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A COMMON FIXED POINT RESULT FOR

TWO PAIRS OF WEAKLY TANGENTIAL MAPS

IN B-METRIC SPACES

Mohamed Akkouchi

Abstract. In a previous paper, published by the author in 2011, the so called
property (W.T) was introduced. By this property, it is aimed a common gen-

eralization of several concepts, like the concept of noncompatible mappings
due to Jungck (1986), the property (E.A) of Aamri and Moutawakil (2002)
and the concept of asymptotically regular maps due to Browder and Petryshyn

(1966). The purpose of this paper is to use that property (W.T) to prove a
general common fixed point result for two pairs of weakly compatible maps un-
der a contractive condition of Lipschitz type in the setting of b-metric spaces.
The well-posedness of the fixed point problem for these maps is also investi-

gated. Our main result involves a Lipschitz type condition which is is not a
contractive condition of the classical type. An example applying our result is
furnished.

1. Introduction

Let (X, d; s) be a b-metric space with constant s > 1 (see Definition 2.1 below)
and let A,B, S and T be selfmappings of the b-metric sapce (X, d; s).

To simplify notations, for all x, y ∈ X, we set

(1.1) σ(x, y) := d(Sx, Ty) + d(Sx,Ax) + d(Ty,By) + d(Sx,By) + d(Ty,Ax).

In this paper, we study the common fixed point problem for two weakly compatible
pairs (A,S) and (B, T ) of selfmappings of a b-metric space (X, d; s) which are
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satisfying the following Lipshitz type condition: There exists a constant k ∈ [0, 1)
such that

(1.2) d(Ax,By) 6 k σ(x, y), for all x, y ∈ X.

The contractive condition (1.2) is not strong enough to ensure common fixed points.
It appeared in some papers (see [5] and the references therein). Here, we discuss
conditions on k and on the mappings A,B, S and T ensuring the existence of
common fixed points. Our main result (see Theorem 4.1) will make use of the new
property called the property (W.T) (see [5]) which is weaker than the property
(E.A) of Aamri and Moutawakil (see [2]). This work provides a natural continuation
to the work [5], where a common fixed point result for four selfmappings satisfying
the contraction (1.2) in a metric space was established. The main result of [5] reads
as follows..

Theorem 1.1 ([5]). Let (A,S) and (B, T ) be two weakly compatible pairs of
selfmappings of a complete metric space (X, d) such that

(i) : AX ⊆ TX and BX ⊆ SX,
(ii) : one of AX, BX, SX or TX is a closed subspace of (X, d),
(iii) : d(Ax,By) 6 k σ(x, y), for all x, y ∈ X, where k is such that 0 6 k < 1

3 .
If one of the pairs {A,S} or {B, T} satisfies the property (W.T), then A,B, S

and T have a unique common fixed point.

In this paper, we prove an extension to Theorem 1.1 to b-metric spaces without
supposing closedness of one of the ranges. We replace the assumption (ii) by a
relaxed condition. (See Theorem 4.1 below).

This paper is organized as follows: In Section two, we recall some basic facts
on b-metric spaces. In Section 3, we extend to the b-metric spaces some general
definitions dealing with compatibility. We extend also the property (W.T) and
show how it generalizes and unifies some well known properties for mappings like
noncompatibility, the (E.A) property and other various concepts of asymptotic
regularity. In Section 4, we establish our main result (see Theorem 4.1) and provide
an illustrative example. In Section 5, we study the well-posedness of the fixed point
problem for four maps A,B, S and T satisfying the conditions of Theorem 4.1 on
a b-metric space.

2. A brief set-up on b-metric spaces

2.1. Definitions and examples.

Definition 2.1. Let X be a nonempty set. A b-metric on X is a function
d : X ×X → [0,∞) satisfying the conditions

(2.1)

(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) 6 s[d(x, z) + d(z, y)],



A COMMON FIXED POINT RESULT IN B-METRIC SPACES 191

for all x, y, z ∈ X, and for some fixed number s > 1. The triple (X, d; s) is called
a b-metric space with parameter s. The inequality (iii) is called the s-relaxed
triangle inequality or simply the s-triangle inequality.

Obviously, for s = 1 in (2.1), the function d becomes a metric on X. In this
case the triple (X, d; 1) is simply denoted by (X, d) which is the usual notation for
a metric space X endowed with the metric d.

Example 2.1. Let (X, d) is a metric space and choose β > 1, then dβ(x, y) :=
[d(x, y)]β (for all x and y in X) is a b-metric on X with parameter 2β−1.

