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CONSTRUCTIVE EFFECTS OF NOISE IN L-G PREY

PREDATOR MODEL WITH S-H FUNCTIONAL

RESPONSE WITH HARVESTING ON PREY

V. Madhusudanan and M. N. Srinivas

Abstract. In this paper, we consider a three-species Leslie-Gower prey-preda-
tor nutrition cable ideal with harvesting and Sokol-Howell functional response
is proposed. Existences of possible steady states with stability analysis of in-

terior equilibrium point are examined. We also analyzed the impact of noise
and harvesting on the dynamics of the planned nutrition chain structure. Nu-
merical simulations are being carried out through Mat lab.

1. Introduction

Nonlinear mathematical modelling is more attractive and popular in biological
research trends.Deterministic computational strategies are extensively recycled to
comprehend the dynamic forces of interrelating species. They reveal similar dy-
namical behaviours such as interior steady state, steadiness of local and global and
limit cycle attractor. The rising basic needs, such as nutrition and resources leads
to an enormous exposure of several ecological resources. Whereas another side huge
need of protective measures are required to save the ecosystem from environmen-
tal constraints. A pioneer work Lotka-Volterra predator-prey model, proposed by
Lotka [19] and Volterra [31] independently, is the first and simplest mathematical
model. The Lotka-Volterra predator-prey model has not mapped with many real
world problems and complex situations, so a number of changes in the model have
been done by many researchers to improve the real world solutions. Out of those
innovative research contents and techniques one of the wide range solution provider
model or an improvised innovative model is proposed and analysed by Leslie and
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Gower [14] a predator-prey model. Which becomes more prominent and popu-
larized as L-G (Leslie-Gower) predator prey model, in which the predator growth
function is different from the predator predation function. Many Scientists assumed
that the growth rate of predator is described by a function of the ratio of predators
and their prey. Hsu and Huang [10, 11] studied this model and showed that the
scheme has unique affirmative steady state and is globally stable under all biolog-
ically admissible parameters. May [20] improved the Leslie Gower predator-prey
model by replacing the Holling type-I functional response by Holling type - II. Many
Scientists contributed more innovative and inspirable modified models studied in
the predator-prey structure with the Leslie–Gower scheme [12] - [16]. Mathemat-
ical revisions for a Leslie-Gower type models studied by many researchers. Many
authors [12]-[28] modified and improvised more creatively the L-G model to obtain
remarkable results and observations under certain environments which guarantee
the global steadiness of the affirmative steady state for a predator-prey model with
altered L-G and Holling type functional response scheme. Most of the inspirable
studies done by many scientists [20] - [2] are more remarkable and further ex-
tendable with new techniques. The recent and informative research methodologies
carried out by few researchers [22] - [23] are more creative and innovative in wide
range experimental areas which inspires us to simulate and analyse the present
model both theoretically and graphically.

The real world problems becomes more complex and arises the need and nec-
essary situation for better and improved results in theoretical studies as well as in
simulated graphical illustrations also which leads to an innovative concept - func-
tional response is indulged in to the system for effective results, done by [25] - [13].
Modified L-G type model with Sokol–Howell functional response under environ-
mental constrainable influence and harvesting influence - a new approach, which is
not studied so far as per our literature collection.

This article is planned as follows: in Segment 2, the scientific model is defined.
In Segment 3, the boundedness conditions are examined. Exploration of steady
states of the structure is derived in Segment 4. In Segment 5, local stability is
being discussed using Routh-Hurwitz criteria. Stochastic stability is discussed in
Segment 6. In Segment 7, numerical study is carried out to obtain the behaviour
of the model. Lastly, the article finishes with concluding remarks in Segment 8.

2. Mathematical Model

We defined the 3-species nourishment cable model at time t comprising of the
prey population density denoted by N1(t) the predator population density denoted
by N2(t), and the top predator whose population density denoted by N3(t). The
predator N2(t) preys on its sole food N1 at the lower level according to simplified
Holling type IV functional response, while the top predator N3 preys on N2 at the
second level according to the modified Leslie-Gower type. The dynamics of the
ideal described above can be symbolized by the following set of equations:

(2.1)
dN1

dt
= α0N1 − β0N

2
1 − γ0N1N2

c0 +N2
1

− q1E1N1
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(2.2)
dN2

dt
=

γ1N1N2

c1 +N2
1

− γ2N2N3

c2 +N2
− α1N2 − ηN2

2

(2.3)
dN3

dt
= c4N

2
3 − γ3N

2
3

c3 +N2

where α0 represent intrinsic growth rate of prey, α1 represents intrinsic death rate
of predator,β0 represents intra-specific competition among prey species, q1 repre-
sents catch ability coefficients of prey, γi(i = 0 − 3) and are the maximum values
attainable by each per capita rate. ci(i = 0−4) are positive constants.E1 represents
the effort applied to harvest the prey populations.

