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CAYLEY INCLUSION GRAPH OF A GROUP

M. Gayathri and R. Rajkumar

Abstract. Let G be a group and let L∗(G) = L(G) r {G}, where L(G) is
the subgroup lattice of G. We consider the inclusion digraph on L∗(G) having

L∗(G) as its vertex set and for two distinct vertices H and K, there is an arc
from H to K if and only if H ⊂ K. In this paper, we show that this digraph
is isomorphic to the Cayley graphs of some semigroups. We call this digraph

as Cayley inclusion graph (CI graph) of G and is denoted by
−→
CI(G). We

denote the underlying graph of
−→CI(G) by CI(G). Moreover, we study some

properties of
−→
CI(G) and classify all finite groups whose CI graph is planar. As

a consequence, we show that some non-abelian groups can be determined by

their CI graphs.

1. Introduction

Associating graphs to algebraic structures and studying the interplay between
the associated graphs and the algebraic structures is one of the main approaches
in algebraic graph theory. Cayley graph is one such graph associated with a group
(res., semigroup), which has been studied extensively in the literature because of its
various applications. For instance, see [8], [11], [12], and the survey article [13]. In
particular, the Cayley graphs of semigroups are related to automata theory (see [9]

and [10]). For a semigroup X and a subset S of X, the Cayley graph
−−→
Cay(X,S) of

X relative to S is defined as the digraph with vertex set X and edge set consisting
of those pairs (x, y) such that y = sx, for some s ∈ S. If S−1 = S, then this graph
is undirected. The set of all ideals of a ring forms semigroups under the operation
of sum and product of ideals, respectively. In [1], [2], Afkhami et al defined Cayley
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graphs on these semigroups and studied their properties. Motivated by these, in
this paper, we define a Cayley graph on some class of subgroups of a group.

Let G be a group and L(G) be its subgroup lattice. Let L∗(G) = L(G) r G
and L′(G) = L(G)r {e}, where e denotes the identity element in G. Then L∗(G)
forms a semigroup with respect to intersection of subgroups and L′(G) forms a
semigroup with respect to join of subgroups. So we can define the corresponding

Cayley graphs
−−→
Cay(L∗(G), L∗(G)) and

−−→
Cay(L′(G), L′(G)). It is easy to see that

−−→
Cay(L∗(G), L∗(G)) and

−−→
Cay(L′(G), L′(G)) are isomorphic.

Now we consider the inclusion digraph on L∗(G) having L∗(G) as its vertex
set and for two distinct vertices H and K, there is an arc from H to K if and only
if H ⊂ K. Note that for H,K ∈ L∗(G), H ⊂ K if and only if H = H ∩ K. It

follows that this graph is same as
−−→
Cay(L∗(G), L∗(G)) and hence it is isomorphic

to
−−→
Cay(L′(G), L′(G)). Thus, the inclusion graph on L∗(G) is the Cayley graph on

the semigroups L∗(G) and L′(G). We call this graph as Cayley inclusion graph (CI

graph) of G and is denoted by
−→
CI(G). We denote the underlying graph of

−→
CI(G)

by CI(G).
Note that in [6], Devi and Rajkumar studied several properties of the (undi-

rected) inclusion graph on L(G)r {G, {e}}.
In this paper, we use the notations and definitions of graph theory as in [7].

Kn denote the complete graph on n vertices. Km,n denote the complete bipartite
graph on m + n vertices whose each of the two partite sets are having m and n
vertices, respectively. For a vertex v in given directed graph, we denote its indegree
and outdegree by degin(v) and degout(v), respectively.

2. Some basic properties of CI graphs

Here we state the following result whose proof directly follows from the defini-
tion of the Cayley inclusion graph of a group.

Proposition 2.1. Let G be a finite group. Then

(i)
−→
CI(G) has no directed cycle and so girth(

−→
CI(G)) = ∞;

(ii)
−→
CI(G) has no directed Hamiltonian cycle or closed directed Eulerian trail;

(iii)
−→
CI(G) is weakly connected but not strongly connected;

(iv) There is no subdigraph D of
−→CI(G) such that D is strongly connected;

(v)
−→
CI(G) is unilaterally connected if and only if G ∼= Zpn , where p is a prime,
n > 1;

(vi) A maximal unilateral subdigraph D of
−→CI(G) is a maximal chain in the sub-

group lattice of G;

(vii) For a subgroup H of G, degout(H) in
−→CI(G) is the number of proper subgroups

of G which contains H and degin(H) in
−→
CI(G) is the number of proper sub-

groups of H.
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(viii) degout(H) = 0 in
−→
CI(G) if and only if H is a maximal subgroup of G and

degin(H) = 0 in
−→
CI(G) if and only if H = {e};

(ix) For a finite group G of order pα1
1 pα2

2 . . . pαm
m , where pi’s are distinct primes,

the maximum length among all paths in
−→
CI(G) is at most α1 +α2 + · · ·+αm;

If G is solvable, the bound is sharp.