Indeed, the axioms (i) and (ii) are satisfied by dβ . By using the following well
known inequality:

(2.2) (a+ b)β 6 2β−1(aβ + bβ), for all a, b ∈ R+ := [0,+∞),

we obtain

dβ(x, y) 6 [d(x, z) + d(z, y)]β 6 2β−1[dβ(x, z) + dβ(z, y)], for all x, y, z ∈ X.

Example 2.2. Let (X, d; s) be a b-metric space with parameter s > 1 and

choose p ∈ (0, 1]. We set dp(x, y) := [d(x, y)]
1
p , for all x and y in X. By using

the inequality (2.2), it is easy to show that dp is a b-metric on X with parameter:

s
1
p 2

1
p−1.

An interesting class of b-metric spaces was introduced by Kirk and Shahzad
(see [28]) called “strong b-metric spaces”.

Let X be a non empty set. According to [28], a mapping d : X ×X → [0,∞)
is called a strong b-metric if it satisfies the conditions (i) and (ii) from (2.1) and

(iv) d(x, y) 6 d(x, z) + sd(y, z) ,

for some s > 1 and all x, y, z ∈ X.

2.2. Some basic results on b-metric spaces. Let (X, d; s) be a b-metric
space with parameter s > 1.

(1) By mathematical induction, it is easy to prove the following general s-
triangle inequality.

d(x0, xn+1) 6 sd(x0, x1) + s2d(x1, x2) + · · ·+ snd(xn−1, xn) + snd(xn, xn+1) ,

forall n ∈ N, and for all x0, x1, . . . , xn+1 ∈ X.

(2) One can introduce a topology on the b-metric space (X, d; s) as follows.
We start by defining the ball B(x, r) of center x ∈ X and radius r > 0 by

setting
B(x, r) = {y ∈ X : d(x, y) < r} .

A nonempty subset Y of X is called open if for every x ∈ Y there exists a
number rx > 0 such that B(x, rx) ⊂ Y. The empty set is open by definition.

We denote by Td (or T (d)) the family of all open subsets of X it follows that Td
satisfies the axioms of a topology. The topology Td is metrizable (see for example
[16] and the references therein).
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A proof of this fact is given M. Paluszyński and K. Stempak in [36]. Indeed,
for positive number p ∈ (0, 1], we set

ρp(x, y) = inf
{ n∑

k=1

d(xi−1, xi)
p
}
,

where the infimum is taken over all n ∈ N and all chains x = x0, x1, . . . , xn = y of
elements in X connecting x and y.

Then we have the folowing result extracted from [36].

Theorem 2.1 ([36]). Let d be a b-metric on a nonempty set X satisfying the
s-relaxed triangle inequality (2.1).(iii), for some s > 1. If the number p ∈ (0, 1] is
given by the equation (2s)p = 2, then the mapping ρp : X ×X → [0,∞) defined by
(2.4) is a metric on X satisfying the inequalities

(2.3) ρp(x, y) 6 dp(x, y) 6 2ρp(x, y) ,

for all x, y ∈ X.

Under the conditions of the theorem above, the following assertions are imme-
diate consequences from the inequalities (2.3).

(2-a) Td = Tρ, that is, the topology of any b-metric space is metrizable.

(2-b) The convergence of sequences with respect to Td is characterized by the
following:

(xn) converges to x for the toplogy Td ⇐⇒ lim
n→+∞

d(x, xn) = 0 ,

for any sequence (xn) in X and x ∈ X.

(2-c) The toplogical space (X, Td) is Haussdorff, so the limit point of a con-
verging sequence is unique.

(2-d) Let (X1, d1; s1) and (X2, d2; s2) be two b-metric spaces. Let T : X1 → X2

be a map. Let z ∈ X. Then the following assertions are equivalent:
(i) The map T is continuous at z.
(ii) For every sequence (xn) in X , we have:

limn→+∞ d1(xn, z) = 0 =⇒ limn→+∞ d2(Txn, T z) = 0.

(3) Contrary to the usual metric case, the topology Td generated by a b-metric
d has some peculiarities:

(3-a) A ball B(x, r) need not be in Td. For an example, see [16] and [36].

(3-b) The b-metric d could not be continuous on X × X endowed with the
product toplogy.

(3-c) The b-metric d could not be separately continuous. That is, in general, for
some point z ∈ X, the map x 7→ d(x, z) could not be continuous on the topological
space (X, Td).

(4) When (X, d; s) is a strong b-metric space, the drawbacks above disappear.
Indeed,

• the openness of the balls B(x, r) is ensured, and
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• the continuity of the map d on X×X (with the toplogical product) is ensured
by the following inequality:

|d(x, y)− d(u, v)| 6 s[d(x, u) + d(y, v)] , ∀x, y, u, v ∈ X.

