-ideal and the co-filter is a co-subsemigroup in
a semigroup A. From another property, immediately follows that any co-ideal and
any co-filter in semigroup A is a strongly extensional subset in A.

If K is a co-ideal and a an arbitrary element of A, then the sets [a : K] = {x ∈
A : ax ∈ K} and [K : a] = {y ∈ A : ya ∈ K} are co-deals of A.

In the following statement we show that a strong complement K▹ of a co-ideal
K is an ideal in A. To that intention, we will first show one necessary lemma

Lemma 3.2 ([42], Lemma 2.2). If σ is a co-quasiorder on a semigroup A, then
the relation σ▹ is a quasi-order on A.

Proposition 3.3. If K is a co-ideal of ordered semigroup A under a quasi-
order σ, then K▹ is an ideal in ordered semigroup A under the quasi-order σ▹.
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In the following statement we show that a strong complement G▹ of a co-filter
G is a filter.

Proposition 3.4 ([49], Theorem 2.1). If G is a co-filter of ordered semigroup
A under a quasi-order σ, then G▹ is a filter in ordered semigroup A under the
quasi-order σ▹.

Theorem 3.1 ([49], Theorem 2.3 and Corollary 2.1). The family of all co-filters
in a ordered semigroup A under a under a co-quasiorder forms a join semi-lattice.
The greatest element in this semi-lattice is A.

.
This specific environment enables [49, 52] the introduction of the concept of

ordered co-ideals and the concept of ordered co-filters as well as the concepts of
normal co-ideals and normal co-filters.

For an element a of A we put aα = {x ∈ A : (a, x) ∈ α} and αa = {x ∈ A :
(x, a) ∈ α}. In the following theorems, we give some fundamental properties of
co-quasiorder σ in semigroup A with apartness:

Theorem 3.2. The following conditions for a co-quasiorder σ on a semigroup
A are equivalent:

(1) (∀a, b ∈ A)((a, ab)▹ σ ∧ (a, ba)▹ σ);
(2) (∀a, b ∈ A)(aσ ∪ bσ ⊆ (ab)σ);
(3) (∀a, b ∈ A)(σ(ab) ⊆ σa ∩ σb);
(4) a is a strongly extensional consistent subset of A such that a▹ aσ for each

a ∈ A; and
(5) σb is a strongly extensional ideal of A such that b▹ σb, for each b ∈ A.

Proof. (1) =⇒ (3)
y ∈ σ(ab) ⇐⇒ (y, ab) ∈ σ

=⇒ ((y, a) ∈ σ ∨ (a, ab) ∈ σ) ∧ ((y, b) ∈ σ ∨ (b, ab) ∈ σ)
=⇒ (y, a) ∈ σ ∧ (y, b) ∈ σ
⇐⇒ y ∈ σa ∩ σb.

(3) =⇒ (4)
xy ∈ aσ ⇐⇒ (a, xy) ∈ σ

⇐⇒ a ∈ σ(xy) ⊆ σx ∩ σy
=⇒ a ∈ σx ∧ a ∈ σy
⇐⇒ x ∈ aσ ∧ y ∈ aσ.

(4) =⇒ (1). Let (u, v) be an arbitrary element of σ. Then (u, a) ∈ σ ∨ (a, ab) ∈
σ ∨ (ab, v) ∈ σ and since from ab ∈ aσ follows (a ∈ aσ ∧ b ∈ aσ), which is
impossible, we have u ̸= a or ab ̸= v. So, (a, ab) ̸= (u, v) ∈ σ. For the assertion
(a, ba)▹ σ the proof is similar.
(1) =⇒ (2).
x ∈ aσ ∪ bσ ⇐⇒ x ∈ aσ ∨ x ∈ bσ

⇐⇒ (a, x) ∈ σ ∨ (b, x) ∈ σ
=⇒ ((a, ab) ∈ σ ∨ (ab, x) ∈ σ) ∧ ((b, ab) ∈ σ ∨ (ab, x) ∈ σ)
=⇒ (ab, x) ∈ σ
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⇐⇒ x ∈ (ab)σ.
(2) =⇒ (5)
x ∈ σa ∨ y ∈ σ ⇐⇒ a ∈ xσ ∨ a ∈ yσ

⇐⇒ a ∈ xσ ∪ yσ ⊆ (xy)σ
=⇒ xy ∈ σa.

(5) =⇒ (1) Let (u, v) be an arbitrary element of σ and a, b ∈ A. Then (u, a) ∈
σ ∨ (a, ab) ∈ σ ∨ (ab, v) ∈ σ.. Thus u ̸= a ∨ a ∈ σ(ab) ∨ ab ̸= v. Since, by (5), from
a ∈ σ(ab) follows ab ∈ σ(ab) which is impossible, we have that (a, ab) ̸= (u, v) ∈ σ.
The fact (a, ba)▹ σ we got analogously. �

In the following examples we give constructions of a co-quasiorder relation on
a semigroup with apartness that satisfies the condition (1) in Theorem 3.2:

Example 3.3. 1. Let J be a proper strongly extensional ideal of A. Then the
relation σ on A, defined by (a, b) ∈ σ ⇐⇒ a ∈ J ∧ b▹ J , is a co-quasiorder on A
satisfies the condition (1) in Theorem 3.2.

2. Let K be a strongly extensional consistent subset of A. Then the relation σ
on A, defined by (a, b) ∈ σ ⇐⇒ a ▹K ∧ b ∈ K, is a co-quasiprder on A satisfies
the condition (1) in the Theorem 3.2.

Theorem 3.3. Let σ be a co-quasiorder relation on a semigroup A that satis-
fies one of the equivalent conditions of the previous Theorem 3.2. Then following
conditions are equivalent:

(1) (∀a, b ∈ A)((ab)σ = aσ ∪ bσ);
(2) σb is strongly extensional completely prime ideal of A for every b in A;
(3) (∀a, b, c ∈ A)((ab, c) ∈ σ =⇒ ((a, c) ∈ σ ∨ (b, c) ∈ σ)).

Proof. (1) =⇒ (2) Let xy ∈ σb. Then, b ∈ (xy)σ = xσ ∪ yσ. Thus, b ∈ xσ
or b ∈ yσ. So, x ∈ σb or y ∈ σb.

(2) =⇒ (1) If x is an arbitrary element of (ab)σ, then ab ∈ xσ and a ∈ xσ ∨ b ∈
xσ because xσ is a strongly extensional completely prime ideal of A. Therefore,
the following implication x ∈ (ab)σ =⇒ x ∈ aσ ∪ bσ holds.

(3) =⇒ (1) Let (3) holds. Then, for x ∈ (ab)σ we have (ab, x) ∈ σ. Thus,
(a, x) ∈ σ or (b, x) ∈ σ. Hence, finally, we have x ∈ aσ ∪ bσ.

(1) =⇒ (3) Let the formula (1) is valid. Suppose that a, b and c are elements
of A such that (ab, c) ∈ σ. Then, c ∈ (ab)σ = aσ ∪ bσ. So, we have c ∈ aσ ∨ c ∈ bσ
and, finally (a, c) ∈ σ or (b, c) ∈ σ. �

Corollary 3.1. If σ is a co-quasiorder relation on semigroup A which sat-
isfies one of conditions (1), (2) or (3) in the above Theorem, then the following
implication holds:

(4) (∀a, b, c ∈ A)((a, c)▹ σ ∧ (b, c)▹ σ =⇒ (ab, c)▹ σ).

