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SOME PARAMETERS OF

THE Vn-ARITHMETIC GRAPH

R. Rangarajan, Akram Alqesmah and Anwar Alwardi

Abstract. In this paper, we continue the study of Vn-Arithmetic graph by

determining domination parameters of Vn. Bounds for some Vn graph param-
eters are established.

1. Introduction

Let G = (V,E) be a graph. As usual |V | and |E| denote the number of
vertices and edges of a graph G, respectively. In general, we use ⟨X⟩ to denote the
subgraph induced by the set of vertices X. The open and closed neighborhoods
of v are defined by N(v) = {u ∈ V (G) : uv ∈ E} and N [v] = N(v) ∪ {v},
respectively. The degree of a vertex v in a graph G denoted by deg(v) is defined to
be the number of edges incident with v. In simple graphs, deg(v) = |N(v)|. The
maximum and minimum degrees in a graph G are denoted respectively by ∆ and
δ. The complement G of a graph G has V (G) as its vertex set but two vertices are
adjacent in G if and only if they are not adjacent in G. A set of vertices which
cover all the edges of a graph G is called a cover for G. The minimum number of
vertices in any cover of G is called its covering number and is denoted by α. A set
of edges which cover all the vertices of a graph G is called an edge cover for G. The
minimum number of edges in any edge cover of G is called edge covering number of
G and is denoted by α′. A subset S of V is said to be independent if no two vertices
in S are adjacent in G. The maximum number of vertices in an independent set is
called the independence number of G and is denoted by β. A subset M of edges in
a graph G is said to be edge independent set or a matching if no two edges in M are
adjacent. The maximum cardinality of an edge independent set of G is called the
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edge independence number or matching number of G and is denoted by β′, and for
any graph G, the equations α(G) + β(G) = |V |, α′(G) + β′(G) = |V | are satisfied.
All the definitions in this paper available in [5].

The concept of domination in graph theory was formalized by Berge [3] and
Ore [11] and is strengthened by Haynes, Hedetniemi, Slater in two books [6, 7].
Domination in graphs has been studied extensively and at present it is an emerging
area of research in graph theory. A subset D of V is said to be a dominating set of
G if every vertex in V −D is adjacent to a vertex in D. The minimum cardinality of
a dominating set is called the domination number of G and is denoted by γ(G). A
dominating set D of a graph G is a global dominating set if D is also a dominating
set of G. The global domination number γg(G) is the minimum cardinality of a
global dominating set of G. This concept had introduced independently by Brigham
and Dutton [4] and Sampathkumar [13]. For a minimum dominating set D in
a graph G, if V − D contains a dominating set D′ of G, then D′ is called an
inverse dominating set with respect to D. The inverse domination number γ−1(G)
is the cardinality of a smallest inverse dominating set. Kulli and Sigarkanti had
introduced this concept in [8].

The common neighborhood graph (congraph) of G, denoted by con(G), is the
graph with the vertex set V (G), in which two vertices are adjacent if and only if
they have at least one common neighbor in the graph G. The common neighbor-
hood (CN-neighborhood) of a vertex v ∈ V (G) denoted by Ncn(v) is defined as
Ncn(v) = {u ∈ V (G) : uv ∈ E(G) and |Γ(u, v)| > 1}, where |Γ(u, v)| is the number
of common neighborhood between the vertices u and v, [1]. A subset D of V (G) is
called an injective dominating set (Inj-dominating set) if for every vertex v ∈ V −D
there exists a vertex u ∈ D such that |Γ(u, v)| > 1. The minimum cardinality of
such dominating set denoted by γin(G) and is called injective domination num-
ber (Inj-domination number) of G. Anwar Alwardi, R. Rangarajan and Akram
Alqesmah had introduced this concept in [2].

Proposition 1.1 ([2]). Let G be a nontrivial connected graph. Then γin(G) =
1 if and only if there exists a vertex v ∈ V (G) such that N(v) = Ncn(v) and
e(v) 6 2.

