ON *-IDEALS AND KERNEL IDEALS IN PSEUDO-COMPLEMENTED ALMOST SEMILATTICES

G. Nanaji Rao, S. Sujatha Kumari

Abstract

The concepts of ideal quotient, extended ideal, contracted ideal are introduced in $A S L L$ and proved some basic properties of these concepts. Obtained the set $I^{*}(L)$ of all $*$-ideals of a $*$-commutative $P C A S L L$ is a complete lattice with respect to set inclusion and proved that the centre of $I^{*}(L)$ is trivial. Derived a one-to-one correspondence between set of all extended ideals and set of all contracted ideals in $A S L s$. Also, proved the set $K I(L)$ of all kernel ideals in a $*$-commutative $P C A S L L$ in which $x \leqslant x^{* *}$, for all $x \in L$ is a complete implicative lattice and the residuals in the lattice $K I(L)$ coincides with the corresponding residuals in the lattice $I^{*}(L)$. We established an isomorphism between the centre of $K I(L)$ and the Boolean algebra $S(L)$ of all closed elements in $*$-commutative $P C A S L L$ in which $x \leqslant x^{* *}$, for all $x \in L$.

1. Introduction

The concept of pseudo-complementation $*$ on an $A S L$ with 0 was introduced by Nanaji Rao and Sujatha Kumari [2], and proved some basic properties of pseudo-complementation $*$. Also, proved that the pseudo-complementation on an $A S L$ is equationally definable. They observed that an $A S L$ can have more than one pseudo-complementation. Infact, they proved that a one-to-one correspondence between set of all pseudo-complementations on an $A S L L$ and the set of all maximal elements in L. Also, Nanaji Rao and Sujatha Kumari [3], introduced the concepts of kernel ideal, $*$-ideal and $*$-congruence in a $*$-commutative $P C A S L L$ and derived necessary and sufficient condition for an $A S L$ congruence to become a $*$-congruence. They established the smallest $*$-congruence with given

[^0]kernel ideal and largest $*$-congruence with given kernel ideal and characterized the largest $*$-congruence in terms of smallest $*$-congruence and the $*$-congruence ψ on *-commutative PCASL L defined by $(x, y) \in \psi$ if and only if $x^{* *}=y^{* *}$.

In this paper we introduced the concepts of ideal quotient in $A S L L$ and proved some basic properties of ideal quotients in L. We observed that the set $I^{*}(L)$ of all $*$-ideals of $*$-commutative $P C A S L L$ is a complete lattice with respect to set inclusion and proved that the centre of $I^{*}(L)$ is trivial. Also, we introduced the concepts of extended ideal and contracted ideal in $A S L L$ and proved some basic properties of these concepts. We established a one-to-one correspondence between set of all extended ideals and set of all contracted ideals in ASLs. We proved that the set $K I(L)$ of all kernel ideals in a $*$-commutative $P C A S L L$ in which $x \leqslant x^{* *}$, for all $x \in L$ is a complete implicative lattice and proved the residuals in the lattice $K I(L)$ coincides with the corresponding residuals in the lattice $I^{*}(L)$. Finally, we proved that the centre of $K I(L)$ is isomorphic with the Boolea algebra $S(L)$ of all closed elements in *-commutative $P C A S L L$.

2. Preliminaries

In this section we collect few important definitions and results which are already known and which will be used more frequently in the paper.

Definition 2.1. Let (P, \leqslant) be a poset and S be a non-empty subset of P. Then
(1) An element a in P is called a lower bound of S if $a \leqslant x$ for all $x \in S$.
(2) An element a in P is called an upper bound of S if $x \leqslant a$ for all $x \in S$.
(3) An element a in P is called the greatest lower bound (g.l.b or infimum) of S if a is a lower bound of S and $b \in P$ such that b is a lower bound of S, then $b \leqslant a$.
(4) An element a in P ia called the least upper bound (l.u.b or supremum) of S if a is an upper bound of S and $b \in P$ such that b is an upper bound of S, then $a \leqslant b$.

Definition 2.2. A poset (L, \leqslant) is called a complete lattice if, every non-empty subset of L has both l.u.b. and g.l.b. in L.

Definition 2.3. An almost semilattice(ASL) is an algebra (L, \circ) where L is a non-empty set and \circ is a binary operation on L, satisfies the following conditions:
(1) $(x \circ y) \circ z=x \circ(y \circ z) \quad$ (Associative Law)
(2) $(x \circ y) \circ z=(y \circ x) \circ z \quad$ (Almost Commutative Law)
(3) $x \circ x=x$, for all $x, y, z \in L$ (Idempotent Law).

Theorem 2.1. Let L be an ASL. Define a relation \leqslant on L by $a \leqslant b$ if and only if $a \circ b=a$. Then \leqslant is a partial ordering on L.

Theorem 2.2. Let L be an $A S L$. Then for any $a, b \in L$, we have the following:
(1) $a \circ b \leqslant b$.
(2) $a \circ b=b \circ a$ whenever $a \leqslant b$.

Definition 2.4. An $A S L$ with 0 is an algebra ($L, \circ, 0$) of type $(2,0)$ satisfies the following axioms:
(1) $(x \circ y) \circ z=x \circ(y \circ z) \quad($ Associative Law)
(2) $(x \circ y) \circ z=(y \circ x) \circ z \quad$ (Almost Commutative Law)
(3) $x \circ x=x \quad$ (Idempotent Law)
(4) $0 \circ x=0$, for all $x, y, z \in L$.

Theorem 2.3. Let L be an $A S L$ with 0 . Then for any $a, b \in L$, we have the following:
(1) $a \circ 0=0$.
(2) $a \circ b=0$ if and only if $b \circ a=0$.
(3) $a \circ b=b \circ a$ whenever $a \circ b=0$.

Definition 2.5. Let L be an $A S L$. Then an element $m \in L$ is said to be unimaximal if $m \circ x=x$, for all $x \in L$.

Theorem 2.4. Let (L, \circ) be an $A S L$. Then for any $a, b \in L$ with $a \leqslant b$, we have $a \circ c \leqslant b \circ c$ and $c \circ a \leqslant c \circ b$, for all $c \in L$.

Definition 2.6. A non-empty subset I of an $A S L L$ is said to be an ideal if $x \in I$ and $a \in L$, then $x \circ a \in I$.

Corollary 2.1. Let L be an $A S L$ and I be an ideal of L. Then, for any $a, b \in L, a \circ b \in I$ if and only if $b \circ a \in I$.

Theorem 2.5. Let S be a non-empty subset of an $A S L L$. Then $(S]=$ $\left\{\left(\circ_{i=1}^{n} s_{i}\right) \circ x: x \in L, s_{i} \in S\right.$ where $1 \leqslant i \leqslant n$ and n is a positive integer $\}$ is the smallest ideal of L containing S.

Lemma 2.1. Let L be an $A S L$ and $a \in L$. Then $(a]=\{a \circ x: x \in L\}$ is an ideal of L.

Note that, for any a in an $A S L L,(a]$ is called the principal ideal generated by a.

Lemma 2.2. Let L be an $A S L$ and $a, b \in L$. Then $a \in(b]$ if and only if $a=b \circ a$.
Lemma 2.3. Intersection of any two ideals of an $A S L L$ is again an ideal.
Theorem 2.6. The set $I(L)$ of all ideals of an $A S L L$ is a distributive lattice with respect to set inclusion.

Lemma 2.4. Let L be an $A S L$ and for any $a, b \in L,(a \circ b]=(a] \cap(b]=$ $(b] \cap(a]=(b \circ a]$.

It can be easily verified that the set $P I(L)$ of all principal ideals of an $A S L L$ is a semilattice with respect to set inclusion.

Theorem 2.7. Let L be an ASL. Then the following conditions are equivalent:
(1) The intersections of any family of ideals is non-empty.
(2) The intersections of any family of ideals is again an ideal.
(3) The lattice $I(L)$ has least element.
(4) The lattice $I(L)$ is complete.
(5) The semilattice PI(L) has least element.
(6) L has a minimal element.

Definition 2.7. Let L and L^{\prime} be two $A S L s$ with zero elements 0 and 0^{\prime} respectively. Then a mapping $f: L \rightarrow L^{\prime}$ is called an ASL homomorphism if it satisfies the following conditions:
(1) $f(a \circ b)=f(a) \circ f(b)$, for all, $a, b \in L$
(2) $f(0)=0^{\prime}$.

Definition 2.8. A proper ideal P of an $A S L L$ is said to be a prime ideal if for any $x, y \in L, x \circ y \in P$ implies that either $x \in P$ or $y \in P$.

Definition 2.9. Let $(L, \circ, 0)$ be an $A S L$ with zero. Then a unary operation $a \mapsto a^{*}$ on L is said to be pseudo-complementation on L for any $a, b \in L$, it satisfies the following conditions:
(1) $a \circ b=0 \Rightarrow a^{*} \circ b=b$
(2) $a \circ a^{*}=0$.

Theorem 2.8. Let L be an $A S L$ with 0 . Then a unary operation $*: L \rightarrow L$ is a pseudo-complementation on L if and only if it satisfies the following conditions:
(1) $a^{*} \circ b=(a \circ b)^{*} \circ b$
(2) $0^{*} \circ a=a$
(3) $0^{* *}=0$.

Note that, if L is an $A S L$ with pseudo-complementation $*$, then we say that L is a pseudo-complemented ASL and is denoted by PCASL.

REMARK 1. Whether * elements commutes are not, is not known so far in pseudo-complementated ASL with pseudo-complementation $*$, investigation is going on.

Definition 2.10. Let $(L, o, 0)$ be a pseudo-complemented $A S L$, with pseudocomplementation $*$. Then L is said to be $*$-commutative if $a^{*} \circ b^{*}=b^{*} \circ a^{*}$, for all $a, b \in L$.