3. Planarity of CI graphs

In this section, for a given group G, we consider the graph CI(G), which is the

underlying graph of
−→
CI(G). We prove the following theorem in which we classified

all the finite groups for which CI(G) is planar. For this, we use the well known
characterization for planar graphs: A graph is planar if and only if it does not
contain a subdivision of K5 or K3,3.

Theorem 3.1. Let G be a finite group and p, q, r be distinct primes. Then
CI(G) is planar if and only if G is isomorphic to one of the following :

(i) Zpn (n = 1, 2, 3, 4), Zpmq (n = 1, 2, 3), Zpqr, Zpm × Zp (m = 1, 2),

(ii) Mp3 , (Zp × Zp)o Zp, Zp o Zq, A4, Q3,

(iii) ⟨a, b | ap2

= bq = 1, ab = baα⟩, where αq ≡ 1(mod p2) and p > q,

(iv) ⟨a, b, c | ap = bp = cq = 1, c−1ac = ba, c−1bc = a, c−1(ab)c = ab⟩, where p > q,

(v) ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q) and p < q,

(vi) ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q) and p < q,

(vii) ⟨a, b | ap = bp = cq = 1, ab = ba, ac = ca, b−1cb = cµ⟩, where µp2 ≡ 1(mod q)
and p < q,

(viii) ⟨a, b, c | ap = bp = cq = 1, ab = ba, ca = acµ, cb = bcν⟩, where 2 < p < q,
ν, µ ̸= 1 and µ ̸= ν.

As a consequence of the above result, we prove the following:

Corollary 3.1. Let G be a finite group and p, q be distinct primes.

(1) The following are equivalent:
(i) G ∼= Zp,Zp2 ,Zp × Zp or Zpq;
(ii) CI(G) is a tree;
(iii) CI(G) is a star.

(2) CI(G) is a path if and only if G ∼= Zp,Zp2 or Zpq.

As an application of this investigation, in the next result we show that some
non-abelian groups can be determined by their CI graphs.

Corollary 3.2. Let G be a finite group and p, q be distinct primes.

(i) If G′ is a group such that CI(G′) ∼= CI(G), where G is one of the following
groups: (Zp×Zp)oZp, ⟨a, b | ap = bp = cq = 1, ab = ba, ac = ca, b−1cb = cµ⟩,
where µp2 ≡ 1(mod q) and p < q, ⟨a, b, c | ap = bp = cq = 1, ab = ba, ca =
acµ, cb = bcν⟩, where 2 < p < q, ν, µ ̸= 1 and µ ̸= ν, A4 and Q3, then G′ ∼= G.



326 M. GAYATHRI AND R. RAJKUMAR

(ii) If G′ is a group such that CI(G′) ∼= CI(Zp o Zq), then G′ ∼= Zp o Zq or
Zp × Zp; If G

′ is nonabelian, then G′ ∼= Zp o Zq.
(iii) If G′ is a group such that CI(G′) ∼= CI(Mp3), then G′ ∼= Mp3 or Zp2 × Zp; If

G′ is nonabelian, then G′ ∼= Mp3 .

We start with the following result whose proof directly follows from the defini-
tion.

Lemma 3.1. Let G be a group and H be its subgroup. Then CI(H) is a subgraph
of CI(G). If H is a normal subgroup of G, then CI(G/H) is isomorphic (as a graph)
to a subgraph of CI(G).

Corollary 3.3. If H is a subgroup of G such that CI(H) or CI(G/H) is
nonplanar, then CI(G) is nonplanar.

Lemma 3.2. If G is a group and H is a proper subgroup of G such that H
contains a subgroup isomorphic to Zp × Zp, where p is a prime, then CI(G) is
nonplanar.