Proof. Let a, b and c be elements of A such that (a, c)▹ σ and (b, c)▹ σ and
let (u, v) be an arbitrary element of σ. Then:
(u, v) ∈ σ =⇒ ((u, ab) ∈ σ ∨ (ab, c) ∈ σ ∨ (c, v) ∈ σ)

=⇒ u ̸= ab ∨ (a, c) ∈ σ ∨ (b, c) ∈ σ ∨ c ̸= v
=⇒ (ab, c) ̸= (u, v) ∈ σ. �
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Theorem 3.4. Let σ be a co-quasiorder relation on a semigroup A that satis-
fies one of the equivalent conditions of the previous Theorem 3.2. Then following
conditions are equivalent:

(a) (∀a, b ∈ A)((ab, a)▹ σ ∨ (ab, b)▹ σ);
(b) (∀a, b ∈ A)(σ(ab) = σa ∩ σb);
(c) aσ is a strongly extensional filter of A for every a in A; and
(d) (∀a, b ∈ A)((a, b)▹ σ ∨ (b, a)▹ σ).

Proof. (a) =⇒ (b)
x ∈ σa ∩ σb ⇐⇒ (x, a) ∈ σ ∧ (x, b) ∈ σ

=⇒ ((x, ab) ∈ σ ∨ (ab, a) ∈ σ) ∧ ((x, ab) ∈ σ ∨ (ab, b) ∈ σ)
=⇒ (x, ab) ∈ σ
⇐⇒ x ∈ σ(ab).

(b) ⇐⇒ (c)
x ∈ aσ ∧ y ∈ aσ ⇐⇒ a ∈ σx ∧ a ∈ σy

⇐⇒ a ∈ σx ∩ σy = σ(xy)
⇐⇒ xy ∈ aσ.

(c) =⇒ (a) Let (u, v) be an arbitrary element of σ and let a, b, c be arbitrary
elements of A. Then, ((u, ab) ∈ σ ∨ (ab, a) ∈ σ ∨ (a, v) ∈ σ) and ((u, ab) ∈
σ ∨ (ab, b) ∈ σ ∨ (b, v) ∈ σ), and thus,

(u, v) ̸= (ab, a) ∨ (u, v) ̸= (ab, b) ∨ (ab ∈ σa ∩ σb = σ(ab)).

So, we have (ab, a)▹ σ or (ab, b)▹ σ , since ab▹ τ(ab).
(a) ⇐⇒ (d) Out of (d) immediately follows (a). Let (d) holds for elements a, b
of semigroup A and let (u, v) be an arbitrary element of σ. Particularly, we have
(a2, a)▹ σ and (a, a2)▹ σ. Thus,

((u, ab) ∈ σ ∨ (ab, aa) ∈ σ ∨ (aa, a) ∈ σ ∨ (a, v) ∈ σ)and

((u, ab) ∈ σ ∨ (ab, bb) ∈ σ ∨ (bb, b) ∈ σ ∨ (b, v) ∈ σ).

Hence,

(u ̸= ab ∨ (b, a) ∈ σ ∨ a ̸= v) ∧ (u ̸= ab ∨ (a, b) ∈ σ ∨ b ̸= v).

So, we have (ab, a) ̸= (u, v) or (ab, b) ̸= (u, v). �
For a given co-ordered semigroup ((A,=, ̸=), ·, α) is essential to know if there

exists a co-congruence q on A such that A : q be a co-ordered semigroup. Now, we
introduce new important notion: A co-congruence q on A is called regular if there
is a co-order Θ on A : q satisfying the following conditions:

(1) ((A : q,=, ̸=), ·,Θ) is a co-ordered semigroup;
(2) The mapping θ : A −→ vA : q is a reverse isotone epimorphism.

In order to obtain the relationship between regular co-congruence and co-
quasiorder on S, following theorem is essential.

Theorem 3.5. Let (A, ·, α) be a co-ordered semigroup and q be a co-congruence
on A. The following are equivalent:

(1) q is regular.
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(2) there exists a co-quasiorder σ on A, such that q = σ ∪ σ−1.

Proof. (2) =⇒ (1). By Proposition 3.1, since q = σ ∪ σ−1, the semigroup
((A : q,=, ̸=), ·) is a co-ordered semigroup with respect under the co-order Θ,
defined by (∀x, y ∈ A)((qx, qy) ∈ Θ ⇐⇒ (x, y) ∈ σ). If x, y ∈ A and (qx, qy) ∈ Θ,
then (x, y) ∈ σ ⊆ α. So, q is a regular co-congruence on A by definition.

(1) =⇒ (2). Let q be a regular co-congruence on a semigroup (A,α). Then
there exists a co-order relation Θ on the semigroup A : qS such that (A : q,Θ) is a
co-ordered semigroup, and θ : A −→ A : q is a strongly extensional reverse isotone
homomorphism of co-ordered semigroups. Let σ = {(x, y) ∈ S × S : (qx; qy) ∈ Θ}.
So, σ is a co-antiorder on A and it is easy to check that q = σ ∪ σ−1 according to
Lemma 1 in the article [40]. �

3.1. Semillatice-ordered semigroups. Semilattice-ordered semigroups are
important algebraic structure. It studied, for example, by Martin Kuril and Li-
bor Polka [14]. In this subsection we describe semilattice-ordered semigroup with
apartness. Following to classical definition in [14], for algebraic structure ((A,=
, ̸=, 1),⊗) is called that it is a semilattice-ordered semigroup with apartness if
([20, 41, 43, 46]):

(i) ((A,=, ̸=, 1, ), ·) is a semigroup with apartness:
(ii) ((A,=, ̸=),⊗) is a semilattice, i.e. (A,⊗) is a commutative semigroup with

(∀x ∈ A)(x⊗ x = x) where the semigroup operation is strongly extensional:
(∀a, b, c ∈ A)((a⊗ c ̸= b⊗ c ∨ c⊗ a ̸= c⊗ b) =⇒ a ̸= b);
(iii) (∀a, b, c ∈ A)((a · (b⊗ c) = a · b⊗ a · c) ∧ ((a⊗ b) · c = a · c⊗ b · c)) and
(iv) (∀x ∈ A)(x⊗ 1 = 1).

Some examples of these algebraic reader structures can be found in the article
[41]. In the following lemma we show that semilattice-ordered semigroup with
apartness is equipped with the natural defined co-order relation:

Lemma 3.3 ([41], Lemma 2.2). Let (A,=, ̸=, 1, ·,⊗) be a semilattice-ordered
semigroup with apartness. The the relation α on A, defined by

(∀a, b ∈ A)((a, b) ∈ α ⇐⇒ a⊗ b ̸= b),

is a co-order relation in A.

The concept of a co-ideal in semilattice-ordered semigroup with apartness is
introduced as follows: Let (A,=, ̸=, 1), ·,⊗) be a semilattice-ordered semigroup with
apartness. A subset K of A is its co-ideal if the following jolds

(1) (∀a, v ∈ A)(a⊗ b ∈ K =⇒ (a ∈ K ∨ b ∈ K)), and
(2) (∀a, b ∈ A)(b ∈ K =⇒ ((a, b) ∈ α ∨ a ∈ K)).

The term ’co-filter’ as a dual of notion filter we introduce by the following way.
Let (A,=, ̸=, ·,⊗) be a semilattice-ordered semigroup with apartness. A subset G
of A is a co-filter of A if the following holds

(∀a, b ∈ A)(a⊗ b ∈ G =⇒ (a ∈ G ∨ b ∈ G) and
(∀a.b ∈ A)(b ∈ G =⇒ ((b, a) ∈ α ∨ a ∈ G)).

