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S-IDEALS IN ALMOST SEMILATTICES

G. Nanaji Rao, Ch. Swapna and Terefe Getachew Beyene

Abstract. The concepts of strong ideal (S-ideal) and prime S-ideal in an
Almost Semilattice (ASL) are introduced and given certain examples of S-ideal
in an ASL. Proved several basic properties of S-ideals in an ASL. Established

the set PSI(L), of all principal S-ideals in an ASL L form a semilattice. We
proved an isomorphism of the semilattice SI(L) of all S-ideals in an ASL
L onto the semilattice of all ideals of a semilattice PSI(L), moreover, this
isomorphism gives one-to-one correspondence between the prime S-ideals of L

and those of PSI(L). Proved that every amicable set in an ASL L is embedded
in a semilattice PSI(L). Derived the semilattices PSI(L) and PF (L) are
isomorphic. Obtain a set of equivalent conditions for an intersection of any

family of filters is again a filter in terms of principal S-ideals. Finally, we
proved that the filter lattice F (L) of all filters in an ASL L and the filter
lattice F (PSI(L)) of all filters in ASL PSI(L) are isomorphic.

1. Introduction

Ideals were first studied by Dedekind, who defined the concept for rings of
algebraic integers. Later the concept of ideal was extended to rings in general.
M.H.Stone investigated ideals in Boolean rings, which are lattice of special kind.
There is already a well-developed theory of ideals in lattice. We wish to show that
it is useful to extend the notion of ideal to the more general systems called Almost
Semilattice. There are only one reasonable way of defining what is to be meant by
an ideal in a lattice. Recall that Dedekind’s definition of an ideal in a ring R is
that it is a collection J of elements of R which (1) contains the difference a− b, and
hence the sum a + b, of any two of its elements a and b for all a, b ∈ J , and (2)
contains all multiples such as ax or ya of any of x, y ∈ R and a ∈ J , by analogy, a
collection J of elements of a lattice L is called an ideal if (1) it contains the lattice
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sum a∪ b of any two of its elements a and b, and (2) it contains all multiplies a∩ x
of any x ∈ L and a ∈ J . The analogy is that the greatest lower bound, or lattice
meet a ∩ b corresponds to product in a ring, and the least upper bound, or lattice
join a ∪ b corresponds to the sum of two elements in a ring. In [2], Nanaji Rao, G.
and Terefe G.B. introduced the concept of an ideal in an ASL L and proved several
properties of ideals, principle ideals, prime ideals, filters and principal filters in an
ASL.

In this paper, we introduced the concept of strong ideal(S-ideal) in an ASL L
and gave certain examples to this concept. We proved that if L is an ASL with
minimal element, then the set of all minimal elements in L form an S-ideal and
also proved the set PSI(L), of all principal S-ideals of an ASL L is a semilattice.
We established an isomorphism of the semilattice SI(L) of all S-ideals in an ASL
L onto the semilattice of all ideals of a semilattice PSI(L), moreover, this isomor-
phism gives one-to-one correspondence between the prime S-ideals of L and those
of PSI(L). We proved that every amicable set in L is embedded in the semilat-
tice PSI(L). Also, we proved the semilattices PSI(L) and PF (L) are isomorphic.
Derived a set of equivalent conditions for an intersection of any arbitrary family of
filters is again a filter in an ASL L. Finally, we proved that the lattices F (L) of all
filters in an ASL L and all filters in an ASL PSI(L) are isomorphic.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

Definition 2.1. Let A and B be nonempty sets. Then a relation R from A to
B is a subset of A×B. Relations from A to A are called relation on A.

A relation R on a nonempty set A may have the following properties:

(1) R is reflexive if for all a in A we have (a, a) ∈ R.
(2) R is symmetric if for all a and b are in A: (a, b) ∈ R imply (b, a) ∈ R.
(3) R is antisymmetric if for all a and b are in A: (a, b) ∈ R and (b.a) ∈ R

imply a = b.
(4) R is transitive if for all a, b, c are in A: (a, b) ∈ R and (a, c) ∈ R imply

(a, c) ∈ R.

Definition 2.2. A relation R on a nonempty set A is called an equivalence
relation if R is reflexive, symmetric and transitive.

Definition 2.3. A relation R on a set A is called a partial order relation if
R is reflexive, antisymmetric and transitive. In this case (A, R) is called partially
ordered set or poset.

Definition 2.4. A partial order 6 on a set P is called a total order, if for any
a, b ∈ R, either a 6 b or b 6 a holds. In this case the poset (P,6) is called a totally
ordered set or a chain.

Definition 2.5. Let (P,6) be a poset. An element a in P is called greatest
(least) element of P if for all x ∈ P, x 6 a (a 6 x).
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Definition 2.6. Let (P,6) be a poset. An element a in P is called a maximal
(minimal) element of P if a 6 x (x 6 a) implies a = x for all x ∈ P .

It can be easily seen that every poset has almost one greatest (least) element.
However, there may be none, one or several maximal (minimal) elements. Also,
seen that greatest (least) element is maximal (minimal), but not converse.

Definition 2.7. Let (P,6) be a poset and S ⊆ P . Let a ∈ P . Then

(1) a is called a lower bound of S if a 6 x for all x ∈ S.
(2) a is called an upper bound of S if x 6 a for all x ∈ S.
(3) a is called the greatest lower bound (g.l.b or infimum) of S if a is greatest

among lower bounds of S in P.
(4) a ia called the least upper bound (l.u.b or supremum) of S if a is least

among upper bounds of S in P.

Definition 2.8. (Zorn’s Lemma) If (P,6) is a poset such that every chain of
elements in P has an upper bound in P, then P has at least one maximal element.

