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COMMON FIXED POINTS OF RATIONAL TYPE AND

GERAGHTY-SUZUKI TYPE CONTRACTION MAPS

IN PARTIAL METRIC SPACES

G. V. R. Babu and D. Ratna Babu

Abstract. In this paper, we prove the existence of common fixed points for

a pair of maps using F -class function in partial metric spaces. Further, we
introduce Geraghty-Suzuki type contraction for two pairs of selfmaps and prove
the existence of common fixed points of these maps in a complete subspace
of a partial metric space under the assumption that these maps are weakly

compatible. Two examples are given to verify the given results.

1. Introduction

The development of fixed point theory is based on the generalization of con-
traction conditions in one direction or/and generalization of ambient spaces of the
operator under consideration on the other. Banach contraction principle plays an
important role in solving nonlinear equations, and it is one of the most useful re-
sult in fixed point theory. In 1994, Matthews [16] introduced the notion of partial
metric in which the concept of self distance need not be equal to zero.

Throughout this paper we denote

F = {β : [0,∞) → [0, 1) : β(tn) → 1 implies tn → 0 as n→ ∞}, R+ = [0,∞)

and N is the set of all natural numbers.
In 1973, Geraghty [8] proved the following theorem which generalizes the Ba-

nach contraction principle.

Theorem 1.1 ([8]). Let (X, d) be a complete metric space and let T : X → X be
a selfmap. Suppose that there exists β ∈ F such that d(Tx, Ty) 6 β(d(x, y))d(x, y)
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holds for all x, y ∈ X. Then T has a unique fixed point u ∈ X and for each x ∈ X
the Picard sequence {Tnx} converges to u as n→ ∞.

In 1975, Dass and Gupta [5] established a fixed point result using contraction
condition involving rational expression as follows:

Theorem 1.2 ([5]). Let (X, d) be a complete metric space and T : X → X be
a mapping such that there exist α, β > 0 with α+ β < 1 satisfying

d(Tx, Ty) 6 αd(x, y) + β
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)

for all x, y ∈ X. Then T has a unique fixed point.

In 2008, Suzuki [18] proved two fixed point theorems, one of which is a new
type of generalization of the Banach contraction principle and does characterize
the metric completeness.

The following theorem is due to Suzuki [18].

Theorem 1.3 ([18]). Let (X, d) be a complete metric space and let T be a
mapping on X. Define a non-increasing function θ : [0, 1) → ( 12 , 1] by

θ(r) =


1 if 0 6 r 6

√
5−1
2

(1− r)r−2 if
√
5−1
2 6 r 6 2−

1
2

(1 + r)−1 if 2−
1
2 6 r < 1.

Assume that there exists r ∈ [0, 1), such that

θ(r)d(x, Tx) 6 d(x, y) implies d(Tx, Ty) 6 rd(x, y)

for all x, y ∈ X. Then, there exists a unique fixed point z of T . Moreover,

lim
n→∞

Tnx = z, x ∈ X.

Definition 1.1. ([16]) Let X be a nonempty set. A mapping p : X×X → R+

is said to be a partial metric on X, if it satisfies the following conditions:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) 6 p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z)

for all x, y, z ∈ X. Then the pair (X, p) is called a partial metric space.

If p is a partial metric on X, then the function ps : X ×X → R+ defined by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a (usual) metric on X.

Example 1.1. ([1, 14, 16]) Consider X = R+ with p(x, y) = max{x, y}. Then
(X, p) is a partial metric space. It is clear that p is not a (usual) metric.

Note that in this case, ps(x, y) = |x− y|.
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Example 1.2. ([11]) Let X = {[a, b] : a, b ∈ R, a 6 b} and define

p([a, b], [c, d]) = max{b, d} −min{a, c}.
Then (X, p) is a partial metric space.

Each partial metric p on X generates a τ0 topology τp on X, which has a base,
the family of open p-balls {Bp(x, ϵ) : x ∈ X, ϵ > 0}, where

Bp(x, ϵ) = {y ∈ X | p(x, y) < p(x, x) + ϵ}
for all x ∈ X and ϵ > 0.

Clearly, limit of a sequence in a partial metric space need not be unique. More-
over, the function p need not be a continuous.

Example 1.3. ([6]) Consider X = R+ with p(x, y) = max{x, y}. Set xn = 1,
for all n ∈ N. Then for each x > 1, we have p(xn, x) = p(x, x).

Definition 1.2. ([16]) Let (X, p) be a partial metric space. A sequence {xn}
converges to x if and only if p(x, x) = lim

n→∞
p(x, xn).

Definition 1.3. ([16]) Let (X, p) be a partial metric space. A sequence {xn}
is said to be a Cauchy sequence if lim

n,m→∞
p(xn, xm) exists and is finite.

Definition 1.4. ([16]) A partial metric space (X, p) is said to be complete if
every Cauchy sequence {xn} in X converges with respect to τp, to a point x ∈ X,
such that p(x, x) = lim

n,m→∞
p(xn, xm).

The following lemmas in a partial metric space are useful in proving our main
results.

Lemma 1.1 ([16]). Let (X, p) be a partial metric space. Then the sequence
{xn} is a Cauchy sequence in X if and only if it is a Cauchy sequence in the metric
space (X, ps).

Lemma 1.2 ([16]). A partial metric space (X, p) is complete if and only if the
metric space (X, ps) is complete. Moreover,

lim
n→∞

ps(x, xn) = 0 ⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

Lemma 1.3 ([16]). Let (X, p) be a partial metric space. Assume xn → z as n→
∞ such that p(z, z) = 0. Then lim

n→∞
p(xn, y) = p(z, y) for every y ∈ X.

Lemma 1.4 ([16]). Let (X, p) be a partial metric space. Then
(i) p(x, y) = 0 ⇒ x = y,
(ii) x ̸= y ⇒ p(x, y) > 0.

The Banach fixed point theorem in the context of partial metric spaces due to
Matthews [16] is the following:

Theorem 1.4 ([16]). Let (X, p) be a complete partial metric space, and let
T : X → X be a mapping such that there exists k ∈ [0, 1), satisfying p(Tx, Ty) 6
kp(x, y) for all x, y ∈ X. Then T has a unique fixed point in X.
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Recently, Dukić et al. [7] proved a fixed point theorem using Geraghty-type
contraction in partial metric spaces as follows:

Theorem 1.5 ([7]). Let (X, p) be a complete partial metric space and let T :
X → X be a selfmap. Suppose that there exists β ∈ F such that p(Tx, Ty) 6
β(p(x, y))p(x, y) holds for all x, y ∈ X. Then T has a unique fixed point u ∈ X and
for each x ∈ X the Picard sequence {Tnx} converges to u as n→ ∞.

