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and Stojan Radenović

Abstract. The purpose of this new survey paper is, among other things, to

collect in one place most of the articles on cone (abstract, K-metric) spaces,
published after 2007. This list can be useful to young researchers trying to
work in this part of functional and nonlinear analysis. On the other hand, the

existing review papers on cone metric spaces are updated.
The main contribution is the observation that it is usually redundant to

treat the case when the underlying cone is solid and non-normal. Namely,
using simple properties of cones and Minkowski functionals, it is shown that

the problems can be usually reduced to the case when the cone is normal, even
with the respective norm being monotone. Thus, we offer a synthesis of the
respective fixed point problems arriving at the conclusion that they can be
reduced to their standard metric counterparts. However, this does not mean

that the whole theory of cone metric spaces is redundant, since some of the
problems remain which cannot be treated in this way, which is also shown in
the present article.

1. Introduction

Since 1922, when S. Banach proved in his PhD thesis (see [62]) the celebrated
Contraction Principle for self-mappings on a complete metric space, several hun-
dreds of researchers have tried to generalize or improve it. Basically, these general-
izations were done in two directions—either the contractive condition was replaced
by some more general one, or the environment of metric spaces was widened. In
the first direction, a lot of improved results appeared, like Kannan’s, Chatterjea’s,
Zamfirescu’s, Hardy-Rogers’s, Ćirić’s, Meir-Keeler’s, Boyd-Wong’s, to mention just
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a few. The other direction of investigations included introduction of semimetric,
quasimetric, symmetric, partial metric, b-metric, and many other classes of spaces.

Of course, not all of these attempts were useful in applications, which should
be the main motive for such investigations. Some of them were even not real
generalizations, since the obtained results appeared to be equivalent to the already
known ones.

It seems that -D. Kurepa was the first to replace the set R of real numbers
by an arbitrary partially ordered set as a codomain of a metric (see [218]). This
approach was used by several authors in mid-20th century, who used various names
(abstract metric spaces, K-metric spaces, . . . ) for spaces thus obtained (see, e.g.,
[199,210,345,363]). The applications were mostly in numerical analysis.

The interest in such spaces increased after the 2007 paper [153] of L. G. Huang
and X. Zhang, who re-introduced the mentioned type of spaces under the name of
cone metric spaces. Their approach included the use of interior points of the cone
which defined the partial order of the space. The original paper [153] used also the
assumption of normality of the cone, but later most of the results were obtained
for non-normal cones, however with more complicated proofs.

It was spotted very early that (topological vector) cone metric spaces were
metrizable (see, e.g., [114, 136, 190, 204]). However, this does not necessarily
mean that all fixed point results in cone metric spaces reduce to their standard
metric counterparts, since at least some of them still depend on the particular cone
that is used. Hence, the research in these spaces has continued and more than 300
papers has appeared—most of them are cited in the list of references of the present
paper (we probably skipped some of them, but it was not on purpose).

The intention of this article is, first, to recollect the basic properties of cones in
(topological) vector spaces which are important for research in cone metric spaces.
In particular (non)-normal and (non)-solid cones are investigated in some details.
Then, it is shown that each solid cone in a topological vector space can be essentially
replaced by a solid and normal cone in a normed space (even with normal constant
equal to 1). Thus, most of the theory of (TVS) cone metric spaces can be easily
reduced to the respective problems in standard metric spaces.

It has to be noted that some problems still remain to which the previous as-
sertion cannot be applied— we will mention some of them in Section 4.

The present paper can also be treated as a continuation and refinement of the
existing survey articles on this theme, like [170,201,273].

2. Topological and ordered vector spaces

We start our paper with some basic facts about ordered topological vector
spaces. For more details, the reader may consult any book on this topic, e.g.,
[25,101,182,314,357].
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2.1. Topological vector spaces. Throughout the paper, E will denote a
vector space over the field R of real numbers, with zero-vector denoted by θ. A
topology τ on E is called a vector topology if linear operations (x, y) 7→ x+ y and
(λ, x) 7→ λx are continuous on E × E, resp. R× E. In this case, (E, τ) is called a
(real) topological vector space (TVS). If a TVS has a base of neighbourhoods of θ
whose elements are (closed and absolutely) convex sets in E, then it is called locally
convex (LCS).

The topology of an LCS can be characterized using seminorms. Namely, a
nonnegative real function p on a vector space E is called a seminorm if: 1◦ p(x+y) 6
p(x) + p(y) for x, y ∈ E; 2◦ p(λx) = |λ| p(x) for x ∈ E, λ ∈ R. It is easy to prove
that a function p : E → R is a seminorm if and only if p is the Minkowski functional
of an absolutely convex and absorbing set M ⊂ E, i.e., p = pM is given by

x 7→ pM (x) = inf{λ > 0 | x ∈ λM }.

Here, one can take M = {x ∈ E | p(x) < 1 }. The following proposition provides
the mentioned characterization.

