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ON ∗-IDEALS AND KERNEL IDEALS IN

PSEUDO-COMPLEMENTED ALMOST SEMILATTICES

G. Nanaji Rao, S. Sujatha Kumari

Abstract. The concepts of ideal quotient, extended ideal, contracted ideal
are introduced in ASL L and proved some basic properties of these concepts.
Obtained the set I∗(L) of all ∗-ideals of a ∗-commutative PCASL L is a com-

plete lattice with respect to set inclusion and proved that the centre of I∗(L)
is trivial. Derived a one-to-one correspondence between set of all extended
ideals and set of all contracted ideals in ASLs. Also, proved the set KI(L)
of all kernel ideals in a ∗-commutative PCASL L in which x 6 x∗∗, for all

x ∈ L is a complete implicative lattice and the residuals in the lattice KI(L)
coincides with the corresponding residuals in the lattice I∗(L). We established
an isomorphism between the centre of KI(L) and the Boolean algebra S(L)
of all closed elements in ∗-commutative PCASL L in which x 6 x∗∗, for all

x ∈ L.

1. Introduction

The concept of pseudo-complementation ∗ on an ASL with 0 was intro-
duced by Nanaji Rao and Sujatha Kumari [2], and proved some basic properties
of pseudo-complementation ∗. Also, proved that the pseudo-complementation on
an ASL is equationally definable. They observed that an ASL can have more
than one pseudo-complementation. Infact, they proved that a one-to-one corre-
spondence between set of all pseudo-complementations on an ASL L and the set
of all maximal elements in L. Also, Nanaji Rao and Sujatha Kumari [3], intro-
duced the concepts of kernel ideal, ∗-ideal and ∗-congruence in a ∗-commutative
PCASL L and derived necessary and sufficient condition for an ASL congruence
to become a ∗-congruence. They established the smallest ∗-congruence with given
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kernel ideal and largest ∗-congruence with given kernel ideal and characterized the
largest ∗-congruence in terms of smallest ∗-congruence and the ∗-congruence ψ on
∗-commutative PCASL L defined by (x, y) ∈ ψ if and only if x∗∗ = y∗∗.

In this paper we introduced the concepts of ideal quotient in ASL L and
proved some basic properties of ideal quotients in L. We observed that the set I∗(L)
of all ∗-ideals of ∗-commutative PCASL L is a complete lattice with respect to set
inclusion and proved that the centre of I∗(L) is trivial. Also, we introduced the
concepts of extended ideal and contracted ideal in ASL L and proved some basic
properties of these concepts. We established a one-to-one correspondence between
set of all extended ideals and set of all contracted ideals in ASLs. We proved that
the set KI(L) of all kernel ideals in a ∗-commutative PCASL L in which x 6 x∗∗,
for all x ∈ L is a complete implicative lattice and proved the residuals in the lattice
KI(L) coincides with the corresponding residuals in the lattice I∗(L). Finally, we
proved that the centre of KI(L) is isomorphic with the Boolea algebra S(L) of all
closed elements in ∗-commutative PCASL L.

2. Preliminaries

In this section we collect few important definitions and results which are
already known and which will be used more frequently in the paper.

Definition 2.1. Let (P,6) be a poset and S be a non-empty subset of P .
Then

(1) An element a in P is called a lower bound of S if a 6 x for all x ∈ S.
(2) An element a in P is called an upper bound of S if x 6 a for all x ∈ S.
(3) An element a in P is called the greatest lower bound (g.l.b or infimum)

of S if a is a lower bound of S and b ∈ P such that b is a lower bound of
S, then b 6 a.

(4) An element a in P ia called the least upper bound (l.u.b or supremum)
of S if a is an upper bound of S and b ∈ P such that b is an upper bound
of S, then a 6 b.

Definition 2.2. A poset (L,6) is called a complete lattice if, every non-empty
subset of L has both l.u.b. and g.l.b. in L.

Definition 2.3. An almost semilattice(ASL) is an algebra (L, ◦) where L is a
non-empty set and ◦ is a binary operation on L, satisfies the following conditions:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z) (Associative Law)
(2) (x ◦ y) ◦ z = (y ◦ x) ◦ z (Almost Commutative Law)
(3) x ◦ x = x, for all x, y, z ∈ L (Idempotent Law).

Theorem 2.1. Let L be an ASL. Define a relation 6 on L by a 6 b if and
only if a ◦ b = a. Then 6 is a partial ordering on L.

Theorem 2.2. Let L be an ASL. Then for any a, b ∈ L, we have the following:

(1) a ◦ b 6 b.
(2) a ◦ b = b ◦ a whenever a 6 b.
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Definition 2.4. An ASL with 0 is an algebra (L, ◦, 0) of type (2, 0) satisfies
the following axioms:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z) (Associative Law)
(2) (x ◦ y) ◦ z = (y ◦ x) ◦ z (Almost Commutative Law)
(3) x ◦ x = x (Idempotent Law)
(4) 0 ◦ x = 0, for all x, y, z ∈ L.

Theorem 2.3. Let L be an ASL with 0. Then for any a, b ∈ L, we have the
following:

(1) a ◦ 0 = 0.
(2) a ◦ b = 0 if and only if b ◦ a = 0.
(3) a ◦ b = b ◦ a whenever a ◦ b = 0.

Definition 2.5. Let L be an ASL. Then an element m ∈ L is said to be
unimaximal if m ◦ x = x, for all x ∈ L.

Theorem 2.4. Let (L, ◦) be an ASL. Then for any a, b ∈ L with a 6 b, we
have a ◦ c 6 b ◦ c and c ◦ a 6 c ◦ b, for all c ∈ L.

Definition 2.6. A non-empty subset I of an ASL L is said to be an ideal if
x ∈ I and a ∈ L, then x ◦ a ∈ I.

Corollary 2.1. Let L be an ASL and I be an ideal of L. Then, for any
a, b ∈ L, a ◦ b ∈ I if and only if b ◦ a ∈ I.

Theorem 2.5. Let S be a non-empty subset of an ASL L. Then (S] =
{(◦ni=1si) ◦ x : x ∈ L, si ∈ S where 1 6 i 6 n and n is a positive integer } is
the smallest ideal of L containing S.

Lemma 2.1. Let L be an ASL and a ∈ L. Then (a] = {a ◦ x : x ∈ L} is an
ideal of L.

Note that, for any a in an ASL L, (a] is called the principal ideal generated by
a.

Lemma 2.2. Let L be an ASL and a, b ∈ L. Then a ∈ (b] if and only if a = b◦a.

Lemma 2.3. Intersection of any two ideals of an ASL L is again an ideal.

Theorem 2.6. The set I(L) of all ideals of an ASL L is a distributive lattice
with respect to set inclusion.

Lemma 2.4. Let L be an ASL and for any a, b ∈ L, (a ◦ b] = (a] ∩ (b] =
(b] ∩ (a] = (b ◦ a].

It can be easily verified that the set PI(L) of all principal ideals of an ASL L
is a semilattice with respect to set inclusion.

Theorem 2.7. Let L be an ASL. Then the following conditions are equivalent:

(1) The intersections of any family of ideals is non-empty.
(2) The intersections of any family of ideals is again an ideal.
(3) The lattice I(L) has least element.
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(4) The lattice I(L) is complete.
(5) The semilattice PI(L) has least element.
(6) L has a minimal element.

Definition 2.7. Let L and L
′
be two ASLs with zero elements 0 and 0

′

respectively. Then a mapping f : L → L
′
is called an ASL homomorphism if it

satisfies the following conditions:

(1) f(a ◦ b) = f(a) ◦ f(b), for all, a, b ∈ L

(2) f(0) = 0
′
.

Definition 2.8. A proper ideal P of an ASL L is said to be a prime ideal if
for any x, y ∈ L, x ◦ y ∈ P implies that either x ∈ P or y ∈ P .

Definition 2.9. Let (L, ◦, 0) be an ASL with zero. Then a unary operation
a 7→ a∗ on L is said to be pseudo-complementation on L for any a, b ∈ L, it satisfies
the following conditions:

(1) a ◦ b = 0 ⇒ a∗ ◦ b = b
(2) a ◦ a∗ = 0.