(2.4) N1(0) > 0, N2(0) > 0, N3(0) > 0

3. Positive invariance and boundedness

Feasibility or biologically positivity studies aim to objectively and rationally
uncover the strength of the proposed model in the given environment. Biologically
positive insures the population never become negative and population always sur-
vive. The following theorems ensure that the positivity and boundedness of the
system (2.1) - (2.3).

Theorem 3.1. Every solution (N1(t), N2(t), N3(t)) of (2.1)− (2.3) with con-
dition (2.4) is positive invariant.

Proof. From (2.1) it is observed that

dN1

N1
=

[
α0 − β0N1 −

γ0N2

c0 +N2
1

− q1E1

]
dt = ϕ1(N1, N2)dt (say),

where ϕ1(N1, N2) = α0 − β0N1 − γ0N2

c0+N2
1
− q1E1.

Integrating in the region [0, t] we get

N1(t) = N1(0) exp

(∫
ϕ1(N1, N2)dt

)
> 0 for all t.

From (2.2), it is observed that

dN2

N2
=

[
γ1N1

c1 +N2
1

− γ2N3

c2 +N2
− α1 − ηN2

]
dt = ϕ2(N1, N2, N3)dt (say),

where ϕ2(N1, N2, N3) =
γ1N1

c1+N2
1
− γ2N3

c2+N2
− α1 − ηN2. Integrating in the region [0, t]

we get

N2(t) = N2(0) exp

(∫
ϕ2(N1, N2, N3)dt

)
> 0 for all t.

From (2.3), it is observed that

dN3

N3
=

[
c4N3 −

γ3N3

c3 +N2

]
dt = ϕ3(N2, N3)dt (say)
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where ϕ3(N2, N3) = c4N3 − γ3N3

c3+N2
. Integrating in the region [0, t] we get

N3(t) = N3(0) exp

(∫
ϕ3(N2, N3)dt

)
> 0 for all t.

Hence, all solutions starting from interior of the first octant In (R+) remain
positive in it for future time. This completes the proof �

Theorem 3.2. Every non-negative solutions of (2.1)−(2.3) that initiate in ℜ3
+

are uniformly bounded.

Proof. LetN1(t), N2(t), N3(t) be any solution of the system (2.1)-(2.3). Since,
from (2.1) dN1

dt 6 N1(α0 − β0N1), we have

lim
t→∞

supN1 (t) 6
α0

β0
.

Let w = N1 +
γ0

γ1
N2 + αN3. Differentiate with respect to t we get

dw

dt
=

dN1

dt
+

γ0
γ1

dN2

dt
+ α

dN3

dt
.

Substituting (2.1)-(2.3) in above equation, we obtain

dw

dt
+ θw 6 α0

β0
+

α0

4α1β0
+

N

α1

dw

dt
+ θw 6 µ since

α0

β0
+

α0

4α1β0
+

N

α1
= µ(say))

Applying Lemma on differential in equalities, we obtain

0 6 w (N1, N2, N3) 6 (µ/θ)
(
1− e−θt

)
+
(
w (N1 (0) , N2 (0) , N3 (0)) /e

θt
)

and for t → ∞ we have 0 6 w(N1, N2, N3) 6 (µ/θ). Hence every solutions of
system (2.1)-(2.3)enter the region

Γ =

{
(N1, N2, N3) ∈ R3

+ : 0 6 N1 6 α0

β0
, 0 6 w 6 (µ/θ) + ε, ∀ε > 0

}
.

This completes the proof. �

4. Steady state analysis

For the system (2.1)-(2.3) the possible steady states are

(1) E0 (0, 0, 0), (2) E1

(
Ñ1, 0, 0

)
, (3) E2

(
N̄1, N̄2, 0

)
, (4) E3 (N

∗
1 , N

∗
2 , N

∗
3 ).

(I) In the absence of species, i.e. E0 (0, 0, 0), the system is always exists.

