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ZEROID, REGULAR AND IDEMPOTENT ELEMENTS

IN Γ-SEMIRINGS

M. Murali Krishna Rao, B. Venkateswarlu, and B. Ravi Kumar

Abstract. In this paper, we introduce the notion of zeroid, regular and idem-
potent elements in Γ−semiring. We study the properties of zeroid, regular and
idempotent elements in Γ−semiring and we prove that,if M is a totally ordered

regular Γ−semiring with unity element, in which Γ−semigroup M is negatively
ordered then M is a commutative ordered Γ−semiring.

1. Introduction

In 1995, the notion of Γ−semiring was introduced by Murali Krishna rao [7,
8, 9, 10] not only generalizes the notion of semiring and Γ−ring but also the
notion of ternary semiring. Semiring, the algebraic structure which is a common
generalization of rings and distributive lattices, was first introduced by American
mathematician Vandiver [15] in 1934, but non trivial examples of semirings had
appeared in the earlier studies on the theory of commutative ideals of rings by
German mathematician Richard Dedekind in 19th century. Semiring is a universal
algebra with two binary operations called addition and multiplication where one of
them is distributive over the other. Bounded distributive lattices are commutative
semirings which are both additively and multiplicatively idempotent. A natural
example of semiring which is not a ring, is the set of all natural numbers under
usual addition and multiplication of numbers.

Semiring, as the basic algebraic structure, was used in the areas of theoretical
computer science as well as in the solutions of graph theory and optimization the-
ory and in particular for studying automata, coding theory and formal languages.
Semiring theory has many applications in other branches of mathematics.Many
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semirings have order structure in addition to algebraic structure.The notion of
Γ−ring was introduced by Nobusawa [13] as a generalization of ring in 1964. Sen
[14] introduced the notion of Γ−semigroup in 1981. The notion of ternary algebraic
system was introduced by Lehmer [3] in 1932, Lister [4] introduced ternary ring.
Dutta & Sardar [2] introduced the notion of operator semirings of Γ−semiring.
Murali Krishna Rao and Venkateswarlu [11] studied regular Γ−incline and field
Γ−semiring. The set of all negative integers Z is not a semiring with respect to
usual addition and multiplication but Z forms a Γ−semiring where Γ = Z. The
important reason for the development of Γ−semiring is a generalization of results
of rings, Γ−rings, semirings, semigroups and ternary semirings. Von Neumann [12]
introduced the concept of regular elements in a ring. Meenakshi and Anbalagan [5]
studied regular elements in an incline and proved that regular commutative incline
is a distributive lattice.Meenakshi et.al [6] studied ideals in incline. In this paper,
we introduce the notion of zeroid, regular and idempotent elements in Γ−semiring.
We study the properties of zeroid, regular and idempotent elements.

2. Preliminaries

In this section we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. [1] A set S together with two associative binary operations
called addition and multiplication (denoted by + and · respectively) will be called
semiring provided

(i) addition is a commutative operation.
(ii) multiplication distributes over addition both from the left and from the

right.
(iii) there exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ S.

Definition 2.2. Let M and Γ be two non- empty sets. Then M is called a
Γ−semigroup if it satisfies

(i) xαy ∈ M,
(ii) xα(yβz) = (xαy)βz, for all x, y, z ∈ M,α, β ∈ Γ.

Definition 2.3. Let (M,+) and (Γ,+) be semigroups. If there exists a map-
ping M × Γ ×M → M (images to be denoted by xαy, x, y ∈ M,α ∈ Γ) satisfying
the following axioms for all x, y, z ∈ M and α, β ∈ Γ,

(i) xα(y + z) = xαy + xαz,
(ii) (x+ y)αz = xαz + yαz,
(iii) x(α+ β)y = xαy + xβy
(iv) xα(yβz) = (xαy)βz,

then M is called a Γ−semiring.

Definition 2.4. A Γ−semiring M is said to have zero element if there exists
an element 0 ∈ M such that 0 + x = x = x+ 0 and 0αx = xα0 = 0, for all x ∈ M.