For more works on fixed point results and common fixed point results in partial
metric spaces, we refer [1, 4, 6, 9, 10, 11, 13, 14, 19].

Definition 1.5. ([12]) Let X be a nonempty set. Let A : X → X and
B : X → X be two selfmaps. If Ax = Bx implies that ABx = BAx for x in X,
then we say that the pair (A,B) is weakly compatible.

Definition 1.6. ([2]) A mapping F : R+ ×R+ → R is called C-class function
if it is continuous and satisfies the following conditions:

(i) F (s, t) 6 s;
(ii) F (s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ R+.

We denote the set of all C-class functions by C.

Example 1.4. ([2]) The following functions F : R+ ×R+ → R are elements of
C, for all s, t ∈ R+:
(i) F (s, t) = s− t, F (s, t) = s⇒ t = 0;
(ii) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0;
(iii) F (s, t) = sβ(s), β : R+ → [0, 1), and is continuous, F (s, t) = s⇒ s = 0;
(iv) F (s, t) = s− φ(s), F (s, t) = s⇒ s = 0, where φ : R+ → R+ is a

continuous function such that φ(t) = 0 ⇔ t = 0;
(v) F (s, t) = ϕ(s), F (s, t) = s⇒ s = 0, where ϕ : R+ → R+ is a

continuous function such that ϕ(0) = 0, and ϕ(t) > 0 for t > 0.

Babu and Sudheer [3] introduced F -class functions as follows:

Definition 1.7. ([3]) A continuous map F : R+×R+ → R is said to be F -class
function if F (s, t) < s for all s, t > 0.

We denote F -class functions as F .
Babu and Sudheer [3] proved that C = F and F (0, 0) may not be zero.

Definition 1.8. ([15]) (Altering Distance Function) A function ψ : R+ → R+

is called an altering distance function if the following properties are satisfied:
(i) ψ is nondecreasing and continuous, and
(ii) ψ(t) = 0 if and only if t = 0.

Definition 1.9. ([2]) (Ultra Altering Distance Function) An ultra altering
distance function is a continuous, nondecreasing mapping φ : R+ → R+ such that
φ(t) > 0, t > 0 and φ(0) > 0.

We use the following two notations in our discussion.
Ψ = {ψ|ψ : R+ → R+ is an altering distance function} and
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Φ = {φ|φ : R+ → R+ is an ultra altering distance function}.
Recently, Yildirim et al. [20] proved the following theorem in partial metric

spaces.

Theorem 1.6 ([20]). Let (X, p) be a complete partial metric space and T : X →
X ba a selfmap such that there exist a pair of functions φ ∈ Ψ, ϕ ∈ Φ, and F ∈ C
such that

φ(p(Tx, Ty)) 6 max{F (φ(p(x, y)), ϕ(p(x, y))),
F (φ(p(y, Ty) 1+p(x,Tx)

1+p(x,y) ), ϕ(p(y, Ty) 1+p(x,Tx)
1+p(x,y) ))}

for all x, y ∈ X. Then T has a unique fixed point in X.

In 2017, Hima Bindu et al. [10] proved the following theorem in partial metric
spaces as follows:

Theorem 1.7 ([10]). Let (X, p) be a partial metric space and let S, T, f, g :
X → X be mappings satisfying

1
2 min{p(fx, Sx), p(gy, Ty)} 6 p(fx, gy)

(1.1) implies ψ(p(Sx, Ty)) 6 α(M(x, y))− β(M(x, y)),

for all x, y ∈ X, where ψ, α, β : R+ → R+ are such that ψ is an altering distance
function, α is continuous, and β is lower semi continuous, α(0) = β(0) = 0 and
ψ(t)− α(t) + β(t) > 0, for all t > 0 and

M(x, y) = max{p(fx, gy), p(fx, Sx), p(gy, Ty), 12 [p(fx, Ty) + p(gy, Sx)]}.
Assume that

(i) S(X) ⊆ g(X), T (X) ⊆ f(X),

(ii) either f(X) or g(X) is a complete subspace of X,

(iii) the pairs (f, S) and (g, T ) are weakly compatible.

Then S, T, f and g have a unique common fixed point in X.

In the following we introduce Geraghty-Suzuki type contraction for two pairs
of maps.

Definition 1.10. Let (X, p) be a partial metric space, and let A,B, S and T
be selfmaps of X. If there exists β ∈ F such that
1
2 min{p(Sx,Ax), p(Ty,By)} 6 p(Sx, Ty)

(1.2) implies that p(Ax,By) 6 β(M(x, y))M(x, y)

for all x, y ∈ X, where

M(x, y) = max{p(Sx, Ty), p(Sx,Ax), p(Ty,By), 1
2
[p(Sx,By) + p(Ty,Ax)]},

then we say that the pairs (A,S) and (B, T ) are Geraghty-Suzuki type contraction
maps.

Example 1.5. Let X = [0, 1]. We define p(x, y) = max{x, y} for all x, y ∈ X.
Then (X, p) is a partial metric space. We define selfmaps A,B, S and T on X by

A(X) = 2x2

5 , B(X) = x2

5 , S(X) = x2, T (X) = 3x2

5 and β(t) = 1
1+t .
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Then clearly the pairs (A,S) and (B, T ) are Geraghty-Suzuki type contraction
maps.

In Section 2, we extend Theorem 1.6 to a pair of maps by using F -class function
(Theorem 2.1). Also, we prove the existence of common fixed points by replacing
the inequality (1.1) of Theorem 1.7 with Geraghty-Suzuki type contraction for two
pairs of maps (Theorem 2.2). In Section 3, we draw some corollaries and provide
examples in support of our results.