In addition to these concepts, the above-mentioned article introduced and an-
alyzed the concepts of ordered co-filters and normal co-filters.
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3.2. Implicative semigroups. The concept of an implicative semigroups
with apartness was introduced and analyzed by this author in his articles [44,
45, 53]. In this subsection, we assume that the basic apartness is tight, i.e. it
satisfies the following

(∀x, y ∈ A)(¬(x ̸= y) =⇒ x = y).

For a negatively anti-ordered semigroup (briefly, n.a-o. semigroup) we mean a set
(A,=, ̸=) with an co-order α and a binary operation ’·’ (we will write xy instead
x · y ) such that for all x, y, z ∈ A, we have to have

(1) (xy)z = x(yz),
(2) (xz, yz) ∈ α or (zx, zy) ∈ α implies (x, y) ∈ α, and
(3) (xy, x)▹ α and (xy, y)▹ α.

In that case for co-order α we will say that it is negative co-order relation on
semigroup. Let us note that, in that case, we have

(3’) (x, xy)▹ α−1 and (y, xy)▹ α−1 .

In fact, for (v, u) ∈ α−1 we have

(u, v) ∈ α =⇒ ((u, xy) ∈ α ∨ (xy, x) ∈ α ∨ (x, v) ∈ α).

Thus, by (3), we have u ̸= xy or x ̸= v. So, we proved (x, xy) ̸= (v, u) ∈ α−1. The
second part of (3’) we prove analogously.

Let α be a relation on A. For an element a of A we put aα = {x ∈ A : (a, x) ∈
α} and αa = {x ∈ A : (x, a) ∈ α}. In the following proposition we give some
fundamental properties of negative co-order relation on semigroup.

Theorem 3.6 ([44], Theorem 3.1). If α ⊆ A × A is a co-order relation on a
semigroup A, then the following statements are equivalent:
(i) α is a negative co-order relation;
(ii) αb is a consistent subset of A for any b in A;
(iii) (∀a, b ∈ A)(αa ∪ αb ⊆ α(ab));
(iv) aα is an ideal of A for any a in A;
(v) (∀a, b ∈ A)((ab)α ⊆ aα ∩ bα).

An n.a-o. semigroup ((A,=, ̸=), ·, α) is said to be implicative semigroup with
apartness if there is an additional binary operation ⊗ : A×A −→ A such that for
any elements x, y, z of A, the following is true

(4) (z, x⊗ y) ∈ α ⇐⇒ (zx, y) ∈ α.

Let us point out, as in the classical case, that in definition of implicative semi-
group we can take the following lower demand

(4’) (z, x⊗ y)▹ α ⇐⇒ (zx, y)▹ α

instead demand (4).
In addition, let us recall that the internal binary operation must satisfy the

following implications:
(a, b) = (u, v) =⇒ a⊗ b = u⊗ v and a⊗ b ̸= u⊗ v =⇒ (a, b) ̸= (u, v).
The operation ⊗ is called implication. From now on, an implicative n.a-o.

semigroup is simply called an implicative semigroup with apartness.
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In any implicative semigroup A there exist a special element of A, the biggest
element in (A,α▹), which is an almost neutral element in (A, ·). In the following
proposition we describe role of this special element.

Theorem 3.7 ([44], Theorem 3.4). If A is an implicative semigroup, then for
every x, y ∈ A holds

(x, y)▹ α ⇐⇒ 1 = x⊗ y and (x, y) ∈ α ⇐⇒ 1 ̸= x⊗ y.

A subset G of A we called co-filter if it satisfies the following conditions:
xy ∈ G =⇒ x ∈ G ∨ y ∈ G, that is, G is a co-subsemigroup of A and
y ∈ G =⇒ (x, y) ∈ α ∨ x ∈ G.

It is easy to check that a co-filter is a strongly extensional subset of A. Moreover,
strong compliment G▹ of a co-filter G is a filter in A.

The following two theorems give equivalent conditions for G to be a co-filter in
implicative semigroup A.

Theorem 3.8 ([44], Theorem 3.7). An inhabited proper subset G of an im-
plicative semigroup A is a co-filter of A if and only if it satisfies the following
conditions:

(i) 1▹G, (ii) (∀x, y ∈ A)(y ∈ G =⇒ (x⊗ y ∈ G ∨ x ∈ G)).

Theorem 3.9 ([44], Theorem 3.8). An inhabited proper subset G of an im-
plicative semigroup A is a co-filter of A if and only if it satisfies the following
condition:

(∀x, y, z ∈ A)(z ∈ G =⇒ ((x, y ⊗ z) ∈ α ∨ x ∈ G ∨ y ∈ G)).

3.3. Some results of contemporary research. In the recently published
paper [48] the author was interested in semigroup action on groupoid ordered
under co-order. He first introduced the concept of acting semigroup with apart-
ness (S,=, ̸=, ·) on ordered grupoid with apartness (G,=, ̸=,+) under co-order 
.
Using this concepts he showb that if a commutative semigroup (S,=, ̸=, ·) acts
on an ordered grupoid (G,=, ̸=,+) under co-quasirder 
G, then there exists a
commutative semigroup S, constructed by S, acting on the groupoid (G × S)/q
ordered under 
q, where (x, a)q 
q (y, b)q ⇐⇒ bx 
G ay and q = ρ ∪ ρ−1,
((x, a), (y, b)) ∈ ρ ⇐⇒ bx 
G ay for any (x, a), (y, b) ∈ G× S.

4. Groups with apartness

Groups with apartness relations are very rarely researched. Some elements
of the theory of these groups can be found in the Ruitenberge’s dissertation [54]
and in our dissertation [25] and in our articles [26, 31]. The constructions of free
Abelian groups with apartness can be found in the text [13] written bt D. van
Dalen, F.-J. de Vries. and in our article [28]. In this section, we will present some
of the elements of the theory of commutative groups with apartnes.

A groupoid (A,=, ̸=), ·) with apartness and with the unity ′1 ′ is a group with
apartness if the following holds

(∀x ∈ A)(x · 1 = 1 · x = x),
(∀x ∈ A)(∃x−1 ∈ A)(x · x−1 = x−1 · x = 1).
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Group A is said to be a commutative group (or an Abelian group) if valid
(∀x, y ∈ A)(x · y = y · x)
In our further exposition, we assume that all the groups that appear are com-

mutative. It is clear that the following implication is valid
(∀x, y ∈ A)(x ̸= y =⇒ x−1 ̸= y−1).

Indeed, from x ̸= y follows 1 ·x ̸= y ·1 and y ·y−1 ·x = y ·x−1 ·x. From here follows
y−1 = x−1 due to the cancellativity of the internal operation with respect to the
apartness.

From the previous implication immediately follows
(∀x, y ∈ A)(x−1 ̸= y−1 =⇒ x ̸= y).

Let x−1 ̸= y−1. Since (z−1)−1 = z for any z ∈ A, we have (x−1)−1 ̸= (y−1)−1 by
previous implication. So, we have x ̸= y.

For a subset S of a group A, it is said that it is a subgroup of the group A if
the following is valid

1 ∈ S,
(∀x, y ∈ A)(x ∈ S ∧ y ∈ S =⇒ xy ∈ S),
(∀x ∈ A)(x ∈ S =⇒ x−1 ∈ S).