(II) In the absence of predator species only, i.e E1

(
Ñ1, 0, 0

)
(4.1) Ñ1 =

1

β0
(α0 − q1E1)

and for Ñ1 to be positive if

(4.2) α0 > (q1E1)



CONSTRUCTIVE EFFECTS OF NOISE IN L-G PREY PREDATOR MODEL ... 177

(III) In the absence of top predator species, Existence Of E2(N̄1, N̄2, 0)

(4.3)
dN1

dt
= N1

[
α0 − β0N1 −

γ0N2

c0 +N2
1

− q1E1

]

(4.4)
dN2

dt
= N2

[
γ1N1

c1 +N2
1

− γ2N3

c2 +N2
− α1 − ηN2

]
For the above steady state dN1

dt = dN2

dt = 0
Then From equation (4.4), we have

(α1 + ηN2)N
2
1 − γ1N1 + (c1α1 + c1ηN2) = 0.

This implies that

N̄1 =
γ1 ±

√
γ2
1 − 4c1 (α1 + ηN2)

2

2 (α1 + ηN2)
.

For N̄1 to be positive if γ2
1 > 4c1 (α1 + ηN2)

2
i.e., γ1 > 2

√
c1 (α1 + ηN2) From

equation (4.3), we have

α0 − q1E1 − β0N1 =
γ0N2

c0 +N2
1

.

which implies that

N̄2 =
1

γ0

[
(α0 − q1E1 − β0N1)

(
c0 +N2

1

)]
For N̄2 to be positive if α0 − q1E1 > β0N1 i.e α0−q1E1

β0
> N̄1.

Assume that α0 − q1E1 > 0 throughout our analysis
(IV) The positive steady state E3 (N

∗
1 , N

∗
2 , N

∗
3 ) exists in interior of the first

octant if and only if there is a positive solution of the following equations

(4.5) g1 = α0 − β0N1 −
γ0N2

c0 +N2
1

− q1E1 = 0

(4.6) g2 =
γ1N1

c1 +N2
1

− γ2N3

c2 +N2
− α1 − ηN2 = 0

(4.7) g3 = c4N3 −
γ3N3

c3 +N2
= 0

From (4.7),

(4.8) N∗
2 =

γ3 − c4c3
c4

For (N2)
∗ to be positive if

(4.9) γ3 > c4c3

from (4.5), let N∗
1 is the positive root of the equation

(4.10) h(N1) = N3
1 +A1N

2
1 +B1N1 + C1N1 = 0

where A1 = − (α0−q1E1)
βo

; B1 = c0; C1 = 1
β0

[γ0N
∗
2 − c0(α0 − q1E1)]
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Now since 0 6 N∗
1 6 α0−q1E1

β0
, then h(0) = C1 < 0 if

(4.11) N∗
2 <

c0
γ0

(α0 − q1E1)

h
(

α0−q1E1

β0

)
=

γ0N
∗
2

β0
> 0. Thus h(0)h

(
α0−q1E1

β0

)
< 0. Then there is a positive

root of h(N1) = 0 lies in
(
0, α0−q1E1

β0

)
, when

N∗
2 < c0

γ0
(α0 − q1E1) is satisfied.

From (4.6), it is observed that

(4.12) N∗
3 =

c2 +N∗
2

γ2

[
γ1N

∗
1

(c1 + (N∗
1 )

2)
− α1 − ηN∗

2

]
For N∗

3 is to be positive if

(4.13) α1 <
γ1N

∗
1

c1 + (N∗
1 )

2
− ηN∗

2

Thus the positive steady state E3 (N
∗
1 , N

∗
2 , N

∗
3 ) exists, if (4.11), (4.12) and(4.13)

exists.

5. Local stability

In order to examine the dynamical performance of (2.1)-(2.3) near the interior
steady state, the jacobian matrix J(E3) of system (2.1)-(2.3) at E3 (N

∗
1 , N

∗
2 , N

∗
3 ) is

calculated as follows.

(5.1) J (E3 (N
∗
1 , N

∗
2 , N

∗
3 )) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where
(5.2)

a11 = −β0(N1)
∗ +

2γ0((N1)
∗)2(N2)

∗

((c0 + (N1)∗)2)2
; a12 =

−γ0(N1)
∗

((c0 + (N1)∗)2)2
; a13 = 0;

a21 =
γ1(c1 − ((N1)

∗)2)((N2)
∗)

((c1 + (N1)∗)2)
; a22 =

γ2(N3)
∗N∗

2

(c2 + (N2)∗)2
− ηN∗

2 ; a23 =
−γ2(N2)

∗

(c2 + (N2)∗)
;

a31 = 0; a32 =
γ3(N

∗
3 )

2

(c3 +N∗
2 )

2
; a33 = c4N

∗
3 − γ3N

∗
3

(c3 +N∗
2 )

.