(5) Let (X, d; s) be a b-metric space. For a subset Y of X, we denote Y the
closure of Y . We recall that, by definition, Y is the intersection over all closed
subsets of X containing Y .

It is easy to prove the following lemma which provides two characterizations of
the closure of a subset of a b-metric space.

Lemma 2.1. Let (X, d; s) be a b-metric space and let Y be a subset of X. Let
x ∈ X. Then the following assertions suivantes are equivalent:
(a) x ∈ Y .
(b) There exists a sequence (yn)n of points in Y such that limn→+∞ d(x, yn) = 0.
(c) d(x, Y ) = 0, where as usual, d(x, Y ) := inf{d(x, y) : y ∈ Y }.

(6) Completeness and completion.
A Cauchy sequence in a b-metric space (X, d, ; s) is a sequence (xn) in X which

is satisfying limm,n→∞ d(xn, xm) = 0.
By the s-triangle inequality, it easy to show that every convergent sequence is

Cauchy.
The b-metric space (X, d; s) is said to be complete if every Cauchy sequence

converges to some x ∈ X.
By a completion of a b-metric space (X, d; s) one understands a complete b-

metric space (Y, ρ; s′) such that there exists an isometric embedding j : X → Y
such that j(X) dense in Y .

By an isometric embedding of a b-metric space (X1, d1; s1) into a b-metric space
(X2, d2; s2) one understands a mapping f : X1 → X2 such that

d2(f(x), f(y)) = d1(x, y) , ∀x, y ∈ X1.

It seems that the problem of completeness of b-metric spaces is still open (see [8]).
Concerning the completeness of strong b-metric spaces, the following question

raised in [28, p. 128] is: Does every strong b-metric space admit a completion?
This question was answered in the affirmative in [8].

2.3. Historical note. It seems that the birthday of b-metrics is the year 1970.
According to [16], the b-metrics were known under different names since the year
1970 in the work of Coifman and de Guzman [17] on spaces of homogeneous type.
See also the subsequent works by Maćıas and Segovia [30, 31] on the same topic.

In 1989, Bakhtin (see [10]) established the contraction mapping principle in
quasimetric spaces. (i.e., in b-metric spaces).

In 1993, Czerwick studied contraction mappings in b-metric spaces with pa-
rameter s = 2 (see [19, 20]).

In 2010, Khamsi and Hussain [26] reintroduced the concept of a b-metric space
under the name metric-type space. (See also [27]).
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2.4. Some references. Concerning other complements and results from the
general theory of b-metric spaces and fixed point theory on them, there is now a
very extensive and fast growing-up literature with a lot of research papers, books
(see for example [28]) and surveys on this interesting topic. For instance, one is
invited to consult the nice survey by S. Cobzaş [16] and the rich list of references
therein.

During the two last decades many authors were interested by fixed point theory
in b-metric spaces. In [13], Ekeland’s variational principle was investigated for a
class of b-metric spaces. In [6] and [7] the author introduced some classes of implicit
relations on b-metric spaces and used them to investigate fixed points of a pair of
maps. In [35] (see also [11]) fixed points for ϕ-contractions were studied.

In [46] fixed points in b-metric spaces for four maps satisfying Ćirić and Hardy-
Rogers type conditions are discussed. An extension of a fixed point theorem of
Reich is done in [33]. In [34], fixed points for TAC-contractive mappings ([15])
are investigated in b-metric spaces. In [9], some fixed point theorems for C-class
functions in b-metric spaces were investigated. In [18], some general fixed point
results in compact or ordered b-metric spaces were established. In [40], Geraghty

and Ćirić type fixed point theorems in b-metric spaces were provided. Recently, in
[32] the authors studied (in b-metric spaces) Caristi-Kirk type and Boyd& Wong-
Browder-Matkowski-Rus type fixed point results.

It is not possible to quote all works connected to fixed point theory in b-metric
spaces. We have just gathered a few of them dealing with general fixed or common
fixed point results close to the spirit of this work. I apologize for the non cited
papers dealing with generalizations of b-metric spaces, set-valued maps, coupled
fixed points, cyclic maps and many other specific topics.

3. Some definitions

In this section, we extend some definitions and concepts already known for
maps on usual metric spaces to the more general setting of b-metric spaces.

We start by the so-called property (W.T). This property was introduced in [5]
for two selfmappings of a metric space. It is easily extended to the case of b-metric
spaces as follows.