Proposition 2.1. Let { pi | i ∈ I } be an arbitrary family of seminorms on a
vector space E. If Ui = {x ∈ E | pi(x) < 1 }, i ∈ I, then the family of all scalar
multiples λU , λ > 0, where U runs through finite intersections U =

∩n
j=1 Uj , forms

a base of the neighbourhoods of θ for a locally convex topology τ on E in which all
the seminorms pi are continuous. Each LCS (E, τ) can be described in such a way.
If we put in the previous construction Ui = {x ∈ E | pi(x) 6 1 }, we obtain a base
of neighbourhoods of θ constituted of closed absolutely convex sets.

The easiest (and well known) examples of locally convex spaces are normed
and, in particular, Banach spaces. The topology is then generated by a single norm
which is the Minkowski functional of the unit ball.

2.2. Cones in ordered topological vector spaces. Let (E, τ) be a real
TVS. A subset C of E is called a cone if: 1◦ C is closed, nonempty and C ̸= {θ};
2◦ x, y ∈ C and λ, µ > 0 imply that λx+ µy ∈ C; 3◦ C ∩ (−C) = {θ}. Obviously,
each cone generates a partial order ≼C in E by

x ≼C y ⇐⇒ y − x ∈ C

(we will write just ≼ if it is obvious which is the respective cone). And conversely, a
partial order ≼ on E generates a cone C = {x ∈ E | x ≽ θ }. If ≼ is a partial order
on a TVS E, then (E, τ,≼) is called an ordered topological vector space (OTVS). If
x ≼ y and x ̸= y, we will write x ≺ y.

The most important examples of OTVS’s are special cases of the following one.

Example 2.1. Let X be a nonempty set and E be the set of all real-valued
functions f defined on X. Let a relation ≼ be defined on E by f ≼ g if and only if
f(x) 6 g(x) for all x ∈ X. If τ is a vector topology on E such that the respective
cone C = { f ∈ E | f(x) > 0, x ∈ X } is τ -closed, then (E, τ,≼) is an OTVS.
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If (E,≼) is an ordered vector space (with the respective cone C) and x, y ∈ E,
x ≼ y, then the set

[x, y] = { z ∈ E | x ≼ z ≼ y } = (x+ C) ∩ (y − C)

is called an order-interval. A subset A of E is order-bounded if it is contained in
some order-interval. It is order-convex if [x, y] ⊂ A whenever x, y ∈ A and x ≼ y.
It has to be remarked that the families of convex and order-convex subsets of an
ordered vector space are incomparable in general.

An OTVS (E, τ,≼) is said to be order-convex if it has a base of neighborhoods
of θ consisting of order-convex subsets. In this case the order cone C is said to be
normal. In the case of a normed space, this condition means that the unit ball is
order-convex, which is equivalent to the condition that there is a number K such
that x, y ∈ E and θ ≼ x ≼ y imply that ∥x∥ 6 K∥y∥. The smallest constant K
satisfying the last inequality is called the normal constant of C.

Equivalently, the cone C in (E, ∥ · ∥,≼C) is normal if the Sandwich Theorem
holds, i.e., if

(2.1) (∀n) xn ≼ yn ≼ zn and lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x.

In particular, if a cone is normal with the constant equal to 1, i.e., if θ ≼ x ≼ y
implies that ∥x∥ 6 ∥y∥, the cone is called monotone w.r.t. the given norm.

The following is an example of a non-normal cone.

Example 2.2. [345] Let E = C1
R[0, 1] with ∥x∥ = ∥x∥∞ + ∥x′∥∞ and C =

{x ∈ E | x(t) > 0, t ∈ [0, 1] }. Consider, for example, xn(t) =
tn

n and yn(t) =
1
n ,

n ∈ N. Then θ ≼ xn ≼ yn, and limn→∞ yn = θ, but ∥xn∥ = maxt∈[0,1] | t
n

n | +
maxt∈[0,1] |tn−1| = 1

n + 1 > 1; hence {xn} does not converge to zero. It follows by
(2.1) that C is a non-normal cone.

The cone C in an OTVS (E, τ) is called solid if it has a nonempty interior
intC.

There are numerous examples of cones which are solid and normal. Perhaps
the easiest is the following one.

Example 2.3. Let E = Rn with the Euclidean topology τ . Let the cone C be
given as in Example 2.1, i.e., C = { (xi)

n
i=1 | xi > 0, i = 1, 2, . . . , n }. Then it is

easy to see that C is a solid and normal cone in (E, τ).

Example 2.2 shows that there exists a cone which is solid and non-normal.
A lot of spaces which are important in functional analysis have cones which are
normal and non-solid. We present just two of them.