Lemma 2.5. Let L be a PCASL. Then for any $a, b \in L$, we have the following:
(1) $0^{*} \circ a=a$
(2) 0^{*} is unimaximal
(3) $a^{* *} \circ a=a$
(4) a is unimaximal $\Rightarrow a^{*}=0$
(5) $0^{* *}=0$.

Theorem 2.9. Let L be $a *$-commutative $P C A S L$. Then for any $a, b \in L$, we have the following:
(1) $a \leqslant b \Rightarrow b^{*} \leqslant a^{*}$
(2) $a^{* * *}=a^{*}$
(3) $a^{*} \leqslant b^{*} \Leftrightarrow b^{* *} \leqslant a^{* *}$.

Theorem 2.10. Let L be $a *$-commutative $P C A S L$. Then for any $a, b \in L$, we have the following:
(1) $(a \circ b)^{* *}=a^{* *} \circ b^{* *}$
(2) $(a \circ b)^{*}=(b \circ a)^{*}$
(3) $a^{*}, b^{*} \leqslant(a \circ b)^{*}$.

Definition 2.11. An ideal I of a $P C A S L L$ is said to be a kernel ideal if I is the kernel of a *-congruence on L.

Theorem 2.11. An ideal I of a *-commutative PCASL L is a kernel ideal of L if and only if for any $i, j \in I$ implies $\left(i^{*} \circ j^{*}\right)^{*} \in I$.

Corollary 2.2. An ideal I of a*-commutative PCASL L is a kernel ideal if and only if
(i) $i \in I \Rightarrow i^{* *} \in I$
(ii) $i, j \in I \Rightarrow \exists k \in I$ such that $i^{*} \circ j^{*}=k^{*}$.

Theorem 2.12. Let L be a*-commutative PCASL and let I be a kernel ideal of L. Then the smallest $*$-congruence with kernel I is given by $(x, y) \in R_{I}$ if and only if $i^{*} \circ x=i^{*} \circ y$, for some $i \in I$.
Definition 2.12. An ideal I of a $P C A S L L$ is said to be a $*$-ideal if $i \in I$, then $i^{* *} \in I$.

3. Ideal Quotients in ASLs

Recall that if L is an $A S L$, then the set $I(L)$ of all ideals in L for a distributive lattice with respect to set inclusion and $I(L)$ is a complete lattice with respect to set inclusion provided L has minimal element. It can be easily seen that $I^{*}(L)$ of all $*$-ideals of a *-commutative PCASL L is a complete lattice with respect to set inclusion. In this section we introduce the concept of ideal quotient $(I: J)$ of any two ideals I, J of an ASL L and prove some basic properties of ideal quotients.

Definition 3.1. Let L be an $A S L$ and I, J be ideals of L. Then define (I : $J)=\{x \in L: x \circ j \in I$, for all $j \in J\}$.

Theorem 3.1. Let L be an $A S L$ and I be an ideal of L. Then for any ideal J of $L,(I: J)$ is an ideal of L containing I.

Proof. Suppose I is a ideal. Since $0 \in(I: J),(I: J)$ is a non-empty subset of L. Let $x \in(I: J)$ and $a \in L$. Then $x \circ j \in I$, for all $j \in J$. This implies $(x \circ j) \circ a \in I$, for all $j \in J$. It follows that $a \circ(x \circ j) \in I$, for all $j \in J$ and hence $(x \circ a) \circ j \in I$, for all $j \in J$. Thus $x \circ a \in(I: J)$. Therefore $(I: J)$ is an ideal of L. Let $x \in I$ and $j \in J$. Then $x \circ j \in I$. It follows that $x \in(I: J)$. Therefore $I \subseteq(I: J)$.

Note that, if $I=(0]$, then $(I: J)=((0]: J)=(0: J)$ is denoted by J^{0}.
Theorem 3.2. Let L be an $A S L$ and I, J, K be ideals of L. Then we have the following:
(1) $(I: J) \cap K \subseteq I$.
(2) $I \subseteq J \Rightarrow(I: K) \subseteq(J: K)$.
(3) $I \subseteq J \Rightarrow(K: J) \subseteq(K: I)$.
(4) $((I: J): K)=(I: J \cap K)=((I: K): J)$
(5) $\left(\bigcap_{i=1}^{n} I_{i}: J\right)=\bigcap_{i=1}^{n}\left(I_{i}: J\right)$.
(6) $\left(I: \bigcup_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n}\left(I: J_{i}\right)$.

Proof. (1) Let $t \in(I: J) \cap J$. Then $t \in(I: J)$ and $t \in J$. It follows that $t \circ j \in I$ for all, $j \in J$ and $t \in J$. Inparticular $t=t \circ t \in I$. Thus $(I: J) \cap J \subseteq I$. Suppose $I \subseteq J$. Let $x \in(I: K)$. Then $x \circ k \in I$, for all, $k \in K$. It follows that $x \circ k \in J$, for all $k \in K$. Therefore $x \in(J: K)$. Thus $(I: K) \subseteq(J: K)$.
(2) Suppose $I \subseteq J$. Let $x \in(K: J)$. Then $x \circ j \in K$, for all $j \in J$. It follows that $x \circ i \in K$, for all $i \in I$, since $I \subseteq J$. Therefore $x \in(K: I)$. Hence $(K: J) \subseteq(K: I)$.
(3) Let $t \in((I: J): K)$. Then $t \circ s \in(I: J)$, for all $s \in K$. It follows that $(t \circ s) \circ j \in I$, for all $j \in J$, for all $s \in K$. Now, let $a \in J \cap K$. Then $a \in J$ and $a \in K$. It follows that $t \circ a=t \circ(a \circ a) \in I$. Therefore $t \in(I: J \cap K)$. Hence $((I: J): K) \subseteq(I: J \cap K)$. On the other hand, let $t \in(I: J \cap K)$ and $s \in K$. Let $j \in J$. Then $(t \circ s) \circ j=t \circ(s \circ j) \in I$, since $s \circ j \in J \cap K$. Therefore $t \in((I: J): K)$. Henec $(I: J \cap K) \subseteq((I: J): K)$. Thus $(I: J \cap K)=((I: J): K)$. Since $(I: J \cap K)=(I: K \cap J),(I: K \cap J)=((I: K): J)$.
(4) Suppose $t \in L$. Then

$$
\begin{aligned}
t \in\left(\bigcap_{i=1}^{n} I_{i}: J\right) & \Leftrightarrow t \circ j \in \bigcap_{i=1}^{n} I_{i}, \text { for all } j \in J \\
& \Leftrightarrow t \circ j \in I_{i}, \text { for all } i, \text { and for all } j \in J \\
& \Leftrightarrow t \in\left(I_{i}: J\right) \text {, for all } i \\
& \Leftrightarrow t \in \bigcap_{i=1}^{n}\left(I_{i}: J\right)
\end{aligned}
$$

Therefore $\left(\bigcap_{i=1}^{n} I_{i}: J\right)=\bigcap_{i=1}^{n}\left(I_{i}: J\right)$.
(5) Suppose $t \in L$. Then

$$
\begin{aligned}
t \in\left(I: \bigcup_{i=1}^{n} J_{i}\right) & \Leftrightarrow t \circ j \in I, \text { for all } j \in \bigcup_{i=1}^{n} J_{i} \\
& \Leftrightarrow t \circ j \in I, \text { for all } j \in J_{i} \text { and for all } \mathrm{i} \\
& \Leftrightarrow t \in\left(I: J_{i}\right), \text { for all } \mathrm{i} \\
& \Leftrightarrow t \in \bigcap_{i=1}^{n}\left(I: J_{i}\right) .
\end{aligned}
$$

Therefore $\left(I: \bigcup_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n}\left(I: J_{i}\right)$
In the following we prove that if I is a $*$-ideal and J is any ideal of an $A S L L$, then $(I: J)$ is a $*$-ideal.

Theorem 3.3. Let L be a *-commutative PCASL and I be a *-ideal of L. Then for any ideal J of $L,(I: J)$ is $a *$-ideal of L.

Proof. Let $i \in(I: J)$. Then $i \circ j \in I$, for all $j \in J$. This implies $(i \circ j)^{* *} \in I$, for all $j \in J$. It follows that $i^{* *} \circ j^{* *} \in I$, for all $j \in J$. Now, consider $i^{* *} \circ j=$ $i^{* *} \circ\left(j^{* *} \circ j\right)=\left(i^{* *} \circ j^{* *}\right) \circ j \in I$, for all $j \in J$. Hence $i^{* *} \circ j \in I$, for all $j \in J$. Thus $i^{* *} \in(I: J)$. Therefore $(I: J)$ is a $*$-ideal of L.

Corollary 3.1. Let L be $a *$-commutative $P C A S L$. Then for any $I, J \in$ $I^{*}(L),(I: J)$ is a *-ideal.

Next, we prove that, if I is a $*$-ideal and J is any ideal in a $*$-commutative PCASL L, $(I: J)=\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$. For this, first we prove the following.

Lemma 3.1. Let L be $a *$-commutative $P C A S L$. Then for any $I \in I^{*}(L)$ and $J \in I(L),\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$ is a $*$-ideal.