The characteristic equation of the variational matrix (4.12) of the system (2.1)-
(2.3) is in the form of

(5.3) λ3 +Aλ2 +Bλ+ C = 0

where A = −(a11 + a22 + a33); B = a11a22 + a22a33 − a32a23 − a21a12; C =
a11a32a23 + a12a21a33 − a11a22a33 − a12a31a23. By Routh-Hurwitz criteria, the
steady state E2 (N

∗
1 , N

∗
2 , N

∗
3 ) is locally asymptotically stable if A > 0, C > 0,

(AB − C) > 0.
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For proving A > 0, C > 0, the following conditions should satisfy.

(5.4) β0 >
2γ0N

∗
1N

∗
2

(c0 + (N∗
1 )

2)
2

(5.5) η >
γ2N

∗
3

(c2 +N∗
2 )

2

and also for proving (AB − C) > 0, if

(5.6)

[
β0 −

2γ0N
∗
1N

∗
2

(c0 + (N∗
1 )

2)
2

][
γ2N

∗
3

(c2 +N∗
2 )

2 − η

]
>

γ0γ1
(
c1 −N2

1

)
(c1 +N2

1 )
2
(c0 +N2

1 )

Therefore, based on this analysis, the locally asymptotically stable in interior
R3

+ of the positive steady state E2 (N
∗
1 , N

∗
2 , N

∗
3 ) is deliberated in the subsequent

proposition.

Proposition 5.1. The positive interior steady state E3 (N
∗
1 , N

∗
2 , N

∗
3 ) is asymp-

totically locally stable provided the conditions (5.2)-(5.6) hold.

6. Stochastic analysis

Deterministic models are stable with a cyclic behavior in the common period
for the sizes of species population. Moreover these models may be inadequate
for capturing the exact variability in nature. In predator-prey model the random
fluctuations are also undeniably arising from either environmental variability or
internal species. In fact, biological systems are inherently random in nature and
noise play a vital role in the structure and function of such system. These ran-
dom fluctuations result in changing some degree of parameter in the deterministic
environment.Now we allow stochastic perturbations of the variables (N∗

1 , N
∗
2 , N

∗
3 )

around their values at the positive equilibrium E2. We consider the white noise
stochastic perturbations which are proportional to the distances of N1, N2, N3 from
N∗

1 , N
∗
2 , N

∗
3 . So the stochastically perturbed system (2.1) is given by

dN1 = (α0N1 − β0N
2
1 − γ0N1N2

c0 +N2
1

− q1E1N1)dt+ σ1(N1 −N∗
1 )dξ

1
t

(6.1) dN2 = (
γ1N1N2

c1 +N2
1

− γ2N2N3

c2 +N2
− α1N2 − ηN2

2 )dt+ σ2(N2 −N∗
2 )dξ

2
t

dN3 = (c4N
2
3 − γ3N

2
3

c3 +N2
)dt+ σ3(N3 −N∗

3 )dξ
3
t

where σi, i = 1, 2 are real constants, ξit = ξt(t), i = 1, 2 are independent (see
Standard Wiener processes [28]). We thoroughly studied the dynamical behavior
of ideal (2.1)-(2.3) with respect to stochasticity near E3 for (6.1) and comparing
the results with those obtained for (2.1)-(2.3).
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We will consider (6.1) as the Ito stochastic differential system. To analyze
the stochastic stability of E3, we consider the linear system of (6.1)around E3 as
follows:

(6.2) du(t) = f(u(t))dt+ g(u(t))dξ(t)

where u(t) = Col(u1(t), u2(t)) : f(u(t)) = J(u(t)) and

f (u(t)) =


−β0N

∗
1 +

2γ0(N
∗
1 )

2N∗
2

(c0+(N∗
1 )

2)2
−γ0N

∗
1

(c0+N∗
1 )

2) 0

γ1(c1−(N∗
1 )

2)N∗
2

(c1+(N∗
1 )

2)
γ2N

∗
3 N

∗
2

(c2+N∗
2 )

2 − ηN∗
2

−γ2N
∗
2

(c2+N∗
2 )