Proof. We know that Zp × Zp contains at least 3 subgroups of order p, let
them be N1, N2, N3. Then CI(G) contains K3,3 as a subgraph with the bipartition
{H,Zp × Zp, {e}}, {N1, N2, N3}. �

The dihedral group of order 2n, n > 3 is given by Dn = ⟨a, b | an = b2 =
1, ab = ba−1⟩. In the following Lemma, we characterize the values of n, for which
the graph CI(Dn) is planar.

Lemma 3.3. CI(Dn) is planar if and only if n is a prime or square of a prime.

Proof. Suppose n is a prime, then Dn contains a cyclic subgroup of order n,
and n subgroups of order 2. It follows that CI(Dn) ∼= K1,n+1, which is planar.

Suppose n = p2, where p is a prime. Then Hi := ⟨aib⟩, Li := ⟨ap, aib⟩, where
0 6 i 6 p2 − 1 N := ⟨a⟩ and M := ⟨ap⟩ are the only subgroups of Dn. A planar
embedding of CI(Dn) is given in Figure 1(a).

Suppose n is neither a prime nor a square of a prime, n = m1m2, m1 ̸= m2,
then CI(Dn) contains a subgraph given in Figure 1(b), which is a subdivision of
K3,3 and hence CI(Dn) is nonplanar. �

Proposition 3.1. If G is a finite solvable group whose length of the composi-
tion series is at least 5, then CI(G) is nonplanar.

Proof. In this case, there is a chain of at least 5 normal subgroups of G. So
they forms K5 as a subgraph of CI(G) and hence CI(G) is nonplanar. �

Proposition 3.2. If G is a solvable group whose order has at least 4 distinct
prime divisors, then CI(G) is nonplanar.

Proof. Let p, q, r, s be any four distinct prime factors of |G|. Since G is
solvable, there is a Sylow basis of G containing P , Q, R, S, where P , Q, R,
S are p, q, r, s−Sylow subgroups of G, respectively. Then CI(G) contains K3,3

as a subgraph with bipartition {PQ,PQR,PQS}, {P,Q, {e}} and hence CI(G) is
nonplanar. �
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Figure 1. (a) CI(Dp2), (b) A subgraph of CI(Dn), n ̸= p or p2

By Propositions 3.1 and 3.2, it is enough to consider solvable groups whose
orders are pn (n 6 4), pmq (m 6 3), p2q2, pqr, p2qr, where p, q, r are distinct
primes.

Proposition 3.3. Let G be a group of order pn, where p is a prime n > 1.
Then CI(G) is planar if and only if G is isomorphic to Zpn , (n 6 4), Zp × Zp,
Zp2 × Zp, Mp3 , (Zp × Zp)o Zp.

Proof. By Lemma 3.1, it is enough to consider the groups of order pn, n 6 4.
It is easy to see that CI(Zp) ∼= K1, CI(Zp2) ∼= K1,2, CI(Zp × Zp) ∼= K1,p+1 and
CI(Zp3) ∼= K3, which are all planar.

CI(Zp2 ×Zp) is given in Figure 2(a), which is planar; CI(Zp×Zp×Zp) contains
a subgraph given in Figure 3(a), which is a subdivision of K3,3 and hence CI(Zp ×
Zp × Zp) is nonplanar; CI(Mp3) is given in Figure 2(b), which is planar. If G ∼=
(Zp × Zp)o Zp, then Mi := ⟨aci⟩, Lj

i := ⟨a(bcj)i⟩, Bi := ⟨bci⟩, K := ⟨a⟩, C := ⟨c⟩,
Ni := ⟨a, bci⟩, where 0 6 i, j 6 p− 1 and H := ⟨a, c⟩ are the only subgroups of G.
The structure of CI(G) is given in Figure 2(c), which is planar.

Now, we consider the groups of order p4. Suppose G ∼= Zp4 , then CI(G) ∼= K4,
which is planar.

Suppose G is a noncyclic group of order p4, then G must have a noncyclic
subgroup of order p3, say H. For, suppose all the subgroups of order p3 in G are
cyclic, then let H1, H2, . . . , Hk be such subgroups of G. Then |Hi ∩ Hj | = p2,
1 6 i, j 6 k, i ̸= j. Since each Hs, 1 6 s 6 k is cyclic, it contains a unique subgroup
of order p2. Thus all Hs, 1 6 s 6 k contain a common subgrop of order p2. Hence
G contains a unique subgroup of order p2, which implies that G is cyclic, which is
a contradiction to our hypothesis. Then H contains a subgroup K isomorphic to
Zp × Zp. So by Lemma 3.2, CI(G) is nonplanar. �

Proposition 3.4. Let G be a group of order pq, where p, q are distinct primes.
Then CI(G) is planar.
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Proof. It is easy to verify that CI(Zpq) ∼= K1,2 and CI(Zp o Zq) ∼= K1,p+1,
which are planar. �

Proposition 3.5. Let G be a group of order p2q, where p, q are distinct primes.
Then CI(G) is planar if and only if G is isomorphic to one of the following groups:

(i) Zp2q,

(ii) ⟨a, b | ap2

= bq = 1, ab = baα⟩, where αq ≡ 1(mod p2) and p > q,

(iii) ⟨a, b, c | ap = bp = cq = 1, c−1ac = ba, c−1bc = a, c−1(ab)c = ab⟩, where p > q,

(iv) ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q) and p < q,

(v) ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q) and p < q,

(vi) ⟨a, b | ap = bp = cq = 1, ab = ba, ac = ca, b−1cb = cµ⟩, where µp2 ≡ 1(mod q)
and p < q,

(vii) ⟨a, b, c | ap = bp = cq = 1, ab = ba, ca = acµ, cb = bcν⟩, where 2 < p < q,
ν, µ ̸= 1 and µ ̸= ν.

Proof. To prove this result, we use the classification of groups of order p2q
given in [5, p.202-215].

Case 1: Suppose G is abelian.
If G1

∼= Zp2q, then CI(G) is given in Figure 2(d), which is planar. If G2
∼=

Zp × Zp × Zq, then CI(G2) contains a subgraph given in Figure 3(b), which is a
subdivision of K3,3 and hence CI(G2) is nonplanar.

Case 2: SupposeG is nonabelian and p > q, we further divide this into following
subcases.

Subcase 2a: G3 := ⟨a, b | ap2

= bq = 1, ab = baα⟩, where αq ≡ 1(mod p2). Here
Hi := ⟨bai⟩, where 0 6 i 6 p2 − 1, Lj := ⟨ap, baj⟩, where 0 6 j 6 p − 1, N := ⟨a⟩
and M := ⟨ap⟩ are the only proper subgroups of G3. Then CI(G3) is given in
Figure 2(e), which is planar.

Subcase 2b: G4 := ⟨a, b, c | ap = bp = cq = 1, ab = ba, ac = ca, c−1bc = bµ⟩,
where µ ̸= 1. Then CI(G4) contains a graph given in Figure 3(c), which is a
subdivision of K3,3 and hence CI(G4) is nonplanar.

Subcase 2c: G5 := ⟨a, b, c | ap = bp = cq = 1, ab = ba, ac = caµ, c−1bc = bµ⟩,
where µq ≡ 1(mod p). Then CI(G5) contains a graph given in Figure 3(d), which
is a subdivision of K3,3 and hence CI(G5) is nonplanar.

Subcase 2d: G6 := ⟨a, b, c | ap = bp = cq = 1, ab = ba, ac = caµ, c−1bc = bν⟩,
where µq ≡ 1(mod p), νq ≡ 1(mod p) and µ ̸= ν. Then CI(G6) contains a graph
given in Figure 3(e), which is a subdivision of K3,3 and hence CI(G6) is nonplanar.

Subcase 2e: G7 := ⟨a, b, c | ap = bp = cq = 1, c−1ac = ba, c−1bc = a, c−1(ab)c =
ab⟩. Then CI(G7) is given in Figure 2(f), which is planar.

Case 3: Suppose G is nonabelian and p < q but (p, q) ̸= (2, 3), we further
divide this case into the following subcases.



CAYLEY INCLUSION GRAPH OF A GROUP 329

Subcase 3a: G8 := ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q).
Then CI(G8) is given in Figure 2(g), which is planar.

Subcase 3b: G9 := ⟨a, b | ap2

= bq = 1, a−1ba = bµ⟩, where µp ≡ 1(mod q).
Here Hi := ⟨b−iapbi⟩, Li := ⟨b−iabi⟩, where 0 6 i 6 q − 1 and K := ⟨ap, b⟩ are
the only proper subgroups of G9. Then CI(G9) is given in Figure 2(h), which is
planar.

Subcase 3c: G10 := ⟨a, b | ap = bp = cq = 1, ab = ba, ac = ca, b−1cb = cµ⟩,
where µp2 ≡ 1(mod q). Here Lj

i := ⟨a−icbjai⟩, Mi := ⟨b, a−icai⟩, 0 6 i 6 p− 1, 0 6
j 6 q−1, K := ⟨b⟩, A := ⟨a⟩ and H := ⟨a, b⟩ are the only proper subgroups of G10.
Then CI(G10) is given in Figure 2(i), which is planar.