Definition 2.9. A semilattice is an algebra (S, ⋆), where S is a nonempty set
and ⋆ is a binary operation on S satisfying:

(1) x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z
(2) x ⋆ y = y ⋆ x
(3) x ⋆ x = x

Definition 2.10. An Almost Semilattice (ASL) is an algebra (L, ◦), where L
is a nonempty set and ◦ is a binary operation on L, satisfies:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z)
(2) (x ◦ y) ◦ z = (y ◦ x) ◦ z
(3) x ◦ x = x

Definition 2.11. An ASL with 0 is an algebra (L, ◦, 0) of type (2, 0) satisfies
the following conditions:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z)
(2) (x ◦ y) ◦ z = (y ◦ x) ◦ z
(3) x ◦ x = x
(4) 0 ◦ x = 0, for all x, y, z ∈ L.

Definition 2.12. Let L be a nonempty set. Define a binary operation ◦ on L
by x ◦ y = y for all x, y ∈ L. Then clearly (L, ◦) is an ASL and called discrete ASL.

Definition 2.13. Let L be an ASL. Then for any a, b ∈ L where L is an ASL,
we say that a is less or equal to b and write a 6 b if and only if a ◦ b = a.

Definition 2.14. Let L be an ASL. Then for any a, b ∈ L, we say that a is
compatible with b and write a ∼ b if a ◦ b = b ◦ a. A subset S of L is said to be
compatible set if a ∼ b for all a, b ∈ S.

Definition 2.15. Let L be an ASL. Then a maximal compatible set of L is
called a maximal set.
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Definition 2.16. Let M be a maximal set in an ASL L. Then an element
x ∈ L is said to be M − amicable if there exists a ∈M such that a ◦ x = x.

Lemma 2.1. Let L be an ASL. Then for any a, b ∈ L, a◦b = b◦a whenever a 6
b.

Theorem 2.1. Let M be a maximal set in an ASL L and a ∈ M . Then for
any x ∈ L, x ◦ a ∈M .

Corollary 2.1. If M is a maximal set and x is in an ASL L is M-amicable,
then there is a smallest element a ∈M with the property a ◦x = x. We denote this
element a of L by xM .

Corollary 2.2. Let M is a maximal set and x is an ASL L is M-amicable.
Then xM is the unique element of M such that xM ◦ x = x and x ◦ xM = xM .

Definition 2.17. If M is a maximal set in an ASL L, then we denote the set
of all M-amicable elements of L by AM (L).

Theorem 2.2. Let M be a maximal set in an ASL L. Then (AM (L), ◦) in an
ASL. Moreover, for any x, y ∈ AM (L), we have (x ◦ y)M = xM ◦ yM .

Definition 2.18. A maximal set M in an ASL L is said to be amicable if
AM (L) = L. That is, every element in L is M-amicable.

Definition 2.19. An element m in an ASL L is said to be unimaximal if
m ◦ x = x for all x ∈ L.

Definition 2.20. A nonempty subset F of an ASL L is said to be a filter if
F satisfies the following conditions:

(1) x, y ∈ F implies x ◦ y ∈ F
(2) If x ∈ F and a ∈ L such that a ◦ x = x, then a ∈ F

Definition 2.21. Let L be an ASL and a ∈ L. Then [a) = {x ∈ L : x ◦ a = a}
is a filter of L and is called principal filter generated by a.

Corollary 2.3. Let L be an ASL. Then for any a, b ∈ L, a ∈ [b) if and only
if a ◦ b = b.

Theorem 2.3. Let L be an ASL with unimaximal element. Then the set F (L),
of all filters in L form a lattice with respect to set inclusion, where for any F,G ∈
F (L), F ∧G = F ∩G and F ∨G = {t ∈ L : t◦(a◦b) = a◦b for some a ∈ F, b ∈ G}.

Theorem 2.4. Let L be an ASL. Then the set PF(L), of all principal filters of
L is a semilattice with respect to a binary operation ∨, defined by [a)∨ [b) = [a ◦ b).

Theorem 2.5. Let (P,6) be a poset which is bounded above. If every nonempty
subset of P has glb, then every nonempty subset of P has lub and hence P is a
complete lattice.
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3. S-ideals

In this section we introduce the concept of strong ideal (S-ideal) in an ASL L
and give few examples to this concept. We prove certain basic properties of S-ideals.
If L is an ASL with minimal element, then we prove that the set of all minimal
elements in L form an S-ideal. We prove that the set PSI(L), of all principal S-
ideals form a semilattice with respect to set intersection.
Here onwards, by L, we mean an ASL unless otherwise mentioned.

Definition 3.1. Let L be an ASL. A nonempty subset I of L is said to be an
S-ideal if I satisfies the following conditions:

(1) If x ∈ I and a ∈ L, then x ◦ a ∈ I.
(2) Let x, y ∈ I. Then there exists d ∈ I such that d ◦ x = x, d ◦ y = y.

In the following we give some examples of S-ideals.

Example 3.1. Let L ={ a, b, c, 0} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c

Then clearly (L, ◦) is an ASL with 0. In this ASL, if we take I = {0, a} then clearly
I is an S-ideal of L.

Example 3.2. Let L ={ a, b, c, 0} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a a a
b 0 a b c
c 0 a b c

Then clearly (L, ◦) is an ASL with 0. In this ASL, if we take I = {0, a} then clearly
I is an S-ideal of L.

Example 3.3. Let L ={ a, b, c, 0} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 c c c

Then clearly (L, ◦) is an ASL with 0. In this ASL, if we take I = {0, c} then clearly
I is an S-ideal of L.
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Example 3.4. Let L ={ a, b, c, 0} and define a binary operation ◦ on L as
follows:

◦ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then clearly (L, ◦) is an ASL with 0. In this ASL, if we take I = {0, a} then clearly
I is an S-ideal of L.