Let (X, d; s) be a b-metric space with constant s > 1 and let S and T be
selfmappings of (X, d).

Definition 3.1. Let (X, d; s) be a b-metric metric space and let S, T : X → X
be selfmappings. S and T are said to be weakly tangential if there exists a sequence
{xn} of points in X such that limn→∞ d(Sxn, Txn) = 0.

We say also that the pair {S, T} satisfies the property (W.T).

The compatibility property introduced by Jungck (see Jungck [24]) for usual
metrics may also be extended to the b-metric case:

The selfmappings S and T of a b-metric space (X, d; s) are called compatible
if, limn→∞ d(STxn, TSxn) = 0, whenever {xn} is a sequence in X such that:
limn→∞ Sxn = limn→∞ Txn = t, for some t in X.
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This concept was frequently used to establish existence theorems of common
fixed points in the case of metric spaces. The study on common fixed point theory
for noncompatible mappings is also interesting. Work along these lines has been
initiated by Pant [37], [38], [39].

It is clear that two selfmappings S, T of a b-metric space (X, d; s) will be non-
compatible if there exists at least one sequence {xn} in X such that limn→∞ Txn =
limn→∞ Sxn = t, for some t ∈ X but limn→∞ d(STxn, TSxn) is either non-zero
or not exists.

Thus, if S, T are non noncompatible selfmappings of (X, d; s), then the pair
{S, T} satisfies the property (W.T).

The property (E.A) introduced in 2002 by Aamri and Moutawakil [2] for metric
spaces can also be extended to b-metric spaces as follows.

Definition 3.2. Let S and T be two selfmappings of a b-metric space (X, d; s).
We say that S and T satisfy property (E.A) if there exists a sequence {xn} in X
such that limn→∞ Txn = limn→∞ Sxn = t, for some t ∈ X.

It is easy to see that if S and T satisfy the property (E.A) then they also satisfy
the property (W.T).

The concept of asymptotically regular selfmapping introduced by Browder and
Petryshyn (see [14]) in metric spaces can also be extended to the setting of b-
metric spaces as follows.

Definition 3.3. Let T be a selfmapping of a b-metric space (X, d; s). Then,
T is said to be asymptotically regular at a point x in X, if

lim
n→∞

d(Tnx, TnTx) = 0,

where Tnx denotes the n-th iterate of T at x.

We denote I the identity mapping. We observe that if T is asymptotically
regular at the point x, then the mappings T and I are weakly tangential. Thus, the
property (W.T) generalizes also the concept of asymptotically regular mappings.

The concept of asymptotically regular selfmaps of a metric space was extended
to the case of a pair of selfmappings of a metric space as follows:

Let (X, d) be a metric space, T and S be selfmappings on X, with T (X) ⊂
S(X). Let x0 be a given point in X. Choose a point x1 in X such that Sx1 = Tx0.
This can be done since T (X) ⊂ S(X). Continuing this process, having chosen
x1, . . . xk, we choose xk+1 in X such that

Sxk+1 = Txk, k = 0, 1, 2, . . . .

The sequence {Sxn} is called a T -sequence with initial point x0.
In [1] the following definition is given.

Definition 3.4. Let T and S be selfmappings on a metric space X, with
T (X) ⊂ S(X) and x0 ∈ X. A mapping T is said to be asymptotically S-regular at
point x0 if limn→+∞ d(Sxn, Sxn+1) = 0, where {Sxn} is a T -sequence with initial
point x0.
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As before this definition may be extended to the setting of b-metric spaces. It
is then evident to see that if a mapping T is asymptotically S-regular at point x0

in a b-metric space (X, d), then the pair {S, T} satisfies the property (W.T).
In 1984, Rhoades et al. (see [45]) first introduced the following definition.

Definition 3.5. Let T and S be selfmappings on a metric space (X, d).
A sequence (xn)n>0 in X is said to be asymptotically S-regular with respcet

to T if limn→+∞ d(Txn, Sxn) = 0.

When T is the identity map, the above definition reduces to the that of Engl [21].
We notice that Definition 2.5 is more general than Definition 2.4.
As above, it is natural to extend Definition 2.5 to b-metric spaces.

Definition 3.6. Let T and S be selfmappings on a b-metric space (X, d; s).
A sequence (xn)n>0 in X is said to be asymptotically S-regular with respcet

to T if limn→+∞ d(Txn, Sxn) = 0.

Thus if T and S are selfmappings of a b-metric space (X, d; s) have an asymp-
totically S-regular sequence in X with respcet to T , then the pair {S, T} is weakly
tangential.