Vasumathi and Vangipuram have introduced the concept of Vn-Arithmetic
graphs and studied some of its properties [15]. Let n be a positive integer with
n = pα1

1 pα2
2 . . . pk

αk as its prime factorization. Then the Vn-Arithmetic graph is
defined as the graph whose vertex set consists of the divisors of n and two vertices
u, v are adjacent in Vn graph if and only if gcd(u, v) = pi for some prime divisor
pi of n. In this graph vertex 1 becomes an isolated vertex. Hence, we consider
Vn-Arithmetic graph without vertex 1 as the contribution of this isolated vertex is
nothing when the properties of these graphs and enumeration of some domination
parameters are studied. Clearly, Vn graph is a connected graph. In the trivial case
when n is a prime, the Vn graph consists of a single vertex. Hence it is a con-
nected graph. In other cases, by the definition of adjacency in Vn there exist edges
between prime number vertices and their prime power vertices and also to their
prime product and prime power product vertices. Also, any two vertices pi and pj ,
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(i ̸= j) are both adjacent to pipj hence they lie in a path of length 2. Therefore
each vertex of Vn is connected to some vertex in Vn.
Some properties like number of vertices, number of edges, maximum degree, mini-
mum degree, diameter, radius, Hamiltonian and Eulerian are presented in [12].

In [14], the authors have determined the domination number γ of the Vn-
Arithmetic graph, where n = pα1

1 pα2
2 . . . pk

αk as in the following theorem.

Theorem 1.1 ([14]). For any Vn-Arithmetic graph G with n = pα1
1 . . . pk

αk as
the prime factorization of n, the domination number of G is given by

γ(G) =

{
k − 1, if αi = 1 for more than one i;
k, otherwise.

where k is the core of n.

Note that, the core of a positive integer n > 2 is the number of its distinct
prime factors. Actually, the study of various domination parameters shows that
the domination parameters of the Vn graphs are functions of k, where k is the core
of n (see [14, 10, 9]).

One of the main goals to constrict and study the different relations between
the different branches of mathematics is to solve and analysis the mathematical
problems by using different trends. Some difficult problems in algebra can be solve
easily geometrically or by using algebraic topology and visa versa. The arithmetic
graph is one of the methods to represent the numerical sets. Every Vn-Arithmetic
graph represent some numerical subset of positive integers, so some properties and
problems in the numerical subset of integers can be study and resolve by using graph
theory and vise versa, this motivated us to continue the study of Vn-arithmetic
graph by studying some different graph parameters of this graph.

In this paper, some parameters of Vn-Arithmetic graph like vertex covering
number, edge covering number for some special cases, domination number of Vn,
global domination number, inverse domination number and injective domination
number are studied and some bounds are established.

2. Domination Parameters of Vn-Arithmetic Graph

Definition 2.1. Let G be a Vn-Arithmetic graph with n = pα1
1 . . . pk

αk , where
pi are primes and αi are integers greater than or equal one, i ∈ {1, 2, . . . , k}. Then
Vn is an Arithmetic graph with the same vertices of Vn such that any two vertices
u, v ∈ V are adjacent if and only if the greatest common divisor of u and v doesn’t
equal to pi for some i ∈ {1, 2, . . . , k}.

Theorem 2.1. Let G be a Vn-Arithmetic graph and G is its complement. Then

(1) γ(G) = 2.

(2) γ(G) + γ(G) =

{
k + 1, if αi = 1 for more than one i;
k + 2, otherwise.