Subcase 3d: G11 := ⟨a, b, c | ap = bp = cq = 1, ab = ba, ca = acµ, cb = bcν⟩,
where p > 2, ν ̸= 1, µ ̸= 1 and µ ̸= ν. Here Hi := c−i⟨a, b⟩ci, Kj

i := ⟨c−iajbci⟩,
Li := ⟨c−iaci⟩, where 0 6 i 6 q− 1, 0 6 j 6 p− 1 and N := ⟨c⟩ are the only proper
subgroups of G11. Then CI(G11) is given in Figure 2(j), which is planar.

Case 4: Suppose G is a nonabelian group of order 12.
A4, Q3 and D6 are the only non-isomorphic nonabelian groups of order 12.

CI(A4) and CI(Q3) are given in Figure 2(k), 2(l) respectively, which are planar. If
G ∼= D6, then by Lemma 3.3, CI(G) is nonplanar.

Combining all the above cases together, we get the proof. �

Proposition 3.6. Let G be a group of order p3q, where p, q are distinct primes.
Then CI(G) is planar if and only if G ∼= Zp3q.

Proof. Suppose G has a noncyclic p−Sylow subgroup P , then P contains a
subgroup isomorphic to Zp ×Zp. Then by Lemma 3.2, CI(G) is nonplanar. So, we
assume that all p−Sylow subgroups are cyclic.

Case 1: Suppose both p, q−Sylow subgroups are unique, then G ∼= Zp3q. CI(G)
is given in Figure 2(n), which is planar.

Case 2: Suppose p−Sylow subgroup is unique and q−Sylow subgroup is not
unique.

Using the classification of groups given in [18, p.227-228], we can easily see

that there is only one such group G ∼= ⟨a, b | ap3

= 1 = bq, ab = baα⟩, where
αq ≡ 1(mod p3).

Let a = ap. Then ab = baα. Here H := ⟨a, b | ap
2

= 1 = bq = 1, ab = baα⟩,
where αq ≡ 1(mod p2) is a subgroup of G. Then CI(G) contains K3,3 as a subgraph
with bipartition {H, ⟨ap⟩, ⟨e⟩}, {⟨ap, b⟩, ⟨ap, ba⟩, ⟨a⟩}.

Case 3: Suppose q−Sylow subgroup is unique and p−Sylow subgroup is not
unique. Using the classification of groups given in [18, p.218-220], we can easily
see that there are three such groups, which we deal in the following.

Subcase 3a: G1 := ⟨a, b | ap3

= 1 = bq, ba = abα⟩, αp ≡ 1(mod q).
Since p−Sylow subgroup is not unique, there are atleast three p−Sylow sub-

groups, let them be P1, P2, P3. Then by [18, p.218], ⟨ap⟩ is the only subgroup of
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order p2. Then ⟨ap⟩ and ⟨ap2⟩ are subgroups of all Pi’s. Thus CI(G1) contains K3,3

as a subgraph with bipartition {P1, P2, P3}, {⟨ap⟩, ⟨ap
2⟩, {e}}.

Subcase 3b: G2 := ⟨a, b | ap3

= 1 = bq, ba = abα⟩, αp2 ≡ 1(mod q).

Here H := ⟨a, b | ap
2

= 1 = bq, ba = abβ⟩, where β = αp and so βp ≡ 1(mod q)
is a subgroup of G2. Then CI(G2) contains K3,3 as a subgraph with bipartition
{H, ⟨ap⟩, ⟨e⟩}, {⟨ap⟩, ⟨b−1ab⟩, ⟨b−2ab2⟩}.

Subcase 3c: G3 := ⟨a, b | ap3

= 1 = bq, ba = abα⟩, αp3 ≡ 1(mod q).

Here H := ⟨a, b | ap
2

= 1 = bq, ba = abβ⟩, where β = αp and so βp2 ≡ 1(mod q)
is a subgroup of G3. Then CI(G3) contains K3,3 as a subgraph with bipartition
{H, ⟨ap, b⟩, ⟨e⟩}, {⟨ap⟩, ⟨b−1ab⟩, ⟨b−2ab2⟩}.