Proof. Put $H=\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$. Since $\left(0^{* *}\right] \cap J=(0] \cap J=(0] \subseteq$ $I, 0 \in H$. Hence H is non-empty subset of L. Let $x \in H$ and $a \in L$. Then we have $\left(x^{* *}\right] \cap J \subseteq I$. Now, consider $\left((x \circ a)^{* *}\right] \cap J=\left(x^{* *} \circ a^{* *}\right] \cap J=\left(\left(x^{* *}\right] \cap\left(a^{* *}\right]\right) \cap J=$ $\left(\left(a^{* *}\right] \cap\left(x^{* *}\right]\right) \cap J=\left(a^{* *}\right] \cap\left(\left(x^{* *}\right] \cap J\right) \subseteq\left(x^{* *}\right] \cap J \subseteq I$. Therefore $x \circ a \in H$. Hence H is an ideal of L. Let $x \in H$. Then $\left(x^{* *}\right] \cap J \subseteq I$. Now, consider $\left(\left(x^{* *}\right)^{* *}\right] \cap J=\left(x^{* * * *}\right] \cap J=\left(x^{* *}\right] \cap J \subseteq I$. Therefore $x^{* *} \in H$. Thus H is a $*$-ideal of L.

Lemma 3.2. Let L be $a *$-commutative $P C A S L$. Then for any $I \in I^{*}(L)$ and J is any ideal of $L,(I: J)$ is the largest *-ideal with the property $(I: J) \cap J \subseteq I$.

Proof. Clearly, $(I: J)$ is a $*$-ideal of L. Let $x \in(I: J) \cap J$. Then $x \in(I: J)$ and $x \in J$. Hence $x \circ j \in I$, for all $j \in J$ and $x \in J$. Inparticular $x=x \circ x \in I$. Therefore $(I: J) \cap J \subseteq I$. Suppose $K \in I^{*}(L)$ such that $K \cap J \subseteq I$. Now, we shall prove that $K \subseteq(I: J)$. Let $x \in K$. Then we have $x \circ j \in K$ for all, $j \in J$. Also, we have $j \circ x \in J$, for all, $j \in J$. It follows that $x \circ j \in J$ for all, $j \in J$. Hence $x \circ j \in K \cap J$ for all, $j \in J$. This implies $x \circ j \in I$ for all, $j \in J$. Therefore $x \in(I: J)$. Thus $K \subseteq(I: J)$. Hence $(I: J)$ is the largest $*$-ideal with the property $(I: J) \cap J \subseteq I$.

Now, we prove the following.
Theorem 3.4. Let L be $a *$-commutative PCASL and $I, J \in I^{*}(L)$. Then $(I: J)=\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$.

Proof. Put $H=\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$. Then clearly, H is a $*$-ideal. Since $(I: J)$ is the largest $*$-ideal with the property that $(I: J) \cap J \subseteq I$, it is enough to prove that H is the largest $*$-ideal with the property that $(I: J) \cap J \subseteq I$. Let $x \in H \cap J$. Then $x \in H$ and $x \in J$. It follows that $\left(x^{* *}\right] \cap J \subseteq I$. Since $x^{*} \circ x=0, x^{* *} \circ x=x$. This implies $x \in\left(x^{* *}\right]$. It follows that $x \in\left(x^{* *}\right] \cap J \subseteq$ I. Therefore $x \in I$. Hence $H \cap J \subseteq I$. Now, suppose $K \in I^{*}(L)$ such that $K \cap J \subseteq I$. Let $x \in K$. Then $x^{* *} \in K$. This implies $\left(x^{* *}\right] \subseteq K$. It follows that $\left(x^{* *}\right] \cap J \subseteq K \cap J$. Since $K \cap J \subseteq I,\left(x^{* *}\right] \cap J \subseteq I$. This implies $x \in H$. Therefore
$K \subseteq H$. Hence H is the largest $*$-ideal with the property that $(I: J) \cap J \subseteq I$. Thus $(I: J)=\left\{x \in L:\left(x^{* *}\right] \cap J \subseteq I\right\}$.

Corollary 3.2. The centre of $I^{*}(L)$ is trivial.
Proof. Suppose $I^{*}(L)$ is a complemented lattice. Suppose $I \in I^{*}(L)$ such that I is complemented. Then there exists $J \in I^{*}(L)$ such that $I \cap J=(0]$ and $I \cup J=L$. Now, we shall prove that $J=I^{0}$. Let $x \in J$ and $i \in I$. Then $x \circ i \in J \cap I=(0]$ and hence $x \circ i=0$. Therefore $x \in I^{0}$. Hence $J \subseteq I^{0}$. Now, let $x \in I^{0}$. Then $x \circ i=0$, for all $i \in I$. Since, $x \in I^{0} \subseteq L=I \cup J$, either $x \in I$ or $x \in J$. If $x \in I$ then we get $x=x \circ x=0$. Hence $x \in J$. It follows that $I^{0} \subseteq J$. Thus $J=I^{0}$. Therefore the complement of I is uniquely determined by I^{0}. Now, we have $0^{*} \in L=I \cup I^{0}$. Therefore either $0^{*} \in I$ or $0^{*} \in I^{0}$. If $0^{*} \in I$, then $I=L$. Now, if $0^{*} \in I^{0}$, then $I=(0]$, since if $x \in I$ then $0^{*} \circ x=0$ and hence $x=0$. Thus the centre of $I^{*}(L)$ is trivial.

4. Extended Ideals and Contracted Ideals in ASLs

In this section we introduce the concepts of extended and contracted ideals in $A S L s$ and prove some basic properties of these concepts. Also, prove that, if $f: L \rightarrow M$ is an ASL homomorphism then the set of all cotracted ideals in L is bijective with the set of all extended ideals in M. Now, we begin this section with the following definition.

Definition 4.1. Let $f: L \rightarrow M$ be an $A S L$ homomorphism and let I be an ideal of L. Then the ideal genereated by $f(I)$ is calld an extended ideal and is denoted by I^{e}.

It can be easily seen that

$$
I^{e}=\left\{\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y: x_{i} \in I, y \in M, 1 \leqslant i \leqslant n, n \in Z^{+}\right\}
$$

Also, seen that, I^{e} is the smallest ideal containing $f(I)$. In the following we prove some basic properties of extended ideals.

Theorem 4.1. Let $f: L \rightarrow M$ be an ASL homomorphism and let I_{1}, I_{2} be ideals of L. Then we have the following:
(1) $I_{1} \subseteq I_{2} \Rightarrow I_{1}{ }^{e} \subseteq I_{2}{ }^{e}$
(2) $\left(I_{1} \cup I_{2}\right)^{e}=I_{1}^{e} \cup I_{2}^{e}$
(3) $\left(I_{1} \cap I_{2}\right)^{e}=I_{1}^{e} \cap I_{2}^{e}$
(4) $\left(I_{1}: I_{2}\right)^{e} \subseteq\left(I_{1}^{e}: I_{2}^{e}\right)$

Proof. (1) Suppose $I_{1} \subseteq I_{2}$ and $t \in I_{1}^{e}$. Then $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I_{1}, y \in M$. Therefore $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I_{2}, y \in M$. Hence $t \in I_{2}^{e}$. Thus $I_{1}^{e} \subseteq I_{2}^{e}$.
(2) We have $I_{1}, I_{2} \subseteq I_{1} \cup I_{2}$. Therefore by (1), we get $I_{1}{ }^{e} \subseteq\left(I_{1} \cup I_{2}\right)^{e}, I_{2}{ }^{e} \subseteq$ $\left(I_{1} \cup I_{2}\right)^{e}$ and hence $I_{1}{ }^{e} \cup I_{2}{ }^{e} \subseteq\left(I_{1} \cup I_{2}\right)^{e}$. Conversely, suppose $t \in\left(I_{1} \cup I_{2}\right)^{e}$. Then $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I_{1} \cup I_{2}, y \in M$. This implies $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I_{1}$ or $x_{i} \in I_{2}, y \in M$. It follows that $t \in I_{1}{ }^{e} \cup I_{2}{ }^{e}$. Hence $\left(I_{1} \cup I_{2}\right)^{e} \subseteq I_{1}{ }^{e} \cup I_{2}{ }^{e}$. Thus $\left(I_{1} \cup I_{2}\right)^{e}=I_{1}{ }^{e} \cup I_{2}{ }^{e}$.
(3) We have $I_{1} \cap I_{2} \subseteq I_{1}, I_{2}$. Therefore by (1), we get $\left(I_{1} \cap I_{2}\right)^{e} \subseteq I_{1}^{e}$, I_{2}^{e} and hence $\left(I_{1} \cap I_{2}\right)^{e} \subseteq I_{1}^{e} \cap I_{2}^{e}$. Conversely, suppose $t \in I_{1}^{e} \cap I_{2}^{e}$. Then $t \in I_{1}^{e}$ and I_{2}^{e}. It follows that $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I_{1}, y \in M$ and $t=\left(\circ_{i=1}^{m} f\left(w_{i}\right)\right) \circ z$, where $w_{i} \in I_{2}, z \in M$. Now, $\left.t=t \circ t=\left(\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y\right) \circ\left((\circ m i=1)\left(w_{i}\right)\right) \circ z\right)=$ $f\left(\circ_{i=1}^{n} x_{i} \circ \circ_{i=1}^{m} w_{i}\right) \circ(y \circ z) \in\left(I_{1} \cap I_{2}\right)^{e}$ since $\circ_{i=1}^{n} x_{i} \circ \circ_{i=1}^{n} w_{i} \in I_{1} \cap I_{2}, y \circ z \in M$. Therefore $t \in\left(I_{1} \cap I_{2}\right)^{e}$. Hence $I_{1}^{e} \cap I_{2}^{e} \subseteq\left(I_{1} \cap I_{2}\right)^{e}$. Thus $\left(I_{1} \cap I_{2}\right)^{e}=I_{1}^{e} \cap I_{2}^{e}$.
(4) Let $t \in\left(I_{1}: I_{2}\right)^{e}$. Then $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in\left(I_{1}: I_{2}\right), y \in M$. It follows that $x_{i} \circ i_{2} \in I_{1}$, for all $i_{2} \in I_{2}$. Now, let $s \in I_{2}^{e}$. Then $s=\left(\circ m \circ f\left(w_{i}\right)\right) \circ z$, where $z \in M, w_{i} \in I_{2}$. Now, consider $t \circ s=\left(\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y\right) \circ\left(\left(\circ_{i=1}^{m} f\left(w_{i}\right)\right) \circ z\right)=$ $f\left(\circ_{i=1}^{n} x_{i} \circ \circ_{i=1}^{m} w_{i}\right) \circ(y \circ z) \in I_{1}^{e}$ since $\circ_{i=1}^{n} x_{i} \circ \circ_{i=1}^{m} w_{i} \in I_{1}, y \circ z \in M$. Therefore $t \circ s \in I_{1}^{e}$. Hence $t \in\left(I_{1}^{e}: I_{2}^{e}\right)$. Thus $\left(I_{1}: I_{2}\right)^{e} \subseteq\left(I_{1}^{e}: I_{2}^{e}\right)$.