Next, we prove certain basic properties of S-ideals in an ASL L. First, we begin
with the following.

Lemma 3.1. Let I be an S-ideal of an ASL L. Then for any a, b ∈ L, a ◦ b ∈ I
if and only if b ◦ a ∈ I.

Proof. Suppose I is an S-ideal of L and suppose a ◦ b ∈ I. Then we have
(a ◦ b) ◦ a ∈ I. It follows that b ◦ a = b ◦ (a ◦ a) = (b ◦ a) ◦ a = (a ◦ b) ◦ a ∈ I.
Similarly, we can prove that if b ◦ a ∈ I then a ◦ b ∈ I. �

Recall that for any a, b ∈ L, with a 6 b, we have a ◦ b = b ◦ a. Now, we have
the following.

Lemma 3.2. Let L be an ASL and let I be an S-ideal of L. Then I is an initial
segment of L.

Proof. Suppose I is an S-ideal of L and suppose x ∈ I and a ∈ L such that a 6
x. Then a = a ◦ x = x ◦ a. It follows that a ∈ I. �

But, converse of the above lemma 3.2 is not true. For in example 3.1, we have
I = {0, a, b} is an initial segment, but I is not an S-ideal, since there is no d ∈ I such
that d◦a = a and d◦b = b. Also, in example 3.1, if I1 = {0, a} and I2 = {0, b}, then
clearly, I1 and I2 are S-ideals. But, I1 ∪ I2 = {0, a, b} is not an S-ideal. However,
we prove the following.

Theorem 3.1. Let I and J be S-ideals of an ASL L. Then I ∩ J is an S-ideal.

Proof. Suppose I and J are S-ideals of L. Then clearly I and J are nonempty
subsets of L. Hence we can choose x ∈ I and y ∈ J . Then we have x ◦ y ∈ I
and hence y ◦ x ∈ I, since by lemma 3.1. Also, we have y ◦ x ∈ J . Therefore
y ◦ x ∈ I ∩ J . Hence I ∩ J is nonempty. Let x ∈ I ∩ J and t ∈ L. Then
x ∈ I and x ∈ J . Thus x ◦ t ∈ I and x ◦ t ∈ J . Therefore x ◦ t ∈ I ∩ J . Suppose
x, y ∈ I ∩ J . Then x, y ∈ I and x, y ∈ J . Thus there exists c1 ∈ I and c2 ∈ J such
that c1 ◦ x = x, c1 ◦ y = y and c2 ◦ x = x, c2 ◦ y = y. Since c1 ∈ I and c2 ∈ J , it
follows that c1 ◦ c2 ∈ I ∩ J . Now, consider (c1 ◦ c2) ◦ x = c1 ◦ (c2 ◦ x) = c1 ◦ x = x
and (c1 ◦ c2) ◦ y = c1 ◦ (c2 ◦ y) = c1 ◦ y = y. Therefore I ∩ J is an S-ideal. �
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It can be easily seen that the set SI(L), of all S-ideals in an ASL L is a
semilattice with respect to set intersection.

In the following, we define principal S-ideal generated by an element in an ASL
L.

Theorem 3.2. Let L be an ASL and a ∈ L. Then (a] = {a ◦ x : x ∈ L} is an
S-ideal of L.

Proof. Suppose a ∈ L. Then we have a◦a ∈ (a] and hence a ∈ (a]. Therefore
(a] is nonempty subset of L. Let x ∈ (a] and t ∈ L. Then x = a ◦ y for some y ∈
L and t ∈ L. Now, consider x ◦ t = (a ◦ y) ◦ t = a ◦ (y ◦ t) and y ◦ t ∈ L. Therefore
x ◦ t ∈ (a]. Again, let x, y ∈ (a]. Then x = a ◦ t1, y = a ◦ t2 for some t1, t2 ∈ L.
Now, we have a ∈ (a] and a ◦ x = a ◦ (a ◦ t1) = (a ◦ a) ◦ t1 = a ◦ t1 = x. Similarly,
a ◦ y = y. Hence (a] is an S-ideal of L. �

Definition 3.2. Let L be an ASL. Then for any a ∈ L, (a] is called principal
S-ideal generated by a.

Next, we prove that the set PSI(L), of all principal S-ideal in an ASL L is a
semilattice with respect to set intersection and hence PSI(L) become a subsemi-
lattice of SI(L). For this first, we need the following.

Lemma 3.3. Let L be an ASL and a ∈ L. Then x ∈ (a] if and only if x = a◦x.

Lemma 3.4. Let L be an ASL. Then for any a, b ∈ L, b ∈ (a] if and only if
(b] ⊆ (a].

Proof. Suppose b ∈ (a]. Then b = a ◦ b. Now, let t ∈ (b]. Then t = b ◦ t =
(a ◦ b) ◦ t = a ◦ (b ◦ t) ∈ (a]. Thus (b] ⊆ (a]. Converse is trivial, since b ∈ (b]. �

Lemma 3.5. Let L be an ASL. Then for any a, b ∈ L, (a ◦ b] = (b ◦ a].

Proof. We have (a ◦ b) ◦ t = (b ◦ a) ◦ t, for all t ∈ L. It follows that
(a ◦ b] = (b ◦ a]. �

Lemma 3.6. Let L be an ASL. Then for any a, b ∈ L, (a ◦ b] = (a] ∩ (b].