Theorem 2.8. Let L be an ASL with 0. Then a unary operation ∗ : L→ L is
a pseudo-complementation on L if and only if it satisfies the following conditions:

(1) a∗ ◦ b = (a ◦ b)∗ ◦ b
(2) 0∗ ◦ a = a
(3) 0∗∗ = 0.

Note that, if L is an ASL with pseudo-complementation ∗, then we say that L
is a pseudo-complemented ASL and is denoted by PCASL.

Remark 1. Whether ∗ elements commutes are not, is not known so far in
pseudo-complementated ASL with pseudo-complementation ∗, investigation is going
on.

Definition 2.10. Let (L, ◦, 0) be a pseudo-complemented ASL, with pseudo-
complementation ∗. Then L is said to be ∗-commutative if a∗ ◦ b∗ = b∗ ◦ a∗, for all
a, b ∈ L.

Lemma 2.5. Let L be a PCASL. Then for any a, b ∈ L, we have the following:

(1) 0∗ ◦ a = a
(2) 0∗ is unimaximal
(3) a∗∗ ◦ a = a
(4) a is unimaximal ⇒ a∗ = 0
(5) 0∗∗ = 0.

Theorem 2.9. Let L be a ∗-commutative PCASL. Then for any a, b ∈ L, we
have the following:

(1) a 6 b⇒ b∗ 6 a∗

(2) a∗∗∗ = a∗

(3) a∗ 6 b∗ ⇔ b∗∗ 6 a∗∗.
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Theorem 2.10. Let L be a ∗-commutative PCASL. Then for any a, b ∈ L,
we have the following:

(1) (a ◦ b)∗∗ = a∗∗ ◦ b∗∗
(2) (a ◦ b)∗ = (b ◦ a)∗
(3) a∗, b∗ 6 (a ◦ b)∗.

Definition 2.11. An ideal I of a PCASL L is said to be a kernel ideal if I is
the kernel of a ∗-congruence on L.

Theorem 2.11. An ideal I of a ∗-commutative PCASL L is a kernel ideal of
L if and only if for any i, j ∈ I implies (i∗ ◦ j∗)∗ ∈ I.

Corollary 2.2. An ideal I of a ∗-commutative PCASL L is a kernel ideal if
and only if

(i) i ∈ I ⇒ i∗∗ ∈ I

(ii) i, j ∈ I ⇒ ∃ k ∈ I such that i∗ ◦ j∗ = k∗.

Theorem 2.12. Let L be a ∗-commutative PCASL and let I be a kernel ideal
of L. Then the smallest ∗-congruence with kernel I is given by

(x, y) ∈ RI if and only if i∗ ◦ x = i∗ ◦ y, for some i ∈ I.

Definition 2.12. An ideal I of a PCASL L is said to be a ∗-ideal if i ∈ I,
then i∗∗ ∈ I.

3. Ideal Quotients in ASLs

Recall that if L is an ASL, then the set I(L) of all ideals in L for a
distributive lattice with respect to set inclusion and I(L) is a complete lattice with
respect to set inclusion provided L has minimal element. It can be easily seen that
I∗(L) of all ∗-ideals of a ∗-commutative PCASL L is a complete lattice with respect
to set inclusion. In this section we introduce the concept of ideal quotient (I : J) of
any two ideals I, J of an ASL L and prove some basic properties of ideal quotients.

Definition 3.1. Let L be an ASL and I, J be ideals of L. Then define (I :
J) = {x ∈ L : x ◦ j ∈ I, for all j ∈ J}.

Theorem 3.1. Let L be an ASL and I be an ideal of L. Then for any ideal J
of L, (I : J) is an ideal of L containing I.

Proof. Suppose I is a ideal. Since 0 ∈ (I : J), (I : J) is a non-empty subset
of L. Let x ∈ (I : J) and a ∈ L. Then x ◦ j ∈ I, for all j ∈ J . This implies
(x ◦ j) ◦ a ∈ I, for all j ∈ J . It follows that a ◦ (x ◦ j) ∈ I, for all j ∈ J and hence
(x ◦ a) ◦ j ∈ I, for all j ∈ J . Thus x ◦ a ∈ (I : J). Therefore (I : J) is an ideal of
L. Let x ∈ I and j ∈ J . Then x ◦ j ∈ I. It follows that x ∈ (I : J). Therefore
I ⊆ (I : J). �

Note that, if I = (0], then (I : J) = ((0] : J) = (0 : J) is denoted by J0.

Theorem 3.2. Let L be an ASL and I, J,K be ideals of L. Then we have the
following:
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(1) (I : J) ∩K ⊆ I.

(2) I ⊆ J ⇒ (I : K) ⊆ (J : K).

(3) I ⊆ J ⇒ (K : J) ⊆ (K : I).

(4) ((I : J) : K) = (I : J ∩K) = ((I : K) : J)

(5) (
n∩

i=1

Ii : J) =
n∩

i=1

(Ii : J).

(6) (I :
n∪

i=1

Ji) =
n∩

i=1

(I : Ji).

Proof. (1) Let t ∈ (I : J) ∩ J . Then t ∈ (I : J) and t ∈ J . It follows that
t ◦ j ∈ I for all, j ∈ J and t ∈ J . Inparticular t = t ◦ t ∈ I. Thus (I : J) ∩ J ⊆ I.
Suppose I ⊆ J . Let x ∈ (I : K). Then x ◦ k ∈ I, for all, k ∈ K. It follows that
x ◦ k ∈ J , for all k ∈ K. Therefore x ∈ (J : K). Thus (I : K) ⊆ (J : K).

(2) Suppose I ⊆ J . Let x ∈ (K : J). Then x ◦ j ∈ K, for all j ∈ J . It
follows that x ◦ i ∈ K, for all i ∈ I, since I ⊆ J . Therefore x ∈ (K : I). Hence
(K : J) ⊆ (K : I).

(3) Let t ∈ ((I : J) : K). Then t ◦ s ∈ (I : J), for all s ∈ K. It follows that
(t ◦ s) ◦ j ∈ I, for all j ∈ J , for all s ∈ K. Now, let a ∈ J ∩ K. Then a ∈ J
and a ∈ K. It follows that t ◦ a = t ◦ (a ◦ a) ∈ I. Therefore t ∈ (I : J ∩ K).
Hence ((I : J) : K) ⊆ (I : J ∩ K). On the other hand, let t ∈ (I : J ∩ K) and
s ∈ K. Let j ∈ J . Then (t ◦ s) ◦ j = t ◦ (s ◦ j) ∈ I, since s ◦ j ∈ J ∩K. Therefore
t ∈ ((I : J) : K). Henec (I : J∩K) ⊆ ((I : J) : K). Thus (I : J∩K) = ((I : J) : K).
Since (I : J ∩K) = (I : K ∩ J), (I : K ∩ J) = ((I : K) : J).

(4) Suppose t ∈ L. Then

t ∈ (
n∩

i=1

Ii : J) ⇔ t ◦ j ∈
n∩

i=1

Ii, for all j ∈ J

⇔ t ◦ j ∈ Ii, for all i, and for all j ∈ J
⇔ t ∈ (Ii : J), for all i

⇔ t ∈
n∩

i=1

(Ii : J).

Therefore (
n∩

i=1

Ii : J) =
n∩

i=1

(Ii : J).

(5) Suppose t ∈ L. Then

t ∈ (I :
n∪

i=1

Ji) ⇔ t ◦ j ∈ I, for all j ∈
n∪

i=1

Ji

⇔ t ◦ j ∈ I, for all j ∈ Ji and for all i
⇔ t ∈ (I : Ji), for all i

⇔ t ∈
n∩

i=1

(I : Ji).

Therefore (I :
n∪

i=1

Ji) =
n∩

i=1

(I : Ji) �

In the following we prove that if I is a ∗-ideal and J is any ideal of an ASL L,
then (I : J) is a ∗-ideal.
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Theorem 3.3. Let L be a ∗-commutative PCASL and I be a ∗-ideal of L.
Then for any ideal J of L, (I : J) is a ∗-ideal of L.