(3) γ(G) · γ(G) =

{
2(k − 1), if αi = 1 for more than one i;
2k, otherwise.
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Proof. Let G be a Vn-Arithmetic graph. By Definition 2.1, it is clear that,
the vertex u = pα1

1 pα2
2 . . . pk

αk is adjacent to all the vertices of G except the primes
pi, i ∈ {1, 2, . . . , k} because gcd(u, pi) = pi, i ∈ {1, 2, . . . , k} and any prime vertex
pj is adjacent to all the other primes because gcd(pj , pi) = 1, j, i ∈ {1, 2, . . . , k}
then γ(G) 6 2, and there is no vertex of full degree. Hence, γ(G) = 2

The proofs of (ii) and (iii) are straight forward and may be obtained by ap-
plying Theorem 1.1 and Part (i) of Theorem 2.1. �

Theorem 2.2. For any Vn-Arithmetic graph G, the global domination number
of G is equal to k, where k is the core of n.

Proof. We characterize two cases.

Case 1. Suppose αi = 1 for at most one i. In this case γ(G) = k. The subset
D = {p1, p21p2, . . . , p21pk} of order k is a dominating set of both G and G. Since
γg(G) > γ(G), then γg(G) = k.

Case 2. Suppose αi = 1 for more than one i. In this case γ(G) = k − 1. The
subset Dg = {p1, p2, . . . , pk−1pk, n} of order k is a dominating set of both G and

G, so k− 1 6 γg(G) 6 k. Since any minimum dominating set D (|D| = k− 1) of G
must contain a vertex of the form pipj , where αi = αj = 1, then for any minimum
dominating set D of G we can find at least a vertex v ∈ V −D which is adjacent
to all the vertices of D in G, so v is not dominated in G. Hence, γg(G) = k. �

Theorem 2.3. Let G be a Vn-Arithmetic graph, where n =

j∏
i=1

pi

k∏
i=j+1

pαi
i , j

is a nonnegative integer, αi > 1, ∀i ∈ {j+1, . . . , k}, and n ̸= pα. Then the inverse
domination number of G is given by

γ−1(G) =

{
k, if j 6 2;
k − 1, if 3 6 j 6 k.

where k is the core of n.

Proof. We have two cases.

Case I. Let j 6 2. Then

Subcase 1. Suppose j = 0 or j = 1 this means n =
k∏

i=1

pαi
i , all αi > 1, for

all i ∈ {1, 2, . . . , k} or n = p1

k∏
i=2

pαi
i , αi > 1, ∀i ∈ {2, . . . , k}, respectively. In

this case γ(G) = k, so the subset D = {p1, p1p2, p1p3, . . . , p1pk} which has order
k is a minimum dominating set of G and hence the subset D′ ⊂ V − D where
D′ = {p2, p3, . . . , pk, p1p22} which has order k is also a minimum dominating set of
G because the vertices pi, i = 2, 3, . . . , k dominate all the vertices of G except p1
(and its powers in case j = 0) so we have to choose one more vertex to dominate
p1 and its powers. Since γ(G) 6 γ−1(G) for any graph G has no isolated vertices,
then γ−1(G) = |D′| = k.
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Subcase 2. Suppose j = 2 this implies that n = p1p2

k∏
i=3

pαi
i , αi > 1, for all

i ∈ {3, 4, . . . , k}. In this case γ(G) = k − 1, where D = {p1p2, p3, p4, . . . , pk}
is a minimum dominating set of G (note that in this case any dominating set of
order k − 1 must contain the vertex p1p2), so the dominating set D′ ⊂ V − D,
where D′ = {p1, p2, p1p3, p1p4, . . . , p1pk} is a minimal dominating set of G of order
|D′| = k. Since γ(G) 6 γ−1(G), then γ−1(G) = |D′| = k.

Case II. Let 3 6 j 6 k. In this case γ(G) = k − 1, thus we have the following
subcases.

Subcase 1. Suppose j = k. Then n =
k∏

i=1

pi. Let D = {p1, p2, . . . , pk−1pk} is a

minimum dominating set of G. Then we have two possibilities.

(1) If k is even, then the subset

D′ = {pk−1, pk, p1p2, p3p4, . . . , pk−3pk−2, p1pk, p3pk, . . . , pk−5pk}
which has order

|D′| = 2 +
k − 2

2
+

k − 4

2
= k − 1

is a minimum inverse dominating set of G with respect to D. Then
γ−1(G) = |D′| = k − 1.