2. Main results

Theorem 2.1. Let (X, p) be a partial metric space and let f and g be selfmaps
on X. Assume that there exist φ ∈ Ψ, ϕ ∈ Φ and F ∈ F such that

φ(p(fx, fy)) 6 max{F (φ(p(gx, gy)), ϕ(p(gx, gy))),
(2.1) F (φ(p(gy, fy) 1+p(gx,fx)

1+p(gx,gy) ), ϕ(p(gy, fy)
1+p(gx,fx)
1+p(gx,gy) ))}

for all x, y ∈ X. If f(X) ⊆ g(X), the pair (f, g) is weakly compatible and g(X) is
a complete subspace of X then f and g have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since f(X) ⊆ g(X) there exists
x1 ∈ X such that fx0 = gx1 = y0. By induction, a sequence {xn} can be chosen
such that fxn = gxn+1 = yn, for all n ∈ N ∪ {0}

Case (i): Assume that p(yn, yn+1) > 0 for some n. We show that

p(yn, yn+1) 6 p(yn−1, yn), n ∈ N.

Then by (2.1) for all n ∈ N, we have

φ(p(yn, yn+1)) = φ(p(fxn, fxn+1))

6 max{F (φ(p(gxn, gxn+1)), ϕ(p(gxn, gxn+1))),

F (φ(p(gxn+1, fxn+1)
1+p(gxn,fxn)

1+p(gxn,gxn+1)
),

ϕ(p(gxn+1, fxn+1)
1+p(gxn,fxn)

1+p(gxn,gxn+1)
))}

= max{F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))),

F (φ(p(yn, yn+1)
1+p(yn−1,yn)
1+p(yn−1,yn)

), ϕ(p(yn, yn+1)
1+p(yn−1,yn)
1+p(yn−1,yn)

))}
= max{F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))),

(2.2) F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1)))}.
If

max{F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))), F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1)))}
= F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))),

then from (2.2), we have

φ(p(yn, yn+1)) 6 F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))) < φ(p(yn, yn+1)),

which is a contradiction. Therefore



COMMON FIXED POINTS OF RATIONAL TYPE AND GERAGHTY-SUZUKI TYPE... 347

max{F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))), F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1)))}
= F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))).

Hence

φ(p(yn, yn+1)) 6 F (φ(p(yn−1, yn)), ϕ(p(yn−1, yn))) < φ(p(yn−1, yn))

and by the property of φ we have p(yn, yn+1) 6 p(yn−1, yn). Then, the sequence
{p(yn, yn+1)} is a decreasing sequence. Then there exists r > 0 such that
(2.3) lim

n→∞
p(yn, yn+1) = r.

We claim that r = 0. On the contrary suppose r > 0. On letting n → ∞ in (2.2)
and using (2.3), we get

φ(r) 6 F (φ(r), ϕ(r)) < φ(r),

it is a contradiction. Hence
(2.4) lim

n→∞
p(yn, yn+1) = 0.

Thus from (P2), we get that
(2.5) lim

n→∞
p(yn, yn) = 0.

By the definition of ps, (2.4) and (2.5), we get
(2.6) lim

n→∞
ps(yn, yn+1) = 0.

Next, we prove that {yn} is Cauchy in (X, ps).

On the contrary suppose that {yn} is not a Cauchy sequence. There exist ϵ > 0
and monotone increasing sequence of natural numbers {mk} and {nk} such that
nk > mk with
(2.7) ps(ymk

, ynk
) > ϵ and ps(ymk

, ynk−1) < ϵ.
Now we prove that (i) lim

k→∞
p(ymk

, ynk
) = ϵ

2 .

Since ϵ 6 ps(ymk
, ynk

) for all k, we have
(2.8) ϵ 6 lim inf

k→∞
ps(ymk

, ynk
).

Now for each positive integer k, by the triangular inequality, we get

ps(ymk
, ynk

) 6 ps(ymk
, ynk−1) + ps(ynk−1, ynk

)

On taking limit superior as k → ∞, from (2.6) and (2.7), we have
(2.9) lim sup

k→∞
ps(ymk

, ynk
) 6 ϵ.

Hence from (2.8) and (2.9), we get

lim
k→∞

ps(ymk
, ynk

) exists and lim
k→∞

ps(ymk
, ynk

) = ϵ.

Hence, from the definition of ps and (2.5), we have lim
k→∞

p(ymk
, ynk

) = ϵ
2 .

In similar way, it is easy to see that
(ii) lim

k→∞
p(ynk+1, ymk

) = ϵ
2 ;

(iii) lim
k→∞

p(ynk
, ymk−1) =

ϵ
2 .

We now consider

φ(p(ynk+1, ymk
)) = φ(p(fxnk+1, fxmk

))

6 max{F (φ(p(gxnk+1, gxmk
)), ϕ(p(gxnk+1, gxmk

))),
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F (φ(p(gxmk
, fxmk

)
1+p(gxnk+1,fxnk+1)

1+p(gxnk+1,gxmk
) ),

ϕ(p(gxmk
, fxmk

)
1+p(gxnk+1,fxnk+1)

1+p(gxnk+1,gxmk
) ))}

= max{F (φ(p(ynk
, ymk−1)), ϕ(p(ynk

, ymk−1))),

F (φ(p(ymk−1, ymk
)
1+p(ynk

,ynk+1)

1+p(ynk
,ymk−1)

),

ϕ(p(ymk−1, ymk
)
1+p(ynk

,ynk+1)

1+p(ynk
,ymk−1)

))}

On letting k → ∞ and using (2.4), (ii) and (iii), we get

φ(
ϵ

2
) 6 max{F (φ( ϵ

2
), ϕ(

ϵ

2
)), F (φ(0), ϕ(0))}.

If F (φ( ϵ2 ), ϕ(
ϵ
2 )) is maximum then, φ( ϵ2 ) 6 F (φ( ϵ2 ), ϕ(

ϵ
2 )) < φ( ϵ2 ), which is a

contradiction.
Suppose F (φ(0), ϕ(0)) is maximum. Then φ( ϵ2 ) 6 F (φ(0), ϕ(0)) < φ(0). By the
property of φ we have ϵ

2 6 0, a contradiction. Hence {yn} is a Cauchy sequence in
(X, ps).