Example 2.4. (see, e.g., [176]) Consider E = c0 (the standard Banach space
of all real 0-sequences) and let C = {x = {xn} | xn > 0, n ∈ N }. It follows easily
that C is a normal cone in E. Let us prove that it has an empty interior.
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Take any x = {xn} ∈ C. If xn = 0 for n > n0, then obviously x /∈ intC.
Otherwise, for arbitrary ε > 0, there exists n0 ∈ N such that xn < ε

2 for all n > n0.
Construct a sequence y = {yn} by

yn =

{
xn, if n 6 n0,

−xn, for n > n0.

Then, at least one of yn is strictly negative, hence y /∈ C. However, ∥x − y∥ =
supn>n0

|2xn| < ε, therefore, the ball B(x, ε) is not a subset of C. Thus, intC = ∅.

Example 2.5. [242] Let E = L2(R, µ) ∩ C(R) be equipped with the norm
∥ · ∥E = ∥ · ∥L2 + ∥ · ∥∞, where µ is the Lebesgue measure. Let

C = {h ∈ E | h(t) > 0, t ∈ R }
be the cone of all positive elements in E. We will show that C has an empty
interior. For any f ∈ C and each δ > 0, define Nf (δ) = { t ∈ R | f(t) > δ }. Then
µ(Nf (δ)) < ∞, and therefore µ(RrNf (δ)) = ∞. Note that

µ(RrNf (δ)) = µ

(∪
r∈Q

(
B(r, δ) ∩ (RrNf (δ))

))
6

∑
r∈Q

µ
(
B(r, δ) ∩ (RrNf (δ))

)
= ∞,

which means that µ(A) > 0, where A = B(s, δ) ∩ (R r Nf (δ)), for some s ∈ Q.
Define

g(x) =

{
f(x), x /∈ A,

f(x)− δ, x ∈ A.

Then g is negative on the set A of positive measure and

∥f − g∥L2 + ∥f − g∥∞ =

(∫
A

δ2 dµ

)1/2

+ sup
A

δ 6 (2δ3)1/2 + δ.

Hence, for any f ∈ C and arbitrary ε > 0, we can find g /∈ C with ∥f − g∥E < ε,
i.e., there is no ball with centre f that lies inside C. Therefore, C has an empty
interior.

We state now the following properties of solid cones.

• [357, Proposition (2.2), page 20] e ∈ intC if and only if [−e, e] = (C − e) ∩
(e− C) is a τ -neighbourhood of θ.

• If e ∈ intC, then the Minkowski functional ∥ · ∥e = p[−e,e] is a norm on
the vector space E. Indeed, one has just to prove that ∥x∥e = 0 implies that
x = θ. Suppose, to the contrary, that x ̸= θ. Then, by the definition of infimum,
it follows that there is a sequence {λn} of positive reals tending to 0, and such
that x ∈ λn[−e, e], i.e., −λne ≼ x ≼ λne. It follows that the sequences {λne − x}
and {x + λne} both belong to C. Since they converge to −x and x, respectively,
the closedness of the cone C implies that −x, x ∈ C. Hence, x = θ, which is a
contradiction. See also [25,167].
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Note that this conclusion was stated in [200] [the paragraph before Theorem
3.1] under the additional assumption that the cone C is normal. The previous proof
shows that this assumption is in fact redundant.

• If e1, e2 ∈ intC, then the respective norms ∥ · ∥e1 and ∥ · ∥e2 are equivalent.
In particular, the interiors of the cone C w.r.t. the norms ∥ ·∥e1 and ∥ ·∥e2 coincide;
in fact, they are equal to intτ C. This follows by the characterization of interior
points of a cone in an OTVS.

• If intτ C ̸= ∅, then the topology τ is Hausdorff. Indeed, if e ∈ intC, then
the unit ball [−e, e] is a neighbourhood of θ in the topology generated by the norm
∥ · ∥e. Since this norm topology is Hausdorff and not stronger than τ , it follows
that τ is Hausdorff, too.

We will show now that C is a cone, i.e., it is closed, in the topology generated
by ∥ · ∥e. Let xn ∈ C and xn → x as n → ∞, in the norm ∥ · ∥e. This means that
−x ≼ −(x − xn) ≼ 1

ne for n > n0. Passing to the limit as n → ∞, we get that
−x ≼ θ, i.e., x ≽ θ, and so x ∈ C.

Thus, we have proved the next assertion (see also [22,101,180,284,285,346]).

Proposition 2.2. If C is a solid cone in an OTVS (E, τ,≼C), then there exists
a norm ∥ · ∥e on E which is monotone and such that the cone C is normal and solid
w.r.t. this norm. In particular, the cone C has the same set of interior points, both
in topology τ and in the norm generated by ∥ · ∥e.

Further, following [153], denote

(2.2) x ≪ y if and only if y − x ∈ intC.

Let {xn} be a sequence in (E, τ,≼C) and c ∈ intC. We will say that {xn} is a c-
sequence if there exists n0 ∈ N such that xn ≪ c whenever n > n0. The connection
between c-sequences and sequences tending to θ is the following.