Let A be a group with apartness and let H be a subset of A. For H is said to
be a co-subgroup of A if holds

1▹H,
(∀x, y ∈ A)(xy ∈ H =⇒ (x ∈ H ∨ y ∈ H)) and
(∀x ∈ A)(x−1 ∈ H =⇒ x ∈ H).

Let q be a co-equality on a group A with apartness. q it is called a co-congruence
relation on A if holds

(∀x, y, u, v ∈ A)((xu, yv) ∈ q =⇒ ((x, y) ∈ q ∨ (u, v) ∈ q)).

The following proposition describes the relationship between the concept of
co-subgroups and the concept of co-congruences.

Proposition 4.1 ([26], Proposition 4). Let H be a co-subgroup of a group A.
Then the relation q on A, defined by

(∀x, y ∈ A)((x, y) ∈ q ⇐⇒ xy−1 ∈ H),

is a co-congruence on A and H = {a ∈ A : (a, 1) ∈ q} holds.
Oppositely, if q is a co-congruence on a group A, then the set H = {a ∈ A :

(a, 1) ∈ q} is a co-subgroup of A.

Without major difficulties, it is checked that if q is a co-congruence on the
group A, then q▹ is a congruence on A ([26], Proposition 3). Analogously, if H is
a co-subgroup of a group A, then H▹ is a subgroup of A ([26], Proposition 4).

Let H be a subgroup of group A and let a ∈ A be an arbitrary element. Define
aH▹ = {ab : b ∈ H▹} and the family A/(H▹,H) = {aH▹ : a ∈ A} with

(∀a, b ∈ A)(aH▹ = bH▹ ⇐⇒ ab−1 ▹H) and
(∀a, b ∈ A)(aH▹ ̸= bH▹ ⇐⇒ ab−1 ∈ H).

Then this family is ([25], Theorem 7) a group with the internal operation defined
by aH▹ · bH▹ = abH▹ and the unity H▹.
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Let A and B be groups with apartness. A total strongly extensional function
f ;A −→ B is a homomorphism between groups with apartness if

(∀x, y ∈ A)(f(x · y=f(x) · f(y)).
A homomorphism is a bijection if it is injective (monomorphism) and surjective
(epimorphism) mapping. A homomorphism is an isomorphism if it is bijective and
embedding. The following theorems are important.

Theorem 4.1 ([25], Theorem 10). Let f : A −→ B a homomorphism between
groups with apartness. Then there exist the unique isomorphism

g : A/(Ker(f), Coker(f) −→ Im(f)

such that f = g ◦ π, where π : A −→ A/(Ker(f), Coker(f)), is the canonical
epimorphism.

On the previous theorem we can look at the first theorem on isomorphism
between Abalian groups with apartnes.

Theorem 4.2 ([25], Theorem 11). Let f : A −→ B be a homomorphism
between groups with apartness. Let H and K be a pair of a subgroup and a co-
subgroup of Im(f). Then:

- The set f−1(H) is a subgroup of A such that Ker(f) ⊆ f−1(G);
- The set f−1(K) is a co-subgroup of A such that f−1(K) ⊆ Af ;
- f−1(H) ⊆ ¬f−1(K);
- There exist the unique isomorphism
h : A/(f−1(H), f−1(K)) −→ Im(f)/(H,K).

4.1. A construction of free Abelian group with apartness. In what
follows it will be shown how a free Abel group with apartness can be constructed
(see for example [13] and [28]).

Let (X,=, ̸=) be a set with apartness. We form the following class X+ of all
strictly finite sequences of elements of X

x+ ∈ X+ ⇐⇒ (nx ∈ N)(∃fx)(fx : {1, 2, ..., nx} −→ x+)

with

(∀i ∈ {1, 2, ..., nx})(fx(i) ∈ X).

As usual the concatenation of x+ and y+ is denoted by x+ ◦ y+. If

x+ = (fx(1), ..., fx(nx)) and y+ = (fy(1), ..., fy(ny)),

then

nxy = nx + ny and
i ∈ {1, 2, ..., nx} =⇒ fxy(i) = fx(i),

i = nx + j (j ∈ {1, 2, ..., ny}) =⇒ fxy(i) = fy(j),

i.e.

x+ ◦ y+ = (fx(1), ..., fx(nx), fy(1), ..., fy(ny)).

On the class X+ we define

x+ =1 y+ ⇐⇒ (nx = ny ∧ fx = fy) and
x+ ̸=1 y+ ⇐⇒ (¬(nx = ny) ∨ fx ̸= fy).
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It is obvious that the relation =1 is an equality relation on the class X+. It is
clear that the relation ̸=1 is consistent ¬(x+ ̸=1 x+) and symmetric (x+ ̸=1 y+ =⇒
y+ ̸=1 x+). We have to prove that the relation ̸=1 is compatible with the equality
=1 and co-transitive.
x+ =1 y+ ∧ y+ ̸=1 z+ ⇐⇒
(x+ =1 y+(⇐⇒ (nx = ny ∧ fx = fy))) ∧ (y+ ̸=1 z+(⇐⇒ ¬(ny = nz) ∧ fy ̸= fz))

=⇒ ¬(nx = nz) ∨ fx ̸= fz
=⇒ x+ ̸=1 z+.

Let x+, z+ be arbitrary elements of X+ such that x+ ̸=1 z+, and let y+ be an arbi-
trary element of X+. Then there exist natural numbers nx , ny, nz and functions
fx, fy, fz such that ¬(nx = nz) ∨ fx ̸= fz. Thus,

¬(nx = ny) ∨ ¬(ny = nz) ∨ fx ̸= fy ∨ fy ̸= fz.

Therefore, x+ ̸=1 y+ ∨ y+ ̸=1 z+ holds.
The mapping ◦ : X+×X+ ∋ (x+, z+) 7−→ x+◦z+ ∈ X+×X+ is an internal binary
operation on the set (X+,=1, ̸=1). Indeed: Let (x

+, z+) and (a+, b+) be two pairs
of elements of X+ and let x+ =1 a+ and y+ =1 b+. Then x+ =1 a+ ⇐⇒ (nx =
na ∧ fx = fa) and y+ =1 b+ ⇐⇒ (ny = nb ∧ fy = fb). We have nx+ny = na+nb

and
x+ ◦ y+ =
(fx(1), ..., fx(nx), fy(1), ..., fy(ny)) =1 (fa(1), ..., fa(na), fb(1), ..., fb(nb))
= a+ ◦ b+
Let x+ ◦ y+ ̸=1 a+ ◦ b+, i.e. let ¬(nxy = nab) ∨ fxy ̸= fab. Thus:
(i) If ¬(nxy = nx + ny = na + nb = nab), then ¬(nx = na) ∨ ¬(ny = nb).
(ii) If

(fx(1), ..., fx(nx), fy(1), ..., fy(ny)) ̸=1 (fa(1), ..., fa(nx), fb(1), ..., fb(ny)),

then there exists the natural number i ∈ {1, ..., nxy} such that fxy(i) ̸= fab(i). If
i ∈ {1, ..., nx}, then fx(i) = fxy(i) ̸= fab(i) = fa(i); if i ∈ {nx+1, ..., nxy}, then
i = j + nx and fy(j) = fxy(i) ̸= fab(i) = fb(j). So, from the both cases, we
conclude that x+ ̸=1 a+ or y+ ̸=1 b+. Therefore, the operation ”◦” is strongly
extensional.
Since x+ ◦ y+ = y+ ◦ x+, the operation ◦ is commutative and the unity element in
X+ is the empty sequence v.