In the case of metric spaces, it was shown (see [5]) through some examples that
the notion of weakly tangential mappings is actually new.

As we see, the property (W.T) generalizes the property of noncompatiblity, the
property (E.A) and the property of asymptotic regularity.

The property (W.T) generalizes also the property of asymptotically S-regular
mappings and asymptotically S-regular sequences.

Jungck (see [25]) introduced the concept of weak compatibility for a pair of
selfmappings of a metric space. This concept is easily extended to b-metric spaces.

Definition 3.7. Two selfmappings S and T of a b-metric space (X, d; s) are
said to be weakly compatible if Tu = Su, for some u ∈ X, then STu = TSu.

4. Main result

The main result of this paper reads as follows.

Theorem 4.1. Let (X, d; s) be a complete b-metric space with constant s > 1.
Let {A,S} and {B, T} be two weakly compatible pairs of selfmappings of (X, d)
satisfying the following conditions:

(H.1) AX ⊆ TX and BX ⊆ SX,
(H.2) AX ∩BX ⊂ T (X) ∪ S(X).
(H.3) d(Ax,By) 6 k σ(x, y), for all x, y ∈ X, where k is such that 0 6 k < κ(s),
with κ(s) := 1

s(1+s+s2) .

If one of the pairs {A,S} or {B, T} satisfies the property (W.T), then A,B, S
and T have a unique common fixed point (say) z ∈ X.

Moreover, if the map S (resp. T ) is continuous at the common fixed point z,
then the map A (resp. B) is continuous at this point.
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Proof. (I) Suppose that the pair {A,S} satisfies the property (W.T). Then
there exists a sequence {xn} in X such that

(4.1) lim
n→∞

d(Axn, Sxn) = 0,

(1) First we show that the pair {B, T} satisfies the property (W.T).
Indeed, since AX ⊆ TX, then for each integer n, there exists yn in X such

that

(4.2) Axn = Tyn.

By using (H.3), we have

d(Axn, Byn) 6
k[d(Sxn, T yn) + d(Axn, Sxn) + d(Byn, T yn) + d(Sxn, Byn) + d(Axn, T yn)].

By using (4.2) and the s-triangle inequality, we obtain after easy computations, the
following inequality

(4.3) d(Axn, Byn) 6
(s+ 2)k

1− (1 + s)k
d(Axn, Sxn).

We observe that 0 < 1− (1 + s)k.
By letting n to infinity in (4.3)(4.3), we obtain

(4.4) lim
n→∞

d(Axn, Byn) = 0.

By (4.1) and (4.4), we get

(4.5) lim
n→∞

d(Axn, Sxn) = 0 = lim
n→∞

d(Byn, T yn).

(4.5) shows that both pairs {A,S} and {B, T} satisfy the property (W.T).

(2) Next, we prove that the sequence {Axn} is a Cauchy sequence.
By using the assumption (H.3) and the s-triangle inequality, we have

d(Axm, Axn) 6 s[d(Axm, Byn) + d(Byn, Axn)]

6 sk[d(Sxm, T yn) + d(Sxm, Axm) + d(Tyn, Byn) + d(Sxm, Byn)

+ d(Axm, T yn)] + sd(Axn, Byn)

6 sk[s[d(Sxm, Axm) + d(Axm, Axn)] + d(Sxm, Axm) + d(Tyn, Byn)

+ sd(Sxm, Axm) + s2d(Axm, Axn) + s2d(Axn, Byn) + d(Axm, Axn)]

+ sd(Axn, Byn)

= s(1 + 2s)kd(Sxm, Axm) + s(1 + k(1 + s2))d(Axn, Byn)

+ s(1 + s+ s2)kd(Axm, Axn).

Therefore, we have
(4.6)

d(Axm, Axn) 6
s(1 + 2s)k

1− s(1 + s+ s2)k
d(Sxm, Axm) +

s(1 + k(1 + s2))

1− s(1 + s+ s2)k
d(Axn, Byn).

From (4.5) and (4.6), we deduce that

lim
n,m→∞

d(Axm, Axn) = 0,
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which implies that the sequence {Axn} is a Cauchy sequence.

Since X is complete, then there exists a point (say) z in X such that the
sequence {Axn} converges to z. By virtue of (4.2) and (4.5), we conclude that we
have

(4.7) z = lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn.

(3) Next, we show that z is a common fixed point for the selfmappings A,B, S
and T .