(2) If k is odd, we have two situations,
(a) k = 3, then D = {p1, p2p3} and D′ = {p3, p1p2}.
(b) k > 5, then the subset

D′ = {pk−1, pk, p1p2, p3p4, . . . , pk−2pk−1, p1pk, p3pk, . . . , pk−6pk}
which has order

|D′| = 2 +
k − 1

2
+

k − 5

2
= k − 1

is a minimum inverse dominating set of G with respect to D. Then
γ−1(G) = |D′| = k − 1.

Subcase 2. Suppose 3 6 j < k. Let D = {p1, p2, . . . , pj−1pj , pj+1, . . . , pk} is

a minimum dominating set of G. Consider n = n1.n2, where n1 =

j∏
i=1

pi and

n2 =
k∏

i=j+1

pαi
i . Then from Case II (Subcase 1), the vertices of the factorization

n1 of n has a minimum inverse dominating set D′
1 of order j − 1. Also from Case

I (Subcase 1), the vertices of the factorization n2 of n has a minimum inverse
dominating set D′

2 of order k − j, where D′
2 = {pjpj+1, pjpj+2, . . . , pjpk}, and

any vertex consists of a product of some divisors of n1 and n2 is dominated by
at least one vertex of D′

1 or D′
2, so the dominating set D′ = D′

1

∪
D′

2 of order
|D′| = j − 1 + k − j = k − 1 is a minimum inverse dominating set of G. Hence,
γ−1(G) = |D′| = k − 1. �
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Theorem 2.4. Let G be a non-trivial Vn-Arithmetic graph, where

n = pα1
1 pα2

2 . . . pk
αk such that α1 > α2 > . . . > αk.

Then the injective domination number of G is given by

γin(G) =

{
2, if n = p1p2 or n = pα;
1, otherwise,

Proof. We have three cases.

Case 1. Suppose n = p1p2 or n = pα. Then G is a star. So any end vertex v ∈ V
inj-dominates all the other vertices except the center vertex. Hence, γin(G) = 2.

Case 2. Suppose α1 ̸= 1, k > 2. The vertex v = p21 satisfies N(v) = Ncn(v) and
since diam(G) 6 2, then by Proposition 1.1, γin(G) = 1.

Case 3. Suppose α1 = 1 and n ̸= p1p2. The vertex v = p1p2 satisfies N(v) =
Ncn(v) and since diam(G) 6 2, then by Proposition 1.1, γin(G) = 1. �

Now, it is our turn to obtain some bounds on the domination number of Vn-
Arithmetic graph.

Proposition 2.1. For any Vn-Arithmetic graph G, δ(G) > γ(G). Further-
more, δ(G) = γ(G) if and only if αi = 1 for at most one i or n = p1p2.

Proof. Let G be a Vn-Arithmetic graph. Then from Theorem 1.1, and since

δ(G) =

{
1, if n = p1p2;
k, otherwise,

then δ(G) > γ(G). �

Theorem 2.5. For any non-trivial Vn-Arithmetic graph G, where α1 > α2 >
. . . > αk. Then

γ(G) 6
⌈
∆(G)− δ(G)

2

⌉
+ 1.

Furthermore, the equality is attained if and only if n = p2 or p21p2 or p1p2p3 or
p1p2p3p4.

Proof. We have the following cases.

Case 1. Suppose k = 1 (n = pα, α > 1). Then ∆(G) = α − 1, δ(G) = 1 and
γ(G) = 1. Hence, ⌈

∆(G)− δ(G)

2

⌉
+ 1 =

⌈
α

2

⌉
> 1.

Case 2. Suppose k > 2 and at most αk = 1. In this case the smallest choice of G
is when n = p21p2, so ∆(G) = 4, δ(G) = 2 and γ(G) = 2. Hence,⌈

∆(G)− δ(G)

2

⌉
+ 1 = 2 > 2.
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Case 3. Suppose αi = 1 for more than one i and at least α1 ̸= 1 (here k > 3).