Case (ii): Assume that yn = yn+1 for some n.
If p(yn+1, yn+2) > 0. We have
φ(p(yn+1, yn+2)) = φ(p(fxn+1, fxn+2))

6 max{F (φ(p(gxn+1, gxn+2)), ϕ(p(gxn+1, gxn+2))),

F (φ(p(gxn+2, fxn+2)
1+p(gxn+1,fxn+1)
1+p(gxn+1,gxn+2)

)),

ϕ(p(gxn+2, fxn+2)
1+p(gxn+1,fxn+1)
1+p(gxn+1,gxn+2)

)}
= max{F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))),

F (φ(p(yn+1, yn+2)
1+p(yn,yn+1)
1+p(yn,yn+1)

),

ϕ(p(yn+1, yn+2)
1+p(yn,yn+1)
1+p(yn,yn+1)

))}
= max{F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))),

F (φ(p(yn+1, yn+2)), ϕ(p(yn+1, yn+2)))}.
If

max{F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))), F (φ(p(yn+1, yn+2)), ϕ(p(yn+1, yn+2)))}
= F (φ(p(yn+1, yn+2)), ϕ(p(yn+1, yn+2))),

then we have

φ(p(yn+1, yn+2)) 6 F (φ(p(yn+1, yn+2)), ϕ(p(yn+1, yn+2))) < φ(p(yn+1, yn+2)),

which is a contradiction. Therefore

max{F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))), F (φ(p(yn+1, yn+2)), ϕ(p(yn+1, yn+2)))}
= F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))).

Hence

φ(p(yn+1, yn+2)) 6 F (φ(p(yn, yn+1)), ϕ(p(yn, yn+1))) < φ(p(yn, yn+1)).

Since φ is monotonically increasing, we have

p(yn+1, yn+2) 6 p(yn, yn+1) = p(yn+1, yn+1).
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Hence yn+1 = yn+2. Continuing in this way, we can conclude that yn = yn+k for
all k > 0. Thus, {yn} is a Cauchy sequence in (X, ps). From Lemma 1.1, it follows
that {yn} is a Cauchy sequence in (X, p). Therefore

(2.10) lim
n,m→∞

p(yn, ym) = 0.

Suppose g(X) is complete. Since yn = fxn = gxn+1, it follows that {yn} ⊆
g(X) is a Cauchy sequence in the complete metric space (g(X), ps), it follows that
{yn} converges in (g(X), ps). Thus, lim

n→∞
ps(yn, u) = 0 for some u ∈ g(X). i.e.,

lim
n→∞

yn = u = gt ∈ g(X) for some t ∈ X. From Lemma 1.2 and (2.10), we have

p(u, u) = lim
n→∞

p(yn+1, u) = lim
n→∞

p(yn, u) = lim
n,m→∞

p(yn, ym).

From (2.10), we have

p(u, u) = lim
n→∞

p(yn, u) = lim
n,m→∞

p(yn, ym) = 0.

We now show that ft = u. Suppose p(ft, u) > 0. From (2.1), we have

φ(p(ft, yn+1)) = φ(p(ft, fxn+1))

6 max{F (φ(p(gt, gxn+1)), ϕ(p(gt, gxn+1))),

F (φ(p(gxn+1, fxn+1)
1+p(gt,ft)

1+p(gt,gxn+1)
)),

ϕ(p(gxn+1, fxn+1)
1+p(gt,ft)

1+p(gt,gxn+1)
)}

= max{F (φ(p(u, yn)), ϕ(p(u, yn))),
F (φ(p(yn, yn+1)

1+p(u,ft)
1+p(u,yn)

)), ϕ(p(yn, yn+1)
1+p(u,ft)
1+p(u,yn)

))}.
On letting n→ ∞, we get

φ(p(ft, u)) 6 max{F (φ(0), ϕ(0)), F (φ(0), ϕ(0))} = F (φ(0), ϕ(0)) < φ(0).

Since φ is monotonically increasing, we have p(ft, u) 6 0, which is a contradiction.
Hence ft = u. Therefore ft = gt = u. Since the pair (f, g) is weakly compatible
and ft = gt = u, we have fu = gu. We now prove that fu = u.

On the contrary, suppose that p(fu, u) > 0. From the inequality (2.1), we have

φ(p(fu, yn+1)) = φ(p(fu, fxn+1))

6 max{F (φ(p(gu, gxn+1)), ϕ(p(gu, gxn+1))),

F (φ(p(gxn+1, fxn+1)
1+p(gu,fu)

1+p(gu,gxn+1)
)),

ϕ(p(gxn+1, fxn+1)
1+p(gu,fu)

1+p(gu,gxn+1)
)}

= max{F (φ(p(fu, yn)), ϕ(p(fu, yn))),
F (φ(p(yn, yn+1)

1+p(fu,fu)
1+p(fu,yn)

)), ϕ(p(yn, yn+1)
1+p(fu,fu)
1+p(fu,yn)

))}.
On letting n→ ∞, we get

φ(p(fu, u)) 6 max{F (φ(p(fu, u)), ϕ(p(fu, u))), F (φ(0), ϕ(0))}
= F (φ(p(fu, u)), ϕ(p(fu, u))) < φ(p(fu, u)),

which is a contradiction. Hence fu = gu = u.
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Therefore u is a common fixed point of f and g.
Uniqueness of a common fixed point follows from the inequality (2.1). �
Proposition 2.1. Let (X, ps) be a metric space with lim

n→∞
ps(yn, yn+1) = 0. If

{y2n} is a Cauchy sequence in (X, ps) then {yn} is also Cauchy in (X, ps).

Proof. Suppose that {y2n} is Cauchy in (X, ps). We have
ps(y2n+1, y2m+1)− ps(y2n, y2m) = 2p(y2n+1, y2m+1)− p(y2n+1, y2n+1)

− p(y2m+1, y2m+1)− 2p(y2n, y2m)+ p(y2n, y2n)
+ p(y2m, y2m)

6 2[p(y2n+1, y2n) + p(y2n, y2m+1)− p(y2n, y2n)]
− p(y2n+1, y2n+1)− p(y2m+1, y2m+1)
− 2p(y2n, y2m) + p(y2n, y2n) + p(y2m, y2m)

= 2p(y2n+1, y2n) + 2p(y2n, y2m+1)− p(y2n, y2n)
− p(y2n+1, y2n+1)− p(y2m+1, y2m+1)
− 2p(y2n, y2m) + p(y2m, y2m)

= ps(y2n+1, y2n) + 2p(y2n, y2m+1)− 2p(y2n, y2m)
+ p(y2m, y2m)− p(y2m+1, y2m+1)