Example 2.1. Every semiring M is a Γ−semiring with Γ = M and ternary
operation is defined as the usual semiring multiplication
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Example 2.2. Let M be the additive semigroup of all m×n matrices over the
set of non negative rational numbers and Γ be the additive semigroup of all n×m
matrices over the set of non negative integers, then with respect to usual matrix
multiplication M is a Γ−semiring.

Definition 2.5. Let M be a Γ−semiring. An element 1 ∈ M is said to be
unity if for each x ∈ M there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.6. A Γ−semiring M is said to be commutative Γ−semiring if
xαy = yαx, for all x, y ∈ M and α ∈ Γ.

Definition 2.7. A Γ−semiring M is said to be simple Γ−semiring if it has no
proper ideals other than the zero ideal.

Definition 2.8. A Γ−semigroup M is said to satisfy left (right) cancelation
law if and only if r, s, t ∈ M, r ̸= 0, α ∈ Γ such that rαs = rαt (sαr = tαr ) then
s = t.

Definition 2.9. Let M be a Γ−semiring. Then (M,+) is said to be band if
a+ a = a, for all a ∈ M.

Definition 2.10. A Γ−semigroup M is said to be left (right) singular if for
each a ∈ M there exists α ∈ Γ such that aαb = a(aαb = b), for all b ∈ M.

Definition 2.11. A Γ−semiringM is called an ordered Γ−semiring if it admits
a compatible relation 6 i.e. 6 is a partial ordering on M satisfies the following
conditions. If a 6 b and c 6 d then

(i) a+ c 6 b+ d (ii) aαc 6 bαd (iii) cαa 6 dαb, for all a, b, c, d ∈ M,α ∈ Γ.

Example 2.3. Let M = [0, 1],Γ = N, + and ternary operation be defined
as x + y = max{x, y}, xγy = min{x, γ, y} for all x, y ∈ M,γ ∈ Γ. Then M is an
ordered Γ−semiring with respect to usual ordering.

Definition 2.12. An ordered Γ−semiring M is said to be totally ordered
Γ−semiring M if any two elements of M are comparable.

Definition 2.13. Let M be an ordered Γ−semiring. A non-empty subset A
of M is called a left (right) ideal of an ordered Γ−semiring M if A is closed under
addition, MΓA ⊆ A (AΓM ⊆ A) and if for any a ∈ M, b ∈ I, a 6 b ⇒ a ∈ I. A is
called an ideal of M if it is both a left ideal and a right ideal of M.

Definition 2.14. A non-empty subset A of ordered Γ−semiring M is called a
k−ideal if A is an ideal,x ∈ M, x+ y ∈ A and y ∈ A then x ∈ A.

Definition 2.15. In an ordered Γ−semiring M

(i) (M,+) is positively ordered if a+ b > a, b for all a, b ∈ M.
(ii) (M,+) is negatively ordered if a+ b 6 a, b for all , a, b ∈ M.
(iii) Γ−semigroup M is positively ordered if aαb > a, b for all α ∈ Γ, a, b ∈ M.
(iv) Γ−semigroup M is negatively ordered if aαb 6 a, b for all α ∈ Γ, a, b ∈ M.
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Definition 2.16. In an ordered Γ−semiringM with unity 1, an element a ∈ M
is said to be left invertible (right invertible) if there exists b ∈ M,α ∈ Γ such that
bαa = 1(aαb = 1).

Definition 2.17. In an ordered Γ−semiringM with unity 1, an element a ∈ M
is said to be invertible if there exist b ∈ M,α ∈ Γ such that aαb = bαa = 1.

Definition 2.18. In an ordered Γ−semiring M, an element u ∈ M is said to
be unit if there exist a ∈ M and α ∈ Γ such that aαu = 1 = uαa.

Definition 2.19. Let M and N be ordered Γ− semirings. A mapping f :
M → N is called a homomorphism if

(i) f(a+ b) = f(a) + f(b)
(ii) f(aαb) = f(a)αf(b), for all a, b ∈ M,α ∈ Γ.

Definition 2.20. Let M be an ordered Γ− semiring. A mapping f : M → M
is called an endomorphism if

(i) f is an onto ,
(ii) f(a+ b) = f(a) + f(b),
(iii) f(aαb) = f(a)αf(b), for all a, b ∈ M,α ∈ Γ.