Proof. Suppose t ∈ (a] ∩ (b]. Then t ∈ (a] and t ∈ (b]. Thus we have t =
a◦t and t = b◦t. Now, t = a◦t = a◦(b◦t) = (a◦b)◦t ∈ (a◦b]. Hence (a]∩(b] ⊆ (a◦b].
Conversely, let t ∈ (a ◦ b]. Then t = (a ◦ b) ◦ t. Now, t = (a ◦ b) ◦ t = a ◦ (b ◦ t).
Hence t ∈ (a]. Again, we have t = (a ◦ b) ◦ t = (b ◦ a) ◦ t = b ◦ (a ◦ t). Therefore
t ∈ (b]. Hence t ∈ (a]∩ (b]. Thus (a ◦ b] ⊆ (a]∩ (b]. Therefore (a ◦ b] = (a]∩ (b]. �

Theorem 3.3. Let L be an ASL. Then the set PSI(L), of all principal S-ideals
of L is a semilattice with respect to set intersection.

In the following we prove some properties of S-ideals in an ASL L.

Theorem 3.4. Let L be an ASL with a minimal element. Then the set of all
minimal elements of L forms an S-ideal.
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Proof. Suppose L has a minimal element say a. Now, put

I = {m : m is a mini− −mal element in L}.
Then clearly I is nonempty, since a ∈ I. Let x ∈ I and t ∈ L. Then s ◦ x =
x for all s ∈ L. Now, s ◦ (x ◦ t) = (s ◦ x) ◦ t = x ◦ t for all s ∈ L. Thus x ◦ t is a
minimal element of L. Hence x ◦ t ∈ I. Let x, y ∈ I. Then x, y are minimal. Now,
let t ∈ L. Then t ◦ x ◦ y = (t ◦ x) ◦ y = x ◦ y. Therefore x ◦ y is minimal. Hence
x◦y ∈ I, by the definition of minimal element and (x◦y)◦x = x and (x◦y)◦y = y.
Therefore I is an S-ideal. �

Theorem 3.5. Let L be an ASL. Then the following are equivalent:

(1) The semilattice PSI(L) has least element.
(2) L has minimal element.

Proof. (1) ⇒ (2): Suppose PSI(L) has least element say (t]. Then we have
(t] ⊆ (x] for all (x] ∈ PSI(L). Thus (t] ∩ (x] = (t]. Therefore (t ◦ x] = (t]. Now,
t ∈ (t] = (t ◦ x] = (x ◦ t]. Thus t = (x ◦ t) ◦ t = x ◦ t. Hence x ◦ t = t, for all x ∈ L.
Therefore t is minimal. Hence L has minimal element.

(2) ⇒ (1): Suppose L has minimal element say a. Then (a] ∈ PSI(L). Since a
is minimal, x ◦ a = a for all x ∈ L. This implies (x ◦ a] = (a]. Hence (x]∩ (a] = (a].
Therefore (a] ⊆ (x] for all x ∈ L. Thus (a] is the least element in the semilattice
PSI(L). �

4. The Semilattice PSI(L)

In this section we introduce the concept of prime S-ideal and give necessary
and sufficient condition for an S-ideal to become prime S-ideal. Also, prove that
the mapping I 7→ Ie is an isomorphism of the semilattice SI(L) of all S-ideals in
an ASL L onto the semilattice of all ideals of a semilattice PSI(L), moreover, this
isomorphism gives one-to-one correspondence between the prime S-ideals of L and
those of PSI(L). We prove that ifM0 is the least element in the semilattice SI(L),
then M0 consisting precisely the set of all minimal element in an ASL. Finally, in
this section we prove that if M is a amicable set in an ASL, then M is isomorphic
to the semilattice PSI(L). First we begin with the following.

Definition 4.1. A proper S-ideal P of an ASL L is said to be a prime S-ideal
if for any x, y ∈ L, x ◦ y ∈ P implies that x ∈ P or y ∈ P .

In the following we give necessary and sufficient for an S-ideal to become prime
S-ideal.

Theorem 4.1. Let L be an ASL and P be a proper S-ideal of L. Then P is prime
S-ideal if and only if for any S-ideals I and J of L, I∩J ⊆ P imply I ⊆ P or J ⊆ P .

Proof. Suppose I and J are S-ideals of L such that I ∩ J ⊆ P and suppose
I * P . Then there exists x ∈ I such that x ̸∈ P . Let y ∈ J . Then y ◦ x ∈ J
and hence x ◦ y ∈ J . Also, x ◦ y ∈ I. Hence x ◦ y ∈ I ∩ J ⊆ P . Since P is prime
S-ideal and x ̸∈ P, y ∈ P . Thus J ⊆ P . Conversely, assume the condition. Now,
we shall prove that P is a prime S-ideal. Let x, y ∈ L such that x ◦ y ∈ P . Then
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(x] ∩ (y] = (x ◦ y] ⊆ P . Therefore either (x] ⊆ P or (y] ⊆ P . It follows that either
x ∈ P or y ∈ P . Therefore P is prime S-ideal. �

The following, we prove that the semilattices SI(L) and PSI(L) are isomor-
phic. For, this we prove the following.

Lemma 4.1. Let L be an ASL. Then we have the following:

(1) For any S-ideal I of L, Ie := {(a] : a ∈ I} is an ideal of PSI(L). More-
over, I is prime if and only if Ie is prime.

(2) For any ideal K of the semilattice PSI(L), Kc := {a ∈ L : (a] ∈ K} is an
S-ideal of L. Further, K is prime if and only if so is Kc.

(3) For any S-ideals I1 and I2 of L, I1 ⊆ I2 if and only if I1
e ⊆ I2

e.
(4) For any ideals K1 and K2 of the semilattice PSI(L), K1 ⊆ K2 if and

only if K1
c ⊆ K2

c.
(5) Ie

c

= I for all S-ideals I of L.
(6) Kce = K for all ideals K of the semilattice PSI(L).