6 ps(y2n+1, y2n) + 2[p(y2n, y2m) + p(y2m, y2m+1)
− p(y2m, y2m)]− 2p(y2n, y2m)
+ p(y2m, y2m)− p(y2m+1, y2m+1)

= ps(y2n+1, y2n) + 2p(y2m, y2m+1)− p(y2m, y2m)
− p(y2m+1, y2m+1)

= ps(y2n+1, y2n) + ps(y2m+1, y2m)
so that
(2.11) ps(y2n+1, y2m+1)− ps(y2n, y2m) 6 ps(y2n+1, y2n) + ps(y2m+1, y2m).
Now, we have
ps(y2n, y2m)− ps(y2n+1, y2m+1) = 2p(y2n, y2m)− p(y2n, y2n)− p(y2m, y2m)

− 2p(y2n+1, y2m+1) + p(y2n+1, y2n+1)
+ p(y2m+1, y2m+1)

6 2[p(y2n, y2n+1)+p(y2n+1, y2m)−p(y2n+1, y2n+1)]
− p(y2n, y2n)− p(y2m, y2m)− 2p(y2n+1, y2m+1)
+ p(y2n+1, y2n+1) + p(y2m+1, y2m+1)

= 2p(y2n, y2n+1)+2p(y2n+1, y2m)−p(y2n+1, y2n+1)
− p(y2n, y2n)− p(y2m, y2m)
− 2p(y2n+1, y2m+1) + p(y2m+1, y2m+1)

= ps(y2n+1, y2n) + 2p(y2n+1, y2m)
− 2p(y2n+1, y2m+1)
− p(y2m, y2m) + p(y2m+1, y2m+1)

6 ps(y2n+1, y2n) + 2[p(y2n+1, y2m+1)
+ p(y2m+1, y2m)− p(y2m+1, y2m+1)]

−2p(y2n+1, y2m+1)−p(y2m, y2m)+p(y2m+1, y2m+1)
= ps(y2n+1, y2n) + 2p(y2m+1, y2m)− p(y2m, y2m)

− p(y2m+1, y2m+1)
= ps(y2n+1, y2n) + ps(y2m+1, y2m)

so that
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(2.12) ps(y2n, y2m)− ps(y2n+1, y2m+1) 6 ps(y2n+1, y2n) + ps(y2m+1, y2m).
Thus, from (2.11) and (2.12), we have
(2.13) |ps(y2n+1, y2m+1)− ps(y2n, y2m)| 6 ps(y2n+1, y2n) + ps(y2m+1, y2m).
On letting n,m→ ∞ in (2.13), we have lim

n,m→∞
ps(y2n+1, y2m+1) = 0.

Hence {y2n+1} is a Cauchy sequence in (X, ps). Thus {yn} is Cauchy in (X, ps).
�

Proposition 2.2. Let (X, p) be a partial metric space, and let A,B, S and T
be selfmaps of X. Assume that the pairs (A,S) and (B, T ) are Geraghty-Suzuki
type contraction maps. Then the following hold:
(i) If A(X) ⊆ T (X) and the pair (B, T ) is weakly compatible, and if z is a common

fixed point of A and S then z is a common fixed point of A,B, S and T and it
is unique.

(ii) If B(X) ⊆ S(X) and the pair (A,S) is weakly compatible, and if z is a common
fixed point of B and T then z is a common fixed point of A,B, S and T and it
is unique.

Proof. First, we assume that (i) holds. Let z be a common fixed point of
A and S. Then Az = Sz = z. Since A(X) ⊆ T (X), there exists u ∈ X such that
Tu = z. Therefore Az = Sz = Tu = z.

We now prove that Tu = Bu. Suppose that Tu ̸= Bu. Since

1

2
min{p(Sz,Az), p(Tu,Bu)} 6 p(Sz, Tu),

it follows from the inequality (1.2),

p(Tu,Bu) = p(Az,Bu)
6 β(M(z, u))M(z, u)
= β(max{p(Sz, Tu), p(Sz,Az), p(Tu,Bu), 12 [p(Sz,Bu) + p(Tu,Az)]})

max{p(Sz, Tu), p(Sz,Az), p(Tu,Bu), 12 [p(Sz,Bu) + p(Tu,Az)]}
= β(p(Tu,Bu))p(Tu,Bu) < p(Tu,Bu),

it is a contradiction. Hence Bu = Tu = z. Since the pair (B, T ) is weakly compat-
ible, it follows that BTu = TBu. i.e, Bz = Tz.

Suppose Bz ̸= z. Since 1
2 min{p(Sz,Az), p(Tz,Bz)} 6 p(Bz, Tz) 6 p(Sz, Tz),

from the inequality (1.2), we have
p(z,Bz) = p(Az,Bz)

6 β(M(z, z))M(z, z)
= β(max{p(Sz, Tz), p(Sz,Az), p(Tz,Bz), 12 [p(Sz,Bz) + p(Tz,Az)]})

max{p(Sz, Tz), p(Sz,Az), p(Tz,Bz), 12 [p(Sz,Bz) + p(Tz,Az)]}
= β(p(z,Bz))p(z,Bz) < p(z,Bz),

which is a contradiction. Thus, Bz = Tz = z. Hence Az = Bz = Sz = Tz = z.
Therefore, z is a common fixed point of A,B, S and T .

Let z′ be another common fixed point of A,B, S and T . Since

1

2
min{p(Sz,Az), p(Tz′, Bz′)} 6 p(z, z) 6 p(z, z′) = p(Sz, Tz′),
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from the inequality (1.2), we have
p(z, z′) = p(Az,Bz′)

6 β(M(z, z′))M(z, z′)
= β(max{p(Sz, Tz′), p(Sz,Az), p(Tz′, Bz′), 12 [p(Sz,Bz

′) + p(Tz′, Az)]})
max{p(Sz, Tz′), p(Sz,Az), p(Tz′, Bz′), 12 [p(Sz,Bz

′) + p(Tz′, Az)]}
= β(p(z, z′))p(z, z′) < p(z, z′),

which is a contradiction. Hence z = z′. Thus z is a unique common fixed point of
A,B, S and T .