• If xn → θ as n → ∞, then it is a c-sequence for each c ∈ intC. Indeed, if
c ∈ intC, then [−c, c] is a τ -neighbourhood of θ and it follows that int[−c, c] =
(intC − c) ∩ (c− intC) is also a τ -neighbourhood of θ. Hence, there exists n0 ∈ N
such that, for all n > n0, xn ∈ (intC − c) ∩ (c− intC), i.e., c− xn ∈ intC, and so
xn ≪ c.

• The converse of the previous assertion is not true, i.e., xn ≪ c for some
c ∈ intC and all n > n0 does not necessarily imply that xn → θ (see Example 2.2).
However, if the cone C is normal, then these two properties of a sequence {xn} are
equivalent.

Note also the following properties of bounded sets.

• If the cone C is solid, then each topologically bounded subset of (E, τ,≼C)
is also order-bounded, i.e., it is contained in a set of the form [−c, c] for some
c ∈ intC.

• If the cone C is normal, then each order-bounded subset of (E, τ,≼C) is
topologically bounded. Hence, if the cone is both solid and normal, these two
properties of subsets of E coincide.
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In other words, we have the following property (see, e.g., [345]).

Proposition 2.3. If the underlying cone of an OTVS is solid and normal, then
such TVS must be an ordered normed space.

The following old result of M. Krein can also be useful when dealing with cones
in normed spaces.

Proposition 2.4. [211] A cone C in a normed space (E, ∥ · ∥) is normal if and
only if there exists a norm ∥ · ∥1 on E, equivalent to the given norm ∥ · ∥, such that
the cone C is monotone w.r.t. ∥ · ∥1.

3. Cone metric spaces

3.1. Definitions and basic properties. As was already said in Introduc-
tion, spaces with “metrics” having values in ordered spaces, more general than the
set R of real numbers, appeared under various names (abstract metric spaces, K-
metric spaces, . . . ) since the mid-20th century (see, e.g., [199,210,218,345,363]).
Starting from 2007 and the paper [153], some version of the following definition
has been usually used.

Definition 3.1. Let X be a non-empty set and (E, τ,≼) be an OTVS. If a
mapping d : X ×X → E satisfies the conditions

(i) d(x, y) ≽ θ for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z ∈ X,

then d is called a cone metric on X and (X, d) is called a cone metric space.

Convergent and Cauchy sequences can be introduced in the following way.

Definition 3.2. Let (X, d) be a cone metric spaces with the cone metric having
values in (E, τ,≼), where the underlying cone C is solid. Let {xn} be a sequence
in X. Then we say that:

(1) the sequence {xn} converges to x ∈ X if for each c ∈ intC there exists
n0 ∈ N such that d(xn, x) ≪ c holds for all n > n0;

(2) {xn} is a Cauchy sequence if for each c ∈ intC there exists n0 ∈ N such
that d(xm, xn) ≪ c holds for all m,n > n0;

(3) the space (X, d) is complete if each Cauchy sequence {xn} in it converges
to some x ∈ X.

Note that, according to [180], in the previous definition, equivalent notions are
obtained if one replace ≪ by ≺ or ≼.

The following crucial observation (which is a consequence of Proposition 2.2)
shows that most of the problems in cone metric spaces can be reduced to their
standard metric counterparts.
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Proposition 3.1. Let X be a non-empty set and (E, τ,≼C) be an OTVS with
a solid cone C. If e ∈ intC is arbitrary, then D(x, y) = ∥d(x, y)∥e is a (standard)
metric on X. Moreover, a sequence {xn} is Cauchy (convergent) in (X, d) if and
only if it is Cauchy (convergent) in (X,D).

We will show in Section 4 how this approach simplifies most of the proofs
concerning fixed points of mappings.

Note that it is clear that the cone metric with values in (E, ∥·∥e,≼) is continuous
(as a function of two variables). Also, Sandwich Theorem holds (since the cone C
is normal in the new norm).

3.2. Completion and Cantor’s intersection theorem. Most of standard
notions from the setting of metric spaces, like accumulation points of sequences,
open and closed balls, open and closed subsets, etc., are introduced in the usual
way. Also, standard properties (e.g., that closed balls are closed subsets) can be
easily deduced, based on Proposition 2.2.

As a sample, we state the following theorem on the completion of a cone metric
space and we note that, with the mentioned approach, its proof is much easier than
in [11].

Theorem 3.1. Let (X, d) be a cone metric space over an OTVS (E, τ,≼C)

with a solid cone. Then there exists a complete cone metric space (X̃, d̃) over an
ordered normed space (E, ∥ · ∥,≼C) with a solid and normal cone, containing a

dense subset (X̃∗, d̃∗), isometric with (X, d).

Now, we present a proof of the Cantor’s intersection theorem in the setting of
cone metric spaces.