Case 4: Suppose both p, q−Sylow subgroups are not unique.
Then by [18, p.255-256], (p, q) = (2, 3), that is |G| = 24. By [4, p.104],

G := ⟨a, b | a4 = b3 = 1, (ab)2 = 1⟩ is the only group of order 24, which has neither
unique 2−Sylow subgroup nor unique 3−Sylow subgroup. But G has a noncyclic
subgroup of order 8. Thus there is no group of order 24 which has all 2−Sylow
subgroup are cyclic and both 2−Sylow subgroups and 3−Sylow subgroups are not
unique.

The proof follows by combining all the above cases. �
Proposition 3.7. If G is a group of order p2q2, where p, q are distinct primes,

then CI(G) is nonplanar.

Proof. We divide the proof into several cases.

Case 1: Let G be abelian. Suppose G ∼= Zp2q2 , then CI(G) is given in Figure
3(j), which is a subdivision of K3,3 and so nonplanar. Suppose G is not cyclic, then
G contains a proper subgroup H which contains either Zp × Zp or Zq × Zq. So by
Lemma 3.2, CI(G) is nonplanar.

Case 2: If G is nonabelian and (p, q) ̸= (2, 3), then G ∼= P o Q, where P is a
p−Sylow subgroup and Q is a q−Sylow subgroup of G.

Subcase 2a: P ∼= Zp2 and Q ∼= Zq2 . Then CI(G) contains K3,3 as subgraph
with the bipartition {{e}, ⟨bq⟩, ⟨ap⟩} and {⟨ap, b⟩, ⟨a, bq⟩, ⟨ap, bq⟩} and hence CI(G)
is nonplanar.

Subcase 2b: P ∼= Zp2 and Q ∼= Zq × Zq. Since P is normal and is cyclic, the
subgroup of P of order p is normal, let it be A. Thus AQ is a subgroup of order
pq2, which contains a subgroup Zq × Zq. So by Lemma 3.2, CI(G) is nonplanar.

Subcase 2c: P ∼= Zp×Zp and Q ∼= Zq2 or Zq×Zq. Here P is normal. Let Q′ be
a subgroup of order q of G. Then PQ′ is a subgroup of order p2q, which contains
a subgroup Zp × Zp. Then by Lemma 3.2, CI(G) is nonplanar.

Case 3: If n = (2, 3), that is, G is a group of order 36, then there are 10
non-abelain groups of order 36, which we consider in the following cases:

(i) G ∼= D18. Then by Lemma 3.3, CI(G) is nonplanar.

(ii) G ∼= S3 ×S3. Then S3 ×⟨(12)⟩ is a subgroup of G which contains a subgroup
⟨(12)⟩ × ⟨(12)⟩ ∼= Z2 × Z2. So by Lemma 3.2, CI(G) is nonplanar.
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(iii) G ∼= Z3×A4. Then CI(G) contains K3,3 with the bipartition {{e}×A4,Z3×
⟨(12)(34), (13)(24)⟩, {e}×⟨(12)(34), (13)(24)⟩}, {{e}×⟨(12)(34)⟩, {e}×⟨(14)(23)⟩,
{e} × {e}} and hence CI(G) is nonplanar.

(iv) G ∼= Z6×S3. Then Z6×⟨(12)⟩ is a subgroup of G which contains a subgroup
⟨3⟩ × ⟨(12)⟩ ∼= Z2 × Z2. So by Lemma 3.2, CI(G) is nonplanar.

(v) G ∼= Z9 o Z4 = ⟨a, b | a9 = b4 = 1, b−1ab = ai, i4 ≡ 1(mod 9)⟩. Then CI(G)
contains K3,3 with the bipartition {⟨a, b2⟩, ⟨a3, b⟩, ⟨a3, b2⟩}, {⟨a3⟩, ⟨b2⟩, {e}}
and hence CI(G) is nonplanar.

(vi) G ∼= Z3 × (Z3 o Z4). Then CI(G) contains K3,3 as subgraph with the bipar-
tition {Z3 o Z4, ⟨(0, 2)⟩, ⟨(0, 0)⟩}, {⟨(0, 1)⟩, ⟨(1, 1)⟩, ⟨(2, 1)⟩} and hence CI(G)
is nonplanar.

(vii) G ∼= (Z3×Z3)oZ4. In this case, we have two nonisomorphic groups. We can
show that CI(G) is nonplanar for both groups by using the similar arguement
in Subcase(2c).

(viii) G ∼= (Z2 × Z3 × Z3) o Z2. Then G contains a subgroup isomorphic to Z2 ×
Z3 × Z3 whose CI graph is nonplanar and hence CI(G) is also nonplanar.