The proof of (ii) is similar to (i) and hence is omitted. �

Theorem 2.2. Let (X, p) be a partial metric space, and let A,B, S and T be
selfmaps of X. Assume that the pairs (A,S) and (B, T ) are Geraghty-Suzuki type
contraction maps. If
(i) A(X) ⊆ T (X) and B(X) ⊆ S(X),
(ii) either S(X) or T (X) is a complete subspace of X, and
(iii) the pairs (A,S) and (B, T ) are weakly compatible,
then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point in X. Since A(X) ⊆ T (X) and
B(X) ⊆ S(X), there exist sequences of {xn}and {yn} ∈ X, such that

y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, . . . .

Case (i): Assume that yn ̸= yn+1 for all n ∈ N ∪ {0}. We now show that
p(yn, yn+1) 6 p(yn−1, yn), n = 1, 2, 3, ... . Now,

1

2
min{p(Sx2n, Ax2n), p(Tx2n+1, Bx2n+1)} 6 p(Sx2n, Ax2n) = p(Sx2n, Tx2n+1),

it follows from the inequality (1.2), we have

p(Ax2n, Bx2n+1) 6 β(M(x2n, x2n+1))M(x2n, x2n+1),

where
M(x2n, x2n+1) = max{p(Sx2n, Tx2n+1), p(Sx2n, Ax2n), p(Tx2n+1, Bx2n+1),

1
2 [p(Sx2n, Bx2n+1) + p(Tx2n+1, Ax2n)]}

= max{p(y2n−1, y2n), p(y2n−1, y2n), p(y2n, y2n+1),
1
2 [p(y2n−1, y2n+1) + p(y2n, y2n)]}

= max{p(y2n−1, y2n), p(y2n, y2n+1)}.
If max{p(y2n−1, y2n), p(y2n, y2n+1)} = p(y2n, y2n+1), then we have

p(y2n, y2n+1) 6 β(p(y2n, y2n+1))p(y2n, y2n+1) < p(y2n, y2n+1),

which is a contradiction. Hence max{p(y2n−1, y2n), p(y2n, y2n+1)} = p(y2n−1, y2n).
Thus

(2.14) p(y2n, y2n+1) 6 β(p(y2n−1, y2n))p(y2n−1, y2n) < p(y2n−1, y2n).
Therefore, p(y2n, y2n+1) < p(y2n−1, y2n). Similarly, we can show that

p(y2n−1, y2n) < p(y2n−2, y2n−1).
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Thus, p(yn, yn+1) < p(yn−1, yn), for all n = 1, 2, 3, ... . Therefore {p(yn, yn+1)} is a
decreasing sequence of nonnegative real numbers and converges to a real number
r > 0.

Suppose r > 0. On letting n→ ∞ in (2.14), we have r 6 lim
n→∞

β(p(yn, yn+1))r.

Then 1 6 lim
n→∞

β(p(yn, yn+1)) 6 1 so that we have lim
n→∞

β(p(yn, yn+1)) = 1. Since

β ∈ F, we have lim
n→∞

p(yn, yn+1) = 0, which is a contradiction. Hence r = 0. Thus

(2.15) lim
n→∞

p(yn, yn+1) = 0.

Therefore from (P2), we get that
(2.16) lim

n→∞
p(yn, yn) = 0 and lim

n→∞
p(yn+1, yn+1) = 0.

By the definition of ps, using (2.15) and (2.16), we get that
(2.17) lim

n→∞
ps(yn, yn+1) = 0.

Now, we prove that {y2n} is a Cauchy sequence in (X, ps).
On the contrary, suppose that {y2n} is not Cauchy. Then there exist an ϵ > 0 and
monotone sequences of natural numbers {2mk} and {2nk} such that nk > mk,
(2.18) ps(y2mk

, y2nk
) > ϵ and ps(y2mk

, y2nk−2) < ϵ.
Now we prove that (i) lim

k→∞
p(y2mk

, y2nk
) = ϵ

2 .

Since ϵ 6 ps(y2mk
, y2nk

) for all k, we have
(2.19) ϵ 6 lim inf

k→∞
ps(y2mk

, y2nk
).

Now for each positive integer k, by the triangular inequality, we get
ps(y2mk

, y2nk
) 6 ps(y2mk

, y2nk−2) + ps(y2nk−2, y2nk−1) + ps(y2nk−1, y2nk
)

On taking limit superior as k → ∞, from (2.17) and (2.18), we have
(2.20) lim sup

k→∞
ps(y2mk

, y2nk
) 6 ϵ.

Hence from (2.19) and (2.20), we get that lim
k→∞

ps(y2mk
, y2nk

) exists and that holds

lim
k→∞

ps(y2mk
, y2nk

) = ϵ. Hence from the definition of ps and (2.16), we have

lim
k→∞

p(y2mk
, y2nk

) = ϵ
2 . In similar way, it is easy to see that

(ii) lim
k→∞

p(y2nk+1, y2mk
) = ϵ

2 ; (iii) lim
k→∞

p(y2nk
, y2mk−1) =

ϵ
2 and

(iv) lim
k→∞

p(y2mk−1, y2nk+1) =
ϵ
2 .

If 1
2 min{p(y2mk−1, y2mk

), p(y2nk
, y2nk+1)} > p(y2mk−1, y2nk

), then from (2.15) and
(iii), on letting k → ∞, we get 0 > ϵ

2 , which is a contradiction. Hence

1

2
min{p(y2mk−1, y2mk

), p(y2nk
, y2nk+1)} 6 p(y2mk−1, y2nk

) = p(Sx2mk
, Tx2nk+1).

From the inequality (1.2), we have

p(y2mk
, y2nk+1) = p(Ax2mk

, Bx2nk+1)

(2.21) 6 β(M(x2mk
, x2nk+1))M(x2mk

, x2nk+1),

where
M(x2mk

, x2nk+1) = max{p(Sx2mk
, Tx2nk+1), p(Sx2mk

, Ax2mk
),

p(Tx2nk+1, Bx2nk+1),
1
2 [p(Sx2mk

, Bx2nk+1) + p(Tx2nk+1, Ax2mk
)]}
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= max{p(y2mk−1, y2nk
), p(y2mk−1, y2mk

), p(y2nk
, y2nk+1),

1
2 [p(y2mk−1, y2nk+1) + p(y2nk

, y2mk
)]}.