Proof. Let i ∈ (I : J). Then i ◦ j ∈ I, for all j ∈ J . This implies (i ◦ j)∗∗ ∈ I,
for all j ∈ J . It follows that i∗∗ ◦ j∗∗ ∈ I, for all j ∈ J . Now, consider i∗∗ ◦ j =
i∗∗ ◦ (j∗∗ ◦ j) = (i∗∗ ◦ j∗∗) ◦ j ∈ I, for all j ∈ J . Hence i∗∗ ◦ j ∈ I, for all j ∈ J .
Thus i∗∗ ∈ (I : J). Therefore (I : J) is a ∗-ideal of L. �

Corollary 3.1. Let L be a ∗-commutative PCASL. Then for any I, J ∈
I∗(L), (I : J) is a ∗-ideal.

Next, we prove that, if I is a ∗-ideal and J is any ideal in a ∗-commutative
PCASL L, (I : J) = {x ∈ L : (x∗∗] ∩ J ⊆ I}. For this, first we prove the following.

Lemma 3.1. Let L be a ∗-commutative PCASL. Then for any I ∈ I∗(L) and
J ∈ I(L), {x ∈ L : (x∗∗] ∩ J ⊆ I} is a ∗-ideal.

Proof. Put H = {x ∈ L : (x∗∗] ∩ J ⊆ I}. Since (0∗∗] ∩ J = (0] ∩ J = (0] ⊆
I, 0 ∈ H. Hence H is non-empty subset of L. Let x ∈ H and a ∈ L. Then we have
(x∗∗]∩ J ⊆ I. Now, consider ((x ◦ a)∗∗]∩ J = (x∗∗ ◦ a∗∗]∩ J = ((x∗∗]∩ (a∗∗])∩ J =
((a∗∗] ∩ (x∗∗]) ∩ J = (a∗∗] ∩ ((x∗∗] ∩ J) ⊆ (x∗∗] ∩ J ⊆ I. Therefore x ◦ a ∈ H.
Hence H is an ideal of L. Let x ∈ H. Then (x∗∗] ∩ J ⊆ I. Now, consider
((x∗∗)∗∗]∩J = (x∗∗∗∗]∩J = (x∗∗]∩J ⊆ I. Therefore x∗∗ ∈ H. Thus H is a ∗-ideal
of L. �

Lemma 3.2. Let L be a ∗-commutative PCASL. Then for any I ∈ I∗(L) and
J is any ideal of L, (I : J) is the largest ∗-ideal with the property (I : J) ∩ J ⊆ I.

Proof. Clearly, (I : J) is a ∗-ideal of L. Let x ∈ (I : J)∩ J . Then x ∈ (I : J)
and x ∈ J . Hence x ◦ j ∈ I, for all j ∈ J and x ∈ J . Inparticular x = x ◦ x ∈ I.
Therefore (I : J) ∩ J ⊆ I. Suppose K ∈ I∗(L) such that K ∩ J ⊆ I. Now, we
shall prove that K ⊆ (I : J). Let x ∈ K. Then we have x ◦ j ∈ K for all, j ∈ J .
Also, we have j ◦ x ∈ J , for all, j ∈ J . It follows that x ◦ j ∈ J for all, j ∈ J .
Hence x ◦ j ∈ K ∩ J for all, j ∈ J . This implies x ◦ j ∈ I for all, j ∈ J . Therefore
x ∈ (I : J). Thus K ⊆ (I : J). Hence (I : J) is the largest ∗-ideal with the property
(I : J) ∩ J ⊆ I. �

Now, we prove the following.

Theorem 3.4. Let L be a ∗-commutative PCASL and I, J ∈ I∗(L). Then
(I : J) = {x ∈ L : (x∗∗] ∩ J ⊆ I}.

Proof. Put H = {x ∈ L : (x∗∗] ∩ J ⊆ I}. Then clearly, H is a ∗-ideal. Since
(I : J) is the largest ∗-ideal with the property that (I : J) ∩ J ⊆ I, it is enough
to prove that H is the largest ∗-ideal with the property that (I : J) ∩ J ⊆ I.
Let x ∈ H ∩ J . Then x ∈ H and x ∈ J . It follows that (x∗∗] ∩ J ⊆ I. Since
x∗ ◦ x = 0, x∗∗ ◦ x = x. This implies x ∈ (x∗∗]. It follows that x ∈ (x∗∗] ∩ J ⊆
I. Therefore x ∈ I. Hence H ∩ J ⊆ I. Now, suppose K ∈ I∗(L) such that
K ∩ J ⊆ I. Let x ∈ K. Then x∗∗ ∈ K. This implies (x∗∗] ⊆ K. It follows that
(x∗∗] ∩ J ⊆ K ∩ J . Since K ∩ J ⊆ I, (x∗∗] ∩ J ⊆ I. This implies x ∈ H. Therefore
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K ⊆ H. Hence H is the largest ∗-ideal with the property that (I : J) ∩ J ⊆ I.
Thus (I : J) = {x ∈ L : (x∗∗] ∩ J ⊆ I}. �

Corollary 3.2. The centre of I∗(L) is trivial.

Proof. Suppose I∗(L) is a complemented lattice. Suppose I ∈ I∗(L) such
that I is complemented. Then there exists J ∈ I∗(L) such that I ∩ J = (0] and
I ∪ J = L. Now, we shall prove that J = I0. Let x ∈ J and i ∈ I. Then
x ◦ i ∈ J ∩ I = (0] and hence x ◦ i = 0. Therefore x ∈ I0. Hence J ⊆ I0. Now, let
x ∈ I0. Then x ◦ i = 0, for all i ∈ I. Since, x ∈ I0 ⊆ L = I ∪ J , either x ∈ I or
x ∈ J . If x ∈ I then we get x = x ◦ x = 0. Hence x ∈ J . It follows that I0 ⊆ J .
Thus J = I0. Therefore the complement of I is uniquely determined by I0. Now,
we have 0∗ ∈ L = I ∪ I0. Therefore either 0∗ ∈ I or 0∗ ∈ I0. If 0∗ ∈ I, then I = L.
Now, if 0∗ ∈ I0, then I = (0], since if x ∈ I then 0∗ ◦ x = 0 and hence x = 0. Thus
the centre of I∗(L) is trivial. �

4. Extended Ideals and Contracted Ideals in ASLs

In this section we introduce the concepts of extended and contracted ideals
in ASLs and prove some basic properties of these concepts. Also, prove that, if
f : L → M is an ASL homomorphism then the set of all cotracted ideals in L is
bijective with the set of all extended ideals in M . Now, we begin this section with
the following definition.

Definition 4.1. Let f : L → M be an ASL homomorphism and let I be an
ideal of L. Then the ideal genereated by f(I) is calld an extended ideal and is
denoted by Ie.

It can be easily seen that

Ie = {(◦ni=1f(xi)) ◦ y : xi ∈ I, y ∈M, 1 6 i 6 n, n ∈ Z+}.
Also, seen that, Ie is the smallest ideal containing f(I). In the following we prove
some basic properties of extended ideals.

Theorem 4.1. Let f : L → M be an ASL homomorphism and let I1, I2 be
ideals of L. Then we have the following:

(1) I1 ⊆ I2 ⇒ I1
e ⊆ I2

e

(2) (I1 ∪ I2)e = Ie1 ∪ Ie2
(3) (I1 ∩ I2)e = Ie1 ∩ Ie2
(4) (I1 : I2)

e ⊆ (Ie1 : Ie2)

Proof. (1) Suppose I1 ⊆ I2 and t ∈ Ie1 . Then t = (◦ni=1f(xi)) ◦ y, where
xi ∈ I1, y ∈M . Therefore t = (◦ni=1f(xi)) ◦ y, where xi ∈ I2, y ∈M . Hence t ∈ Ie2 .
Thus Ie1 ⊆ Ie2 .