Theorem 4.3 ([28], Theorem). The structure ((X+ ×X+,=2, ̸=2), v,+) is a
free Abelian group with apartness over a set (X,=, ̸=), where

(x+, y+) =2 (a+, b+) ⇐⇒ x+ ◦ b+ =1 a+ ◦ y+,
(x+, y+) ̸=2 (a+, b+) ⇐⇒ x+ ◦ b+ ̸=1 a+ ◦ y+, and
(x+, y+) + (a+, b+) =2 (x+ ◦ a+, y+ ◦ b+).

4.2. Co-ordered Abelian groups. Let (A,=, ̸=), 0,+) be an additive Abeli-
an group with apartness. Am co-order α on a set A is a co-order on group A if

(∀a, b, c, d ∈ A)((a+ c, b+ c) ∈ α =⇒ ((a, b) ∈ α ∨ (c, d) ∈ α)).

In this case, the group A is called ordered group under co-order α.

Proposition 4.2. Let α be a co-order on an additive Abelian group A. Then:



384 D. A. ROMANO

- If the apartness is tight, the relation α▹ is a partial order relation on A
compatible with the group operation.

- (∀a, b ∈ A)((a, b) ∈ α,=⇒ (a+ c, b+ c) ∈ α).
- (∀a, b ∈ A)((a, b) ∈ α =⇒ (−a,−b) ∈ α)

Proposition 4.3. Let a subset P of an additive abelian group A satisfies the
following conditions:

(1) 0▹ P ,
(2) P ∪ (−P ) = P and P ∩ (−P ) = ∅ and
(3) (∀a, b ∈ A)(a+ b ∈ P =⇒ a ∈ P ∨ b ∈ P ).

Then the relation α on defined by (∀z, b ∈ A)((a, b) ∈ α ⇐⇒ a−b ∈ P ) is a co-order
relation on A compatible with the group operation and P = {a ∈ A : (a, 0) ∈ α}
holds.

5. Rings with apartness

5.1. Concept of rings with apartness. Some elements of ring theory with
apartness can be found in the early seventies in the papers [57, 58] written by John
Staples. Rings with apartness was studied by W. Ruitenburg in his dissertation
[54]. Rings from the aspect of constructive mathematics have been studied by R.
Mines and F. Richman in several of their texts (See, for example: [17, 18]), D. S.
Bridges ([5]) and D. S. Bridges and R. S. Havea ([6]). This author independently,
or in cooperation with some of his colleagues, took part in the development of the
theory of the ring with apartnes (see, for example: [25, 27, 29, 37]).

We begin by recall the definition of ring with apartness. A ring with apartness
R is a nonempty set (R,=, ̸=) with apartness together with two strongly extensional
internal operations + : E×R ∋ (a, b) 7−→ a+b ∈ R and · : R×R ∋ (a, b) 7−→ ab ∈ R
for which the following conditions are valid

(∀a, b, c ∈ R)(a+ (b+ c) = (a+ b) + c),
(∀a, b ∈ R)(a+ b = b+ a),
(∃0 ∈ T )(∀a ∈ R)(a+ 0 = a0 + a),
(∀a ∈ R)(∃(−a) ∈ R)(a+ (−a) = 0 = (−a) + a),
(∀a, b, c ∈ R)(a(bc) = (ab)c),
(∀a, b, c ∈ R)(a(b+ c) = ab+ ac = (b+ c)a).

A ring R is said to be commutative if (∀a, b ∈ R)(ab = ba) holds. An element of
R is called a unity, and it is denoted by 1 (̸= 0), of 1a = a1 = a for all a ∈ R.
The inverse (−a) of an element a ∈ R with be denoted by −a and a+ (−b) will be
written as a− b. We shall assume throughout that all rings are commutative rings
with the unity ′1 ′. Since the additio and the multiplication in R are total strongly
extensional functions, we have

(∀a, b, x, y ∈ R)((a = x ∧ b = y) =⇒ (a+ b = c+ y ∧ ab = xy),
(∀a, b, x, y ∈ R)(a+ b ̸= x+ y =⇒ (a ̸= x ∨ b ̸= y)) and
(∀a, b, x, y ∈ R)(ab ̸= xy =⇒ (a ̸= x ∨ b ̸= y)).

Specially, we have
(∀a, b ∈ R)(ab ̸= 0 =⇒ (a ̸= 0 ∧ b ̸= 0)).
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A ring R is a Richman field ([27]) if R is a commutative ring with
(∀a ∈ R)(a ̸= 0 =⇒ (∃a−1 ∈ R)(aa−1 = 1)).

A Heyting field ([19]) is a Richman field with tight apartness.
By subring of a ring R we mean a ring S such that the set (S,=, ̸=) is a subset of

the set (R,=, ̸=) and such that the binay operaions of R yield the binary operations
in S when restrictd to S × S.

Let ((R,=, ̸=),+, 0, ·, 1) be a commutative ring with apartness and let (S,=, ̸=)
be a subset of R. S is a co-ideal of R if the following holds

0▹ S,
(∀a ∈ R)(−a ∈ S =⇒ a ∈ S),
(∀a, b ∈ R)(a+ b ∈ S =⇒ (a ∈ S ∨ b ∈ S)),
(∀a, b ∈ R)(ab ∈ S =⇒ (a ∈ S ∧ b ∈ S)).

Any inhabited co-ideal S of a ring R is strongly extensional subset of R:
a ∈ S ⇐⇒ a− b+ b ∈ S

=⇒ (a− b ∈ S ∨ v ∈ S)
=⇒ a ̸= b ∨ b ∈ S.

For an ingabited co-ideal S of a ring R with the unit 1, we have
S ̸= ∅ ⇐⇒ (∃a ∈ R)(a ∈ S)

⇐⇒ (∃a ∈ R)(a · 1 ∈ S)
⇐⇒ (∃a ∈ R)(a ∈ S ∧ 1 ∈ S)
⇐⇒ 1 ∈ S.

Now, we can define the following relation q in R by
(∀a, b ∈ R)((a, b) ∈ q ⇐⇒ a− b ∈ S).

For it, the author is proved the following result:

Theorem 5.1 ([27], Proposition 2.5). The relation q is a co-equality relation
on R and it satisfies the following properties:

(∀a, b, u, v ∈ R)((a+ u, b+ v) ∈ q =⇒ ((a, b) ∈ q ∨ (u, v) ∈ q)) and
(∀a, b, u, v ∈ R)((au, bv) ∈ q =⇒ ((a, b) ∈ q ∨ (u, v) ∈ q)).

Tee relation q on R is called a co-congruence on R. Inversely, we have

Theorem 5.2 ([27], Proposition 2.5). If q is a co-congruence on a ring R,
then the set S = {a ∈ R : (a, 0) ∈ q} is a co-ideal of R.

Let J be an ideal of a ring R and let S be a co-ideal of R. Ruitenburg, in his
dissertation ([54], page 33), first stated the demand that

J ⊆ ¬S.
This condition is equivalent with the following condition

(∀a, b ∈ R)((a ∈ J ∧ b ∈ S),=⇒ a+ b ∈ S).

In this case, we say that they are compatible.
Let ((R,=, ̸=),+, 0, ·, 1) be a commutative ring with apartness. The following

theorem gives a construction of a co-congruence on R on the basis of the given
coequality relation q on R.
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Theorem 5.3 ([35], Theorem 3). Let q be a coequality relation on a ring R.
Then the relation

q∗ = {(x, y ∈ R×R : (∃s, t ∈ R)((xt+ s, yt+ s) ∈ q)}
is a co-congruence on R. If r is a co-congruence on R such that q ⊆ r, then
q∗ ⊆ r.