Now, by using (2.15), (i), (ii), (iii) and (iv), we have

lim
k→∞

M(x2mk
, x2nk+1) = max{ ϵ

2
, 0, 0,

1

2
[
ϵ

2
+
ϵ

2
]} =

ϵ

2
.

On letting k → ∞ in (2.21), we get ϵ
2 6 β( ϵ2 )

ϵ
2 < ϵ

2 , which is a contradiction.
Therefore {y2n} is Cauchy. Thus by Proposition 2.1, {yn} is a Cauchy sequence in
(X, ps). Hence we have lim

n,m→∞
ps(yn, ym) = 0. Now, from Lemma 1.1, it follows

that {yn} is a Cauchy sequence in (X, p).
Suppose T (X) is complete. Since y2n = Ax2n = Tx2n+1, it follows that {y2n} ⊆

T (X) is a Cauchy sequence in the complete metric space (T (X), ps), it follows that
{y2n} converges in (T (X), ps), and {y2n} converges to u(say) in T (X). Thus,
lim

n→∞
ps(y2n, u) = 0 for some u ∈ T (X). That is, y2n → u = Tt ∈ T (X) for some

t ∈ X. Since {yn} is Cauchy in X and yn → u as n → ∞. From Lemma 1.2, we
get
p(u, u) = lim

n→∞
p(y2n+1, u) = lim

n→∞
p(y2n, y2n+1) = lim

n,m→∞
p(yn, ym) = 0. We now

show that for each n > 1 either
(2.22) (a): 1

2p(y2n−1, y2n) 6 p(y2n−1, u) (or) (b):
1
2p(y2n, y2n+1) 6 p(y2n, u)

holds. On the contrary, suppose that

1
2p(y2n−1, y2n) > p(y2n−1, u) and

1
2p(y2n, y2n+1) > p(y2n, u) for some n > 1.

Then, by (P4) we have
p(y2n−1, y2n) 6 p(y2n−1, u) + p(u, y2n)− p(u, u) < 1

2 [p(y2n−1, y2n) + p(y2n, y2n+1)]
6 p(y2n−1, y2n),

which is a contradiction. Therefore (2.22) holds.
Subcase (a): Suppose 1

2p(y2n−1, y2n) 6 p(y2n−1, u). Suppose Bt ̸= u. Since
1
2 min{p(Sx2n, Ax2n), p(Tt,Bt)} 6 1

2p(Sx2n, Ax2n)

= 1
2p(y2n−1, y2n)

6 p(y2n−1, u) = p(Sx2n, T t),

it follows from the inequality (1.2), we have
(2.23) p(Ax2n, Bt) 6 β(M(x2n, t))M(x2n, t),
where [M(x2n, t) =

max{p(Sx2n, T t), p(Sx2n, Ax2n), p(Tt,Bt), 12 [p(Sx2n, Bt) + p(Tt,Ax2n)]}.
On letting n→ ∞ and using lim

n→∞
Sx2n = lim

n→∞
Ax2n = u, we get

lim
n→∞

M(x2n, t) = max{p(u, T t), p(u, u), p(Tt,Bt), 12 [p(u,Bt) + p(Tt, u)]}

= max{p(u, T t), p(u, u), p(u,Bt), 12 [p(u,Bt) + p(u, u)]} = p(u,Bt).

On letting n→ ∞ in (2.23), we obtain

p(u,Bt) 6 β(p(u,Bt))p(u,Bt) < p(u,Bt),
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which is a contradiction. Hence Bt = u = Tt. Since the pair (B, T ) is weakly
compatible, it follows that Bu = BTt = TBt = Tu.

Suppose Bu ̸= u. We have 1
2 min{p(Sx2n, Ax2n), p(Tu,Bu)} 6 p(Sx2n, Tu).

From the inequality (1.2), we get
(2.24) p(Ax2n, Bu) 6 β(M(x2n, u))M(x2n, u),
where

M(x2n, u) = max{p(Sx2n, Tu), p(Sx2n, Ax2n), p(Tu,Bu),
1
2 [p(Sx2n, Bu) + p(Tu,Ax2n)]}.

On letting n→ ∞ and using lim
n→∞

Sx2n = lim
n→∞

Ax2n = u, we get

lim
n→∞

M(x2n, u) = max{p(u, Tu), p(u, u), p(Tu,Bu), 12 [p(u,Bu) + p(Tu, u)]}

= max{p(u, Tu), p(u, u), p(u,Bu), 12 [p(u,Bu) + p(u, u)]}
= p(u,Bu).

On letting n→ ∞ in (2.24), we obtain

p(u,Bu) 6 β(p(u,Bu))p(u,Bu) < p(u,Bu),

it is a contradiction. Hence Bu = u = Tu. Therefore u is a common fixed point
of B and T . Thus, by Proposition 2.2, we get that u is the unique common fixed
point of A,B, S and T .

Subcase (b): Suppose 1
2p(y2n, y2n+1) 6 p(y2n, u). On proceeding as in Sub-

case (a), it follows that u is a unique common fixed point of A,B, S and T .
Case (ii): Suppose y2m = y2m+1 for some m. Assume that y2m+1 ̸= y2m+2.

We have

M(x2m+2, x2m+1) = max{p(y2m+1, y2m), p(y2m+1, y2m+2), p(y2m, y2m+1),
1
2 [p(y2m+1, y2m+1) + p(y2m, y2m+2)]}.

From (P2), we have

p(y2m+1, y2m) = p(y2m+1, y2m+1) 6 p(y2m+1, y2m+2).

Then, we have
1
2 [p(y2m+1, y2m+1) + p(y2m, y2m+2)] 6 1

2 [p(y2m, y2m+1) + p(y2m+1, y2m+2)]

6 1
2 [p(y2m+1, y2m+2) + p(y2m+1, y2m+2)]

= p(y2m+1, y2m+2).

Hence M(x2m+2, x2m+1) = p(y2m+1, y2m+2). Since
1
2 min{p(Sx2m+2, Ax2m+2), p(Tx2m+1, Bx2m+1)} 6 p(Tx2m+1, Bx2m+1)

= p(Sx2m+2, Tx2m+1),

it follows from the inequality (1.2), we have

p(y2m+2, y2n+1) = p(Ax2m+2, Bx2m+1)

6 β(M(x2m+2, x2m+1))M(x2m+2, x2m+1)

= β(p(y2m+2, y2n+1))p(y2m+2, y2n+1) < p(y2m+2, y2n+1),
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which is a contradiction. Hence y2m+1 = y2m+2. On continuing this process, it
follows that yn = yn+k for all k = 1, 2, 3, . . . . Thus {yn} is Cauchy.