Then ∆(G) = α1

k∏
i=2

(αi + 1)− 1, δ(G) = k and γ(G) = k − 1, thus

⌈
∆(G)− δ(G)

2

⌉
+ 1 =

⌈
α1

∏k
i=2(αi + 1)− 1− k

2

⌉
+ 1

>
⌈
α12

k−1 − 1− k

2

⌉
+ 1 > α12

k−2 −
⌈
k

2

⌉
> k − 1.

Case 4. Suppose α1 = 1 (here k > 2). Then ∆(G) = 2k−1, δ(G) = k and
γ(G) = k − 1. Hence,⌈

∆(G)− δ(G)

2

⌉
+ 1 =

⌈
2k−2 − k

2

⌉
+ 1 > k − 1.

For the equality, if n = p2 or p21p2 or p1p2p3 or p1p2p3p4, then from Case 1, Case 2
and Case 4, respectively, we easily can see that,

γ(G) =

⌈
∆(G)− δ(G)

2

⌉
+ 1.

�

Proposition 2.2. For any Vn-Arithmetic graph G, where α1 > α2 > . . . > αk.
Then

γ(G) >


⌈
α1 + 1

α1
− 1

∆(G) + 1

⌉
, if α1 ̸= 1;⌈

2− 3

2k−1 + 1

⌉
, if αi = 1, ∀i ∈ {1, 2, . . . , k} .

Proof. This bound comes from [16], for any graph G, then

γ(G) >
⌈

|V |
∆(G) + 1

⌉
.

�

3. Vertex (Edge) Covering of Vn-Arithmetic Graph

Theorem 3.1. Let G be a Vn-Arithmetic graph, where n = p1p2 . . . pk (all
αi = 1, i ∈ {1, 2, . . . , k}). Then the vertex covering number of G is given by

α(G) =


2k − k − 1, if k 6 3;

2k−1 +
1

2

(
k
k
2

)
− 1, if k is even, k > 2;

2k−1 +

(
k − 1

⌊k
2 ⌋

)
− 1, if k is odd, k > 3.
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Proof. In this case |V | = 2k − 1. We have three cases.

Case 1. Assume that, k is even and k > 2. Let S1 ⊂ V be the subset of those

vertices of V such that each vertex consists of at least a product of
k

2
+ 1 primes

i.e. S1 =

{
u =

∏
i∈B1

pi : B1 ⊂ {1, 2, . . . , k}, |B1| >
k

2
+ 1

}
. Then S1 has no two

adjacent vertices because any two vertices of S1 have at least two common primes,
so S1 is an independent set of G.
It is clear that the cardinality of S1 is

|S1| = 2k − 1−
[(

k

1

)
+

(
k

2

)
+ · · ·+

(
k
k
2

)]
= 2k−1 − 1

2

(
k
k
2

)
.

We show that S1 is a maximal independent set of G. First, suppose S1 is not
maximal. Then there exists an independent set S2 of G such that S1 ⊂ S2 and

|S2| > |S1|+ 1. Let v ∈ S2, v =
∏
i∈B2

pi, where B2 ⊂ {1, 2, . . . , k}, |B2| 6 k

2
.

Then v /∈ S1. So there exists at least a vertex u ∈ S1, such that B1 ∩ B2 = {j}
for some j ∈ {1, 2 . . . , k}, so u and v are adjacent, a contradiction. Hence, S1 is
maximal. On the other hand, a maximal independent set of G can be obtained by
two other manners. First of them is the set of the prime vertices which clearly has
cardinality k, less than the cardinality of S1 when k > 3, and the second is the
set of all the vertices of G which has more than one common prime divisor. Let
S′ be the set of vertices of G which consists all the vertices of two common prime
divisors. Obviously, S′ has the greatest cardinality of such maximal independent
sets of G, where |S′| = 2k−2. But |S1| > |S′| for all k > 2. Then, S1 is a maximum
independent set of G and

|S1| = β(G) = 2k−1 − 1

2

(
k
k
2

)
.