Definition 4.2. Let L, M be $P C A S L s$. Then a mapping $f: L \rightarrow M$ is said to be PCASL homomorphism, if f is an ASL homomorphism and $f\left(a^{*}\right)=(f(a))^{*}$, for all $a \in L$.

Theorem 4.2. Let $f: L \rightarrow M$ be a PCASL homomorphism and I be $a *$-ideal of L. Then I^{e} is $a *$-ideal of M.

Proof. Suppose I is a $*$-ideal of L. Now, let $x \in I^{e}$. Then $x=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in I, y \in M$. This implies $x_{i}^{* *} \in I$. Now, consider $x^{* *}=\left(\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ\right.$ $y)^{* *}=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right)^{* *} \circ y^{* *}=\left(\circ_{i=1}^{n} f\left(x_{i}\right)^{* *}\right) \circ y^{* *}=\left(\circ_{i=1}^{n} f\left(x_{i}^{* *}\right)\right) \circ y^{* *} \in I^{e}$ since $x_{i}^{* *} \in I$, for all i and $y^{* *} \in M$. Hence $x^{* *} \in I^{e}$. Thus I^{e} is a $*$-ideal of M.

Next, we introduce the concept of contracted ideal in a $A S L L$ and prove some basic properties of contracted ideals.

Lemma 4.1. Let L and M be $A S L s$ with zero and let $f: L \rightarrow M$ be an $A S L$ homomorphism. If J is an ideal of M, then $f^{-1}(J)$ is an ideal of L. Inparticular if J is a prime ideal of M, then so is $f^{-1}(J)$.

Proof. We have $f^{-1}(J)=\{x \in L: f(x) \in J\}$. Since $0=f(0) \in J, 0 \in$ $f^{-1}(J)$. Hence $f^{-1}(J)$ is a non-empty subset of L. Let $x \in f^{-1}(J)$ and $a \in L$. Then $f(x) \in J$ and $f(a) \in f(L)$. It follows that $f(x) \circ f(a) \in J$. This implies $f(x \circ a) \in J$. Therefore $x \circ a \in f^{-1}(J)$. Hence $f^{-1}(J)$ ia an ideal of L. Suppose J is a prime ideal of B. Let $x, y \in A$ such that $x \circ y \in f^{-1}(J)$. Then $f(x \circ y) \in J$. This implies $f(x) \circ f(y) \in J$. Therefore either $f(x) \in J$ or $f(y) \in J$, since J is prime ideal. It follows that $x \in f^{-1}(J)$ or $y \in f^{-1}(J)$. Thus $f^{-1}(J)$ is a prime ideal of L.

Definition 4.3. Let L, M be $A S L s$ with zero and $f: L \rightarrow M$ be an ASL homomorphism. If J is an ideal of M, then the ideal $f^{-1}(J)$ is called the contracted ideal of J and is denoted by J^{c}.

In the following, we prove some basic properties of contracted ideals in $A S L s$.
THEOREM 4.3. Let L, M be ASLs with zero and let $f: L \rightarrow M$ be an $A S L$ homomorphism. Then for any ideals J_{1}, J_{2} of M, we have the following:
(1) $J_{1} \subseteq J_{2} \Leftrightarrow J_{1}{ }^{c} \subseteq J_{2}{ }^{c}$
(2) $\left(J_{1} \cup J_{2}\right)^{c}=J_{1}^{c} \cup J_{2}^{c}$
(3) $\left(J_{1} \cap J_{2}\right)^{c}=J_{1}^{c} \cap J_{2}^{c}$
(4) If f is an epimorphism then $\left(J_{1}: J_{2}\right)^{c}=\left(J_{1}^{c}: J_{2}^{c}\right)$.

Proof. (1) Suppose $J_{1} \subseteq J_{2}$. Now, let $x \in J_{1}^{c}=f^{-1}\left(J_{1}\right)$. Then $f(x) \in J_{1}$ and hence $f(x) \in J_{2}$. Therefore $x \in f^{-1}\left(J_{2}\right)=J_{2}{ }^{c}$. Hence $J_{1}{ }^{c} \subseteq J_{2}{ }^{c}$.
(2) We have $J_{1}, J_{2} \subseteq J_{1} \cup J_{2}$. Therefore by (1), we get $J_{1}{ }^{c} \subseteq\left(J_{1} \cup J_{2}\right)^{c}, J_{2}{ }^{c} \subseteq$ $\left(J_{1} \cup J_{2}\right)^{c}$. Hence $J_{1}{ }^{c} \cup J_{2}{ }^{c} \subseteq\left(J_{1} \cup J_{2}\right)^{c}$. Conversely, suppose $t \in\left(J_{1} \cup J_{2}\right)^{c}=$ $f^{-1}\left(J_{1} \cup J_{2}\right)$. This implies $f(t) \in\left(J_{1} \cup J_{2}\right)$. It follows that $f(t) \in J_{1}$ or $f(t) \in J_{2}$. Therefore $t \in f^{-1}\left(J_{1}\right)$ or $t \in f^{-1}\left(J_{2}\right)$ and hence $t \in J_{1}^{c}$ or $t \in J_{2}^{c}$. Therefore $t \in J_{1}^{c} \cup J_{2}^{c}$. Hence $\left(J_{1} \cup J_{2}\right)^{c} \subseteq J_{1}^{c} \cup J_{2}^{c}$. Thus $\left(J_{1} \cup J_{2}\right)^{c}=J_{1}^{c} \cup J_{2}^{c}$.
(3) We have $J_{1} \cap J_{2} \subseteq J_{1}$ and $J_{1} \cap J_{2} \subseteq J_{2}$. Therefore by (1), we get $\left(J_{1} \cap J_{2}\right)^{c} \subseteq$ J_{1}^{c} and $\left(J_{1} \cap J_{2}\right)^{c} \subseteq J_{2}^{c}$. Therefore $\left(J_{1} \cap J_{2}\right)^{c} \subseteq J_{1}^{c} \cap J_{2}^{c}$. Conversely, suppose $t \in J_{1}^{c} \cap J_{2}^{c}$. Then $t \in J_{1}^{c}$ and $t \in J_{2}^{c}$. It follows that $t \in f^{-1}\left(J_{1}\right)$ and $t \in f^{-1}\left(J_{2}\right)$. This implies $f(t) \in J_{1}$ and $f(t) \in J_{2}$. Therefore $f(t) \in J_{1} \cap J_{2}$. This implies $t \in f^{-1}\left(J_{1} \cap J_{2}\right)$. Hence $t \in\left(J_{1} \cap J_{2}\right)^{c}$. Therefore $J_{1}^{c} \cap J_{2}^{c} \subseteq\left(J_{1} \cap J_{2}\right)^{c}$. Hence $\left(J_{1} \cap J_{2}\right)^{c}=J_{1}^{c} \cap J_{2}^{c}$.
(4) Suppose f is an epimorphism. Now, let $t \in\left(J_{1}: J_{2}\right)^{c}=f^{-1}\left(J_{1}: J_{2}\right)$. Then $f(t) \in\left(J_{1}: J_{2}\right)$. It follows that $f(t) \circ j_{2} \in J_{1}$, for all $j_{2} \in J_{2}$. Now, let $i_{2} \in J_{2}^{c}=f^{-1}\left(J_{2}\right)$. Then $f\left(i_{2}\right) \in J_{2}$. It follows that $f(t) \circ f\left(i_{2}\right) \in J_{1}$. This implies $f\left(t \circ i_{2}\right) \in J_{1}$. Therefore $\left(t \circ i_{2}\right) \in f^{-1}\left(J_{1}\right)$. It follows that $\left(t \circ i_{2}\right) \in J_{1}^{c}$, for all $i_{2} \in J_{2}^{c}$. Therefore $t \in\left(J_{1}^{c}: J_{2}^{c}\right)$. Hence $\left(J_{1}: J_{2}\right)^{c} \subseteq\left(J_{1}^{c}: J_{2}^{c}\right)$. Conversely, suppose $t \in\left(J_{1}^{c}: J_{2}^{c}\right)$. Then $t \circ i_{2} \in J_{1}^{c}$, for all $i_{2} \in J_{2}^{c}$. It follows that $f\left(t \circ i_{2}\right) \in J_{1}$, for all $i_{2} \in J_{2}^{c}$. Therefore $f(t) \circ f\left(i_{2}\right) \in J_{1}$, for all $f\left(i_{2}\right) \in J_{2}$. Now, let $j_{2} \in J_{2}$. Then there exists $t_{2} \in L$ such that $f\left(t_{2}\right)=j_{2} \in J_{2}$. It follows that $f(t) \circ f\left(t_{2}\right) \in J_{1}$ and hence $f(t) \circ j_{2} \in J_{1}$, for all $j_{2} \in J_{2}$. It follows that $f(t) \in\left(J_{1}: J_{2}\right)$. Therefore $t \in f^{-1}\left(J_{1}: J_{2}\right)=\left(J_{1}: J_{2}\right)^{c}$. Therefore $t \in\left(J_{1}: J_{2}\right)^{c}$. Hence $\left(J_{1}^{c}: J_{2}^{c}\right) \subseteq\left(J_{1}: J_{2}\right)^{c}$. Thus $\left(J_{1}: J_{2}\right)^{c}=\left(J_{1}^{c}: J_{2}^{c}\right)$.