Proof. (1) Suppose I is an S-ideal of L. Now, we shall prove that Ie := {(a] :
a ∈ I} is an ideal of the semilattice PSI(L). Since I is nonempty, it follows
that Ie is nonempty. Let (a] ∈ Ie and (t] ∈ PSI(L) such that (t] ⊆ (a]. Then
(t] = (t] ∩ (a] = (t ◦ a] = (a ◦ t] ∈ Ie since a ∈ I, t ∈ L and I is an ideal of L.
Therefore (t] ∈ Ie. Hence Ie is a down set. Let (a], (b] ∈ Ie. Then a, b ∈ I.
Therefore, there exists d ∈ I such that d ◦ a = a and d ◦ b = b. This implies
(d ◦ a] = (a] and (d ◦ b] = (b]. Therefore (d]∩ (a] = (a] and(d]∩ (b] = (b]. It follows
that (a] ⊆ (d], (b] ⊆ (d] and (d] ∈ Ie. Thus Ie is an ideal of the semilattice PSI(L).
Suppose I is a prime S-ideal of L. Now, we shall prove that Ie is a prime ideal of
the semilattice PSI(L). Since I is proper, Ie is proper. Let (x], (y] ∈ PSI(L) such
that (x] ∩ (y] ∈ Ie. Then (x ◦ y] ∈ Ie. Therefore (x ◦ y] = (a] for some a ∈ I.
Since x ◦ y ∈ (x ◦ y] = (a], x ◦ y = a ◦ (x ◦ y). Therefore x ◦ y ∈ I. Since I is prime,
either x ∈ I or y ∈ I. It follows that either (x] ∈ Ie or (y] ∈ Ie. Thus Ie is a
prime ideal of PSI(L). Conversely, suppose Ie is a prime ideal of the semilattice
PSI(L). Since Ie is proper, I is proper. Let x, y ∈ L such that x ◦ y ∈ I. Then
(x] ∩ (y] = (x ◦ y] ∈ Ie. Therefore either (x] ∈ Ie or (y] ∈ Ie, since Ie is a prime
ideal of the semilattice PSI(L). It follows that either x ∈ I or y ∈ I. Thus I is a
prime S-ideal of L.

(2) Suppose K is an ideal of the semilattice PSI(L). Now, we shall prove that
Kc := {a ∈ L : (a] ∈ K} is an S-ideal of L. Since K is nonempty, it follows that Kc

is nonempty. Let x ∈ Kc and t ∈ L. Then (x] ∈ K and (t] ∈ PSI(L). Therefore
there exists (d] ∈ K such that (x] ⊆ (d] and (y] ⊆ (d], since K is an ideal of the
semilattice PSI(L). This implies (d]∩ (x] = (d◦x] = (x] and (d]∩ (y] = (d◦y] = (y].
Since x ∈ (x] = (d ◦ x], x = (d ◦ x) ◦ x = d ◦ (x ◦ x) = d ◦ x. Similarly, d ◦ y = y.
Thus d ◦ x = x, d ◦ y = y and d ∈ Kc. Hence Kc is an S-ideal of L. Suppose
K is a prime ideal of the semilattice PSI(L). Now, we shall prove that Kc is a
S-ideal of L. Since K is proper, Kc is proper. Let x, y ∈ L such that x ◦ y ∈ Kc.
Then (x) ∩ (y] = (x ◦ y] ∈ K. Therefore either (x] ∈ K or (y] ∈ K, since K is
prime ideal in PSI(L). It follows that either x ∈ Kc or y ∈ Kc. Thus Kc is a
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prime S-ideal of L. Conversely, suppose Kc is a prime S-ideal of L. Now, we shall
prove that K is a prime ideal of the semilattice PSI(L). Let (x], (y] ∈ PSI(L)
such that (x] ∩ (y] = (x ◦ y] ∈ K. Then x ◦ y ∈ Kc. Since Kc is prime, either
x ∈ Kc or y ∈ Kc. It follows that either (x] ∈ K or (y] ∈ K. Thus K is a prime
ideal of the semilattice PSI(L).

(3) Suppose I1 and I2 are S-ideals of L such that I1 ⊆ I2. Let (a] ∈ I1
e. Then

a ∈ I1 and hence a ∈ I2. Therefore (a] ∈ I2
e. Thus I1

e ⊆ I2
e. Conversely, suppose

I1
e ⊆ I2

e. Let a ∈ I1. Then (a] ∈ I1
e ⊆ I2

e. Therefore (a] = (t] for some t ∈ I2.
Hence a = t ◦ a ∈ I2. Thus I1 ⊆ I2.

(4) SupposeK1 and K2 are ideals of the semilattice PSI(L) such thatK1 ⊆ K2.
Let a ∈ K1

c. Then (a] ∈ K1. Thus (a] ∈ K2. Therefore (a] = (t] for some (t] ∈ K2.
Hence a = t ◦ a ∈ K2

c. Thus K1
c ⊆ K2

c. Conversely, suppose K1
c ⊆ K2

c. Let
(a] ∈ K1. Then a ∈ K1

c ⊆ K2
c. Therefore a ∈ K2

c. Hence (a] ∈ K2. Thus
K1 ⊆ K2.