The rest of the proof follows as in Case (i). �

3. Corollaries and examples

In this section, we draw some corollaries from the main results of Section 2 and
provide examples in support of our results.

From Theorem 2.1, we have the following corollaries.

Corollary 3.1. Let (X, p) be partial metric space and let f and g be selfmaps
of X. Assume that there exist φ ∈ Ψ, ϕ ∈ Φ, and F ∈ F such that

φ(p(fx, fy)) 6 F (φ(p(gx, gy)), ϕ(p(gx, gy))) for all x, y ∈ X.

If f(X) ⊆ g(X), the pair (f, g) is weakly compatible and g(X) is a complete subspace
of X then f and g have a unique fixed point in X.

Corollary 3.2. Let (X, p) be partial metric space and let f and g be selfmaps
of X. Assume that there exist φ ∈ Ψ, ϕ ∈ Φ, and F ∈ F such that

φ(p(fx, fy)) 6 F (φ(p(gy, fy)1+p(gx,fx)
1+p(gx,gy) ), ϕ(p(gy, fy)

1+p(gx,fx)
1+p(gx,gy) ))

for all x, y ∈ X. If f(X) ⊆ g(X), the pair (f, g) is weakly compatible and g(X) is
a complete subspace of X then f and g have a unique fixed point in X.

Putting T = f and g is the identity map on X in Theorem 2.1, we have the
following.

Corollary 3.3. (Theorem 3.1, [20]) Let (X, p) be a complete partial metric
space and T : X → X ba a selfmap such that there exist a pair of functions φ ∈
Ψ, ϕ ∈ Φ, and F ∈ C such that

φ(p(Tx, Ty)) 6 max{F (φ(p(x, y)), ϕ(p(x, y))),
F (φ(p(y, Ty) 1+p(x,Tx)

1+p(x,y) ), ϕ(p(y, Ty) 1+p(x,Tx)
1+p(x,y) ))}

for all x, y ∈ X. Then T has a unique fixed point in X.

In Theorem 2.2, if A = B = f and S = T = g, we have the following corollary.

Corollary 3.4. Let (X, p) be a partial metric space, and let f, g be selfmaps
of X. Assume that there exists β ∈ F such that

1
2 min{p(gx, fx), p(gy, fy)} 6 p(gx, gy) ⇒ p(fx, fy) 6 β(M(x, y))M(x, y) for all

x, y ∈ X, where

M(x, y) = max{p(gx, gy), p(gx, fx), p(gy, fy), 1
2
[p(gx, fy) + p(gy, fx)]}.

If

(i) f(X) ⊆ g(X), g(X) is a complete subspace of X, and

(ii) the pair (f, g) is weakly compatible,

then f and g have a unique common fixed point in X.

The following is an example in support of Theorem 2.1.
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Example 3.1. Let X = [0, 1] and p(x, y) =

{
0 if x = y

max{x, y} if x ̸= y,
for all

x, y ∈ X. Then (X, p) is a partial metric space. Define f, g : X → X by f(x) = x2

4 ,

g(x) = x2

2 . Define F (s, t) = 99
100s, φ, ϕ : R+ → R+ by φ(t) = 3

4 t, ϕ(t) = t
3 for

all t > 0. Clearly f(X) ⊆ g(X) and the pair (f, g) is weakly compatible. With-

out loss of generality we assume x > y Here φ(p(fx, fy)) = 3x2

16 ; φ(p(gx, gy)) =
3x2

8 ; ϕ(p(gx, gy)) = x2

6 p(gx, fx) = x2

2 ; p(gy, fy) = y2

2 ; φ(p(gy, fy) 1+p(gx,fx)
1+p(gx,gy) ) =

3y2

8 . Now,

φ(p(fx, fy)) = 3x2

16 6 99
100

3x2

8

= max{F (φ(p(gx, gy)), ϕ(p(gx, gy))),
F (φ(p(gy, fy) 1+p(gx,fx)

1+p(gx,gy) ), ϕ(p(gy, fy)
1+p(gx,fx)
1+p(gx,gy) ))}

Therefore f and g satisfy all the hypotheses of Theorem 2.1 and 0 is the unique
common fixed point.

The following is an example in support of Theorem 2.2.

Example 3.2. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. Then
(X, p) is a partial metric space. Define selfmaps A,B, S and T on X by

A(x) = x2

2 , B(x) = x2

3 , S(x) = x
4 (5− x) and T (x) = x

5 (6− x).

Define β : [0,∞) → [0, 1) by β(t) = 1+t
1+2t , t > 0.

Clearly β ∈ F. Also, clear that A(X) ⊆ T (X) and B(X) ⊆ S(X). The pairs
(A,S) and (B, T ) are weakly compatible. Without loss of generality, we assume
that x > y.

1
2 min{p(Sx,Ax), p(Ty,By)} = 1

2 min{max{x
4 (5−x),

x2

2 },max{y
5 (6−y),

y2

3 }}
= 1

2 min{x
4 (5− x), y5 (6− y)}

= 1
2
y
5 (6− y)

6 max{x
4 (5− x), y5 (6− y)} = p(Sx, Ty).

Here
p(Ax,By) = max{x2

2 ,
y2

2 } = x2

2 , p(Sx, Ty) =
x
4 (5− x),

p(Sx,Ax) = x
4 (5− x), p(Ty,By) = y

5 (6− y), p(Sx,By) = x
4 (5− x),

p(Ty,Ax) = max{y
5 (6− y), x

2

2 } and 1
2 [p(Sx,By) + p(Ty,Ax)] 6 x

4 (5− x).

Therefore
M(x, y) = max{p(Sx, Ty), p(Sx,Ax), p(Ty,By),

1
2 [p(Sx,By) + p(Ty,Ax)]}

= x
4 (5− x).

We now consider

p(Ax,By) =
x2

2
6 β(

x

4
(5− x))

x

4
(5− x) = β(M(x, y))M(x, y).
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Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.2 and 0 is the
unique common fixed point of A,B, S and T .
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