Theorem 4.4. Let $f: L \rightarrow M$ be PCASL homomorphism and let J be a *-ideal of M. Then J^{c} is a *-ideal of L.

Proof. Suppose J is a $*$-ideal of M. Then we have $J^{c}=\{x \in L: f(x) \in J\}$ is an ideal of L. Let $x \in J^{c}$. Then $x \in f^{-1}(J)$. This implies $f(x) \in J$. It follows that $(f(x))^{* *} \in J$. Therefore $f\left(x^{* *}\right) \in J$. Hence $x^{* *} \in f^{-1}(J)=J^{c}$. Thus J^{c} is a *-ideal of L.

Theorem 4.5. Let $f: L \rightarrow M$ be PCASL homomorphism and J be a kernel ideal of M. Then J^{c} is a kernel ideal of L.

Proof. Suppose J is a kernel ideal of M. Now, let $x, y \in J^{c}=f^{-1}(J)$. Then $f(x) \in J, f(y) \in J$. It follows that $\left(f(x)^{*} \circ f(y)^{*}\right)^{*} \in J$. Therefore $\left(f\left(x^{*}\right) \circ f\left(y^{*}\right)\right)^{*} \in$ J. It follows that $\left(f\left(x^{*} \circ y^{*}\right)\right)^{*} \in J$. This implies $f\left(\left(x^{*} \circ y^{*}\right)^{*}\right) \in J$. Therefore $\left(x^{*} \circ y^{*}\right)^{*} \in f^{-1}(J)=J^{c}$. Hence $\left(x^{*} \circ y^{*}\right)^{*} \in J^{c}$. Thus J^{c} is a kernel ideal of L.

In the following we characterize extended ideals and contracted ideals in $A S L s$ and prove that there is a bijection between set of all contracted ideals and the set of all extended ideals. For, this first we need the following.

Theorem 4.6. Let L, M be ASLs and $f: L \rightarrow M$ be an ASL homomorphism and let I be an ideal of L, J be an ideal of M. Then we have the following:
(1) $I \subseteq I^{e c}$
(2) $J \supseteq J^{c e}$
(3) $I^{e}=I^{e c e}$
(4) $J^{c}=J^{c e c}$

Proof. (1) Let $t \in I$. Then $f(t) \in f(I) \subseteq I^{e}$. This implies $f(t) \in I^{e}$. It follows that $t \in f^{-1}\left(I^{e}\right)=I^{e c}$. Thus $I \subseteq I^{e c}$.
(2) Let $t \in J^{c e}$. Then $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y$, where $x_{i} \in J^{c}$, for all i and $y \in M$. Now, $x_{i} \in J^{c}=f^{-1}(J)$, for all, i. Hence $f\left(x_{i}\right) \in J$, for all i. It followes that $f\left(x_{i}\right) \circ y \in J$, for all i. Therefore $t=\left(\circ_{i=1}^{n} f\left(x_{i}\right)\right) \circ y \in J$. Thus $J^{c e} \subseteq J$.
(3) From (1), we get $I \subseteq I^{e c}$. It follows that $I^{e} \subseteq I^{e c e}$. Again, put $J=I^{e}$ in (2), we get $I^{e} \supseteq I^{\text {ece }}$. Hence $I^{e}=I^{e c e}$.
(4) From (2), we get $J^{c e} \subseteq J$. It followes that $J^{c e c} \subseteq J^{c}$. Again, put $I=J^{c}$ in (1), we get $J^{c} \subseteq J^{c e c}$. Therefore $J^{c}=J^{c e c}$.

Theorem 4.7. Let L, M be $A S L s$ and let $f: L \rightarrow M$ be an $A S L$ homomorphism. Let C be the set of all contracted ideals in L and let E be the set of all extended ideals in M. Then we have the following:
(1) $C=\left\{I \in I(L): I=I^{e c}\right\}$
(2) $E=\left\{J \in I(M): J=J^{c e}\right\}$
(3) The mapping $g: C \rightarrow E$ defined by $g(I)=I^{e}$ is a bijection and its invers mapping $h: E \rightarrow C$ defined by $h(J)=J^{c}$.

Proof. (1) Let $I \in C$. Then $I=J^{c}$, for some ideal J of M. Now, considetr $I^{e c}=\left(J^{c}\right)^{e c}=J^{c e c}=J^{c}=I$. Therefore $I^{e c}=I$. Conversely, suppose $I=I^{e c}$. Now, $I=I^{e c}=\left(I^{e}\right)^{c}$ and I^{e} is an ideal of M. It follows that I is a contracted ideal. Therefore $I \in C$.
(2) Let $J \in E$. Then $J=I^{e}$, for some ideal I of L. Now, consider $J^{c e}=$ $\left(I^{e}\right)^{c e}=I^{e c e}=I^{e}=J$. Therefore $J^{c e}=J$. Conversely. suppose $J=J^{c e}$. Now, $J=J^{c e}=\left(J^{c}\right)^{e}$ and J^{c} is an ideal of L. It follows that J is an extended ideal. Therefore $J \in C$.
(3) We have $g: C \rightarrow E$ defined by $g(I)=I^{e}$, for all $I \in C$. Clearly, g is both well defined and one-one. Let $J \in E$. Then $J=J^{c e}$. Now, $J^{c}=J^{c e c}=\left(J^{c}\right)^{e c}$. Therefore $J^{c} \in C$. Now, consider $g\left(J^{c}\right)=J^{c e}=J$. Therefore $g\left(J^{c}\right)=J$. Hence g is onto. Hence g is bijection. Let $J \in E$. Then $J=J^{c e}$. Now, consider $(g \circ h)(J)=g(h(J))=g\left(J^{c}\right)=\left(J^{c}\right)^{e}=J^{c e}=J=I_{d}(J)$, for all $J \in E$ where I_{d} is the identity map on E. Therefore $g \circ h=I_{d}$. Similarly, we can prove that $h \circ g=I_{d}$. Hence $h \circ g=I_{d}=g \circ h$. Thus h is the inverse of g.

5. The lattices of kernel ideals and *-ideals

In this section, we observe that join of any two kernel ideals need not be a kernel ideal by means of example. We prove that the set $K I(L)$ of all kernel ideals in a $*$-commutative $P C A S L L$ in which $x \leqslant x^{* *}$, for all $x \in L$ is a complete implicative lattice and prove that the residuals in the lattice $K I(L)$ coincides with the corresponding residuals in the lattice $I^{*}(L)$ of all $*$-ideals in L. If L is a ${ }^{*-}$ commutative PCASL in which $x \leqslant x^{* *}$, for all $x \in L$, then we prove that the centre of $K I(L)$ is isomorphic with the Boolean algebra $S(L)$ of all closed elements in L.

It can be easily observed that if L is a pseudo-complemented distributive lattice, then the set of all complemented elements in L is sub lattice of L and for any $x, y \in L,(x] \vee(y]=(x \vee y]$. Also, easily verified that an ideal I of pseudocomplemented distributive lattice is a kernel ideal if and only if I is a $*$-ideal. It followes that in a pseudo-complemented distributive lattice L, join of any two kernel ideals is again a kernel ideal if and only if L is Stone lattice. First, we give an example of join of two kernel ideals is not a kernel ideal in an $A S L$.

Example 5.1. Let $A=\{0, a\}$ and $B=\left\{0, b_{1}, b_{2}\right\}$ are two discrete $A S L s$. Let $L=A \times B=\left\{(0,0),\left(0, b_{1}\right),\left(0, b_{2}\right),(a, 0),\left(a, b_{1}\right),\left(a, b_{2}\right)\right\}$. Define a binary operation - on L as follows:

\circ	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$	$(\mathrm{a}, 0)$	$\left(\mathrm{a}, b_{1}\right)$	$\left(\mathrm{a}, b_{2}\right)$
$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
$\left(0, b_{1}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$
$\left(0, b_{2}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$
$(\mathrm{a}, 0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(\mathrm{a}, 0)$	$(\mathrm{a}, 0)$	$(\mathrm{a}, 0)$
$\left(\mathrm{a}, b_{1}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$	$(\mathrm{a}, 0)$	$\left(\mathrm{a}, b_{1}\right)$	$\left(\mathrm{a}, b_{2}\right)$
$\left(\mathrm{a}, b_{2}\right)$	$(0,0)$	$\left(0, b_{1}\right)$	$\left(0, b_{2}\right)$	$(\mathrm{a}, 0)$	$\left(\mathrm{a}, b_{1}\right)$	$\left(\mathrm{a}, b_{2}\right)$

Then clearly, (L, \circ) is an $A S L$. Now, define a unary operation $*$ on L, by $(0,0)^{*}=\left(a, b_{1}\right),\left(0, b_{1}\right)^{*}=\left(0, b_{2}\right)^{*}=(a, 0),(a, 0)^{*}=\left(0, b_{1}\right)$ and $\left(a, b_{1}\right)^{*}=$ $\left(a, b_{2}\right)^{*}=(0,0)$. Then clearly, $*$ is a pseudo-complementation on L. Now, put $I=\{(0,0),(a, 0)\}, J=\left\{(0,0),\left(0, b_{1}\right),\left(0, b_{2}\right)\right\}$. Then clearly, I and J are kernel ideals. Now $I \vee J=I \cup J=\left\{(0,0),(a, 0),\left(0, b_{1}\right),\left(0, b_{2}\right)\right\}$ which is not a kernel ideal, since $(a, 0),\left(0, b_{1}\right) \in I \cup J,\left((a, 0)^{*} \circ\left(0, b_{1}\right)^{*}\right)^{*}=\left(\left(0, b_{1}\right) \circ(a, 0)\right)^{*}=(0,0)^{*}=$ $\left(a, b_{1}\right) \notin I \cup J$.