Theorem 5.4. Let q be a co-congruence on a ring R. Then the relation q▹ is
a congruence on R.

As a corollary of above theorem, we can construct the ideal {a ∈ R : (a, 0) ∈
q▹}. The following theorem gives a connection between ideal {a ∈ R : (a, 0) ∈ q▹}
and the ideal {b ∈ R : (b, 0) ∈ q}▹.

Theorem 5.5 ([30]). Let q be a co-congruence on a ring R. Then
{a ∈ R : (a, 0) ∈ q▹} = {b ∈ R : (b, 0) ∈ q}▹.

Further, we have

Theorem 5.6. Let {Si}i∈I be a family of co-ideals of a ring R. Then the union∪
i∈I Si is a co-ideal of R.

Let J and S be compatible an ideal and a co-ideal of a ring R. In the following
theorem we construct the quotient-ring R/(J, S).

Theorem 5.7 ([27], Theorem 2.7). Let J and S be compatible an ideal and a
co-ideal of a ring R. Then the set R/(J, S) = {aJ : a ∈ R} is a ring with

(∀a, b ∈ R)(aJ = bJ ⇐⇒ a− b ∈ J),
(∀a, b ∈ R)(aJ ̸= bJ ⇐⇒ a− b ∈ S),
(∀a, b ∈ R)(aJ + bJ = (a+ b)J) and
(∀a, b ∈ R)(aJ · bJ = (ab)J).

We say that co-ideal S of a ring R is a prime co-ideal ([25], [54], [29]) if the
following is valid

(∀a, b ∈ R)((a ∈ S ∧ b ∈ S) =⇒ ab ∈ S).

A co-ideal S of R is a minimal co-ideal ([54, 27]) if holds
(∀a ∈ R)(a ∈ S =⇒ (∃b ∈ R)(ab− 1▹ S)).

Corollary 5.1 ([27], Proposition 3.7). Let R be a ring and S be a co-ideal
of R. Then the quotient-ring R/(S▹, S) is an integral domain if and only if S is a
prime co-ideal of R.

Corollary 5.2 ([27], Theorem 3.4). Let R be a ring and S be a co-ideal of R.
Then the quotient -ring R/(S▹, S) is a field if and only if S is a minimal co-ideal
of R.

A function f : R −→ T from a ring R to a ring T is a homomorphism of rings
if holds

(∀a, b ∈ R)(f(a+ b) = f(a) + f(b) ∧ f(ab) = f(a)f(b))

In the collection Hom(R, T ) of all homomorphisms from R to T we define
(∀f ∈ Hom(R, T ))(f = 0 ⇐⇒ (∀a ∈ R)(f(a) = 0)) and
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(∀f ∈ Hom(R, T ))(f ̸= 0 ⇐⇒ (∃a ∈ R)(f(a) ̸= 0)).

We have

Lemma 5.1 ([19], Theorem I, 2.2). Let S be a set with a diversity relation and
let X be a set. If the diversity on S is consistent, symmetric, co-transitive, or tight,
then so, respectively, is the diversity on SX

Corollary 5.3. Let R be a ring with apartness. Then the set End(R) =
Hom(R,R) of all homomorphism from R to R is a noncommutative ring with
apartness.

Theorem 5.8 ([27]). Let R and T be wings with apartess and lt f : R −→ T
be a strongly extensional homomorphism. Then the following holds:

(1) The set Ker(f) = {a ∈ R : f(a) = 0} is an ideal of R.
(20 The set Rf = {b ∈ R : f(b) ̸= 0} is a co-ideal of R and Rf ⊆ R0]{a ∈ R :

a ̸= 0} is valid.
(3) Ker(f) and Rf are compatible.
(4) Om(f)]{f(a) ∈ T : a ∈ R} is a subring of T .
(5) The homomorphism f is injective if and only if Ker(f) = (0).
(6) The homomorphism f is an embedding if and only if Rf = R0.
(7) There exists a strongly extensional embedding isomorphism
h : R/(Ker(f), Rf ) −→ Im(f) ⊆ T

such that f = h◦π, where π : R −→ R/(Ker(f), Rf ) is the canonical epimorphism.

Example 5.1. (1) Let m and i ∈ {1, 2, ...,m−1} be integers. We set mZ+ i =
{mz+ i : z ∈ Z}. Then the set Cm =

∪
{mZ+ i : i ∈ {1, 2, ...,m− 1}} is a co-ideal

of the ring Z. The co-ideal Cm is a prime co-ideal of Z if and only if m is a prime
integer.

(2) Let K be a field and let x be an unknown variable under K. Then the set
C = {f ∈ k[x] : f(0) ̸= 0} is a co-ideal of the ring K[x]. This co-ideal is a minimal
co-ideal.

(3) ([32], Theorem 1) Let {Rt}t∈T be a family of rings and let H be a nonempty
subfamily of P(T ). Then the set

S(H) = {r ∈
∏

t∈T Rt : (∃A ∈ H)(A ∩ {t ∈ T : r(t) ̸= 0} ̸= ∅}
is a co-ideal of the ring

∏
t∈T Rt.

5.2. Concept of Γ-semirings with apartness. In this subsection we in-
troduce the concept of Γ-semirings with apartness. We first consider the ideals
and co-ideals of a Γ-semiring with apartness. Also, by using the congruences and
co-congruences induced by strongly extensional homomorphisms between such Γ-
semirings, we establish an isomorphism theorem.

The concept of Γ-semirings were first introduced and studied by M. K. Rao
[22, 23] as a generalization of notion of Γ-rings.

We callR a Γ-semiring with apartness [50] if there exists a mapR×Γ×R −→ R,
written image of (x, a, y) by xay, such that it satisfies the following axioms:

(∀x, y, z ∈ R)(∀a ∈ Γ)(xa(y + z) = xay + xaz and (x+ y)az = xaz + yaz),
(∀x, y ∈ R)(∀a, b ∈ Γ)(x(a+ b)y = xay + xby),
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(∀x, y, z ∈ R)(∀a, b ∈ Γ)((xay)bz = xa(ybz)).

Remark 5.1. As can be seen, the definition of Γ-semirings with apartness is
completely identical to the definition of Γ-semiring in the classical case. However,
they do not determine the same algebraic structure. The reader should always keep
in mind that the logical setting are different and that the manipulation with them
takes place with the previously acceptance of the various principles-philosophical
orientations. In this environment, the following implication is valid

(∀x, y, u, v ∈ R)(∀a, b ∈ Γ)(xay ̸= ubv =⇒ (x ̸= u ∨ a ̸= b y ̸= v)).

A Γ-semiring with apartness R is said to have a zero element if there exists an
element 0 ∈ R such that the following

(∀x ∈ R)(∀a ∈ Γ)(0 + x = x = x+ 0 and 0ax = 0 = xa0)

is valid. Of course, we also have

(∀x, y ∈ R)(x+ y ̸= 0 =⇒ (x ̸= 0 ∨ y ̸= 0))

and

(∀x, y ∈ R)(∀a ∈ Γ)(xay ̸= 0 =⇒ (x ̸= 0 ∧ y ̸= 0)).

Also, a Γ-semiring with apartness R is said to be commutative if the following holds

(∀x, y ∈ R)(∀a ∈ Γ)(xay = yax).