0
γ3(N

∗
3 )

2

(c3+N∗
2 )

2 c4N
∗
3 − γ3N

∗
3

(c3+N∗
2 )



g(u(t)) =

 σ1u1 0 0

0 σ2u2 0

0 0 σ3u3


... dξ(t) = col (ξ1(t), ξ2(t), ξ3(t));u1 = N1 −N∗

1 , u2 = N2 −N∗
2 , u3 = N3 −N∗

3

Let U = {(t > t0)×Rn, t0 ∈ R+}. Hence V2 ∈ C0
2 (U) is a continuous function

with respect to t and a twice continuously differentiable function with respect to
u. With reference to [28, 29], we have

(6.3) LV (t, u) =
∂V (t, u)

∂t
+ fT (u)

∂V (t, u)

∂u
+

1

2
Tr

(
gT (u)

∂V 2(t, u)

∂u2
g(u)

)
where T means transposition

(6.4)
∂V

∂u
= col

(
∂V

∂u1
,
∂V

∂u2
,
∂V

∂u3

)T

;
∂V 2(t, u)

∂u2
= col(

∂V 2

∂ui∂uj
); i, j = 1, 2, 3

Theorem 6.1. If there exists a function V2 ∈ C0
2 (U) satisfying the following

(6.5) M1 |u|p 6 V (t, u) 6 M2 |u|p ;LV (t, u) 6 −M3 |u|p Mi > 0, p > 0

Theorem 6.2. Suppose that

σ2
1 < 2

[
(β0N

∗
1 − 2γ0(N

∗
1 )

2(N∗
2 )

(c0+(N∗
1 )

2)2 )
]
, σ2

2 < 2
[
ηN∗

2 − γ2N
∗
3 N

∗
2

(c2+N∗
2 )

2

]
,

σ2
3 < 2

[
γ3N

∗
3

(c3+N∗
2 )

− c4N
∗
3

]
.

Then the zero solution of (6.2)is asymptotically mean square stable.

Proof. Let us consider the Lyapunov function

(6.6) V (u) =
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
, wi > 0

where wi are real +ve constants. Obviously inequalities (6.5) hold true with p =
2.
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Moreover the inequalities in (6.5)are true when p = 2 and we have
(6.7)

LV (u) = w1

(
(−β0N

∗
1 +

2γ0(N
∗
1 )

2N∗
2

(c0+(N∗
1 )

2)2 )u1 + (
−γ0N

∗
1

(c0+(N∗
1 )

2) )u2

)
u1

+w2

((
γ1(c1−(N∗

1 )
2)N∗

2

(c1+(N∗
1 )

2)

)
u1 +

(
γ2N

∗
3 N

∗
2

(c2+N∗
2 )

2 − ηN∗
2

)
u2 +

(
−γ2N

∗
2

(c2+N∗
2 )

)
u3

)
u2

+w3

((
γ3(N

∗
3 )

2

(c3+N∗
2 )

2

)
u2 +

(
c4N

∗
3 − γ3N

∗
3

(c3+N∗
2 )

)
u3

)
u3

+1
2Tr

(
gT (u)∂V

2(t,u)
∂u2 g(u)

)
We can easily observe that

∂2V

∂u2
=

 w1 0 0
0 w2 0
0 0 w3


and hence

gT (u)
∂V 2(t, u)

∂u2
g(u) =

 w1σ
2
1u

2
1 0 0

0 w2σ
2
2u

2
2 0

0 0 w3σ
2
3u

2
3


with

(6.8)
1

2
Tr

(
gT (u)

∂V 2(t, u)

∂u2
g(u)

)
=

1

2

(
w1σ

2
1u

2
1 + w2σ

2
2u

2
2 + w3σ

2
3u

2
3

)
From (6.8), we have if we choose N∗

1w1 = N∗
2w2 in (6.6)along (6.4) we get

LV (t, u) = −w1

[
(β0N

∗
1 − 2γ0(N

∗
1 )

2(N∗
2 )

(c0 + (N∗
1 )

2)2
)− 1

2
σ2
1

]
u2
1

−w2

[
ηN∗

2 − γ2(N
∗
3 )(N

∗
2 )

(c2 +N∗
2 )

2
− 1

2
σ2
2

]
u2
2

−w3

[
+

γ3N
∗
3

(c3 +N∗
2 )

− c4N
∗
3 − 1

2
σ2
3

]
u2
3

which is negative definite function. Hence the proof is completed based on theorem.
�

7. Numerical simulations

In this segment, we validate and justify our mathematical findings by computer
simulations with help of MATLAB software considering different sets of parameter
values as follows.