(ix) G ∼= (Z2×Z2)oZ9. This case is also similar to the Subcase(2c), and so CI(G)
is nonplanar.

Proof follows by combining all the above cases together. �

Proposition 3.8. Let G be a group of order pqr, where p, q, r are distinct
primes. Then CI(G) is planar if and only if G ∼= Zpqr.

Proof. We use the classification of groups of order pqr given in [5, p.215].
Assume that p > q > r.

Case 1: G1 := Zpqr. Then CI(G1) is given in Figure 2(m), which is planar.

Case 2: G2 := ⟨a, b, c | ap = bq = cr = 1, ab = ba, ac = ca, c−1bc = bµ⟩, where
r divides p− 1 and µ ̸= 1. Then CI(G2) contains a subgraph given in Figure 3(f),
which is a subdivision of K3,3 and so CI(G2) is nonplanar.

Case 3: G3 := ⟨a, b, c | ap = bq = cr = 1, ab = ba, bc = cb, c−1ac = aµ⟩, where
r divides q − 1 and µ ̸= 1. This group is obtained by interchanging a and b in the
group G2 mentioned in the case 2, and hence CI(G3) is also nonplanar.

Case 4: G4 := ⟨a, b, c | ap = bq = cr = 1, ab = ba, ab = baµ, bc = cbν⟩, where r
divides both p− 1 and q− 1 and ν, µ ̸= 1. Then CI(G4) contains a subgraph given
in Figure 3(g), which is a subdivision of K3,3 and so CI(H4) is nonplanar.

Case 5: G5 := ⟨a, b, c | ap = bq = cr = 1, ac = ca, bc = cb, b−1ab = aµ⟩.
This group is obtained by replacing a, b, c by c, a, b respectively, in the group G2

mentioned in Case 2. Hence CI(G5) is also nonplanar.

Case 6: G6 := ⟨a, b, c | ap = bq = cr = 1, ab = baµ, bc = cb⟩. Then CI(G6)
contains a subgraph given in Figure 2(h), which is a subdivision of K3,3 and so
CI(G6) is nonplanar.

The proof follows by combining all the above cases. �



332 M. GAYATHRI AND R. RAJKUMAR

Proposition 3.9. If G is a solvable group of order p2qr, where p, q, r are
distinct primes. Then CI(G) is nonplanar.

Proof. Here G has a normal subgroup of order p2q. Suppose there is a sub-
group of order p2q contains a subgroup P ∼= Zp × Zp, then by Lemma 3.2, CI(G)
is nonplanar.

Now assume that all subgroups of order p2q contains only cyclic subgroups of
order p2. Then these subgroups are isomorphic to one of G1, G3, G8, G9, mentioned
in the proof of Proposition 3.5.

Case 1: Suppose there is a subgroup H of G which is isomorphic to one of G3,
G8, G9.

If H ∼= G3, then CI(G) contains K3,3 as a subgraph with bipartition {H, ⟨ap⟩,
{e}} and {⟨ap, b⟩, ⟨ap, ba⟩, ⟨ap, ba2⟩}. If H ∼= G8, then CI(G) contains K3,3 as
a subgraph with bipartition {H, ⟨ap⟩, {e}} and {⟨a⟩, ⟨b−1ab⟩, ⟨b−2ab2⟩}. If H ∼=
G9, then CI(G) contains K3,3 as a subgraph with bipartition {H, ⟨ap, b⟩, {e}} and
{⟨ap⟩, ⟨b−1apb⟩, ⟨b−2apb2⟩}. So in this case CI(G) is nonplanar.

Case 2: Suppose that all subgroups of order p2q in G are cyclic, that is iso-
morphic to G1.

Then H is a normal subgroup of G such that H ∼= Zp2q. So the subgroup of
order p2 in H is normal in G. Thus p−Sylow subgroup is unique cyclic group in G
and so all the Sylow subgroups of G are cyclic.

Suppose G is a nilpotent group, then G ∼= Zp2qr. Thus CI(G) is given in Figure
3(i), which is nonplanar. Suppose that G is non nilpotent. If P = ⟨x⟩ ∼= Zp2 and
Q = ⟨y⟩ and R = ⟨z⟩. Then by [15, Theorem 10.1.10], G is supersolvable and by
[3, Theorem 2], G is a CLT group, it has a subgroup of K of order pqr, where
K = ⟨z⟩o ⟨yg1 , xpg2⟩, for some g1, g2 ∈ G. Thus K is a noncyclic subgroup of order
pqr. So by Proposition 3.8, CI(H) is nonplanar and hence CI(G) is nonplanar.