Hence, α(G) = |V | − β(G) = 2k−1 +
1

2

(
k
k
2

)
− 1.

Case 2. Assume that, k is odd and k > 3. As in (Case 1) let S1 ⊂ V be the
subset of those vertices of V such that each vertex consists of at least a product of⌈
k

2

⌉
+ 1 primes. Then S1 is an independent set of G and

|S1| =
(

k

⌈k
2 ⌉+ 1

)
+

(
k

⌈k
2 ⌉+ 2

)
+ · · ·+

(
k

k

)
= 2k−1 −

(
k

⌈k
2 ⌉

)
.

Let X1 =

{
u =

∏
i∈B1

pi : B1 ⊂ {1, 2, . . . , k}, |B1| =
⌈
k

2

⌉}
and

X2 =

{
u =

∏
i∈B2

pi : B2 ⊂ {1, 2, . . . , k}, |B2| <
⌈
k

2

⌉}
. Then the vertices of X1 are

not adjacent to any vertex of S1 and any vertex of X2 is adjacent to at least one
vertex of S1. Then S1 is not maximal independent set of G. So to make a maximal
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independent set of G containing S1 we have to add a maximum independent set of

vertices of X1 to S1. Observably, |X1| =
(

k⌈
k
2

⌉). So,

(
k − 1⌈

k
2

⌉ )
gives a number of

vertices of X1 which are not adjacent one to each others. Hence, the subset S2 of
V , where

|S2| = |S1|+
(
k − 1⌈

k
2

⌉ )
= 2k−1 −

(
k − 1

⌊k
2 ⌋

)
,

is a maximal independent set of G. Also, it is easy to see that |S2| > k and
|S2| > |S′| for all k > 3 (S′ is that independent set in the proof of Case 1). Thus,

S2 is a maximum independent set of G. Hence, β(G) = |S2| = 2k−1−
(
k − 1

⌊k
2 ⌋

)
and

α(G) = 2k − 1− β(G) = 2k−1 +

(
k − 1

⌊k
2 ⌋

)
− 1.

Case 3. Assume that, k 6 3. In this case one can simply observe that the
maximum independent set of G is S = {pi : i = 1, 2, . . . , k} which has cardinality
k. Then α(G) = 2k − 1− k. �

Theorem 3.2. If G is a Vn-Arithmetic graph, where α1 > . . . > αk, k is even
and α1 ̸= 1, then the covering number of G is given by

α(G) =



k∑
i=1

αi +
k−1∑
i=1

αi

k∑
j=i+1

αj + · · ·+

+

k− k
2+1∑

i=1

αi

k− k
2+2∑

j=i+1

αj . . .

k∑
z=y+1

αz,

if |S1| >
(
α1 − 1

) k∏
i=2

(αi + 1);

2

k∏
i=2

(αi + 1)− 1, if |S1| 6
(
α1 − 1

) k∏
i=2

(αi + 1),

where |S1| =
k− k

2∑
i=1

αi

k− k
2+1∑

j=i+1

αj . . .
k∑

z=y+1

αz + · · ·+
k∏

i=1

αi and y is the index of the

before last summation.

Proof. In this case |V | =
k∏

i=1

(αi + 1) − 1. Let S1 ⊂ V be the subset of

those vertices of V such that each vertex consists of at least a product of
k

2
+ 1

primes or their powers i.e. S1 =

{
u =

∏
i∈B1

pai
i : 1 6 ai 6 αi, ∀i ∈ B1

}
, where

B1 ⊂ {1, 2, . . . , k}, |B1| >
k

2
+ 1. Then S1 has no two adjacent vertices because

any two vertices of S1 have at least two common primes or their powers, so S1 is
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a maximal independent set of G (by the same argument in the proof of Theorem
3.1, Case 1). It is clear that the cardinality of S1 is

|S1| =
k− k

2∑
i=1

αi

k− k
2+1∑

j=i+1

αj . . .
k∑

z=y+1

αz + · · ·+
k∏

i=1

αi.