Indeed, by virtue of (H.2) and (4.7) we deduce that z ∈ T (X) ∪ S(X).
There are two cases:
(a) Suppose that z ∈ T (X), then there exists u ∈ X such that z = Tu. By

applying (H.3), we get

d(Axn, Bu) 6 k[d(Sxn, Tu)+d(Axn, Sxn)+d(Bu, Tu)+d(Sxn, Bu)+d(Axn, Tu)],

which, by application of the s-triangle inequality, gives

d(Axn, Bu) 6 k[(1 + s)d(Sxn, z) + (1 + s)d(Bu, Tu) + d(Axn, Sxn) + d(Axn, z)],

which, by letting n → ∞, implies that

lim sup
n→+∞

d(Axn, Bu) 6 (1 + s)kd(Tu,Bu).

On the other hand, we have

(4.8) d(Tu,Bu) 6 s[d(z,Axn) + d(Axn, Bu)], ∀n > 0.

which gives

(4.9) d(Tu,Bu) 6 s lim sup
n→+∞

d(Axn, Bu)

From (4.8) and (4.9), we infer that

(4.10) (1− s(1 + s)k)d(Tu,Bu) 6 0.

Since 0 6 k < 1
s(1+s+s2)k , then 1− s(1 + s)k > 0. Therefore it follows from (4.10)

that d(Tu,Bu) = 0. That is Tu = Bu. Thus, we have z = Tu = Bu.

Since B(X) ⊂ S(X), then there exists v ∈ X such that Bu = Sv. Then
z = Tu = Bu = Sv. By applying the inequality (H.3), we get

d(Av, Sv) = d(Av,Bu)

6 k[d(Sv, Tu) + d(Av, Sv) + d(Bu, Tu) + d(Sv,Bu) + d(Av, Tu)]

= 2kd(Av, Sv),

which implies that Av = Sv. Because 2k < 1. Hence, we obtain

(4.11) z = Tu = Bu = Sv = Av.

(b) Suppose that z ∈ S(X). Then all conclusions in (4.11) will be obtained by
similar arguments to those used in the case (a) above.

Since {A,S} and {B, T} are weakly compatible, it follows that

(4.12) Bz = Tz and Az = Sz
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Now, by using (4.12), we show that z = Az. To this end, we start by observing
that

σ(z, u) = d(Sz, Tu) + d(Az, Sz) + d(Bu, Tu) + d(Sz,Bu) + d(Az, Tu) = 3d(Az, z).

So, by virtue of the assumption (H.3), we get

d(Az, z) = d(Az,Bu) 6 kσ(z, u) = 3kd(Az, z),

which (since k ∈ [0, 1
3 ) implies that d(Az, z) = 0. Thus we get z = Az. Hence, we

obtain z = Az = Sz.

Now, we show that z = Bz. To this end, we observe that

σ(v, z) = d(Sv, Tz) + d(Av, Sv) + d(Bz, Tz) + d(Sv,Bz) + d(Av, Tz)

= d(z,Bz) + d(z,Bz) + d(z,Bz) = 3d(z,Bz).

By virtue of the assumption (H.3), we get

d(z,Bz) = d(Av,Bz) 6 kσ(v, z) = 3kd(z,Bz),

which implies that d(Bz, z) = 0. Thus we have z = Bz = Tz. Hence, we have

z = Bz = Tz = Az = Sz.

We conclude that z is a common fixed point for A,B, S and T .

(II) If we suppose that the pair {B, T} satisfies the property (W.T), then by
using arguments similar to ones invoked in (I), we obtain the same conclusions as
in (I).

(III) It remains to prove the uniqueness of the fixed common fixed point z.
Suppose that w is another common fixed point for the mappings A,B, S and T ,
such that w ̸= z. Obviously we have σ(w, z) = 3d(w, z) > 0. Then, by applying
the condition (H 3), we obtain

d(w, z) = d(Aw,Bz) 6 kσ(w, z) = 3kd(w, z),

which is a contradiction. So the mappings A,B, S and T have a unique common
fixed point.

(IV) Suppose that S is continuous at the point z. Let (xn) be a sequence
converging to z. By using (H 3), for every integer n, we have

d(Axn, z) 6 k[d(Sxn, z) + d(Axn, Sxn) + d(Sxn, z) + d(Axn, z)]

6 k[2d(Sxn, z) + s(d(Axn, z) + d(z, Sxn)) + d(Axn, z)]

= k(2 + s)d(Sxn, z) + k(1 + s)d(Axn, z),

which infers (as k(1 + s) < 1) the following inequality:

(4.13) d(Axn, z) 6
k(2 + s)

1− k(1 + s)
d(Sxn, z).