Let R be a Γ-semiring and T a Λ-semiring. Then (f, φ) : (R,Γ) −→ (T,Λ) is
called a homomorphism if f : R −→ T and φ : Γ −→ Λ are strongly extensional
homomorphisms of semigroups such that

(∀x, y ∈ R)(∀a ∈ Γ)((f, φ)(xay) = f(x)φ(a)f(y))

holds. The mapping (f, φ) is called an epimorphism if (f, φ) is a homomorphism
and f and φ are epimorphisms of semigroups. Similarly, we can define a monomor-
phism. A homomorphism (f, φ) is an isomorphism if (f, φ) is an epimorphism and
a monomorphism and f and φ are embeddings.

Let R be a Γ-semiring with apartness
- A non-empty subset A of R is a sub-Γ-semiring of R if A is an additive

sub-semigroup of R and the following holds

(∀x, y ∈ R)(∀a ∈ Γ)((x ∈ A ∧ y ∈ A) =⇒ xay ∈ A).

- A subset B of R is a cosub-Γ-semiring of R if B is an additive cosub-semigroup
of R and the following holds

(∀x, y ∈ R)(∀a ∈ Γ)(xay ∈ B =⇒ (x ∈ A ∨ y ∈ A)).

Let R be a Γ-semiring with apartness.
- A subset B of R is a right Γ-coideal of R if B is a additive cosub-semigroup

of R and the following holds

(∀x, y ∈ R)(∀a ∈ Γ)(xay ∈ B =⇒ y ∈ B).
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- A subset B of R is a left Γ-coideal of R if B is a additive cosub-semigroup of
R and the following holds

(∀x, y ∈ R)(∀a ∈ Γ)(xay ∈ B =⇒ x ∈ B).

- A subset B of R is a Γ-coideal of R if B is a additive cosub-semigroup of R
and the following holds

(∀x, y ∈ R)(∀a ∈ Γ)(xay ∈ B =⇒ (x ∈ B ∧ y ∈ B)).

If R is a Γ-semiring with zero element 0, then it is mandatory to assume that
0▹B.

Proposition 5.1. If B is (left, right) coideal of a Γ-semiring R, then the set
B▹ is a (letf, ringt) ideal of R.

Theorem 5.9. The union of any family {Bi}i∈I of (right, left) Γ-coideals of a
Γ-semigroup (R,Γ) is a (right, left) Γ-coideal of R.

Corollary 5.4. Let X be a subset of Γ-semigroup (R,Γ). Then there exists
the maximal (left, rignt) Γ-coideal of Γ-semiring (R,Γ) included in X.

Corollary 5.5. Let L(R,Γ) be the family of all (left, right) Γ-cideals of (R,Γ).
Then (L(R,Γ),⊔,⊓) is a completely lattice, where B1 ⊔B2 = B1 ∪B2 and B1 ⊓B2

is the maximal coideal included in B1 ∩B2.

A co-equality relation q on Γ-semiring (R,Γ) is said to be a co-congruence if
the following conditions

(∀x, y, z ∈ R)((x+ z, y + z) ∈ q =⇒ (x, y) ∈ q) and
(∀x, y, z ∈ R)(∀a ∈ Γ)(((xaz, yaz) ∈ q ∨ (zax, zay) ∈ q) =⇒ (x, y) ∈ q)

are satisfied.
It is known ([22]: pp. 51, [12]: Theorem 4.5) that if ρ is a congruence relation

on a Γ-semiring (R,Γ), then R/ρ = {[x]ρ : x ∈ R} is also Γ-semiring where it is

(∀x, y ∈ R)([x]ρ + [y]ρ = [x+ y]ρ),

(∀x, y ∈ R)(∀a ∈ Γ)([x]ρa[y]ρ = [xay]ρ).

Proposition 5.2. If q is a Γ-cocongruence on a Γ-semiring (R,Γ), then the
relation q▹ is a Γ-congruence on (R,Γ).

Theorem 5.10. Let q be a Γ-cocongruence on a Γ-semigrong (R,Γ). Then the
family R : q = {[x]q : x ∈ R} is a Γ-semiting also with

(∀x, y ∈ R)([x]q =1 [y]1 ⇐⇒ (x, y)▹ q),

(∀x, y ∈ R)([x]q ̸=1 [y]q ⇐⇒ (x, y) ∈ q),

(∀x, y ∈ R)([x]q + [y]q =1 [x+ y]q),

(∀x, y ∈ R)(∀a ∈ Γ)([x]qa[y]q =1 [xay]q).

Lemma 5.2. Let q be a Γ-cocongruence on a Γ-semigrong (R,Γ). Then the
mapping (π, i) : R −→ R : q, defined by π(x) = [x]q and i(a) = a, is a strongly
extensional epimorphism.
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Lemma 5.3. If the mapping (f, φ) : (R,Γ) −→ (T,Λ) is a strongly extensional
homomoephism, then the relation q(f) on R, defined by

(∀x, y ∈ R)((x, y) ∈ q(f) ⇐⇒ f(x) ̸= f(y)),

is a Γ-cocongruence on R.

Without major difficulties, the following theorem can be proved. We can
be viewed on this theorem as on the First Theorem on Isomorphisms using co-
congruences in Γ-semirigns with apartness.

Theorem 5.11. Let (f, φ) : (R,Γ) −→ (T,Λ) be a strongly extensional ho-
momorphism, then there exists the strongly extensional injective and embedding
homomorphism (g, φ) : (R : q(f),Γ) −→ (T,Λ) such that

(f, φ) = (g, φ) ◦ (π, i).

5.3. Semivaluation on Heytin fields. The first investigation of valuation
theory from the constructive point of view is in te article [57] by J. Staples. How-
ever, Staples was not interested in valuation per se. There are also developments
[17] and [18]. They dea rank one valuation to b a function v from a field K to the
nonnegative real numbers satisfying

(1) v(x) ̸= 0 ⇐⇒ x ̸= 0, (2) v(xy) = v(x)v(y) and (3) v(x+ y) 6 v(x) + v(y).
In our papaer [36] we given a theory of semivaluation Heyting filed different from
above.

Let ((R,=, ̸=),+, 0, ·, 1) be a ring with apartness. A subset D of R is a co-
subring of R if the following holds

0▹D and 1▹D,
(∀a ∈ R)− a ∈ D =⇒ a ∈ D),
(∀a, b ∈ R)(a+ b ∈ D =⇒ (a ∈ D ∨ b ∈ D)) and
(∀a, b ∈ R)(ab ∈ D =⇒ (a ∈ D ∨ b ∈ D)).

Some examples of co-subrings can be found in Examples in the article [36].

Proposition 5.3 ([36], Theorem 5.1). Let R be a commutative ring with apart-
ness and let D be a co-subring of R. Then the set D▹ is a subring of R compatible
with S in the following sense that a ∈ D ∧ b ∈ D▹ =⇒ a+ b ∈ D.

Theorem 5.12 ([36], Theorem 8.2). Let R be a fields with apartness and let
D be a co-subring of R. Then:

(1) The set S = {a ∈ R : a ∈ D ∨ a−1 ∈ D} is a strongly extensional co-
subgroup of the multiplicative group R∗ = {a ∈ R : a ̸= 0} compatible with the
subgroup S▹ such that that we can the factor-group G = R∗/(S, S▹). (We write
the group operation on G as additive.)

(2) The relation α on G, defined by (aS▹, bS▹) ∈ α ⇐⇒ a−1b ∈ D, is a
co-order relation on G compatible with the group operation in G.