(2) We have I1, I2 ⊆ I1 ∪ I2. Therefore by (1), we get I1
e ⊆ (I1 ∪ I2)e, I2e ⊆

(I1∪ I2)e and hence I1
e∪ I2e ⊆ (I1∪ I2)e. Conversely, suppose t ∈ (I1∪ I2)e. Then

t = (◦ni=1f(xi))◦y, where xi ∈ I1∪I2, y ∈M . This implies t = (◦ni=1f(xi))◦y, where
xi ∈ I1 or xi ∈ I2, y ∈M . It follows that t ∈ I1

e ∪ I2e. Hence (I1 ∪ I2)e ⊆ I1
e ∪ I2e.

Thus (I1 ∪ I2)e = I1
e ∪ I2e.
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(3) We have I1 ∩ I2 ⊆ I1, I2. Therefore by (1), we get (I1 ∩ I2)e ⊆ Ie1 , I
e
2 and

hence (I1 ∩ I2)e ⊆ Ie1 ∩ Ie2 . Conversely, suppose t ∈ Ie1 ∩ Ie2 . Then t ∈ Ie1 and Ie2 .
It follows that t = (◦ni=1f(xi)) ◦ y, where xi ∈ I1, y ∈ M and t = (◦mi=1f(wi)) ◦ z,
where wi ∈ I2, z ∈ M . Now, t = t ◦ t = ((◦ni=1f(xi)) ◦ y) ◦ ((◦mi=1f(wi)) ◦ z) =
f(◦ni=1xi ◦ ◦mi=1wi) ◦ (y ◦ z) ∈ (I1 ∩ I2)e since ◦ni=1xi ◦ ◦ni=1wi ∈ I1 ∩ I2, y ◦ z ∈ M .
Therefore t ∈ (I1 ∩ I2)e. Hence Ie1 ∩ Ie2 ⊆ (I1 ∩ I2)e. Thus (I1 ∩ I2)e = Ie1 ∩ Ie2 .

(4) Let t ∈ (I1 : I2)
e. Then t = (◦ni=1f(xi)) ◦ y, where xi ∈ (I1 : I2), y ∈M . It

follows that xi ◦ i2 ∈ I1, for all i2 ∈ I2. Now, let s ∈ Ie2 . Then s = (◦mi=1 ◦f(wi))◦z,
where z ∈M,wi ∈ I2. Now, consider t ◦ s = ((◦ni=1f(xi)) ◦ y) ◦ ((◦mi=1f(wi)) ◦ z) =
f(◦ni=1xi ◦ ◦mi=1wi) ◦ (y ◦ z) ∈ Ie1 since ◦ni=1xi ◦ ◦mi=1wi ∈ I1, y ◦ z ∈ M . Therefore
t ◦ s ∈ Ie1 . Hence t ∈ (Ie1 : Ie2). Thus (I1 : I2)

e ⊆ (Ie1 : Ie2). �
Definition 4.2. Let L,M be PCASLs. Then a mapping f : L → M is said

to be PCASL homomorphism, if f is an ASL homomorphism and f(a∗) = (f(a))∗,
for all a ∈ L.

Theorem 4.2. Let f : L→M be a PCASL homomorphism and I be a ∗-ideal
of L. Then Ie is a ∗-ideal of M .

Proof. Suppose I is a ∗-ideal of L. Now, let x ∈ Ie. Then x = (◦ni=1f(xi))◦y,
where xi ∈ I, y ∈ M . This implies x∗∗i ∈ I. Now, consider x∗∗ = ((◦ni=1f(xi)) ◦
y)∗∗ = (◦ni=1f(xi))

∗∗ ◦ y∗∗ = (◦ni=1f(xi)
∗∗) ◦ y∗∗ = (◦ni=1f(x

∗∗
i )) ◦ y∗∗ ∈ Ie since

x∗∗i ∈ I, for all i and y∗∗ ∈M . Hence x∗∗ ∈ Ie. Thus Ie is a ∗-ideal of M . �
Next, we introduce the concept of contracted ideal in a ASL L and prove some

basic properties of contracted ideals.

Lemma 4.1. Let L and M be ASLs with zero and let f : L → M be an ASL
homomorphism. If J is an ideal of M , then f−1(J) is an ideal of L. Inparticular
if J is a prime ideal of M , then so is f−1(J).

Proof. We have f−1(J) = {x ∈ L : f(x) ∈ J}. Since 0 = f(0) ∈ J, 0 ∈
f−1(J). Hence f−1(J) is a non-empty subset of L. Let x ∈ f−1(J) and a ∈ L.
Then f(x) ∈ J and f(a) ∈ f(L). It follows that f(x) ◦ f(a) ∈ J . This implies
f(x ◦ a) ∈ J . Therefore x ◦ a ∈ f−1(J). Hence f−1(J) ia an ideal of L. Suppose J
is a prime ideal of B. Let x, y ∈ A such that x ◦ y ∈ f−1(J). Then f(x ◦ y) ∈ J .
This implies f(x) ◦ f(y) ∈ J . Therefore either f(x) ∈ J or f(y) ∈ J , since J is
prime ideal. It follows that x ∈ f−1(J) or y ∈ f−1(J). Thus f−1(J) is a prime
ideal of L. �

Definition 4.3. Let L,M be ASLs with zero and f : L → M be an ASL
homomorphism. If J is an ideal ofM , then the ideal f−1(J) is called the contracted
ideal of J and is denoted by Jc.

In the following, we prove some basic properties of contracted ideals in ASLs.

Theorem 4.3. Let L,M be ASLs with zero and let f : L → M be an ASL
homomorphism. Then for any ideals J1, J2 of M , we have the following:

(1) J1 ⊆ J2 ⇔ J1
c ⊆ J2

c



268 G. NANAJI RAO, S. SUJATHA KUMARI

(2) (J1 ∪ J2)c = Jc
1 ∪ Jc

2

(3) (J1 ∩ J2)c = Jc
1 ∩ Jc

2

(4) If f is an epimorphism then (J1 : J2)
c = (Jc

1 : Jc
2).

Proof. (1) Suppose J1 ⊆ J2. Now, let x ∈ Jc
1 = f−1(J1). Then f(x) ∈ J1

and hence f(x) ∈ J2. Therefore x ∈ f−1(J2) = J2
c. Hence J1

c ⊆ J2
c.

(2) We have J1, J2 ⊆ J1 ∪ J2.Therefore by (1), we get J1
c ⊆ (J1 ∪ J2)c, J2c ⊆

(J1 ∪ J2)c. Hence J1
c ∪ J2c ⊆ (J1 ∪ J2)c. Conversely, suppose t ∈ (J1 ∪ J2)c =

f−1(J1 ∪ J2). This implies f(t) ∈ (J1 ∪ J2). It follows that f(t) ∈ J1 or f(t) ∈ J2.
Therefore t ∈ f−1(J1) or t ∈ f−1(J2) and hence t ∈ Jc

1 or t ∈ Jc
2 . Therefore

t ∈ Jc
1 ∪ Jc

2 . Hence (J1 ∪ J2)c ⊆ Jc
1 ∪ Jc

2 . Thus (J1 ∪ J2)c = Jc
1 ∪ Jc

2 .

(3) We have J1∩J2 ⊆ J1 and J1∩J2 ⊆ J2. Therefore by (1), we get (J1∩J2)c ⊆
Jc
1 and (J1 ∩ J2)

c ⊆ Jc
2 . Therefore (J1 ∩ J2)

c ⊆ Jc
1 ∩ Jc

2 . Conversely, suppose
t ∈ Jc

1 ∩ Jc
2 . Then t ∈ Jc

1 and t ∈ Jc
2 . It follows that t ∈ f−1(J1) and t ∈ f−1(J2).

This implies f(t) ∈ J1 and f(t) ∈ J2. Therefore f(t) ∈ J1 ∩ J2. This implies
t ∈ f−1(J1 ∩ J2). Hence t ∈ (J1 ∩ J2)c. Therefore Jc

1 ∩ Jc
2 ⊆ (J1 ∩ J2)c. Hence

(J1 ∩ J2)c = Jc
1 ∩ Jc

2 .

(4) Suppose f is an epimorphism. Now, let t ∈ (J1 : J2)
c = f−1(J1 : J2).