Theorem 3.2. Let (X, d) be a cone metric space over an OTVS (E, τ,≼C)
with a solid cone. Then (X, d) is complete if and only if every decreasing sequence
{Bn} of non-empty closed balls in X for which the sequence of diameters tends to
θ as n → ∞, has a non-empty intersection, and more precisely, there exists a point
x ∈ X such that

∩∞
n=1 Bn = {x}.

Proof. According to Propositions 2.2 and 2.4, without loss of generality, we
can assume that (X, d) is a cone metric space over an ordered normed space (E, ∥ ·
∥,≼C) with the cone C being solid and normal. Moreover, we can assume that the
normal constant of C is equal to 1 (i.e., the norm is monotone w.r.t. C).

Assume that (X, d) is a complete cone metric space, and let Bn = B[xn, cn],
n ∈ N, be the sequence of non-empty, closed balls in X with the properties: Bn+1 ⊂
Bn, n ∈ N, and cn → θ as n → ∞. We first show that {xn} is a Cauchy sequence.

If m > n, we have xm ∈ Bm ⊂ Bn which implies that d(xm, xn) ≼ cn. Since
cn → θ as n → ∞, it follows that d(xm, xn) → θ as n → ∞, and consequently {xn}
is a Cauchy sequence.
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The completeness of (X, d) implies the existence of x ∈ X such that xn → x
as n → ∞. Since xm ∈ Bn for all m > n, and Bn is a closed subset of X, it follows
that x ∈ Bn for all n ∈ N, i.e., x ∈

∩∞
n=1 Bn.

Suppose that there exists y ∈
∩∞

n=1 Bn such that y ̸= x. We thus get

d(x, y) ≼ d(x, xn) + d(xn, y) ≼ 2cn,

which gives d(x, y) ≼ θ and, as a consequence, we obtain x = y, a contradiction.
Hence,

∩∞
n=1 Bn = {x}.

Conversely, to obtain a contradiction, suppose that (X, d) is not a complete
cone metric space. Then there exists a Cauchy sequence {xn} which does not
converge in X.

We construct a strictly increasing sequence of positive integers {ni} in the
following way. If c1 ≫ θ, then there exists n1 ∈ N such that m > n1 implies
d(xm, xn1) ≪ c1. Now, for c2 = c1

2 there exists n2 > n1 such that d(xm, xn2) ≪ c2
holds for all m > n2. We continue in this manner. For ci = ci−1

2 , there exists
ni > ni−1 such that m > ni implies d(xm, xni) ≪ ci.

Let us consider the sequence Bi = B[xni , 2ci], i ∈ N, such that ci =
c1

2i−1 → θ
as i → ∞. We first show that Bi+1 ⊂ Bi for all i ∈ N. From y ∈ Bi+1, it follows
that d(y, xni+1) ≼ 2ci+1, hence that

d(y, xni
) ≼ d(y, xni+1

) + d(xni+1
, xni

) ≼ 2ci+1 + ci = 2
ci
2
+ ci = 2ci,

and finally that y ∈ B[xni , 2ci]. We thus get y ∈ Bi, which is the desired conclusion.

Let us prove that
∩∞

i=1 Bi = ∅. Indeed, if there exists an x ∈
∩∞

i=1 Bi, then
x ∈ Bi for all i ∈ N and thus d(x, xni) ≼ 2ci, i ∈ N. For m > ni, we have

d(x, xm) ≼ d(x, xni) + d(xni , xm) ≼ 2ci + ci = 3ci.

The normality of the cone C gives d(x, xm) → θ as m → ∞ (since m > ni). This
contradicts the fact that the Cauchy sequence {xn} does not converge in X. �

Comparing the previous proof with the one of [167, Theorem 3.10]), we see
that our result is more general and with a shorter proof.

4. Fixed point results in cone metric spaces

4.1. Some fixed point results. Most of the papers from the present list of
references dealt with some (common) fixed point problems in cone metric spaces.
However, the majority of the obtained results are in fact direct consequences of the
corresponding results from the standard metric spaces. We will show this just on
certain examples, but it will be clear that the same procedure can be done in most
of the other cases.

Thus, let (X, d) be a cone metric space over an OTVS (E, τ,≼) with a solid
cone C. Let f, g : X → X be two self-mappings satisfying fX ⊂ gX, and assume
that one of these two subsets of X is complete. Consider the following contractive
conditions:
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(1) (Banach) d(fx, fy) ≼ λd(gx, gy), λ ∈ (0, 1);
(2) (Kannan) d(fx, fy) ≼ λd(gx, fx) + µd(gy, fy), λ, µ > 0, λ+ µ < 1;
(3) (Chatterjea) d(fx, fy) ≼ λd(gx, fy) + µd(gy, fx), λ, µ > 0, λ+ µ < 1;
(4) (Reich) d(fx, fy) ≼ λd(gx, gy) + µd(gx, fx) + νd(gy, fy), λ, µ, ν > 0,