Definition 2.21. Let M be an ordered Γ− semiring. A mapping f : M → M
is called an automorphism(anti-automorphism) if

(i) f is a bijection ,
(ii) f(a+ b) = f(a) + f(b),
(iii) f(aαb) = f(a)αf(b),( f(aαb) = f(b)αf(a),) for all a, b ∈ M,α ∈ Γ.

3. Zeroid elements in Γ−semiring

In this section, we introduce the concept of zeroid, left zeroid and right zeroid
in Γ−semirings and study the properties of zeroids in Γ−semirings.

Definition 3.1. Let M be a Γ−semiring. An element x ∈ M is said to be left
(right) zeroid of Γ−semiring if there exists y ∈ M such that y + x = y(x+ y = y).

Definition 3.2. Let M be a Γ−semiring. An element x ∈ M is said to be
zeroid of Γ−semiring if there exists y ∈ M such that x+ y = y or y + x = y.

Every additive idempotent element of Γ−semiring M is a zeroid element of M.

Definition 3.3. Let M be a Γ−semiring. Zeroid of Γ−semiring M is the set
of all x in M such that x+ y = y or y + x = y, for some y in M.

Zeriod of Γ−semiring M is denoted by Z.

Theorem 3.1. Let M be a Γ−semiring with unity element, a+aαa = a, for all
a ∈ M,α ∈ Γ and a+ 1 = a, for all a ∈ M. If Γ−semigroup M is left cancellative
then every element of M is a zeroid.
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Proof. Let a ∈ M. Then a + aαa = a, for all α ∈ Γ and there exists β ∈ Γ
such that aβ1 = a. We have a+ aβa = a

⇒aβb+ a+ aβa = aβb+ a, b ∈ M

⇒aβb+ aβ1 + aβa = aβb+ aβ1

⇒aβ(b+ 1) + aβa = aβ(b+ 1)

⇒aβb+ aβa = aβb

⇒aβ(b+ a) = aβb

⇒b+ a = b.

Hence every element of M is a zeroid. �
Theorem 3.2. Let M be an additively commutative Γ−semiring. Then zeroid

Z is a k−ideal of M.

Proof. Let x, y ∈ Z and α ∈ Γ. Then there exist u, v ∈ M such that x+u = u
or u+ x = u and y + v = v or y = y = v.
Suppose x+ u = u and y + v = v. Then

x+ y + u+ v = x+ y + v + u

= x+ v + u

= x+ u+ v

= u+ v.

Therefore x+ y ∈ Z. Similarly in all cases we can prove x+ y ∈ Z. Now x+ u = u
and y+ v = v. Then xαy+ uαy = uαy and xαy+ xαv = xαv. Therefore xαy ∈ Z.
Similarly in all cases we can prove xαy ∈ Z. Hence Z is a Γ−subsemiring of M.

Let a ∈ Z,m ∈ M and α ∈ Γ. Then there exists b ∈ M such that a+ b = b ⇒
aαm + bαm = bαm. Therefore aαm ∈ Z. Similarly we can prove mαa ∈ Z. Let
z ∈ Z y ∈ M and x+ y ∈ Z. Then there exist u ∈ M, v ∈ M such that

x+ y + u = u, x+ v = v

⇒y + x+ u = u

⇒y + x+ u+ v = u+ v

⇒y + u+ v = u+ v.

Therefore y ∈ Z. Hence Z a k−ideal of Γ−semiring M. �
Corollary 3.1. Let M be an additively commutative simple Γ−semiring and

Z ̸= {0}. Then every element of M is a zeroid.

Theorem 3.3. Let M be a Γ−semiring and every element of M is a zeroid.
If Γ−semigroup M is a right singular then for each a ∈ M, there exists b ∈ M such
that a+ aαb = b or aαb+ a = b, for all α ∈ Γ.

Proof. Let a ∈ M and α ∈ Γ. Then there exists b ∈ M such that a + b = b
or b+ a = b. Suppose a+ b = b. We have aαb = b, since Γ−semigroup M is a right
singular. Therefore a + b = b ⇒ a + aαb = b. Suppose b + a = b ⇒ aαb + a = b.
Hence the theorem. �
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Theorem 3.4. Let M be a Γ−semiring and (M,+) be right cancellative. If a
is right zeroid of M then a+ aαa = a, for all α ∈ Γ.