(3) If w is the canonical homomorphism from R∗ onto G, then w has the
following properties:

(0) w is a strongly extensional homomorphism;
(i) w(ab) = w(a) + w(b);
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(ii) w(−1) = S▹;
(iii) Let a, b, t ∈ R∗ such that a + b ∈ R∗. If (w(t), w(a + b)) ∈ α, then

w(t, w(a)) ∈ α or (w(t), w(b)) ∈ α.

This observation motivates a definition of the concept of semivaluations on
Heyting field ([36]). Let H be an ordered additive Abelian group under a co-order
α, and let let K be a Heyting fields. A strong semivaluation on K is a strongly
extensional mapping v from K∗ onto H such that

(1) (∀a, b ∈ K∗)(v(a+ b) = v(a) + v(b)),
(2) v(−1=0 and
(3) (c(t), v(a+ b)) ∈ α =⇒ ((v(t), v(a)) ∈ α ∨ (v(t), v(b)) ∈ α).

for any r, a, b ∈ K∗ such that a+ b ∈ K∗.

Theorem 5.13 ([36], Theorem 6.1). Let v : K∗ −→ H be a strong semivalua-
tion. Then

(1) v is a strongly extensional homomorphism of groups.
(2) The set Ker(v) and Coker(v) are compatible a subgroup and a co-subgroup

of the multiplicative group K∗.
(3) The set Dv = {c ∈ K∗ : (0, v(c)) ∈ α} is a co-subring of K and holds

Coker(v) = Dv ∪D−1
v and Dv ∩D−1

v = ∅.

5.4. Modules over commutative ring. The definition of the concept of
modules with apartness over commutative rings and a description of some of its
fundamental properties is taken from article [25, 29]. Some elements of a con-
structive aspect in discovering linear spaces over rings can be found in the texts
[1, 15].

Let R be a ring and let M be an Abelian group. It is said that M is an A-
module if there exists is a strongly extensional function A×M −→ M on M over
A such that

(∀a, b ∈ A)(∀x ∈ M)((ab)x = ac+ bx),
(∀x ∈ M)(1 · x = x),
(∀a, b ∈ A)(∀x ∈ M)((a+ b)x = ax+ bx), and
(∀a ∈ A)(∀x, y ∈ M)(a(x+ y) = ax+ ay).

A linear space is a module over a field.

Let M be a module over a ring R. Then
(∀a, b ∈ A)(∀x, y ∈ M)(ax ̸= by =⇒ a ̸= b ∨ x ̸= y)

by strongly extensionality of the function A×M −→ M .

Let M be a module over a commutative ring R. A coequality relation q on M
is a co-congruence on R-module M ([29], Definition 3.1) if the following holds

(∀a ∈ R)(∀x ∈ M)((ax, 0) ∈ q =⇒ (a ̸= 0 ∧ (x, 0) ∈ q))and
(∀x, y, u, v ∈ M)((x = u, y + v) ∈ q =⇒ ((x, y) ∈ q ∨ (u, v) ∈ q)).

A subset H of M is a co-submodule ([29], Definition 3.2) of M if holds
- 0▹H,
- (∀x, y ∈ M)(x ∈ H ∨ y ∈ H) and
- (∀a ∈ R)(∀ ∈ M)(ax ∈ H =⇒ (a ̸= 0 ∧ x ∈ H)).
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Proposition 5.4 ([29], Proposition 3.2). Let M be a R-module and let q be a
relation on M . Then q is a co-congruence on M if and only if the set P = {x ∈
M : (x, 0) ∈ q} is a co-submodule of M and (x, y) ∈ q ⇐⇒ x− y ∈ P holds.

Theorem 5.14 ([29], Theorem 3.4). Let M be a module over a commutative
ring A and let e and q be compatible a congruence and a co-congruence on M .
Then the family M/(e, q) = {ae : a ∈ M} be a module over A with the equality and
apartness determined by

(∀x, y ∈ M)(xe = ye ⇐⇒ (x, y) ∈ e) and
(∀x, y ∈ M)(xe ̸= ye ⇐⇒ (x, y) ∈ q)

and the internal operation determined by
(∀x, y ∈ M)(xe+ ye = (x+ y)e) and
(∀a ∈ A)(∀x ∈ M)(a · xe = (ax)e).

Let N and K be compatible a submodule and a co-submodule of a A-module
M . Then the relation e ⊆ M × M , defined by (x, y) ∈ e ⇐⇒ x − y ∈ N , is a
congruence on M and the relation q ⊆ M ×M , defined by (x, y) ∈ q ⇐⇒ x− y ∈
K is a co-congruence on M compatible with each other. Let we define a family
M/(M,K) = {x+N = {x+ t : t ∈ N} : x ∈ M} with

(∀x, y ∈ M)(x+N = y +N ⇐⇒ x− y ∈ N),
(∀x, y ∈ M)(x+N ̸= y +N ⇐⇒ x− y ∈ K)
(∀x, y ∈ M)((x+N) + (y +N) = (x+ y) +N) and
(∀a ∈ A)(∀x ∈ M)(a(x+N) = ax+N).

In this case we write M/(N,K) instead of M/(e, q).

Analogously, we can define the family M : q = {xq : x ∈ M} with
(∀x, y ∈ M)(xq = yq ⇐⇒ (x, y)▹ q),
(∀x, y ∈ M)(xq ̸= yq ⇐⇒ (x, y) ∈ q),
(∀x, y ∈ M)(xq + yq = (x+ y)q) and
(∀a ∈ A)(∀x ∈ M)(a(xq) = (ax)q).

Theorem 5.15. Let M be a module over a commutative ring A and let q be a
co-congruence on M . Then the family M : q = {aq : a ∈ M} be a module over A.

If we define N : K = {x+K = x+ t : t ∈ K} : x ∈ M} with
(∀x, y ∈ M)(x+K = y +K ⇐⇒ x− y ▹K),
(∀x, y ∈ M)(x+K ̸= y +K ⇐⇒ x− y ∈ K),
(∀x, y ∈ M)((x+K) + (y +K) = (x+ y) +K) and
(∀a ∈ A)(∀x ∈ M)(a(x+K) = ax+K)

we can write M : K instead of M : q.
LetM andN be A-modules. A total strongly extensional function f : M −→ N

is a homomorphism of modules if holds
(∀a ∈ A)(∀x, y ∈ M)(f(x+ y) = f(x) + f(y) ∧ f(ax) = af(x)).

Lemma 5.4 ([29], Proposition 4.1). If f : M −→ N is a homomorphism be-
tween A modules, then the sets Ker(f) and Coker(f) are compatible a submodule
and a co-submodule of M in the sense

(∀x, y ∈ M)(x ∈ Ker(f) ∧ y ∈ Coker(f) =⇒ x+ y ∈ Coker(f)).
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Theorem 5.16 ([29], Theorem 4.4). Let f : M −→ N be a homomorphism
between A-modules. Then:

- there exists the unique embedding monomorphism
g : M/(Ker(f), Coker(f)) −→ Im(f)

such that f = g ◦ π, where π : M −→ /M/(Ker(f), Coker(f)) is the canonical
epimorphism.

- there exists the unique embedding monomorphism
h : M : Coker(f) ∋ x+ Coker(f) 7−→ f(x) ∈ Im(f) ⊆ M

such that f = g ◦ θ, where θ : M −→ M : Coker(f) is standard monomorphism.

The previous theorem can be seen as the First isomorphism theorem between
the modules with apartness under a commutative ring. Of course, the statement of
the theorem in this principled-philosophical orientation is differs significantly from
the analogous theorem in the classical theory. In this case, the theorem has an
important part that does not have its own dual in the classical module theory over
commutative rings.
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