Example 7.1. For the parameters

α0 = 0.47, β0 = 0.075, γ0 = 1, γ1 = 2, γ2 = 0.605, γ3 = 1, c0 = 15, c1 = 10,

c2 = 20, c3 = 0.407, c4 = 0.147, q1 = 0.03, E1 = 2, α1 = 0.105, η = 0.01



182 V. MADHUSUDANAN AND M. N. SRINIVAS

with densities N1(0) = 1.2, N2(0) = 1.3, N3(0) = 0.65. Figure 1 represents
the variations of populations against time and Figure 2 represents phase portrait
diagram among species.

Figure 1. Variations of populations of the system (2.1)-(2.3) with
respect to time

Figure 2. Phase portrait of the system (2.1)-(2.3) with respect to time
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Example 7.2. For the parameters

α0 = 0.47, β0 = 0.075, γ0 = 1, γ1 = 2, γ2 = 0.605, γ3 = 1, c0 = 5, c1 = 10,

c2 = 20, c3 = 1, c4 = 0.147, q1 = 0.03, E1 = 2, α1 = 0.105, η = 0.01

with densities N1(0) = 0.62, N2(0) = 1.3, N3(0) = 0.65, σ1 = 0.02, σ2 = 0.02,
σ3 = 0.02. Figure 3 represents the variations of populations against time and Figure
4 represents phase portrait diagram among species.

Figure 3. Variations of populations with low noise of strength
σ1 = 0.02, σ2 = 0.02, σ3 = 0.02

Figure 4. phase portrait of the system (6.1) with low noise of
strength σ1 = 0.02, σ2 = 0.02, σ3 = 0.02
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Example 7.3. For the parameters

α0 = 0.47, β0 = 0.075, γ0 = 1, γ1 = 2, γ2 = 0.605, γ3 = 1, c0 = 5, c1 = 10,

c2 = 20, c3 = 1, c4 = 0.147, q1 = 0.03, E1 = 2, α1 = 0.105, η = 0.01

with densities N1(0) = 0.62, N2(0) = 1.3, N3(0) = 0.65,σ1 = 0.08, σ2 = 0.08, σ3 =
0.08
Figure 5 represents the variations of populations against time and Figure 6 repre-
sents phase portrait diagram among species.

Figure 5. Variations of populations with medium strength of
noise with oscillations σ1 = 0.08, σ2 = 0.08, σ3 = 0.08

Figure 6. phase portrait of the system (6.1) with medium
strength of noise with oscillations σ1 = 0.08, σ2 = 0.08, σ3 = 0.08
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Example 7.4. For the parameters

α0 = 0.47, β0 = 0.075, γ0 = 1, γ1 = 2, γ2 = 0.605, γ3 = 1, c0 = 5, c1 = 10,

c2 = 20, c3 = 1, c4 = 0.147, q1 = 0.03, E1 = 2, α1 = 0.105, η = 0.01

with densities N1(0) = 0.62, N2(0) = 1.3, N3(0) = 0.65,σ1 = 0.2, σ2 = 0.2, σ3 =
0.2
Figure 7 represents the variations of populations against time and Figure 8 repre-
sents phase portrait diagram among species.

Figure 7. Variations of populations (6.1) with High strength of
noise σ1 = 0.2, σ2 = 0.2, σ3 = 0.2

Figure 8. Figure: 8 phase portrait of the system (6.1) with High
strength of noise σ1 = 0.2, σ2 = 0.2, σ3 = 0.2
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8. Concluding remarks

In this paper we have studied Leslie-Gower prey-predator model along with
Sokel-Howell functional response around the interior steady state. We examined
the system by introducing stochastic perturbations. By using stochastic differen-
tial equation we have showed that zero solution of this stochastic system is asymp-
totically mean square stable through the construction of Lyapunov function. In
stochastic system, population variations have a great role for the stochastic sta-
bility. The noise in the equation results in a big variance of fluctuations around
the equilibrium point which suggests that our system oscillates with respect to the
noisy environment. From the Numerical simulation we conclude that the inclusion
of stochastic perturbation creates a noteworthy variation in the intensity of popu-
lations due to change of responsive parameters cause’s chaotic dynamics with low,
medium and high variances of oscillations from Figures 3- Figure 8.
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