Then f(t) ∈ (J1 : J2). It follows that f(t) ◦ j2 ∈ J1, for all j2 ∈ J2. Now, let
i2 ∈ Jc

2 = f−1(J2). Then f(i2) ∈ J2. It follows that f(t) ◦ f(i2) ∈ J1. This implies
f(t ◦ i2) ∈ J1. Therefore (t ◦ i2) ∈ f−1(J1). It follows that (t ◦ i2) ∈ Jc

1 , for all
i2 ∈ Jc

2 . Therefore t ∈ (Jc
1 : Jc

2). Hence (J1 : J2)
c ⊆ (Jc

1 : Jc
2). Conversely, suppose

t ∈ (Jc
1 : Jc

2). Then t ◦ i2 ∈ Jc
1 , for all i2 ∈ Jc

2 . It follows that f(t ◦ i2) ∈ J1, for
all i2 ∈ Jc

2 . Therefore f(t) ◦ f(i2) ∈ J1, for all f(i2) ∈ J2. Now, let j2 ∈ J2. Then
there exists t2 ∈ L such that f(t2) = j2 ∈ J2. It follows that f(t) ◦ f(t2) ∈ J1 and
hence f(t) ◦ j2 ∈ J1, for all j2 ∈ J2. It follows that f(t) ∈ (J1 : J2). Therefore
t ∈ f−1(J1 : J2) = (J1 : J2)

c. Therefore t ∈ (J1 : J2)
c. Hence (Jc

1 : Jc
2) ⊆ (J1 : J2)

c.
Thus (J1 : J2)

c = (Jc
1 : Jc

2). �

Theorem 4.4. Let f : L → M be PCASL homomorphism and let J be a
∗-ideal of M . Then Jc is a ∗-ideal of L.

Proof. Suppose J is a ∗-ideal of M . Then we have Jc = {x ∈ L : f(x) ∈ J}
is an ideal of L. Let x ∈ Jc. Then x ∈ f−1(J). This implies f(x) ∈ J . It follows
that (f(x))∗∗ ∈ J . Therefore f(x∗∗) ∈ J . Hence x∗∗ ∈ f−1(J) = Jc. Thus Jc is a
∗-ideal of L. �

Theorem 4.5. Let f : L → M be PCASL homomorphism and J be a kernel
ideal of M . Then Jc is a kernel ideal of L.

Proof. Suppose J is a kernel ideal of M . Now, let x, y ∈ Jc = f−1(J). Then
f(x) ∈ J, f(y) ∈ J . It follows that (f(x)∗◦f(y)∗)∗ ∈ J . Therefore (f(x∗)◦f(y∗))∗ ∈
J . It follows that (f(x∗ ◦ y∗))∗ ∈ J . This implies f((x∗ ◦ y∗)∗) ∈ J . Therefore
(x∗ ◦y∗)∗ ∈ f−1(J) = Jc. Hence (x∗ ◦y∗)∗ ∈ Jc. Thus Jc is a kernel ideal of L. �
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In the following we characterize extended ideals and contracted ideals in ASLs
and prove that there is a bijection between set of all contracted ideals and the set
of all extended ideals. For, this first we need the following.

Theorem 4.6. Let L,M be ASLs and f : L→M be an ASL homomorphism
and let I be an ideal of L, J be an ideal of M . Then we have the following:

(1) I ⊆ Iec

(2) J ⊇ Jce

(3) Ie = Iece

(4) Jc = Jcec

Proof. (1) Let t ∈ I. Then f(t) ∈ f(I) ⊆ Ie. This implies f(t) ∈ Ie. It
follows that t ∈ f−1(Ie) = Iec. Thus I ⊆ Iec.

(2) Let t ∈ Jce. Then t = (◦ni=1f(xi)) ◦ y, where xi ∈ Jc, for all i and y ∈ M .
Now, xi ∈ Jc = f−1(J), for all, i. Hence f(xi) ∈ J , for all i. It followes that
f(xi) ◦ y ∈ J , for all i. Therefore t = (◦ni=1f(xi)) ◦ y ∈ J . Thus Jce ⊆ J .

(3) From (1), we get I ⊆ Iec. It follows that Ie ⊆ Iece. Again, put J = Ie in
(2), we get Ie ⊇ Iece. Hence Ie = Iece.

(4) From (2), we get Jce ⊆ J . It followes that Jcec ⊆ Jc. Again, put I = Jc in
(1), we get Jc ⊆ Jcec. Therefore Jc = Jcec. �

Theorem 4.7. Let L,M be ASLs and let f : L → M be an ASL homomor-
phism. Let C be the set of all contracted ideals in L and let E be the set of all
extended ideals in M . Then we have the following:

(1) C = {I ∈ I(L) : I = Iec}
(2) E = {J ∈ I(M) : J = Jce}
(3) The mapping g : C → E defined by g(I) = Ie is a bijection and its invers

mapping h : E → C defined by h(J) = Jc.

Proof. (1) Let I ∈ C. Then I = Jc, for some ideal J of M . Now, considetr
Iec = (Jc)ec = Jcec = Jc = I. Therefore Iec = I. Conversely, suppose I = Iec.
Now, I = Iec = (Ie)c and Ie is an ideal of M . It follows that I is a contracted
ideal. Therefore I ∈ C.

(2) Let J ∈ E. Then J = Ie, for some ideal I of L. Now, consider Jce =
(Ie)ce = Iece = Ie = J . Therefore Jce = J . Conversely. suppose J = Jce. Now,
J = Jce = (Jc)e and Jc is an ideal of L. It follows that J is an extended ideal.
Therefore J ∈ C.

(3) We have g : C → E defined by g(I) = Ie, for all I ∈ C. Clearly, g is both
well defined and one-one. Let J ∈ E. Then J = Jce. Now, Jc = Jcec = (Jc)ec.
Therefore Jc ∈ C. Now, consider g(Jc) = Jce = J . Therefore g(Jc) = J . Hence
g is onto. Hence g is bijection. Let J ∈ E. Then J = Jce. Now, consider
(g ◦ h)(J) = g(h(J)) = g(Jc) = (Jc)e = Jce = J = Id(J), for all J ∈ E where
Id is the identity map on E. Therefore g ◦ h = Id. Similarly, we can prove that
h ◦ g = Id. Hence h ◦ g = Id = g ◦ h. Thus h is the inverse of g. �



270 G. NANAJI RAO, S. SUJATHA KUMARI

5. The lattices of kernel ideals and ∗-ideals

In this section, we observe that join of any two kernel ideals need not be
a kernel ideal by means of example. We prove that the set KI(L) of all kernel
ideals in a ∗-commutative PCASL L in which x 6 x∗∗, for all x ∈ L is a complete
implicative lattice and prove that the residuals in the lattice KI(L) coincides with
the corresponding residuals in the lattice I∗(L) of all ∗-ideals in L. If L is a ∗-
commutative PCASL in which x 6 x∗∗, for all x ∈ L, then we prove that the centre
of KI(L) is isomorphic with the Boolean algebra S(L) of all closed elements in L.

It can be easily observed that if L is a pseudo-complemented distributive
lattice, then the set of all complemented elements in L is sub lattice of L and for
any x, y ∈ L, (x] ∨ (y] = (x ∨ y]. Also, easily verified that an ideal I of pseudo-
complemented distributive lattice is a kernel ideal if and only if I is a ∗-ideal.
It followes that in a pseudo-complemented distributive lattice L, join of any two
kernel ideals is again a kernel ideal if and only if L is Stone lattice. First, we give
an example of join of two kernel ideals is not a kernel ideal in an ASL.