λ+ µ+ ν < 1;
(5) (Zamfirescu) one of the conditions

d(fx, fy) ≼ λd(gx, gy), λ ∈ (0, 1)

d(fx, fy) ≼ λd(gx, fx) + µd(gy, fy), λ, µ > 0, λ+ µ < 1

d(fx, fy) ≼ λd(gx, fy) + µd(gy, fx), λ, µ > 0, λ+ µ < 1;

(6) (Hardy-Rogers)

d(fx, fy) ≼ λd(gx, gy) + µd(gx, fx) + νd(gy, fy) + ξd(gx, fy)

+ πd(gy, fx),

λ, µ, ν, ξ, π > 0, λ+ µ+ ν + ξ + π < 1;
(7) (Ćirić) d(fx, fy) ≼ λu(x, y), for some u(x, y) belonging to one of the

following sets{
d(gx, gy),

d(gx, fx) + d(gy, fy)

2
,
d(gx, fy) + d(gy, fx)

2

}
{
d(gx, gy), d(gx, fx), d(gy, fy),

d(gx, fy) + d(gy, fx)

2

}
where λ ∈ (0, 1).

Theorem 4.1. If one of the conditions (1)–(7) is satisfied for all x, y ∈ X, then
the mappings f and g have a unique point of coincidence. Moreover, if f and g are
weakly compatible, then they have a unique common fixed point in X.

Proof. Let e ∈ intC be arbitrary. Based on Propositions 2.2, 2.4 and 3.1,
consider the metric space (X,D), where D(x, y) = ∥d(x, y)∥e. Then, the self-
mappings f, g : X → X satisfy one of the following contractive conditions:

(1′) D(fx, fy) 6 λD(gx, gy), λ ∈ (0, 1);
(2′) D(fx, fy) 6 λD(gx, fx) + µD(gy, fy), λ, µ > 0, λ+ µ < 1;
(3′) D(fx, fy) 6 λD(gx, fy) + µD(gy, fx), λ, µ > 0, λ+ µ < 1;
(4′) D(fx, fy) 6 λD(gx, gy)+µD(gx, fx)+νD(gy, fy), λ, µ, ν > 0, λ+µ+ν <

1;
(5′) one of the conditions

D(fx, fy) 6 λD(gx, gy), λ ∈ (0, 1)

D(fx, fy) 6 λD(gx, fx) + µD(gy, fy), λ, µ > 0, λ+ µ < 1

D(fx, fy) 6 λD(gx, fy) + µD(gy, fx), λ, µ > 0, λ+ µ < 1;

(6′)

D(fx, fy) 6 λD(gx, gy) + µD(gx, fx) + νD(gy, fy) + ξD(gx, fy)

+ πD(gy, fx),
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λ, µ, ν, ξ, π > 0, λ+ µ+ ν + ξ + π < 1;
(7′) one of the conditions

D(fx, fy) 6 λ

{
D(gx, gy),

D(gx, fx) +D(gy, fy)

2
,
D(gx, fy) +D(gy, fx)

2

}
D(fx, fy) 6 λ

{
D(gx, gy), D(gx, fx), D(gy, fy),

D(gx, fy) +D(gy, fx)

2

}
where λ ∈ (0, 1).

It is well known (see, e.g., [304] for the case g = idX ; the general cases are
similar) that, in each of these cases, it follows that the mappings f and g have a
unique point of coincidence. The conclusion in the case of weak compatibility is
also standard (see, e.g., [177]). �

For Ćirić’s quasicontraction (see also [304]), but for a single mapping, the
following cone metric version can be proved in a similar way.

Theorem 4.2. Let (X, d) be a complete cone metric space over an OTVS
(E, τ,≼) with a solid cone C. Let f : X → X be a self-mapping such that there
exists λ ∈ (0, 1) and, for all x, y ∈ X there exists

u(x, y) ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}

satisfying d(fx, fy) ≼ λu(x, y). Then f has a unique fixed point in X.

4.2. Results that cannot be obtained in the mentioned way. Certain
fixed point problems in cone metric spaces cannot be treated as in the previous
subsection. This is always the case when the given contractive condition cannot be
transformed to an appropriate condition in the corresponding metric space (X,D).
As an example of this kind we recall a Boyd-Wong type result.

Let (E, τ,≼C) be an OTVS with a solid cone. A mapping φ : C → C is
called a comparison function if: (i) φ is nondecreasing w.r.t. ≼; (ii) φ(θ) = θ and
θ ≺ φ(c) ≺ c for c ∈ C r {θ}; (iii) c ∈ intC implies c − φ(c) ∈ intC; (iv) if
c ∈ C r {θ} and e ∈ intC, then there exists n0 ∈ N such that φn(c) ≪ e for each
n > n0.

Theorem 4.3. [31, Theorem 2.1] Let (X, d) be a complete cone metric space
over (E, τ,≼C) with a solid cone. Let the mappings f, g : X → X be weakly
compatible and suppose that for some comparison function φ : C → C and for all
x, y ∈ X there exists u ∈ {d(gx, gy), d(gx, fx), d(gy, fy)}, such that d(fx, fy) ≼
φ(u). Then f and g have a unique common fixed point in X.