(5) Suppose I is an S-ideal of L. Now, let a ∈ Ie
c

. Then (a] ∈ Ie. Therefore
(a] = (t] for some t ∈ I. Hence a = t ◦ a ∈ I. Therefore Ie

c ⊆ I. Clearly, I ⊆ Ie
c

.
Thus I = Ie

c

.
(6) Suppose K is an ideal of the semilattice PSI(L). Now, let (a] ∈ Kce . Then

a ∈ Kc. Therefore (a] ∈ K. Thus Kce ⊆ K. Conversely, suppose (a] ∈ K. Then
a ∈ Kc and hence (a] ∈ Kce . Therefore K ⊆ Kce . Thus K = Kce . �

Lemma 4.2. Let I and J be an S-ideals of an ASL L. Then (I ∩ J)e = Ie ∩ Je.

Proof. Suppose I and J are S-ideals of L. Then I ∩ J ⊆ I, J . Therefore by
lemma 4.1, we have (I ∩ J)e ⊆ Ie, Je. Hence (I ∩ J)e ⊆ Ie ∩ Je. Conversely,
suppose (a] ∈ Ie ∩ Je. Then (a] ∈ Ie and (a] ∈ Je. Hence (a] = (t] for some t ∈
I and (a] = (s] for some s ∈ J . Therefore a ∈ (a] = (t] and hence a = t ◦ a ∈ I.
Similarly, we get a = s ◦ a ∈ J . Hence a ∈ I ∩ J . It follows that (a] ∈ (I ∩ J)e.
Therefore Ie ∩ Je ⊆ (I ∩ J)e and hence (I ∩ J)e = Ie ∩ Je. �

Thus we have the following theorem, whose proof follows by lemma 4.1 and
lemma 4.2.

Theorem 4.2. The mapping I 7→ Ie is an isomorphism of the semilattice
SI(L) of all S-ideals in an ASL L onto the semilattice of all ideals of a semilattice
PSI(L). Moreover, this isomorphism gives one-to-one correspondence between the
prime S-ideals of L and those of PSI(L).

Next, we prove that if M0 is the least element in the semilattice SI(L) then
M0 contains precisely of all minimal elements in an ASL L. For, this first we need
the following lemma.

Lemma 4.3. Let L be an ASL. Then for any a, b ∈ L, (a] ⊆ (b] whenever a 6 b.

Proof. Sppose a 6 b. Then a = a ◦ b. Now, let t ∈ (a]. Then t = a ◦ t. Now,
t = a ◦ t = (a ◦ b) ◦ t = (b ◦ a) ◦ t = b ◦ (a ◦ t) ∈ (b]. Therefore (a] ⊆ (b]. �

Theorem 4.3. Let L be an ASL with minimal element and let M0 denote the
least element of SI(L). Then M0 contains precisely the all minimal elements of L.
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Proof. Suppose x ∈ M0. Now, we shall prove that x is minimal. Suppose
a ∈ L such that a 6 x. Then by lemma 4.3, (a] ⊆ (x] and (x] ⊆ M0. On the
other hand, M0 is the least element of SI(L), M0 ⊆ (a] ⊆ (x]. It follows that
M0 ⊆ (a] ⊆ (x] ⊆ M0. Hence M0 = (a] = (x]. Now, x ∈ (x] = (a] and hence
x = a ◦ x = a, since a 6 x. Thus x is minimal. Now, suppose x ∈ L such that x is
minimal. Since M0 is S-ideal, we can choose a ∈ M0. Therefore x = a ◦ x, since x
is minimal. Thus x ∈ M0, since a ∈ M0. Hence M0 contains precisely all minimal
elements in L. �

Corollary 4.1. Let L be an ASL with a minimal element. Then for any
x, y ∈ L, x ◦ y is minimal if and only if y ◦ x is minimal.

Proof. We have for any S-ideal I of L, x ◦ y ∈ I if and only if y ◦ x ∈ I. It
follows that x ◦ y is minimal if and only if y ◦ x is minimal. �

It can be easily seen that if an S-ideal I of an ASL L contains a unimaximal
element then I = L. For, suppose I is an S-ideal of L and suppose a is a unimaximal
element in L such that a ∈ I. Then for any x ∈ L, we have x = a◦x ∈ I. It follows
that I = L. Recall that if M is a maximal set and x ∈ L is M-amicable, then there
exists unique element xM in M with the property xM ◦x = x and x ◦xM = xM . In
the following, we prove that every amicable set in an ASL L is isomorphic to the
semilattice PSI(L). First we need the following.

Lemma 4.4. Let M be an amicable set in an ASL L. Then for any x ∈ L,
(x] = (xM ].

Lemma 4.5. let M be an amicable set in an ASL L. Then for any x, y ∈ L, the
following are equivalent:

(1) (x] = (y]
(2) (xM ] = (yM ]
(3) xM = yM

Proof.
(1) ⇒ (2): Suppose M is an amicable set in L. Then we have AM (L) = L.

Now, let x, y ∈ L = AM (L). Then there exists unique element xM , yM ∈ M such
that xM ◦x = x and x◦xM = xM and also yM ◦y = y and y ◦yM = yM . Therefore
by lemma 4.4, we get (x] = (xM ] and (y] = (yM ]. Thus (xM ] = (yM ].

(2) ⇒ (3): Assume (2). Then we have xM ∈ (xM ] = (yM ]. Thus xM =
yM ◦ xM = xM ◦ yMsince xM , yM ∈ M . Hence xM 6 yM . Similarly, we get
yM 6 xM . Therefore xM = yM .