Proof. Let a be right zeroid of M and α ∈ Γ. Then there exists b ∈ M such
that a+ b = b.

⇒aα(a+ b) = aαb

⇒aαa+ aαb = aαb

⇒a+ aαa+ aαb = a+ aαb.

Therefore a+ aαa = a. �
Corollary 3.2. Let M be a Γ−semiring and (M,+) be left cancellative. If a

is left zeroid of M then aαa+ a = a, for all α ∈ Γ.

Theorem 3.5. Let M be a Γ−semiring with unity element. If unity element
is zeroid then every element of M is zeroid.

Proof. Let M be a Γ−semiring with zeroid unity element and a ∈ M. Then
there exist b ∈ M and α ∈ Γ such that 1 + b = b or b+ 1 = b and aα1 = a = 1αa.
Suppose b+ 1 = b. Then

b+ 1 = b

⇒aα(b+ 1) = aαb

⇒aαb+ aα1 = aαb

⇒aαb+ a = aαb.

Suppose 1 + b = b. Then

1 + b = b

⇒aα(1 + b) = aαb

⇒aα1 + aαb = aαb

⇒a+ aαb = aαb.

Hence every element of M is zeroid. �
Definition 3.4. A Γ−semiring M is said to be semi-subtractive Γ−semiring

if for every x and y in M there exists a z ∈ M such that z + x = y or z + y = x.

Theorem 3.6. If zeroid of a semi-subtractive Γ−semiring M is empty then
(M,+) is cancellative.

Proof. Suppose x+ t = y+ t, x, y, t ∈ M and x ̸= y. Then there exists z ∈ M
such that z + x = y or z + y = x. Suppose x = z + y. Then

x = z + y

⇒x+ t = z + y + t

⇒x+ t = z + x+ t.

Therefore z is the zeroid element. Which is a contradiction. Hence (M,+) is a
right cancellative. Thus (M,+) is cancellative. �
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Definition 3.5. Let M be a Γ−semiring. Then M is said to be zero square
Γ−semiring if xαx = 0, for all x ∈ M,α ∈ Γ.

Theorem 3.7. Let M be a zero square Γ−semiring. If x is a zeroid of M then
there exists y ∈ M such that xαy = 0 or yαx = 0, for all α ∈ Γ.

Proof. Let x ∈ Z and α ∈ Γ. Then there exists y ∈ M such that x + y = y
or y + x = y. Suppose x+ y = y. Then

x+ y = y

⇒(x+ y)αy = yαy

⇒xαy + yαy = yαy

⇒xαy + 0 = 0

⇒xαy = 0.

Similarly we can prove yαx = 0. Hence the theorem. �

Theorem 3.8. Let M be an additively right cancellative Γ−semiring and e be
an additively idempotent element of M. Then e is the additive left singular of Z.

Proof. Let a ∈ Z. Obviously a+ e ∈ Z. Then there exists b ∈ M such that

a+ e+ b = b

⇒a+ (e+ b) = b

⇒e+ a+ (e+ b) = e+ b = e+ e+ b

⇒e+ a = e, since (M,+) is right cancellative .

Hence e is the left singular of Z. �

Theorem 3.9. Let M be a Γ−semiring and every element of M be zeroid. If
Γ−semigroup M is band then for each a ∈ M, there exist b ∈ M,α ∈ Γ such that
a+ aαb+ b = b.

Proof. Let a ∈ M. Then there exist b ∈ M,α ∈ Γ such that b = a + b and
bαb = b.

b = a+ b

= a+ bαb

= a+ (a+ b)αb

= a+ aαb+ bαb

= a+ aαb+ b.

Hence the theorem. �

Theorem 3.10. Let M be a Γ−semiring with identity a+ b+ aαb = b, for all
a, b ∈ M,α ∈ Γ. If every element of M is zeroid and (M,+) is left cancellative then
Γ−semigroup M is a band.
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Proof. Let a ∈ M and α ∈ Γ. Then there exists b ∈ M such that b+ a = b or
a+ b = b. Suppose b+ a = b. We have

a+ b+ aαb = b

⇒a+ b+ aα(b+ a) = b+ a

⇒a+ b+ aαb+ aαa = b+ a

⇒b+ aαa = b+ a

⇒aαa = a.