An additional example is provided by the following result.

Theorem 4.4. [99] Let (X, d) be a complete cone metric space over (E, ∥·∥,≼C

) with a solid cone. Let f : X → X and suppose that there exists a positive bounded
operator on E with the spectral radius r(A) < 1, such that d(fx, fy) ≼ A(d(x, y))
for all x, y ∈ X. Then f has a unique fixed point in X.
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In this case, passing to the space (E, ∥ · ∥e,≼C) cannot help, since the two
norms need not be equivalent and we have no information about the boundedness
of A and (if it is bounded) how r(A) has changed.

A very important special class of fixed point results are the Caristi-type ones,
and the huge literature is devoted to them. When cone metric spaces are concerned,
they are treated in details, e.g., in the papers [19,85,193,200–202,353], so we
will give here only some basic information.

The following result was proved in [19].

Theorem 4.5. [19, Theorem 2] Let (X, d) be a complete cone metric space
over an OTVP (E, ∥ · ∥,≼C) with a solid cone. Let F : X → C be a lower-semi-
continuous map and let f : X → X satisfy the condition

d(x, fx) ≼ F (x)− F (f(x))

for any x ∈ X. Then f has a fixed point.

It is not clear whether, by passing to the space (E, ∥·∥e,≼) using the Minkowski
functional, this theorem reduces to the classical Caristi result. However, it is proved
in [202] that this is still the case if e ∈ intC can be chosen so that the corresponding
Minkowski functional p[−e,e] is additive. It is an open question whether this can be
done without this assumption.

5. Some “hybrid” spaces

As has been already mentioned, besides cone metric spaces, a lot of other
generalizations of standard metric spaces have been introduced and fixed point
problems in these settings have been investigated by several authors. There are
among them some “hybrid” spaces, i.e., spaces where axioms of several types are
used simultaneously. Such are, e.g., cone b-metric spaces, cone-G-metric spaces,
cone rectangular metric spaces, partial cone metric spaces, cone spaces with c-
distance and some others. We will recall here definitions of two of these classes
and how the work in these classes can be easily reduced to the already known ones.
Similar conclusions hold for the other mentioned classes, too.

5.1. Cone b-metric spaces. Cone b-metric spaces were introduced (under a
different name) in [97] and some fixed point results were presented in this setting.

Definition 5.1. Let X be a non-empty set, (E, τ,≼) be an OTVS and s > 1
be a real number. If a mapping d : X ×X → E satisfies the conditions

(i) d(x, y) ≽ θ for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≼ s(d(x, y) + d(y, z)) for all x, y, z ∈ X,

then d is called a cone b-metric on X and (X, d) is called a cone b-metric space
with parameter s.
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Later, these and other researchers obtained a lot of (common) fixed point results
(see, [57,63,131,137,146,234,263,323,334,360,366]. However, similarly as in
the case of cone metric spaces, most of these results can be reduced to the case of
classical b-metric spaces of Bakhtin [61] and Czerwik [100]. Namely, similarly as
Proposition 3.1, the following can be deduced from Proposition 2.2.

Proposition 5.1. Let X be a non-empty set, (E, τ,≼C) be an OTVS with a
solid cone C and s > 1 be a real number. If e ∈ intC is arbitrary, then D(x, y) =
∥d(x, y)∥e is a b-metric on X. Moreover, a sequence {xn} is Cauchy (convergent)
in (X, d) if and only if it is Cauchy (convergent) in (X,D).

5.2. Cone rectangular spaces. The following definition was given in [50].

Definition 5.2. Let X be a non-empty set and (E, τ,≼) be an OTVS. If a
mapping d : X ×X → E satisfies the conditions

(i) d(x, y) ≽ θ for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≼ d(x,w)+ d(w, z)+ d(z, y) for all x, y ∈ X and all distinct points

w, z ∈ X r {x, y},

then d is called a cone rectangular metric on X and (X, d) is called a cone rectan-
gular metric space.

In the papers [50, 174, 235, 238, 298, 339, 346], some fixed point results in
cone rectangular spaces were obtained. The following proposition shows how most
of these results can be easily reduced to the corresponding known ones in the
environment of rectangular spaces defined by Branciari in [73].

Proposition 5.2. Let X be a non-empty set and (E, τ,≼C) be an OTVS with
a solid cone C. If e ∈ intC is arbitrary, then D(x, y) = ∥d(x, y)∥e is a rectangular
metric on X. Moreover, a sequence {xn} is Cauchy (convergent) in (X, d) if and
only if it is Cauchy (convergent) in (X,D).

6. The case of a non-solid cone

In this section, we will briefly consider the case when the underlying cone is
non-solid, but normal.