(3) ⇒ (1): Assume (3). We need to show that (x] = (y]. Let t ∈ (x]. Then
t = x ◦ t = (xM ◦ x) ◦ t = (x ◦ xM ) ◦ t = xM ◦ t = yM ◦ t = (y ◦ yM ) = (yM ◦ y) ◦ t =
y ◦ t ∈ (y]. Hence (x] ⊆ (y]. Similarly we can prove that (y] ⊆ (x]. Therefore (x] =
(y]. �

Lemma 4.6. Let M be a maximal set in an ASL L. Then for any x, y ∈M , the
following are equivalent:

(1) x = y
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(2) (x] = (y]

Proof.
(1) ⇒ (2): Assume (1). Since x ∈ (x] = (y], x ∈ (y]. Hence (x] ⊆ (y]. Similarly,

(y] ⊆ (x]. Thus (x] = (y].
(2) ⇒ (1): Assume (2). Now, x ∈ (x] = (y]. It follows that x = y ◦ x = x ◦ y.

Therefore x 6 y. Similarly, we can prove that y 6 x. Thus x = y. �

Now, we prove the following.

Theorem 4.4. Let M be an amicable set in an ASL L. Then the mapping
x 7→ (x] is an isomorphism of M onto the semilattice PSI(L).

Proof. Define f : M → PSI(L) by f(x) = (x] for all x ∈ M . Then clearly, f
is both well defined and one-one. Now, let (x] ∈ PSI(L). Then x ∈ L = AM (L).
Therefore there exists a ∈M such that a ◦ x = x. Now, for any t ∈M, (x ◦ a) ◦ t =
x◦(a◦ t) = x◦(t◦a) = (x◦ t)◦a = (t◦x)◦a = t◦(x◦a). Therefore x◦a ∈M . Now,
f(x◦a) = (x◦a] = (a◦x] = (x]. Hence f is onto. Now, it remains to show that f is a
homomorphism. Suppose x, y ∈M . Then f(x◦y) = (x◦y] = (x]∩(y] = f(x)∩f(y).
Thus f is an isomorphism. �

5. Properties of S-ideals and Filters in ASLs

In this section we prove that the semilattices PSI(L) and PF (L) are isomor-
phic. Also, we give a set of equivalent conditions for the intersection of any family
of filters in ASL L is again a filter. We establish the filter lattice F (L) of an ASL
L and the filter lattice F (PSI(L)) of an ASL PSI(L) are isomorphic. First, we
prove the following.

Lemma 5.1. Let L be an ASL and a, b ∈ L. Then the following are equivalent:

(1) (a] ⊆ (b]
(2) b ◦ a = a
(3) [b) ⊆ [a)

Proof. (1) ⇒ (2): Assume (1). Then we have a ∈ (a] ⊆ (b]. It follows that
b ◦ a = a.

(2) ⇒ (3): Assume (2). Let t ∈ [b). Then t ◦ b = b. But, by (2), a = b ◦ a.
Hence t ◦ a = t ◦ (b ◦ a) = (t ◦ b) ◦ a = b ◦ a = a. Therefore t ∈ [a). Thus [b) ⊆ [a).

(3) ⇒ (1): Assuume (3). Then b ∈ [b) ⊆ [a). Hence b ◦ a = a. Therefore
a ∈ (b]. Thus (a] ⊆ (b]. �

Lemma 5.2. Let L be an ASL L. Then for any

a, b ∈ L, (a] = (b] if and only if [a) = [b).

In the following we prove that the semilattices PSI(L) and PF(L) are isomor-
phic.

Theorem 5.1. Let L be an ASL. Then a mapping ψ : PSI(L) → PF (L)
defined by ψ((a]) = [a) for all (a] ∈ PSI(L) is an isomorphism.
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Proof. Clearly ψ is well defined and one-one, since by lemma 5.2. Also,
clearly ψ is onto. Hence ψ is a bijection. Let (a], (b] ∈ PSI(L). Then ψ((a ◦ b]) =
[a ◦ b) = [a) ∨ [b) = ψ((a]) ∨ ψ((b]). Therefore ψ is a homomorphism. Thus ψ is an
isomorphism. �

Theorem 5.2. Let L be an ASL. Then the following are equivalent:

(1) The semilattice PSI(L) has least element.
(2) The semilattice PF(L) has greatest element.
(3) L has minimal element.

Proof. (1) ⇒ (2): Suppose PSI(L) has least element say (a]. Then (a] ⊆ (x]
for all x ∈ L. Therefore by Lemma 5.1, we have [x) ⊆ [a) for all x ∈ L. Thus [a)
is the greatest element of PF(L).

(2) ⇒ (3): Suppose PF(L) has greatest element say [a). Then [x) ⊆ [a) for all
x ∈ L. Hence by Lemma 5.1, x ◦ a = a for all x ∈ L. Thus a is a minimal element
of L. Therefore L has minimal element.

(3) ⇒ (1): Suppose L has minimal element say a. Then we have x ◦ a = a for
all x ∈ L. Therefore a ∈ (x]. It follows that (a] ⊆ (x] for all x ∈ L. Hence (a] is
the least element in PSI(L). Thus PSI(L) has least element. �

Next, we give a set of equivalent conditions for the intersection of any family
of filters is again a filter in terms of principal S-ideal in an ASL L.

Theorem 5.3. Let L be an ASL. Then the following are equivalent:

(1) The intersections of any family of filters is nonempty.
(2) The intersections of any family of filters is again a filter.
(3) The lattice F(L) has least element.
(4) The lattice F(L) is complete.
(5) The semilattice PF(L) has least element.
(6) The semilattice PSI(L) has greatest element.
(7) L has unimaximal element.