Now, returning to the case of pseudo-complemented almost semilattice L. Note that in PCASL, $x \not \leq x^{* *}$ in general. For, consider the following example.

Example 5.2. Let $\mathrm{L}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Now, define binary operation \circ on L as follows:

o	0	a	b	c
0	0	0	0	0
a	0	a	a	a
b	0	a	b	c
c	0	a	b	c

Then clearly (L, \circ) is an $A S L$. Also, if we define $0^{*}=b$ and $x^{*}=0$, for all $x(\neq 0) \in L$, then clearly L is a $P C A S L$. In this ASL, we have $c \circ c^{* *}=c \circ\left(c^{*}\right)^{*}=$ $c \circ 0^{*}=c \circ b=b \neq c$ and hence $c \not \leq c^{* *}$.

However, we prove that, if $x \leqslant x^{* *}$ for all x in $*$-commutative $P C A S L$, then the set of all kernel ideals in L form a complete implicative lattice and residuals in the lattice $K I(L)$ coincides with the corresponding residuals in the lattice $I^{*}(L)$. Recall that if I is a kernel ideal of a $*$-commutative PCASL L, then $R_{I}=\{(x, y) \in$ $L \times L: i^{*} \circ x=i^{*} \circ y$, for some $\left.i \in I\right\}$ is the smallest $*$-congruence on L with kernel I. First we prove the following.

Lemma 5.1. Let L be $a *$-commutative $P C A S L$ and I be a kernel ideal of L. If $a, b \in I$, then $(a, b) \in R_{I}$.

Proof. Suppose $a, b \in I$. Since I is a kernel ideal, $\left(a^{*} \circ b^{*}\right)^{*} \in I$. Again, since $a \circ a^{*} \circ b^{*}=0$ and $b \circ a^{*} \circ b^{*}=0$. It follows that $a^{*} \circ b^{*} \circ a=0$ and $a^{*} \circ b^{*} \circ b=0$. This implies $\left(a^{*} \circ b^{*}\right)^{* *} \circ a=0$ and $\left(a^{*} \circ b^{*}\right)^{* *} \circ b=0$. It follows that $\left.\left(a^{*} \circ b^{*}\right)^{*}\right)^{*} \circ a=0$ and $\left.\left(a^{*} \circ b^{*}\right)^{*}\right)^{*} \circ b=0$. Therefore $\left.\left.\left(a^{*} \circ b^{*}\right)^{*}\right)^{*} \circ a=\left(a^{*} \circ b^{*}\right)^{*}\right)^{*} \circ b$ and $\left(a^{*} \circ b^{*}\right)^{*} \in I$. Hence $(a, b) \in R_{I}$.

Note that if L is a $*$-commutative $P C A S L$ and $x \in L$, then the congruence class of x with respect to the congruence relation R_{I} is denoted by x / R_{I} and hence $x / R_{I}=\left\{y \in L:(x, y) \in R_{I}\right\}$.

Lemma 5.2. Let L be a-commutative $P C A S L$ and I be a kernel ideal of L. Then $L / R_{I}=\left\{x / R_{I}: x \in L\right\}$ is a *-commutative PCASL, under induced operations on L.

Proof. Suppose $x / R_{I}, y / R_{I} \in L / R_{I}$. Now, define a binary operation 0 and a unary operation $*$ on L / R_{I} by $x / R_{I} \subseteq y / R_{I}=(x \circ y) / R_{I}$ and $\left(x / R_{I}\right)^{*}=x^{*} / R_{I}$. Then clearly, operations \bigcirc and $*$ are well defined. Also, clearly $\left(L / R_{I}, \underline{o}\right)$ is an ASL. Let $x / R_{I} \in L / R_{I}$. Now, consider $x / R_{I} \subseteq\left(x / R_{I}\right)^{*}=x / R_{I} \subseteq x^{*} / R_{I}=$ $\left(x \circ x^{*}\right) / R_{I}=0 / R_{I}$. Suppose $y / R_{I} \in L / R_{I}$ such that $x / R_{I} \bigcirc y / R_{I}=0 / R_{I}$. Then $(x \circ y) / R_{I}=0 / R_{I}$. It follows that $(x \circ y, 0) \in R_{I}$. This implies $i^{*} \circ x \circ y=i^{*} \circ 0=0$, for some $i \in I$. Therefore $i^{*} \circ x \circ y=0$. This implies $x \circ i^{*} \circ y=0$. It follows that $x^{*} \circ i^{*} \circ y=i^{*} \circ y$. Therefore $i^{*} \circ x^{*} \circ y=i^{*} \circ y$. Hence $\left(x^{*} \circ y, y\right) \in$ R_{I}. It follows that $\left(x^{*} \circ y\right) / R_{I}=y / R_{I}$. This implies $x^{*} / R_{I} \bigcirc y / R_{I}=y / R_{I}$. Therefore $\left(x / R_{I}\right)^{*} \circ y / R_{I}=y / R_{I}$. Hence L / R_{I} is a PCASL. Clearly, L / R_{I} is *-commutative.

Now, we prove that the set $K I(L)$ is a complete implicative lattice.
Theorem 5.1. Let L be $a *$-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$.Then ordered by set inclusion, $K I(L)$ forms a complete implicative lattice in which the operations are as follows: If $\left\{I_{\alpha}: \alpha \in \Delta\right\}$ is any family of kernel ideals of L, then

$$
\bigwedge_{\alpha \in \Delta} I_{\alpha}=\inf _{K I(L)}\left\{I_{\alpha}: \alpha \in \Delta\right\}=\bigcap_{\alpha \in \Delta} I_{\alpha},
$$

$$
\begin{aligned}
\bigvee_{\alpha \in \Delta} I_{\alpha} & =\sup _{K I(L)}\left\{I_{\alpha}: \alpha \in \Delta\right\} \\
& =\left\{x \in L:\left(\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Delta\right)\left(\exists x_{i} \in I_{\alpha_{i}}\right), x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}\right\}
\end{aligned}
$$

and residuals in $K I(L)$ coinsides with the corresponding residuals in $I^{*}(L)$.
Proof. Clearly, $K I(L)$ is a poset with respect to set inclusion. Suppose $S=\left\{I_{\alpha}: \alpha \in \Delta\right\}$ is a non-empty subset of $K I(L)$. Then clearly, $\bigcap I_{\alpha}$ is the greatest lower bound of S. Since $0 \in \bigvee_{\alpha \in \Delta} I_{\alpha}, \bigvee_{\alpha \in \Delta} I_{\alpha} \neq \emptyset$. Let $x \in \bigvee_{\alpha \in \Delta} I_{\alpha}$ and $t \in L$. Then there exists $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in \Delta$, and there exists $x_{i} \in I_{\alpha_{i}}$, such that $x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. This implies $t \circ x \leqslant x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. It follows that $(t \circ x)^{* *} \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{* * *}$. Hence $(x \circ t)^{* *} \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. It follows that $x \circ t \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. Therefore $x \circ t \in \bigvee_{\alpha \in \Delta} I_{\alpha}$. Hence $\bigvee_{\alpha \in \Delta} I_{\alpha}$ is a ideal of L. Let $x, y \in \bigvee_{\alpha \in \Delta} I_{\alpha}$. Then there exists $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in \Delta$, and there exists $x_{i}, y_{i} \in I_{\alpha_{i}}$, such that $x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$ and $y \leqslant\left(\circ_{i=1}^{n} y_{i}^{*}\right)^{*}$. Now, since $x_{i}, y_{i} \in I_{\alpha_{i}}, I_{\alpha_{i}}$ is a kernel ideal, there exists $z_{i} \in I_{\alpha_{i}}$ such that $x_{i}^{*} \circ y_{i}^{*}=z_{i}^{*}$, for $i=1,2, \ldots, n$. This implies $\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{* *} \leqslant x^{*}$ and $\left(\circ_{i=1}^{n} y_{i}^{*}\right)^{* *} \leqslant y^{*}$. It follows that $\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{* *} \circ\left(\circ_{i=1}^{n} y_{i}^{*}\right)^{* *} \leqslant x^{*} \circ y^{*}$. Therefore $\left(x^{*} \circ y^{*}\right)^{*} \leqslant\left(\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{* *} \circ\left(\circ_{i=1}^{n} y_{i}^{*}\right)^{* *}\right)^{*}=\left(\left(\circ_{i=1}^{n} x_{i}^{*}\right) \circ\left(\circ_{i=1}^{n} y_{i}^{*}\right)\right)^{*}=\left(\circ_{i=1}^{n}\left(x_{i}^{*} \circ y_{i}^{*}\right)\right)^{*}$. Therefore $\left(x^{*} \circ y^{*}\right)^{*} \leqslant\left(\circ_{i=1}^{n} z_{i}^{*}\right)^{*}$. Thus $\left(x^{*} \circ y^{*}\right)^{*} \in \bigvee_{\alpha \in \Delta} I_{\alpha}$. Therefore $\bigvee_{\alpha \in \Delta} I_{\alpha}$ is a kernel ideal of L. Hence $\bigvee_{\alpha \in \Delta} I_{\alpha} \in K I(L)$. Clearly, $\bigvee_{\alpha \in \Delta}^{\alpha \in \Delta} I_{\alpha}$ is an upper bound of S. Suppose $K \in K I(L)$ such that K is an upper bound of S. Then $I_{\alpha} \subseteq K$, for all $I_{\alpha} \in S$. Let $x \in \bigvee_{\alpha \in \Delta} I_{\alpha}$. Then there exists $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in \Delta$, and there exists $\alpha \in \Delta$ $x_{i} \in I_{\alpha_{i}}$, such that $x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. Since $I_{\alpha_{i}} \subseteq K$, for all $i, x_{i} \in K$, for all i. It follows that $\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*} \in K$. This implies $x \in K$. Therefore $\bigvee_{\alpha \in \Delta} I_{\alpha} \subseteq K$. Hence $\bigvee_{\alpha \in \Delta} I_{\alpha}$ is the least upper bound of S. Thus $(K I(L), \subseteq)$ is a complete lattice. $\alpha \in \Delta$