Example 5.1. Let A = {0, a} and B = {0, b1, b2} are two discrete ASLs. Let
L = A×B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Define a binary operation
◦ on L as follows:

◦ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, b1) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(0, b2) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (a, 0) (a, 0)
(a, b1) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(a, b2) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)

Then clearly, (L, ◦) is an ASL. Now, define a unary operation ∗ on L, by
(0, 0)∗ = (a, b1), (0, b1)

∗ = (0, b2)
∗ = (a, 0), (a, 0)∗ = (0, b1) and (a, b1)

∗ =
(a, b2)

∗ = (0, 0). Then clearly, ∗ is a pseudo-complementation on L. Now, put
I = {(0, 0), (a, 0)}, J = {(0, 0), (0, b1), (0, b2)}. Then clearly, I and J are kernel
ideals. Now I ∨ J = I ∪ J = {(0, 0), (a, 0), (0, b1), (0, b2)} which is not a kernel
ideal, since (a, 0), (0, b1) ∈ I ∪ J , ((a, 0)∗ ◦ (0, b1)∗)∗ = ((0, b1) ◦ (a, 0))∗ = (0, 0)∗ =
(a, b1) /∈ I ∪ J .

Now, returning to the case of pseudo-complemented almost semilattice L. Note
that in PCASL, x � x∗∗ in general. For, consider the following example.

Example 5.2. Let L = { 0, a, b, c}. Now, define binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a a a
b 0 a b c
c 0 a b c
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Then clearly (L, ◦) is an ASL. Also, if we define 0∗ = b and x∗ = 0, for all
x( ̸= 0) ∈ L, then clearly L is a PCASL. In this ASL, we have c ◦ c∗∗ = c ◦ (c∗)∗ =
c ◦ 0∗ = c ◦ b = b ̸= c and hence c � c∗∗.

However, we prove that, if x 6 x∗∗ for all x in ∗-commutative PCASL, then
the set of all kernel ideals in L form a complete implicative lattice and residuals in
the lattice KI(L) coincides with the corresponding residuals in the lattice I∗(L).
Recall that if I is a kernel ideal of a ∗-commutative PCASL L, then RI = {(x, y) ∈
L × L : i∗ ◦ x = i∗ ◦ y, for some i ∈ I} is the smallest ∗-congruence on L with
kernel I. First we prove the following.

Lemma 5.1. Let L be a ∗-commutative PCASL and I be a kernel ideal of L.
If a, b ∈ I, then (a, b) ∈ RI .

Proof. Suppose a, b ∈ I. Since I is a kernel ideal, (a∗ ◦ b∗)∗ ∈ I. Again, since
a◦a∗◦b∗ = 0 and b◦a∗◦b∗ = 0. It follows that a∗◦b∗◦a = 0 and a∗◦b∗◦b = 0. This
implies (a∗ ◦ b∗)∗∗ ◦ a = 0 and (a∗ ◦ b∗)∗∗ ◦ b = 0. It follows that (a∗ ◦ b∗)∗)∗ ◦ a = 0
and (a∗ ◦b∗)∗)∗ ◦b = 0. Therefore (a∗ ◦b∗)∗)∗ ◦a = (a∗ ◦b∗)∗)∗ ◦b and (a∗ ◦b∗)∗ ∈ I.
Hence (a, b) ∈ RI . �

Note that if L is a ∗-commutative PCASL and x ∈ L, then the congruence
class of x with respect to the congruence relation RI is denoted by x/RI and hence
x/RI = {y ∈ L : (x, y) ∈ RI}.

Lemma 5.2. Let L be a ∗-commutative PCASL and I be a kernel ideal of
L. Then L/RI = {x/RI : x ∈ L} is a ∗-commutative PCASL, under induced
operations on L.

Proof. Suppose x/RI , y/RI ∈ L/RI . Now, define a binary operation ◦ and a
unary operation ∗ on L/RI by x/RI ◦ y/RI = (x ◦ y)/RI and (x/RI)

∗ = x∗/RI .
Then clearly, operations ◦ and ∗ are well defined. Also, clearly (L/RI , ◦) is an
ASL. Let x/RI ∈ L/RI . Now, consider x/RI ◦ (x/RI)

∗ = x/RI ◦ x∗/RI =
(x ◦ x∗)/RI = 0/RI . Suppose y/RI ∈ L/RI such that x/RI ◦ y/RI = 0/RI . Then
(x◦y)/RI = 0/RI . It follows that (x◦y, 0) ∈ RI . This implies i∗ ◦x◦y = i∗ ◦0 = 0,
for some i ∈ I. Therefore i∗ ◦ x ◦ y = 0. This implies x ◦ i∗ ◦ y = 0. It follows
that x∗ ◦ i∗ ◦ y = i∗ ◦ y. Therefore i∗ ◦ x∗ ◦ y = i∗ ◦ y. Hence (x∗ ◦ y, y) ∈
RI . It follows that (x∗ ◦ y)/RI = y/RI . This implies x∗/RI ◦ y/RI = y/RI .
Therefore (x/RI)

∗ ◦ y/RI = y/RI . Hence L/RI is a PCASL. Clearly, L/RI is
∗-commutative. �

Now, we prove that the set KI(L) is a complete implicative lattice.

Theorem 5.1. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L.Then ordered by set inclusion, KI(L) forms a complete implicative lattice in
which the operations are as follows: If {Iα : α ∈ ∆} is any family of kernel ideals
of L, then∧

α∈∆

Iα = infKI(L){Iα : α ∈ ∆} =
∩

α∈∆

Iα,



272 G. NANAJI RAO, S. SUJATHA KUMARI∨
α∈∆

Iα = supKI(L){Iα : α ∈ ∆}

= {x ∈ L : (∃α1, α2, ..., αn ∈ ∆)(∃xi ∈ Iαi
), x 6 (◦ni=1x

∗
i )

∗}
and residuals in KI(L) coinsides with the corresponding residuals in I∗(L).

Proof. Clearly, KI(L) is a poset with respect to set inclusion. Suppose
S = {Iα : α ∈ ∆} is a non-empty subset of KI(L). Then clearly,

∩
α∈∆

Iα is

the greatest lower bound of S. Since 0 ∈
∨

α∈∆

Iα,
∨

α∈∆

Iα ̸= ∅. Let x ∈
∨

α∈∆

Iα

and t ∈ L. Then there exists α1, α2, ......, αn ∈ ∆, and there exists xi ∈ Iαi ,
such that x 6 (◦ni=1x

∗
i )

∗. This implies t ◦ x 6 x 6 (◦ni=1x
∗
i )

∗. It follows that
(t◦x)∗∗ 6 (◦ni=1x

∗
i )

∗∗∗. Hence (x◦t)∗∗ 6 (◦ni=1x
∗
i )

∗. It follows that x◦t 6 (◦ni=1x
∗
i )

∗.
Therefore x◦t ∈

∨
α∈∆

Iα. Hence
∨

α∈∆

Iα is a ideal of L. Let x, y ∈
∨

α∈∆

Iα. Then there

exists α1, α2, ......, αn ∈ ∆, and there exists xi, yi ∈ Iαi , such that x 6 (◦ni=1x
∗
i )

∗

and y 6 (◦ni=1y
∗
i )

∗ . Now, since xi, yi ∈ Iαi , Iαi is a kernel ideal, there exists
zi ∈ Iαi such that x∗i ◦ y∗i = z∗i , for i = 1, 2, ...., n. This implies (◦ni=1x

∗
i )

∗∗ 6 x∗

and (◦ni=1y
∗
i )

∗∗ 6 y∗. It follows that (◦ni=1x
∗
i )

∗∗ ◦ (◦ni=1y
∗
i )

∗∗ 6 x∗ ◦ y∗. Therefore
(x∗ ◦ y∗)∗ 6 ((◦ni=1x

∗
i )

∗∗ ◦ (◦ni=1y
∗
i )

∗∗)∗ = ((◦ni=1x
∗
i ) ◦ (◦ni=1y

∗
i ))

∗ = (◦ni=1(x
∗
i ◦ y∗i ))∗.

Therefore (x∗ ◦ y∗)∗ 6 (◦ni=1z
∗
i )

∗. Thus (x∗ ◦ y∗)∗ ∈
∨

α∈∆

Iα. Therefore
∨

α∈∆

Iα is a

kernel ideal of L. Hence
∨

α∈∆

Iα ∈ KI(L). Clearly,
∨

α∈∆

Iα is an upper bound of S.