Hence Γ−semigroup M is a band. �

Theorem 3.11. Let M be a Γ−semiring with unity in which Γ−semigroup M
is left cancellative. If a+ aαa = a, for all a ∈ M,α ∈ Γ then M is a zeroid.

Proof. Let a ∈ M.

Then a+ aαa = a, for all α ∈ Γ and aβ1 = a, β ∈ Γ

⇒aβ1 + aβa = a

⇒aβ(1 + a) = aβ1

⇒1 + a = 1.

Therefore a ∈ Z. Hence every element of M is a zeroid. �

4. Regular and idempotent elements in ordered Γ−semiring

In this section, we introduce the notion of regular and idempotent elements in
ordered Γ−semiring. We study the properties of regular and idempotent elements
and relation between them in ordered Γ−semirings.

Definition 4.1. Let M be an ordered Γ−semiring. An element a ∈ M is said
to be idempotent of M if there exists α ∈ Γ such that a = aαa and a is also said
to be α idempotent.

Definition 4.2. Let M be an ordered Γ−semiring. Every element of M is an
idempotent then M is said to be idempotent ordered Γ−semiring

Definition 4.3. Let M be an ordered Γ−semiring . An element a ∈ M is said
to be regular element of M if there exist x ∈ M,α, β ∈ Γ such that a = aαxβa.

Definition 4.4. Let M be an ordered Γ−semiring . Every element of M is a
regular element of M then M is said to be regular ordered Γ−semiring M.

Theorem 4.1. Let M be an ordered Γ−semiring in which (M,+) is positively
ordered. If x ∈ M and y be an idempotent of (M,+) and x 6 ythen x is a zeroid.

Proof. Let x ∈ M and y be an idempotent and x 6 y.

⇒x+ y 6 y + y

⇒x+ y 6 y.

We have x+ y > y. Therefore x+ y = y. Thus x ∈ Z Thus x is a zeroid of M . �
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Corollary 4.1. Let M be an ordered Γ−semiring in which (M,+) is nega-
tively ordered. If x ∈ M and y be an idempotent of (M,+) and x 6 y then y is a
zeroid.

Theorem 4.2. Let M be an ordered Γ−semiring in which Γ−semigroup is
negatively ordered. If a is a regular element of Γ−semiring M if and only if a is
an idempotent element of M.

Proof. Suppose a is a regular element of M. Then there exist α, β ∈ Γ and
x ∈ M such that a = aαxβa 6 aαa 6 a. Then aαa = a. Therefore a is an
idempotent of M. Conversely suppose that a is an idempotent element of M. Then
there exists α ∈ Γ such that a = aαa. Therefore a = aαaαa. Hence a is regular. �

Theorem 4.3. Let M be an ordered Γ−semiring with unity element. If an
element a of M is left invertible then a is a regular.

Proof. Suppose a ∈ M is left invertible. Then there exist b ∈ M, δ ∈ Γ such
that bδa = 1. Since 1 is unity, there exists α ∈ Γ such that aα1 = a ⇒ aα(bδa) = a.
Hence a is a regular element. �

Theorem 4.4. Let M be a regular ordered Γ−semiring and a ∈ M in which
Γ−semigroup is negatively ordered. Then a = aαx = xβa, for some α, β ∈ Γ and
x ∈ M.

Proof. Let a ∈ M. Then there exist x ∈ M and α, β ∈ Γ such that

a = aαxβa 6 aαx 6 a

a = aαxβa 6 xβa 6 a.

Therefore aαx = a = xβa. �

Theorem 4.5. Let M be a regular ordered Γ−semiring. If a ∈ M then there
exist x ∈ M, α, β ∈ Γ such that aαx and xβa are idempotents of M.

Proof. Let a ∈ M. Then there exist α, β ∈ Γ and x ∈ M such that

a = aαxβa

⇒aαx = aαxβaαx.