Now, we shall prove that $K I(L)$ is an implicative lattice. That is enough to prove that $K I(L)$ satisfies infinite meet distributive law. Let $\left\{I_{\alpha}: \alpha \in \Delta\right\}$ be a non-empty subset of $K I(L)$ and $I \in K I(L)$. Now, we shall prove that $I \cap\left(\bigvee_{\alpha \in \Delta} I_{\alpha}\right)=$ $\bigvee_{\alpha \in \Delta}\left(I \cap I_{\alpha}\right)$. Let $x \in I \cap\left(\bigvee_{\alpha \in \Delta} I_{\alpha}\right)$. Then $x \in I$ and $x \in \bigvee_{\alpha \in \Delta} I_{\alpha}$. Then there exists $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in \Delta$, and there exists $x_{i} \in I_{\alpha_{i}}$, such that $x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. We have $x \leqslant x^{* *}$ and $x \leqslant\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. It follows that $x \leqslant x^{* *} \circ\left(\circ_{i=1}^{n} x_{i}^{*}\right)^{*}$. This implies $x \leqslant x^{* *} \circ \sup _{S(L)}\left\{x_{i}^{* *}: 1 \leqslant i \leqslant n\right\}$. Therefore $x \leqslant \sup _{S(L)}\left\{x^{* *} \circ x_{i}^{* *}: 1 \leqslant i \leqslant n\right\}$. It follows that $x \leqslant\left(\circ_{i=1}^{n}\left(x \circ x_{i}\right)^{*}\right)^{*}$ and $x \circ x_{i} \in I \cap I_{\alpha_{i}}$, for all i. Hence $x \in \bigvee_{\alpha \in \Delta}\left(I \cap I_{\alpha}\right)$. Thus $I \cap\left(\bigvee_{\alpha \in \Delta} I_{\alpha}\right) \subseteq \bigvee_{\alpha \in \Delta}\left(I \cap I_{\alpha}\right)$. Clearly, $\bigvee_{\alpha \in \Delta}\left(I \cap I_{\alpha}\right) \subseteq I \cap\left(\bigvee_{\alpha \in \Delta} I_{\alpha}\right)$. Therefore $I \cap\left(\bigvee_{\alpha \in \Delta} I_{\alpha}\right)=\bigvee_{\alpha \in \Delta}\left(I \cap I_{\alpha}\right)$. Thus $K I(L)$ is a implicative lattice.

Now, we shall prove that residuals in $K I(L)$ is coincide with the corresponding residuals in $I^{*}(L)$. Let $I, J \in K I(L)$ and let $x, y \in(I: J)$. Then $\left(x^{* *}\right] \cap \subseteq \subseteq$ and $\left(y^{* *}\right] \cap J \subseteq I$. Let $j \in\left(\left(x^{*} \circ y^{*}\right)^{*}\right] \cap J$. Then $j \in\left(\left(x^{*} \circ y^{*}\right)^{*}\right]$ and $j \in J$. It follows
that $j=\left(x^{*} \circ y^{*}\right)^{*} \circ j$ and $j \in J$. This implies $x^{*} \circ y^{*} \circ j=x^{*} \circ y^{*} \circ\left(x^{*} \circ y^{*}\right)^{*} \circ j=0$. It follows that $y^{* *} \circ j \circ x^{*}=j \circ x^{*}$. Since $y^{* *} \in\left(y^{* *}\right]$, $y^{* *} \circ j \circ x^{*} \in\left(y^{* *}\right]$. Therefore $j \circ x^{*} \in\left(y^{* *}\right]$ and $j \circ x^{*} \in J$. Hence $j \circ x^{*} \in\left(y^{* *}\right] \cap J \subseteq I$. Thus $j \circ x^{*} \in I$. Again, we have $j \circ x^{* *} \in\left(x^{* *}\right]$. Therefore $j \circ x^{* *} \in\left(x^{* *}\right]$ and $j \in J$ and hence $j \circ x^{* *} \in\left(x^{* *}\right] \cap J \subseteq I$. Thus $j \circ x^{* *} \in I$. We have $j \circ x^{*} \in I$ and $0 \in I$. It follows that $\left(j \circ x^{*}, 0\right) \in R_{I}$. This implies $\left(j \circ x^{*}\right) / R_{I}=0 / R_{I}$. It follows that $j / R_{I} \subseteq x^{*} / R_{I}=0 / R_{I}$. Therefore $x^{*} / R_{I} \subseteq j / R_{I}=0 / R_{I}$. Hence $\left(x^{*} / R_{I}\right)^{*} \bigcirc j / R_{I}=j / R_{I}$. Therefore $x^{* *} / R_{I} \bigcirc j / R_{I}=j / R_{I}$. Similarly, we can prove that $x^{*} / R_{I} \subseteq j / R_{I}=j / R_{I}$. It follows that $\left(x^{* *} \circ x^{*} \circ j\right) / R_{I}=j / R_{I}$. This implies $0 / R_{I}=j / R_{I}$. Therefore $(j, 0) \in R_{I}$. Hence $i^{*} \circ j=i^{*} \circ 0$, for some $i \in I$. This implies $i^{*} \circ j=0$. It follows that $i^{* *} \circ j=j$. Since I is a kernel ideal, $i^{* *} \in I$. This implies $i^{* *} \circ j \in I$. Hence $j \in I$. Therefore $\left(\left(x^{*} \circ y^{*}\right)^{*}\right] \cap J \subseteq I$. Hence $\left(x^{*} \circ y^{*}\right)^{*} \in(I: J)$. Thus the residuals in $K I(L)$ coincides with the corresponding residuals in $I^{*}(L)$.

Corollary 5.1. Let L be $a *$-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$. Then every element in $K I(L)$, has at most one complement.

Finally, we prove that the centre of $K I(L)$ is isomorphic to the Boolean algebra $S(L)$. First we prove that a kernel ideal J of $*$-commutative PCASL in which $x \leqslant x^{* *}$ for all $x \in L$ is in the centre of $K I(L)$ if and only if J is a principal ideal. For this, we need the following. Recall that if x is in Boolean algebra $S(L)$ of all closed elements in $*$-commutative PCASL, then $(x]$ is a kernel ideal. Now, we prove the converse.

Lemma 5.3. Let L be a *-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$. If a principal ideal $I=(x]$ is a kernel ideal then x is in the Boolean algebra $S(L)$.

Proof. Suppose $(x]$ is a kernel ideal. Then $(x]$ is a $*$-ideal. Since $x \in(x], x^{* *} \in$ (x]. It follows that $x^{* *}=x \circ x^{* *}=x^{* *} \circ x=x$. Therefore x is in the Boolean algebra $S(L)$.

Now, we have the following lemma whose proof is straightforward.
Lemma 5.4. Let L be a-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$. Then the following conditions are equivalent:
(1) Every ideal of L is a kernel ideal.
(2) Every principal ideal of L is a kernel ideal.
(3) L is a Boolean algebra.

Lemma 5.5. Let L be $a *$-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$. Then for any $J \in K I(L)$, the complement of J is $J^{0}=(0: J)$ in $K I(L)$.

Proof. Suppose J is kernel ideal. Now, $J^{0}=\{x \in L: x \circ j=0$, for all $j \in$ $J\}$. Let $x, y \in J^{0}$. Then $x \circ j=0, y \circ j=0$, for all $j \in J$. It follows that $x^{*} \circ j=j, y^{*} \circ j=j$, for all $j \in J$. Therefore $j=x^{*} \circ j \circ y^{*} \circ j=\left(x^{*} \circ y^{*}\right) \circ j$. Therefore $j=\left(x^{*} \circ y^{*}\right) \circ j$. Now, consider $\left(x^{*} \circ y^{*}\right)^{*} \circ j=\left(x^{*} \circ y^{*}\right)^{*} \circ\left(x^{*} \circ y^{*}\right) \circ j=0$, for all $j \in J$. Hence $\left(x^{*} \circ y^{*}\right)^{*} \in J^{0}$. Thus J^{0} is a kernel ideal of L. Suppose I is a
complement of J in $K I(L)$. Now, we shall prove that $I=(0: J)$. Let $t \in I, j \in J$. Then $t \circ j \in I$ and $j \circ t \in J$. This implies $t \circ j \in J$. It follows that $t \circ j \in I \cap J=(0]$. Therefore $t \circ j \in(0]$. This implies $t \circ j=0$. Therefore $t \in(0: J)$. Hence $I \subseteq(0: J)$. Conversely, suppose $t \in(0: J)$. Then $t \circ j=0$, for all $j \in J$. We have $I \vee J=L$. Now, $0^{*} \in L=I \vee J$. Then $0^{*} \leqslant\left(x^{*} \circ y^{*}\right)^{*}$, for some $x \in I, y \in J$. This implies $0^{*}=0^{*} \circ\left(x^{*} \circ y^{*}\right)^{*}=\left(x^{*} \circ y^{*}\right)^{*}$. This implies $0^{*} \circ t=\left(x^{*} \circ y^{*}\right)^{*} \circ t$. Therefore $t=\left(x^{*} \circ y^{*}\right)^{*} \circ t=\left(x^{*} \circ y^{*} \circ t\right)^{*} \circ t$. Now, we have $t \circ j=0$, for all $j \in J$. Inparticular $t \circ y=0$. This implies $y \circ t=0$. It followes that $y^{*} \circ t=t$. Therefore $\left(x^{*} \circ y^{*}\right)^{*} \circ t=\left(x^{*} \circ t\right)^{*} \circ t=\left(x^{*}\right)^{*} \circ t=x^{* *} \circ t$. Hence $t \in I$. Therefore $(0: J) \subseteq I$. Thus $(0: J)=I$.