Proof. Proof of (1) ⇒ (2) and (2) ⇒ (3) are clear.
(3) ⇒ (4): Suppose the lattice F(L) has least element. Now, we shall prove

that F(L) is complete. Let {Fα}α∈∆ be a nonempty subset of F(L). Define F =
{x ∈ L : x ◦ (a1 ◦ a2 ◦ ... ◦ an) = a1 ◦ a2 ◦ ... ◦ an; where ai ∈ Fαi for all αi ∈ ∆ and
n is a positive integer }. Then clearly, F is a filter of L and Fα ⊆ F for all α ∈ ∆.
Therefore F is an upper bound of {Fα}α∈∆. Now, let H be a filter of L such that
Fα ⊆ H for all α ∈ ∆. Now, let x ∈ F . Then x ◦ (a1 ◦a2 ◦ ... ◦an) = a1 ◦a2 ◦ ... ◦an
and ai ∈ Fαi ⊆ H for all i. It follows that x ∈ H. Hence F ⊆ H. Thus F is a least
upper bound of F(L). Hence the lattice F(L) is complete.

(4) ⇒ (5): Suppose F(L) is complete. Since PF (L) ⊆ F (L), PF (L) has
greatest lower bound say F . We shall prove that F is a principal filter. Let a ∈ F .
Then [a) ⊆ F . Now, let b ∈ F . Then [b) ⊆ F . Therefore [b) is a lower bound of
PF (L) and hence [b) ⊆ [a). It follows that b ∈ [a). Hence F ⊆ [a). Therefore
F = [a) ∈ PF (L). Thus PF (L) has least element.
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(5) ⇒ (6): Suppose PF (L) has a least element say [a). Then [a) ⊆ [x) for
all x ∈ L. Then we have (x] ⊆ (a] for all x ∈ L. It follows that (a] is a greatest
element of PSI(L).

(6) ⇒ (7): Suppose PSI(L) has a greatest element say (a]. Then (x] ⊆ (a],for
all x ∈ L. This implies x ∈ (a] for all x ∈ L. Therefore a ◦ x = x for all x ∈ L.
Thus a is a unimaximal element of L.

(7) ⇒ (1): Suppose L has a unimaximal element. Since every filters in L
contains a unimaximal element, it follows that the intersection of all filters in L is
nonempty. �

In the following, we prove that filter lattices F (L) of all filters in an ASL L,
F (PSI(L)) of all filters in an ASL L PSI(L) are isomorphic. First, we need the
following.

Lemma 5.3. If F is a filters of an ASL L then {(a] : a ∈ F} is filter of the
semilattice PSI(L).

Proof. Let F be a filter of an ASL. Now, we shall prove that {(a] : a ∈ F} is
a filter of the semilattice PSI(L). Put F̄ = {(a] : a ∈ F}. Clearly F̄ is nonempty,
since F is nonempty. Let (a], (b] ∈ F̄ . Then a, b ∈ F and hence a ◦ b ∈ F , since F is
a filter of L. Therefore (a] ∩ (b] = (a ◦ b] ∈ F̄ . Also, let (a] ∈ F̄ and (t] ∈ PSI(L)
such that (a] ⊆ (t]. Then by lemma 5.1, t◦a = a. Since t◦a = a, a ∈ F . Therefore
t ∈ F , since F is filter of L. Hence (t] ∈ F̄ . Thus F̄ is a filter of the semilattice
PSI(L). �

Theorem 5.4. The mapping F 7→ {(a] : a ∈ F} is an isomorphism of the filter
lattice F (L) of L onto the filter lattice of an ASL PSI(L).

Proof. Define ψ : F (L) → F (PSI(L)) by ψ(F ) = {(a] : a ∈ F}. Then
clearly, ψ is well defined. Suppose F1, F2 ∈ F (L) such that ψ(F1) = ψ(F2). Now,
we shall prove that F1 = F2. Let x ∈ F1. Then (x] ∈ ψ(F1) = ψ(F2). Therefore
(x] = (y], for some y ∈ F2. Hence by lemma 5.2, [x) = [y). Now, y ∈ [y) = [x).
This implies y ◦ x = x. Since y ∈ F2, x ∈ F2. Hence F1 ⊆ F2. Similarly, we can
prove that F2 ⊆ F1. Therefore F1 = F2. Thus ψ is one-one. Let F̄ ∈ F (PSI(L)).
Define F = {a ∈ L : (a] ∈ F̄}. First we shall prove that F is a filter of L. Let
a, b ∈ F . Then (a], (b] ∈ F̄ . Therefore (a ◦ b] = (a] ∩ (b] ∈ F̄ , since F̄ is a filter
of PSI(L). Thus a ◦ b ∈ F . Let a ∈ F and t ∈ L such that t ◦ a = a. Then
(t ◦ a] = (a]. Therefore (t] ∩ (a] = (t ◦ a] = (a] and (a] ∈ F̄ . Hence (t] ∈ F̄ , since F̄
is a filter of an ASL PSI(L). Thus t ∈ F and hence F is a filter of L. Therefore
F ∈ F (L) and clearly ψ(F ) = F̄ . Thus ψ is onto. Now, it remains to show that ψ
is a homomorphism. Now, for any (a] ∈ PSI(L), we have

(a] ∈ ψ(F1 ∩ F2) ⇔ a ∈ F1 ∩ F2

⇔ a ∈ F1 and a ∈ F2

⇔ (a] ∈ ψ(F1) and (a] ∈ ψ(F1)

⇔ (a] ∈ ψ(F1) ∩ ψ(F1)
and
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(a] ∈ ψ(F1 ∨ F2) ⇔ a ∈ F1 ∨ F2.

⇔ a ◦ (x ◦ y) = x ◦ for some x ∈ F1 and y ∈ F2

⇔ (a ◦ (x ◦ y)] = (x ◦ y]
⇔ (a] ∩ ((x] ∩ (y]) = (x] ∩ (y] and (x] ∈ ψ(F1)

and
(x] ∈ ψ(F2) ⇔ (a] ∈ ψ(F1) ∨ ψ(F2).

Thus ψ is a homomorphism and hence it is an isomorphism. �
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