Let (E, ∥ · ∥,≼C) be an ordered normed space and let the cone C be normal,
but non-solid (see, e.g., Examples 2.4 and 2.5). The definition of a cone metric d
on an nonempty set X, over E, is the same as Definition 3.1. However, definition of
convergent and Cauchy sequences, as well as of the completeness, must be modified.

Definition 6.1. Let (X, d) be a cone metric space over (E, ∥ · ∥,≼C), with
the cone C being normal (possibly non-solid). A sequence {xn} in X is said to
converge to x ∈ X if d(xn, x) → θ as n → ∞ (the convergence in the sense of norm
in E). Similarly, Cauchy sequences are introduced, as well as the completeness of
the space.
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In view of Proposition 2.4, we can assume that the normal constant of C is
equal to 1, and further consider just the standard metric space (X,D), where
D(x, y) = ∥d(x, y)∥.

Open (resp. closed) balls in (X, d) can be introduced as follows: let x ∈ X and
c ∈ C r {θ}. The open (resp. closed) ball with centre x and radius c are given by
B(x, c) = {y ∈ X | d(y, x) ≺ c} (resp. B(x, c) = {y ∈ X | d(y, x) ≼ c}). It can be
easily shown that an open (closed) ball is an open (closed) subset of (X, d). We
will show this, e.g., in the case of a closed ball.

Thus, let yn ∈ B[x, c] and yn → y as n → ∞ in (X, d). Then we have
d(y, x) ≼ d(y, yn)+d(yn, x) ≼ d(y, yn)+c. By the Sandwich Theorem (which holds
since the cone C is normal), we get that d(y, x) ≼ c, which means that y ∈ B(x, c).

However, note that the collection of open balls {B(x, c) | x ∈ X, c ∈ C r {θ} }
does not necessarily form a base of topology on X. Indeed, it is not sure that
the intersection of two open balls contains a ball. For example, for X = R2,
C = { (x, y) | x, y > 0 } and the points c1 = (1, 0), c2 = (0, 1) from C r {θ}, there
is no c ∈ C r {θ} such that c ≺ c1 and c ≺ c2.

Nevertheless, the theorem on completion holds in this case, too.

We conclude with the following open question.

Question 6.1. Construct a cone in a real TVS which is both non-normal and
non-solid.
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periodic point results in abstract metric spaces, Abstr. Appl. Anal. Vol. 2012, Article ID
908423.
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[36] M. Arshad, J. Ahmad, On multivalued contractions in cone metric spaces without normal-
ity, The Scientific World J., Vol. 2013, Art. ID 481601, 3 pages.

[37] M. Arshad, A. Azam, P. Vetro, Common fixed point of generalized contractive type map-
pings in cone metric spaces, IAENG Int. J. Appl. Math. 41 (3) (2012).

[38] M. Asadi, Possibility or impossibility of the metrizability of cone metric spaces via renorm-
ing the Banach spaces, Nonlinear Funct. Anal. Appl. 19 (3) (2014), 409–413.

[39] M. Asadi, B. E. Rhoades, H. Soleimani, Some notes on the paper “The equivalence of cone

metric spaces and metric spaces”, Fixed Point Theory Appl. 2012, 2012:87.
[40] M. Asadi, H. Soleimani, M. Vaezpour, An order on subsets of cone metric spaces and fixed

points of set-valued contractions, Fixed Point Theory Appl., Vol. 2009, Article ID 723203.
[41] M. Asadi, H. Soleimani, S. M. Vaezpour, B. E. Rhoades, On T-stability of Picard iteration

in cone metric spaces, Fixed Point Theory Appl., Vol. 2009, Article ID 751090, 6 pages.
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[93] K. J. Chung, Nonlinear contractions in abstract spaces, Kodai Math. J. 4 (1981), 288–292.
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and related fixed point theorems, Bull. Intern. Math. Virtual Institute, 8 (2018), 233–243.
[103] C. Di Bari, R. Saadati, P. Vetro, Common fixed point in cone metric spaces for CJM pairs,

Math. Comput. Modell. 54 (9-10) (2012), 2348–2354.
[104] C. Di Bari, P. Vetro, Common fixed points in cone metric spaces for MK-pairs and L-pairs,

Ars Combinatoria 99 (2011), 429–437.
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[164] D. Ilić, V. Rakočević, Quasi-contraction on a cone metric space, Appl. Math. Lett. 22
(2009), 728–731.
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[190] Z. Kadelburg, S. Radenović, V. Rakočević, A note on equivalence of some metric and cone
metric fixed point results, Appl. Math. Lett. 24 (2011), 370–374.
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116 ALEKSIĆ, KADELBURG, MITROVIĆ, AND RADENOVIĆ
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[310] G. S. Saluja, Convergence theorems for generalized asymptotically quasiu-nonexpansive

mappings in cone metric spaces, CUBO A Math. J. 15 (3) (2013), 71–87.

[311] B. Samet, Common fixed point undert contractive condition of Ćirić type in cone metric
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