TheOrem 5.2. Let L be $a *$-commutative $P C A S L$ in which $x \leqslant x^{* *}$, for all $x \in L$ and J be a kernel ideal of L. Then J is in the centre of $K I(L)$ iff J is principal ideal.

Proof. Suppose J is in the centre of $K I(L)$. Then we have J is complemented. Therefore J has unique complement, namely, $(0: J)$. Then $J \cap(0: J)=(0]$ and $J \vee(0: J)=L$. Since $0^{*} \in L, 0^{*} \leqslant\left(x^{*} \circ y^{*}\right)^{*}$, for some $x \in J, y \in(0: J)$. Now, since $x \in J, x^{* *} \in J$. Therefore $\left(x^{* *}\right] \subseteq J$. Conversely, let $j \in J$. Then we have $(0: J)=\left\{z \in L:\left(z^{* *}\right] \cap J \subseteq(0]\right\}=\left\{z \in L:\left(z^{* *}\right] \cap J=(0]\right\}$. Since $y \in(0: J),\left(y^{* *}\right] \cap J=(0]$. Now, we have $y^{* *} \in\left(y^{* *}\right]$ and hence $y^{* *} \circ j \in\left(y^{* *}\right]$. On the other hand, since $j \in J, y^{* *} \circ j \in J$. Therefore $y^{* *} \circ j \in\left(y^{* *}\right] \cap J=(0]$. This implies $y^{* *} \circ j=0$. It follows that $y^{* * *} \circ j=j$. Hence $y^{*} \circ j=j$. Now, we have $j \in J$. Consider,

$$
\begin{aligned}
j^{* *} & =0^{*} \circ j^{* *} \\
& =\left(x^{*} \circ y^{*}\right)^{*} \circ j^{* *} \\
& =j^{* *} \circ\left(x^{*} \circ y^{*}\right)^{*} \\
& =j^{* *} \circ\left(x^{*} \circ y^{*}\right)^{* * *} \\
& =j^{* *} \circ\left(\left(x^{*} \circ y^{*}\right)^{*}\right)^{* *} \\
& =\left(j \circ\left(x^{*} \circ y^{*}\right)^{*}\right)^{* *} \\
& \left.=\left(\left(x^{*} \circ y^{*}\right)^{*}\right) \circ j\right)^{* *} \\
& =\left(\left(x^{*} \circ y^{*} \circ j\right)^{*} \circ j\right)^{* *} .
\end{aligned}
$$

Again, we have,

$$
\begin{array}{rlrl}
& & y^{*} \circ j & =j \\
\Rightarrow & & x^{*} \circ j & =x^{*} \circ\left(y^{*} \circ j\right) \\
\Rightarrow & & \left(x^{*} \circ j\right)^{*} & =\left(x^{*} \circ\left(y^{*} \circ j\right)\right)^{*} \\
\Rightarrow & \left(x^{*} \circ j\right)^{*} \circ j & =\left(x^{*} \circ\left(y^{*} \circ j\right)\right)^{*} \circ j \\
\Rightarrow & & x^{* *} \circ j & =\left(x^{*} \circ y^{*} \circ j\right)^{*} \circ j .
\end{array}
$$

Therefore $j^{* *}=\left(\left(x^{*} \circ y^{*} \circ j\right)^{*} \circ j\right)^{* *}=\left(x^{* *} \circ j\right)^{* *}=x^{* *} \circ j^{* *}$. Hence $j^{* *} \in\left(x^{* *}\right]$. Now, we have $j=j^{* *} \circ j \in\left(x^{* *}\right]$. Therefore $j \in\left(x^{* *}\right]$. Hence $J \subseteq\left(x^{* *}\right]$. Therefore $J=\left(x^{* *}\right]$. Thus J is principal ideal.

Conversely, suppose J is a principal ideal. Then $J=(a]$, for some $a \in L$. We have $a \in J$ and J is kernel ideal and hence is a $*$-ideal. Therefore $a^{* *} \in J$. It follows that $(a] \subseteq\left(a^{* *}\right] \subseteq J=(a]$. Therefore $J=\left(a^{* *}\right]$. Since $a \leqslant a^{* *},(a] \subseteq\left(a^{* *}\right]$. Now, consider

$$
\begin{aligned}
(0: J) & =\left\{z \in L:\left(z^{* *}\right] \cap J \subseteq(0]\right\} \\
& =\left\{z \in L:\left(z^{* *}\right] \cap J=(0]\right\} \\
& =\left\{z \in L:\left(z^{* *}\right] \cap\left(a^{* *}\right]=(0]\right\} \\
& =\left\{z \in L:\left(z^{* *} \circ a^{* *}\right]=(0]\right\} \\
& =\left\{z \in L:\left((z \circ a)^{* *}\right]=(0]\right\} \\
& =\left\{z \in L:(z \circ a)^{* *}=0\right\} \\
& =\{z \in L: z \circ a=0\} \\
& =\{z \in L: a \circ z=0\} \\
& =\left\{z \in L: a^{*} \circ z=z\right\} \\
& =\left(a^{*}\right] .
\end{aligned}
$$

Therefore $(0: J)=\left(a^{*}\right]$. Now, $J \cap(0: J)=\left(a^{* *}\right] \cap\left(a^{*}\right]=\left(\left(a^{* *} \circ a^{*}\right)\right]=(0]$ and $J \vee(0: J)=\left(a^{* *}\right] \vee\left(a^{*}\right]=\left\{x \in L: x \leqslant\left(t^{*} \circ s^{*}\right)^{*}\right.$, where $\left.t \in\left(a^{* *}\right], s \in\left(a^{*}\right]\right\}=\{x \in$ $\left.L: x \leqslant 0^{*}\right\}=L$. Hence J is complemented. Thus J is in the centre of $K I(L)$.

Finally, we prove the following theorem.
Theorem 5.3. Let L be a -commutative PCASL in which $x \leqslant x^{* *}$, for all $x \in L$. Then the centre of $K I(L)$ is isomorphic to $S(L)$.

Proof. Suppose $B(K I(L))$ is the Boolean centre of $K I(L)$. Now, define ψ : $B(K I(L)) \rightarrow S(L)$ as follows: for any $I \in B(K I(L))$, we have $I=(x]$, for some $x \in S(L)$. Then there exists $x, y \in S(L)$ such that $I=(x]$ and $J=(y]$. Now, $I=J \Leftrightarrow(x]=(y] \Leftrightarrow x=y \Leftrightarrow \psi(I)=\psi(J)$. Therefore ψ is well defined and one-one. let $x \in S(L)$. Then we have $(x]$ is a kernel ideal. Then by theorem 5.2, ($x]$ is in the centre of $K I(L)$. Now, $\psi(x]=x$. Thus ψ is onto and hence ψ is bijection. Now, we shall prove that ψ is homomorphism. Let $I, J \in B(K I(L))$. Then we have I, J are kernel ideals. Then there exists $x, y \in S(L)$ such that $I=(x]$ and $J=(y]$. Now, $I \cap J=(x] \cap(y]=(x \circ y]$ and $I \cap J$ is a kernel ideal. Now, consider $\psi(I \cap J)=\psi((x \circ y])=x \circ y=\psi(I) \circ \psi(J)$. Let $t \in\left(\left(x^{*} \circ y^{*}\right)^{*}\right]$. This implies $t=\left(x^{*} \circ y^{*}\right)^{*} \circ t$. It follows that $t \in I \vee J$. Hence $\left(\left(x^{*} \circ y^{*}\right)^{*}\right] \subseteq I \vee J$. Thus $I \vee J=\left(\left(x^{*} \circ y^{*}\right)^{*}\right]=(x \underline{\vee} y]$. Therefore ψ is an homomorphism. Now, $\psi((0])=0$ and $\psi(L)=\psi\left(\left(0^{*}\right]\right)$. Thus the centre of $K I(L)$ is isomorphic to $S(L)$.

References

[1] T. S. Blyth. Ideals and filters of Pseudo-Complemented Semilattices. Proceedings of the Edinburgh Mathematical Society, 23(3)(1980), 301-316.
[2] G. Nanaji Rao and S. Sujatha Kumari. Pseudo-complemented Almost Semilattices. Int. J. Math. Archive, 8(10)(2017), 94-102.
[3] G. Nanaji Rao and S. Sujatha Kumari. Kernel ideals and *-ideals in Pseudo-Complemented Almost Semilattices. Int. J. Math. Archive, 9(6)(2018), 179-189. cc
[4] G. Nanaji Rao and G. B. Terefe. Almost Semilattice. Int. J. Math. Archive, 7(3)(2016), 52-67.
[5] G. Nanaji Rao and G. B. Terefe. Ideals in Almost Semilattice. Int. J. Math. Archive, 7(5)(2016), 60-70.
[6] G. Szasz. Introduction to lattice theory. Academic Press, New York and London, 1963.
G. Nanaji RaO: Department of Mathematics, Andhra University, Visakhapatnam530003 , India.

E-mail address: nani6us@yahoo.com, drgnanajirao.math@auvsp.edu.in
S. Sujatha Kumari: Department of Mathematics, Andhra University, Visakhapatnam530003, India,

E-mail address: sskmaths9@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D15.
 Key words and phrases. Almost Semilattice(ASL), *-ideal, Kernel ideal, Ideal quotient, Extended ideal, Contracted ideal, Boolean algebra, Complete implicative lattice, Closed elements.