Suppose K ∈ KI(L) such that K is an upper bound of S. Then Iα ⊆ K, for all
Iα ∈ S. Let x ∈

∨
α∈∆

Iα. Then there exists α1, α2, ......, αn ∈ ∆, and there exists

xi ∈ Iαi , such that x 6 (◦ni=1x
∗
i )

∗. Since Iαi ⊆ K, for all i, xi ∈ K, for all i. It
follows that (◦ni=1x

∗
i )

∗ ∈ K. This implies x ∈ K. Therefore
∨

α∈∆

Iα ⊆ K. Hence∨
α∈∆

Iα is the least upper bound of S. Thus (KI(L),⊆) is a complete lattice.

Now, we shall prove that KI(L) is an implicative lattice. That is enough to
prove that KI(L) satisfies infinite meet distributive law. Let {Iα : α ∈ ∆} be a
non-empty subset ofKI(L) and I ∈ KI(L). Now, we shall prove that I∩(

∨
α∈∆

Iα) =∨
α∈∆

(I ∩ Iα). Let x ∈ I ∩ (
∨

α∈∆

Iα). Then x ∈ I and x ∈
∨

α∈∆

Iα. Then there exists

α1, α2, ......, αn ∈ ∆, and there exists xi ∈ Iαi , such that x 6 (◦ni=1x
∗
i )

∗. We have
x 6 x∗∗ and x 6 (◦ni=1x

∗
i )

∗. It follows that x 6 x∗∗ ◦ (◦ni=1x
∗
i )

∗. This implies
x 6 x∗∗ ◦ supS(L){x∗∗i : 1 6 i 6 n}. Therefore x 6 supS(L){x∗∗ ◦ x∗∗i : 1 6 i 6 n}.
It follows that x 6 (◦ni=1(x ◦ xi)∗)∗ and x ◦ xi ∈ I ∩ Iαi , for all i. Hence
x ∈

∨
α∈∆

(I∩Iα). Thus I∩(
∨

α∈∆

Iα) ⊆
∨

α∈∆

(I∩Iα). Clearly,
∨

α∈∆

(I∩Iα) ⊆ I∩(
∨

α∈∆

Iα).

Therefore I ∩ (
∨

α∈∆

Iα) =
∨

α∈∆

(I ∩ Iα). Thus KI(L) is a implicative lattice.

Now, we shall prove that residuals in KI(L) is coincide with the corresponding
residuals in I∗(L). Let I, J ∈ KI(L) and let x, y ∈ (I : J). Then (x∗∗]∩ J ⊆ I and
(y∗∗] ∩ J ⊆ I. Let j ∈ ((x∗ ◦ y∗)∗] ∩ J . Then j ∈ ((x∗ ◦ y∗)∗] and j ∈ J . It follows
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that j = (x∗ ◦y∗)∗ ◦j and j ∈ J . This implies x∗ ◦y∗ ◦j = x∗ ◦y∗ ◦(x∗ ◦y∗)∗ ◦j = 0.
It follows that y∗∗ ◦ j ◦ x∗ = j ◦ x∗. Since y∗∗ ∈ (y∗∗], y∗∗ ◦ j ◦ x∗ ∈ (y∗∗].
Therefore j ◦ x∗ ∈ (y∗∗] and j ◦ x∗ ∈ J . Hence j ◦ x∗ ∈ (y∗∗] ∩ J ⊆ I. Thus
j ◦ x∗ ∈ I. Again, we have j ◦ x∗∗ ∈ (x∗∗]. Therefore j ◦ x∗∗ ∈ (x∗∗] and j ∈ J
and hence j ◦ x∗∗ ∈ (x∗∗] ∩ J ⊆ I. Thus j ◦ x∗∗ ∈ I. We have j ◦ x∗ ∈ I and
0 ∈ I. It follows that (j ◦ x∗, 0) ∈ RI . This implies (j ◦ x∗)/RI = 0/RI . It
follows that j/RI ◦ x∗/RI = 0/RI . Therefore x∗/RI ◦ j/RI = 0/RI . Hence
(x∗/RI)

∗ ◦ j/RI = j/RI . Therefore x∗∗/RI ◦ j/RI = j/RI . Similarly, we can
prove that x∗/RI ◦ j/RI = j/RI . It follows that (x∗∗ ◦ x∗ ◦ j)/RI = j/RI . This
implies 0/RI = j/RI . Therefore (j, 0) ∈ RI . Hence i∗ ◦ j = i∗ ◦ 0, for some i ∈ I.
This implies i∗ ◦ j = 0. It follows that i∗∗ ◦ j = j. Since I is a kernel ideal, i∗∗ ∈ I.
This implies i∗∗ ◦ j ∈ I. Hence j ∈ I. Therefore ((x∗ ◦ y∗)∗] ∩ J ⊆ I. Hence
(x∗ ◦ y∗)∗ ∈ (I : J). Thus the residuals in KI(L) coincides with the corresponding
residuals in I∗(L). �

Corollary 5.1. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L. Then every element in KI(L), has at most one complement.

Finally, we prove that the centre of KI(L) is isomorphic to the Boolean algebra
S(L). First we prove that a kernel ideal J of ∗-commutative PCASL in which
x 6 x∗∗ for all x ∈ L is in the centre of KI(L) if and only if J is a principal ideal.
For this, we need the following. Recall that if x is in Boolean algebra S(L) of all
closed elements in ∗-commutative PCASL, then (x] is a kernel ideal. Now, we prove
the converse.

Lemma 5.3. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L. If a principal ideal I = (x] is a kernel ideal then x is in the Boolean algebra
S(L).

Proof. Suppose (x] is a kernel ideal. Then (x] is a ∗-ideal. Since x ∈ (x], x∗∗ ∈
(x]. It follows that x∗∗ = x ◦ x∗∗ = x∗∗ ◦ x = x. Therefore x is in the Boolean
algebra S(L). �

Now, we have the following lemma whose proof is straightforward.

Lemma 5.4. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L. Then the following conditions are equivalent:

(1) Every ideal of L is a kernel ideal.
(2) Every principal ideal of L is a kernel ideal.
(3) L is a Boolean algebra.

Lemma 5.5. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L. Then for any J ∈ KI(L), the complement of J is J0 = (0 : J) in KI(L).

Proof. Suppose J is kernel ideal. Now, J0 = {x ∈ L : x ◦ j = 0, for all j ∈
J}. Let x, y ∈ J0. Then x ◦ j = 0, y ◦ j = 0, for all j ∈ J . It follows that
x∗ ◦ j = j, y∗ ◦ j = j, for all j ∈ J . Therefore j = x∗ ◦ j ◦ y∗ ◦ j = (x∗ ◦ y∗) ◦ j.
Therefore j = (x∗ ◦y∗)◦j. Now, consider (x∗ ◦y∗)∗ ◦j = (x∗ ◦y∗)∗ ◦(x∗ ◦y∗)◦j = 0,
for all j ∈ J . Hence (x∗ ◦ y∗)∗ ∈ J0. Thus J0 is a kernel ideal of L. Suppose I is a
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complement of J in KI(L). Now, we shall prove that I = (0 : J). Let t ∈ I, j ∈ J .
Then t◦j ∈ I and j ◦ t ∈ J . This implies t◦j ∈ J . It follows that t◦j ∈ I∩J = (0].
Therefore t◦j ∈ (0]. This implies t◦j = 0. Therefore t ∈ (0 : J). Hence I ⊆ (0 : J).
Conversely, suppose t ∈ (0 : J). Then t ◦ j = 0, for all j ∈ J . We have I ∨ J = L.
Now, 0∗ ∈ L = I ∨ J . Then 0∗ 6 (x∗ ◦ y∗)∗, for some x ∈ I, y ∈ J . This implies
0∗ = 0∗ ◦ (x∗ ◦ y∗)∗ = (x∗ ◦ y∗)∗. This implies 0∗ ◦ t = (x∗ ◦ y∗)∗ ◦ t. Therefore
t = (x∗ ◦ y∗)∗ ◦ t = (x∗ ◦ y∗ ◦ t)∗ ◦ t. Now, we have t ◦ j = 0, for all j ∈ J .
Inparticular t ◦ y = 0. This implies y ◦ t = 0. It followes that y∗ ◦ t = t. Therefore
(x∗ ◦ y∗)∗ ◦ t = (x∗ ◦ t)∗ ◦ t = (x∗)∗ ◦ t = x∗∗ ◦ t. Hence t ∈ I. Therefore (0 : J) ⊆ I.
Thus (0 : J) = I. �

Theorem 5.2. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L and J be a kernel ideal of L. Then J is in the centre of KI(L) iff J is
principal ideal.