Therefore aαx is β−idempotnet of M.
Similarly we can prove xβa is α−idempotent of M. �

Theorem 4.6. If M is an ordered Γ−semiring with unity and a ∈ M is an
idempotent then there exist α, β ∈ Γ such that a = aα1βa.

Proof. Let a ∈ M. Then there exists β ∈ Γ such that aβ1 = 1βa = a. Suppose
a is α−idempotent. Then a = aαa = aα1βa. Hence the theorem. �

Definition 4.5. An ordered Γ−semiring M is said to be Γ−semiring with in-
volution, if ∗ is defined on M satisfying the following conditions

(i) (a+ b)∗ = a∗ + b∗

(ii) (aαb)∗ = b∗αa∗
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(iii) (a∗)∗ = a, for all a, b ∈ M and α ∈ Γ.

Definition 4.6. LetM be an ordered Γ−semiring with involution. An element
a ∈ M is said to be symmetric if a∗ = a.

Definition 4.7. LetM be an ordered Γ−semiring with involution. An element
a ∈ M is said to be projection if a∗ = a = aαa, for all α ∈ Γ.

Definition 4.8. LetM be an ordered Γ−semiring with involution. An element
x ∈ M is said to be Moore-Penrose inverse of a if x satisfies the following

(i) a = aαxβa
(ii) x = xβaαx
(iii) (aαx)∗ = aαx
(iv) (xβa)∗ = xβa, α, β ∈ Γ.

It is denoted as a†.

Theorem 4.7. Let M be an ordered Γ−semiring in which Γ−semigroupM is
negatively ordered with involution ∗. If a is a projection then a† exists and equals
to a.

Proof. Let a be a projection. Then a is a symmetric and idempotent. By
Theorem 4.4, there exists x ∈ M such that a = aαx = xβa and a∗ = a, since a is
symmetric. Then x satisfies all properties.

(i) a = aαxβa (ii) x = xβaαx
(iii) (aαx)∗ = aαx (iv) (xβa)∗ = xβa, α, β ∈ Γ.

Hence a† exists and equals to a. �

Theorem 4.8. Let M be an ordered Γ−semiring in which Γ−semigroupM is
negatively ordered with involution and a ∈ M. Then a is regular and a = aαa∗βa,
α, β ∈ Γ if and only if a is projection.

Proof. Suppose a is regular and a = aαa∗βa. Then by Theorem 4.4,

a = aαa∗ = a∗βa

a∗ = (aαa∗)∗ = (a∗)∗αa∗ = aαa∗ = a

⇒aαa∗ = aαa∗βaαa∗

⇒aαa∗ is β−idempotent .

⇒a is β−idempotent .

Therefore a is β−idempotent and symmetric. Hence a is projection.
Converse is obvious. �

Theorem 4.9. Let M be an ordered Γ−semiring in which Γ−semigroupM
is negatively ordered with involution ∗. Then x ∈ M such that a = aβxαa and
(aβx)∗ = aβx if and only if a∗αaβx = a∗.
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Proof. Suppose x ∈ M such that a = aβxαa and (aβx)∗ = aβx. Then

a∗αaβx = a∗α(aβx)

= a∗α(aβx)∗

= a∗α(x∗βa∗)

= (aβxαa)∗

= a∗.

Conversely suppose that a∗αaβx = a∗.

⇒a∗αaβx 6 a∗αa 6 a∗

⇒a∗αa = a∗

⇒(a∗)∗ = (a∗αa)∗

⇒a = a∗αa = a∗.

Therefore a is symmetric.

a∗αaβx = a∗

⇒ a = a∗ = a∗αaβx 6 aβx 6 a

⇒ aβx = a.

aβxαa = (aβx)αa

= a∗αa

= a

⇒ (aβx)∗ = a∗ = a = aβx.

Hence the theorem. �
Definition 4.9. An ordered Γ−semiringM is called a sum ordered Γ -semiring,

if a 6 b then there exists c ∈ M such that a+ c = b.

Theorem 4.10. Let M be an additively idempotent ordered Γ−semiring. Then
the following conditions are equivalent

(i) 0 is the least element of M
(ii) a 6 a+ b, for all a, b ∈ M
(iii) a 6 b if and only if a+ b = b
(iv) M is sum ordered Γ−semiring.