By letting n → +∞ in the inequality (4.13), we get limn→+∞ d(Axn, z) = 0.
According to the observation (2-d), this implies the continuity of A at the point z.

If T is continuous at z, then one can prove as in (IV) above the continuity of
B at z. This completes the proof. �
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As a consequence, we have the following.

Corollary 4.1. Let {A,S} and {B, T} be two weakly compatible pairs of
selfmappings of a complete b-metric space (X, d; s) with constant s > 1 such that
(H1) : AX ⊆ TX and BX ⊆ SX,
(H2) : AX ∩BX ⊂ T (X) ∪ S(X).
(H3) : d(Ax,By) 6 k σ(x, y), for all x, y ∈ X, where k is such that 0 6 k < κ(s),
with κ(s) := 1

s(1+s+s2) .

If one of the following four conditions is satisfied.
(i) A and S are noncompatible, or
(ii) the pair {A,S} satisfies the property (E.A), or
(iii) B and T are noncompatible, or
(iv) the pair {B, T} satisfies the property (E.A).

Then the mappings A,B, S and T have a unique common fixed point.
Moreover, if the map S (resp. T ) is continuous at the common fixed point z,

then the map A (resp. B) is continuous at this point.

Remark 4.1. Suppose that {A,S} and {B, T} are two pairs of selfmappings
of a b-metric space (X, d; s) satisfying:
(i) : AX ⊆ TX and BX ⊆ SX,
(ii) : one of AX, BX, SX or TX is a closed subspace of (X, d).

Then we have
(H.2) : AX ∩BX ⊂ T (X) ∪ S(X).

Hence, Theorem 4.1 generalizes and extends Theorem 1.1 to b-metric spaces.
We end this section by giving an illustrative example.

Example 4.1. Let X := [0,+∞) be equipped with the b-metric d given by

d(x, y) := |x− y|3 or all x, y ∈ X. The parameter of d is s = 4. We have κ(4) = 1
84 .

We define four maps A,B, S and T on X by setting

A(x) :=
1

2
ln(1 + x), B(x) :=

1

2
ln(1 +

x

4
),

S(x) := e4x − 1, T (x) := ex − 1.

Then we have:
(1) The b-metric space (X, d; 4) is complete.
(2) AX = BX = SX = TX = X.
(3) From (2) and (1), we deduce that the assumptions (H 1) and (H 2) are

satisfied.
(4) The pair {A,S} is weakly compatible. Indeed, for all x ∈ X, we have

Ax = Sx ⇐⇒ 1

2
ln(1 + x) = e4x − 1 ⇐⇒ x = 0,

In that case, we have AS(0) = SA(0) = 0.
(5) Similarly, the pair {B, T} is weakly compatible.
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(6) Choose a sequence xn in (0,+∞) such converging to zero in the b-metric
space (X, d; 4), (for instance xn := 1

n+1 for all n > 0). Then we have

lim
n→+∞

d(A(xn), S(xn)) = lim
n→+∞

∣∣∣∣12 ln(1 + xn)− e4xn + 1

∣∣∣∣3 = 0,

which shows that the pair {A,S} satisfies the property (W.T).
(7) For all x, y ∈ X, we have

d(Ax,By) = |Ax−By|3 =
1

8

∣∣∣ln(1 + x)− ln(1 +
y

4
)
∣∣∣3

6 1

8

∣∣∣x− y

4

∣∣∣3 =
1

8× 64
|4x− y|3

6 1

8× 64

∣∣e4x − ey
∣∣3 =

1

512
d(Sx, Ty)

6 1

512
[d(Sx, Ty) + d(Sx,Ax) + d(Ty,By) + d(Sx,By) + d(Ty,Ax)] .

So the assumption (H 3) is satisfied with k = 1
512 < κ(4) = 1

84 .
All conditions of Theorem 4.1 are fulfilled and the unique common fixed point

of the selfmappings A,B, S and T is zero.

5. Well-posedness

After the works of F.S. De Blasi and J. Myjak [12] and of S. Reich and A.J.
Zaslavski [44], many authors have been interested by the study of well-posednes of
fixed point problems (see [29], [42], [47], [41], [43], [3], [4], [5] and [1]).

Definition 5.1. Let (X, d) be a metric space and T : (X, d) → (X, d) be a
mapping. The fixed point problem of T is said to be well posed if:

(i) T has a unique fixed point z in X,
(ii) for any sequence {xn} of points in X such that limn→∞ d(Txn, xn) = 0, we

have limn→∞ d(xn, z) = 0.

The following definition is a natural extension of Definition 4.1 to the case of
b-metric spaces.