Proof. Suppose J is in the centre ofKI(L). Then we have J is complemented.
Therefore J has unique complement, namely, (0 : J). Then J ∩ (0 : J) = (0] and
J ∨ (0 : J) = L. Since 0∗ ∈ L, 0∗ 6 (x∗ ◦ y∗)∗, for some x ∈ J, y ∈ (0 : J).
Now, since x ∈ J, x∗∗ ∈ J . Therefore (x∗∗] ⊆ J . Conversely, let j ∈ J . Then
we have (0 : J) = {z ∈ L : (z∗∗] ∩ J ⊆ (0]} = {z ∈ L : (z∗∗] ∩ J = (0]}. Since
y ∈ (0 : J), (y∗∗]∩ J = (0]. Now, we have y∗∗ ∈ (y∗∗] and hence y∗∗ ◦ j ∈ (y∗∗]. On
the other hand, since j ∈ J, y∗∗ ◦ j ∈ J . Therefore y∗∗ ◦ j ∈ (y∗∗] ∩ J = (0]. This
implies y∗∗ ◦ j = 0. It follows that y∗∗∗ ◦ j = j. Hence y∗ ◦ j = j. Now, we have
j ∈ J . Consider,

j∗∗ = 0∗ ◦ j∗∗
= (x∗ ◦ y∗)∗ ◦ j∗∗
= j∗∗ ◦ (x∗ ◦ y∗)∗
= j∗∗ ◦ (x∗ ◦ y∗)∗∗∗
= j∗∗ ◦ ((x∗ ◦ y∗)∗)∗∗
= (j ◦ (x∗ ◦ y∗)∗)∗∗
= ((x∗ ◦ y∗)∗) ◦ j)∗∗
= ((x∗ ◦ y∗ ◦ j)∗ ◦ j)∗∗.

Again, we have,
y∗ ◦ j = j

⇒ x∗ ◦ j = x∗ ◦ (y∗ ◦ j)
⇒ (x∗ ◦ j)∗ = (x∗ ◦ (y∗ ◦ j))∗
⇒ (x∗ ◦ j)∗ ◦ j = (x∗ ◦ (y∗ ◦ j))∗ ◦ j
⇒ x∗∗ ◦ j = (x∗ ◦ y∗ ◦ j)∗ ◦ j.

Therefore j∗∗ = ((x∗ ◦ y∗ ◦ j)∗ ◦ j)∗∗ = (x∗∗ ◦ j)∗∗ = x∗∗ ◦ j∗∗. Hence j∗∗ ∈ (x∗∗].
Now, we have j = j∗∗ ◦ j ∈ (x∗∗]. Therefore j ∈ (x∗∗]. Hence J ⊆ (x∗∗]. Therefore
J = (x∗∗]. Thus J is principal ideal.

Conversely, suppose J is a principal ideal. Then J = (a], for some a ∈ L.
We have a ∈ J and J is kernel ideal and hence is a ∗-ideal. Therefore a∗∗ ∈ J . It
follows that (a] ⊆ (a∗∗] ⊆ J = (a]. Therefore J = (a∗∗]. Since a 6 a∗∗, (a] ⊆ (a∗∗].
Now, consider
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(0 : J) = {z ∈ L : (z∗∗] ∩ J ⊆ (0]}
= {z ∈ L : (z∗∗] ∩ J = (0]}
= {z ∈ L : (z∗∗] ∩ (a∗∗] = (0]}
= {z ∈ L : (z∗∗ ◦ a∗∗] = (0]}
= {z ∈ L : ((z ◦ a)∗∗] = (0]}
= {z ∈ L : (z ◦ a)∗∗ = 0}
= {z ∈ L : z ◦ a = 0}
= {z ∈ L : a ◦ z = 0}
= {z ∈ L : a∗ ◦ z = z}
= (a∗].

Therefore (0 : J) = (a∗]. Now, J ∩ (0 : J) = (a∗∗] ∩ (a∗] = ((a∗∗ ◦ a∗)] = (0] and
J ∨ (0 : J) = (a∗∗]∨ (a∗] = {x ∈ L : x 6 (t∗ ◦ s∗)∗, where t ∈ (a∗∗], s ∈ (a∗]} = {x ∈
L : x 6 0∗} = L. Hence J is complemented. Thus J is in the centre of KI(L). �

Finally, we prove the following theorem.

Theorem 5.3. Let L be a ∗-commutative PCASL in which x 6 x∗∗, for all
x ∈ L. Then the centre of KI(L) is isomorphic to S(L).

Proof. Suppose B(KI(L)) is the Boolean centre of KI(L). Now, define ψ :
B(KI(L)) → S(L) as follows: for any I ∈ B(KI(L)), we have I = (x], for some
x ∈ S(L). Then there exists x, y ∈ S(L) such that I = (x] and J = (y]. Now,
I = J ⇔ (x] = (y] ⇔ x = y ⇔ ψ(I) = ψ(J). Therefore ψ is well defined and
one-one. let x ∈ S(L). Then we have (x] is a kernel ideal. Then by theorem 5.2,
(x] is in the centre of KI(L). Now, ψ(x] = x. Thus ψ is onto and hence ψ is
bijection. Now, we shall prove that ψ is homomorphism. Let I, J ∈ B(KI(L)).
Then we have I, J are kernel ideals. Then there exists x, y ∈ S(L) such that I = (x]
and J = (y]. Now, I ∩ J = (x] ∩ (y] = (x ◦ y] and I ∩ J is a kernel ideal. Now,
consider ψ(I ∩ J) = ψ((x ◦ y]) = x ◦ y = ψ(I) ◦ ψ(J). Let t ∈ ((x∗ ◦ y∗)∗]. This
implies t = (x∗ ◦ y∗)∗ ◦ t. It follows that t ∈ I ∨J . Hence ((x∗ ◦ y∗)∗] ⊆ I ∨J . Thus
I ∨ J = ((x∗ ◦ y∗)∗] = (x ∨ y]. Therefore ψ is an homomorphism. Now, ψ((0]) = 0
and ψ(L) = ψ((0∗]). Thus the centre of KI(L) is isomorphic to S(L). �

References

[1] T. S. Blyth. Ideals and filters of Pseudo-Complemented Semilattices. Proceedings of the Ed-
inburgh Mathematical Society, 23(3)(1980), 301–316.

[2] G. Nanaji Rao and S. Sujatha Kumari. Pseudo-complemented Almost Semilattices. Int. J.
Math. Archive, 8(10)(2017), 94–102.

[3] G. Nanaji Rao and S. Sujatha Kumari. Kernel ideals and ∗-ideals in Pseudo-Complemented
Almost Semilattices. Int. J. Math. Archive, 9(6)(2018), 179–189. cc

[4] G. Nanaji Rao and G. B. Terefe. Almost Semilattice. Int. J. Math. Archive, 7(3)(2016), 52–67.
[5] G. Nanaji Rao and G. B. Terefe. Ideals in Almost Semilattice. Int. J. Math. Archive,

7(5)(2016), 60–70.

[6] G. Szasz. Introduction to lattice theory. Academic Press, New York and London, 1963.

Received by editors 21.11.2018; Revised version 14.03.2019; Available online 25.03.2019.



276 G. NANAJI RAO, S. SUJATHA KUMARI

G. Nanaji Rao: Department of Mathematics, Andhra University, Visakhapatnam-
530003, India.

E-mail address: nani6us@yahoo.com, drgnanajirao.math@auvsp.edu.in

S. Sujatha Kumari: Department of Mathematics, Andhra University, Visakhapatnam-
530003, India,

E-mail address: sskmaths9@gmail.com