Proof. Let M be an additively idempotent ordered Γ−semiring.

(i) ⇒ (ii) : Suppose 0 is the least element of M and a, b ∈ M. We have

0 6 a

⇒0 + b 6 a+ b

⇒b 6 a+ b.

Similarly a 6 a+ b.
(ii) ⇒ (iii) : Suppose a 6 a + b, for all a, b ∈ M. Let a, b ∈ M and a 6 b. Then

a+ b 6 b+ b, a+ b 6 b 6 a+ b. Therefore a+ b = b.
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(iii) ⇒ (iv) : Obvious.
(iv) ⇒ (i) : Suppose that M is sum ordered Γ−semiringand a ∈ M.

Then there exists c ∈ M such that 0 + c = a ⇒ c = a.
Now 0 + a = a, for all a ∈ M. Then 0 6 a.
Hence 0 is the least element of M.

�

Lemma 4.1. Let M be an ordered Γ−semiring with unity 1. If 1 + 1 = 1 holds
in M then (M,+) is an idempotent semigroup.

Proof. Let a ∈ M. Then there exists α ∈ Γ such that aα1 = a.

a+ a = aα1 + aα1

= aα(1 + 1)

= aα1

= a

Hence (M,+) is an idempotent semigroup. �

E[+] denotes the set {x ∈ M | x+ x = x}.

Theorem 4.11. Let M be an ordered Γ−semiring in which (M,+) is commu-
tative, positively ordered and cancellative semigroup. If E[+] ̸= ∅ ,Γ−semigroup M
is cancellative then E[+] is a k-prime ideal of an ordered Γ−semiring M.

Proof. Let x ∈ E[+], y ∈ M and α ∈ Γ. Then

x = x+ x

⇒ xαy = (x+ x)αy

= xαy + xαy

⇒ xαy ∈ E[+].

Similarly yαx ∈ E[+]. Suppose x, y ∈ E[+]. Then

x+ x = x, y + y = y

⇒(x+ y) + (x+ y) = (x+ x) + (y + y) = x+ y

⇒x+ y ∈ E[+].

Suppose x 6 y, y ∈ E[+]. Then

y + y = y, x 6 y

x+ x = x, x+ y 6 y + y

x+ x = x, x+ y 6 y and y 6 x+ y

x+ y = y.

x+ x+ y = x+ y.

x+ x = x.

⇒x ∈ E[+].
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Therefore E[+] is an ideal of ordered Γ−semiring. Suppose x, x+ y ∈ E[+]. Then

x+ x = x, x+ y + x+ y = x+ y

⇒(x+ y) + (x+ y) = x+ y

⇒(x+ x) + (y + y) = x+ y

⇒x+ (y + y) = x+ y

⇒y + y = y

⇒y ∈ E[+].

Hence E[+] is a k- ideal of an ordered Γ−semiring M .
Suppose xαy ∈ E[+] and x, y /∈ E[+]. Then

xαy + xαy = xαy

⇒xα(y + y) = xαy

⇒y + y = y, which is contradiction.

Hence E[+] is a k-prime ideal of M . �

Theorem 4.12. Let M be a simple ordered Γ−semiring in which (M,+) is
commutative, positively ordered and cancellative semigroup and E[+] ̸= ϕ. Then
every element of M is additive idempotent.

Proof. By Theorem 4.11, E[+] is an ideal of an orderedΓ−semiringM. There-
fore M = E[+], since Γ−semring M is simple. Hence the theorem. �

Corollary 4.2. Let M be a simple ordered Γ−semiring in which (M,+) is
commutative, positively ordered and cancellative semigroup . If E[+] = 1 then
| M |= 1.

The set {x | xαy = yαx, for all y ∈ M and α ∈ Γ} is center of M. It is denoted
by Z(M).

Theorem 4.13. Let M be an ordered Γ−semiring in which Γ−semigroup M
is left cancellative, a is in center of M, Z(M) and α ∈ Γ. Define a mapping
Ia : M → M by Ia(x) = aαx, for all x ∈ M. Then a is an α−idempotent of M if
and only if Ia is an automorphism.