The proof follows by combining all the above cases. �

Proposition 3.10. If G is a finite nonsolvable group, then CI(G) is nonplanar.

Proof. It is well known that any non-solvable group has a simple group as a
sub-quotient and every simple group has a minimal simple group as a sub-quotient.
So by Corollary 3.3, it is enough to show that CI graph of every minimal simple
group is nonplanar. We use the J. G. Thompson’s classification of minimal simple
groups given in [17] and check this condition for this list of groups.

Case 1: G ∼= L2(q
p).

If p = 2, then the only nonsolvable group is L2(4) and L2(4) ∼= A5. Then G
contains a subgroupH1

∼= A4. Consequently, CI(G) containsK3,3 as subgraph with
the bipartition {H1, ⟨(12)(34), (14)(23)⟩, ⟨(1)⟩}, {⟨(12)(34)⟩, ⟨(14)(23)⟩, ⟨(13)(24)⟩}
and hence CI(G) is nonplanar.

If p > 2, then L2(q
p) contains a subgroup isomorphic to Zq

p whose CI graph is
nonplanar and hence CI(G) is nonplanar.

Case 2: G ∼= L3(3). Then G contains a subgroup isomorphic to (Z3×Z3)oZ3.
So by Lemma 3.2, CI(G) is nonplanar.
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Case 3: G ∼= L2(p). Then G contains a subgroup Dp−1 or Dp+1 according
as p ≡ 1(mod 4) or p ≡ 3(mod 4). Suppose p > 7, p − 1 and p + 1 are even and
p−1, p+1 > 6. Then by Lemma 3.3, CI(G) is nonplanar. Suppose p = 3 or 5, then
G contains a subgroup H1

∼= D4. Now consider the subgroups of H1, H2 := ⟨a2⟩,
H3 := ⟨a2, b⟩, H4 := ⟨a2, ab⟩, H5 := ⟨a⟩, H6 := {e}. Then CI(G) contains K3,3 as
a subgraph with bipartition {H1,H2,H6}, and {H3, H4,H5}.

Case 4: G ∼= Sz(2q). Then G has a subgroup isomorphic to Zq
2, q > 3. Then

by Lemma 3.2, CI(G) is nonplanar. �
PROOF OF THEOREM 3.1.

Combining Propositions 3.1–3.10 proved so far in this section, we obtain the
proof. �
PROOF OF COROLLARY 3.1.

(1) (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious. Now we prove (iii) ⇒ (i). Con-
sider a finite group G such that CI(G) is a star. Since any star is a planar
graph, G must be one of the groups given in Theorem 3.1. Among the
groups listed in Theorem 3.1, Zp,Zp2 ,Zp ×Zp or Zpq are the only groups
whose CI graph is a star.

(2) Since any path is a planar graph, G must be a group listed in Theorem
3.1. Among all these groups, Zp, Zp2 , Zpq are the only groups whose CI
graphs is a path. �

PROOF OF COROLLARY 3.2. If G′ is a group such that CI(G′) ∼= CI(G), where
G is one of the groups listed in Theorem 3.1, then G′ must be finite and CI(G′) is
also planar.

Now we prove part (i) and the proofs of the remaining parts are similar to this.
If G is one of the groups listed in (i), then by Figures 2(c), 2(i), 2(j), 2(k), 2(l), we
see that CI(G) is unique for each of these groups. So it follows that G′ ∼= G. �
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Figure 2. (a) CI(Zp2 ×Zp), (b) CI(Mp3), (c) CI((Zp×Zp)oZp),
(d) CI(Zp2q), (e) CI(G3), (f) CI(G7), (g) CI(G8), (h) CI(G9), (i)
CI(G10), (j) CI(G11), (k) CI(A4), (l) CI(Q3), (m) CI(Zpqr), (n)
CI(Zp3q).
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Figure 3. (a) A subgraph of CI(Zp×Zp×Zp), (b) A subgraph of
CI(G2), (c) A subgraph of CI(G4), (d) A subgraph of CI(G5), (e)
A subgraph of CI(G6), (f) CI(H2), (g) A subgraph of CI(Zp2qr),
(h) CI(Zp2q2), (i) CI(Zp2qr) , (j) CI(Zp2q2).
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