Definition 5.2. Let (X, d) be a b-metric space with constant s > 1. Let A
be a set of selfmappings T : X → X. The fixed point problem of the collection A
is said to be well-posed if:

(i) the set A has a unique strict fixed point z in X,
(ii) for any sequence {xn} of points in X such that

lim
n→∞

d(Txn, xn) = 0, ∀T ∈ A,

we have limn→∞ d(xn, z) = 0.

According to this definition, we investigate the well-posedness of the common
fixed point problem for the set of four selfmappings A,B, S, T of a b-metric space
(X, d; s) satisfying the conditions of Theorem 4.1.
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Theorem 5.1. Let {A,S} and {B, T} be two weakly compatible pairs of self-
mappings of a complete b-metric space (X, d; s) such that
(H1) : AX ⊆ TX and BX ⊆ SX,
(H2) : AX ∩BX ⊂ T (X) ∪ S(X).
(H3) : d(Ax,By) 6 k σ(x, y), for all x, y ∈ X, where k is such that 0 6 k <

1
s(1+s+s2) .

If one of the pairs {A,S} or {B, T} satisfies the property (W.T), then the fixed
point problem of A,B, S and T is well-posed..

Proof. By Theorem 4.1, we know that the mappings A,S,B, T have a unique
common fixed point z in X. Let {un} be a sequence in X such that

lim
n→∞

d(Aun, un) = lim
n→∞

d(Sun, un) = lim
n→∞

d(Bun, un) = lim
n→∞

d(Tun, un) = 0.

We have to show that limn→∞ d(un, z) = 0. By using the inequality (H 3) and the
s-triangle inequality, we have successively

d(un, z) 6 sd(un, Aun) + sd(Aun, Bz)

6 sd(un, Aun) + sk[d(Sun, z) + d(Sun, Aun) + 0 + d(Sun, z) + d(Aun, z)]

6 sd(un, Aun) + sk[3sd(Sun, un) + 3sd(un, z) + 2sd(Aun, un)]

= 3ks2d(un, z) + 3ks2d(Sun, un) + s(1 + 2ks)d(Aun, un),

from which we obtain

(5.1) d(un, z) 6
3ks2

1− 3ks2
d(Sun, un) +

s(1 + 2ks)

1− 3ks2
d(Aun, un), ∀n > 0.

The inequality (5.1) holds true because 1− 3ks2 > 0.
Letting n go to infinity in (5.1), we get

lim
n→∞

d(un, z) = 0,

which implies that the strict fixed point problem for the mappings A,B, S, T is well
posed. �

6. An open problem

Let (X, d; s) with constant s > 1. Let {A,S} and {B, T} be two weakly
compatible pairs of selfmappings of X satisfying the assumptions (H 1) and (H 2).
We know that all the results of Theorems 4.1 and 5.1 are true, if the maps satisfy
(H3) : d(Ax,By) 6 k σ(x, y), for all x, y ∈ X, where k is such that 0 6 k <

1
s(1+s+s2) .

We raise the question: The constant κ(s) := 1
s(1+s+s2) is it the better bound ?

In another manner, what is the optimal bound for k to obtain the conculsions
of Theorem 4.1 and Theorem 5.1. ?
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Cerc. St. Ser. Mat. Univ. Bacǎu, 16(2006), Suppl. 209–214.
[43] V. Popa. Well-Posedness of Fixed Point Problem in Compact Metric Spaces. Bul. Univ.

Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., 60(1)(2008), 1–4.
[44] S. Reich and A.J. Zaslavski. Well-posednes of fixed point problems. Far East J. Math. Sci.,

Special volume 2001, Part III, (2001), 393–401.
[45] B. E. Rhoades, S. Sessa, M. S. Khan and M. D. Khan. Some fixed point theorems for Hardy-

Rogers type mappings. Int. J. Math. Math. Sci., 7(1)(1984), 75–87.
[46] J. R. Roshan , N. Shobkolaei, S. Sedghi and M. Abbas. Common fixed point of four maps

in b-metric spaces. Hacettepe Journal of Mathematics and Statistics, Volume 43(4)(2014),

613–624.
[47] I. A. Rus. Picard operators and well-posedness of fixed point problems. Studia univ. Babes-

Bolyai, Mathematica, 52(3)(2007), 147–156.

Receibed by editors 12.11.2018; Revised version 15.01.2019; Available online 21.01.2019.

Faculty of Sciences-Semlalia, Department of Mathematics, University Cadi Ayyad,
Marrakech, Morocco (Maroc).

E-mail address: akkm555@yahoo.fr