Proof. Let a be an α−idempotent of Γ−semiring M and a ∈ Z(M). Define
a mapping Ia : M → M by Ia(x) = aαx, for all x ∈ M. Then

Ia(xαy) = aα(xαy)

= aαaαxαy

= (aαx)α(aαy)

= Ia(x)αIa(y).

Suppose Ia(x) = Ia(y)

⇒ aαx = aαy

⇒ x = y.
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Obviously Ia is an onto. Hence Ia is an automorphism.
Conversely suppose that Ia is an automorphism.

Ia(xαy) = Ia(x)αIa(y), for all x, y ∈ M

⇒aαxαy = aαxαaαy

⇒aα(xαy) = aαaαxαy

⇒(xαy)αa = xαyαaαa

⇒a = aαa.

Hence a is an α−idempotent of M. �

Theorem 4.14. Let M be an ordered Γ−semiring with a α−idempotent a of
M and define a mapping Ia : M → M by Ia(x) = aαx, for all x ∈ M. If Ia is an
anti automorphism then a commutes with every element of M i.e., a ∈ Z(M).

Proof. Let M be an ordered Γ−semiring with a α−idempotent a of M and
Ia be an anti automorphism. Then Ia(x) = aαx, for all x ∈ M. Let x ∈ M. Then
there exists x′ ∈ M such that Ia(x

′) = x. Now

xαa = xαaαa = xαIa(a)

= Ia(x
′)αIa(a)

= Ia(aαx
′)

= aαaαx′

= aαIa(x
′)

= aαx.

Hence a commutes with every element of M. �

Theorem 4.15. Let M be a regular ordered Γ−semiring in which Γ−semigroup
M is negatively ordered with unity element. If a, b ∈ M,a 6 b then there exists
α ∈ Γ such that a = aαa = bαa = aαb.

Proof. Let a, b ∈ M and a 6 b. Since M is regular. There exist α, β ∈ Γ and
x ∈ M such that a = aαxβa. We have

xβa 6 a

⇒aαxβa 6 aαa

⇒a 6 aαa 6 a.

Therefore a = aαa.. Now

a 6 b ⇒aαa 6 bαa

⇒a 6 bαa 6 a

⇒a = bαa.
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Therefore a = aαa = bαa. Now

6 b ⇒ aαa 6 aαb

⇒ a 6 aαb 6 a.

Therefore a = aαb. Hence a = aαa = aαb = bαa. �

Theorem 4.16. Let M be a regular ordered Γ−semiring with unity element in
which Γ−semigroupM is negatively ordered. If a, b ∈ M,a 6 b then there exists
β ∈ Γ such that aβb = bβa = a.

Proof. Let a, b ∈ M,a 6 b and b be β− idempotent. Then by Theorem 4.15,
there exists α ∈ Γ such that a = aαa = bαa = aαb and bβb = b. Now

a = aαb = bαa

a = aαb = aαbβb 6 aβb 6 a.

Therefore aβb = a. Now a = bαa = bβbαa 6 bβa 6 a. Hence a = aβb = bβa. �

Theorem 4.17. Let M be a totally ordered regular Γ−semiring with unity
element in which Γ−semigroupM is negatively ordered. Then M is a commutative
ordered Γ−semiring.

Proof. Let a, b ∈ M,γ ∈ Γ and a 6 b. Suppose aγb 6 bγa. Then bγa 6 a.
By Theorems 4.15 and 4.16, there exists α ∈ Γ such that aαb = aαa = a and

(bγa)αa = aα(bγa)

⇒bγ(aαa) = (aαb)γa,

⇒bγa = aγa, · · · (1).
a 6 b ⇒aγa 6 aγb

⇒bγa 6 aγb, from (1).

Therefore, bγa = aγb Hence M is a commutative idempotent ordered Γ−semiring.
�

5. Conclusion

In this paper, we introduced the notion of zeroid in Γ−semiring, regular and
idempotent elements in ordered Γ−semiring. We studied the properties of zeroid,
regular and idempotent elements and relations between them. We proved that,if
M is a totally ordered regular Γ−semiring in which Γ−semigroupM is negatively
ordered with unity element then M is a commutative ordered Γ−semiring.
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