Let S2 ∈ V be the subset of V which consists of all the powers of p1 (except p1
itself) and their product to the other divisors of n i.e. S2 =

{
u = pa1

∏
i∈B2

pbii :

1 < a 6 α1, 0 6 bi 6 αi, ∀i ∈ B2

}
, where B2 ⊂ {2, . . . , k} (the powers of p1 are

contained in S2 when bi = 0, ∀i ∈ B2). From the definitions of Vn-Arithmetic graph
and the divisors of n all the vertices of S2 are independent one to each others and
for each vertex v ∈ V − S2 there exist at least one vertex u ∈ S2 which has a
common prime divisor with v. Hence, S2 is a maximal independent set of G of

order |S2| =
(
α1 − 1

) k∏
i=2

(αi + 1).

In fact, there are three other manners to get a maximal independent set of G which
are as follows.

• The set of all the vertices of G which has more than one common divisor.
Since α1 > α2 > . . . > αk, then the set S′ of all the vertices of G which
has p1p2 as a common divisor has the greatest cardinality among such

sets, where |S′| = α1α2

k∏
i=3

(αi + 1). But |S′| less than or equal |S1| or

|S2|.
• The set S′′ of all the power vertices (except the primes) and their products,

which has cardinality |S′′| = −1+

k∏
i=1

αi. But again |S′′| less than or equal

|S1| or |S2|.
• The set of prime divisors of n which has cardinality k less than or equal

the cardinalities of |S1| and |S2|.

Since α1 is the greatest exponent of a prime divisor of n, then either S1 or S2 is
a maximum independent set of G depending on the powers αi’s, i ∈ {1, 2, . . . , k}.
Therefore,

(1) If |S1| > |S2|, then

α(G) = |V | − |S1| =
k∑

i=1

αi +
k−1∑
i=1

αi

k∑
j=i+1

αj + . . .

+

k− k
2+1∑

i=1

αi

k− k
2+2∑

j=i+1

αj . . .

k∑
z=y+1

αz.
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(2) If |S1| 6 |S2|, then

α(G) = |V | − |S2| =
k∏

i=1

(αi + 1)− 1−
(
α1 − 1

) k∏
i=2

(αi + 1)

= 2
k∏

i=2

(αi + 1)− 1.

�

Corollary 3.1. For any Vn-Arithmetic graph G, where n = pα1
1 pα2

2 , α1 > α2

and α1 ̸= 1, the vertex covering number of G is

α(G) =

{
α1 + α2, if α1 6 α2 + 1;
2α2 + 1, otherwise.

Theorem 3.3. If G is a Vn graph, where α1 > α2 > . . . > αk, k is odd and
α1 ̸= 1, then the covering number of G is given by

α(G) =



k∑
i=1

αi +
k−1∑
i=1

αi

k∑
j=i+1

αj + · · ·+ αk

k−⌈ k
2 ⌉+1∑

i=1

αi

k−⌈ k
2 ⌉+2∑

j=i+1

αj . . .
k−1∑

z=y+1

αz,

if |S1| >
(
α1 − 1

) k∏
i=2

(αi + 1);

2

k∏
i=2

(αi + 1)− 1, if |S1| 6
(
α1 − 1

) k∏
i=2

(αi + 1),

where

|S1| =
k−⌈ k

2
⌉∑

i=1

αi

k−⌈ k
2
⌉+1∑

j=i+1

αj . . .

k∑
z=y+1

αz + · · ·+
k∏

i=1

αi +

k−⌈ k
2
⌉∑

i=1

αi

k−⌈ k
2
⌉+1∑

j=i+1

αj . . .

k−1∑
z=y+1

αz,

and y is the index of the before last summation.

Proof. Consider S =
{
u =

∏
i∈B

pai
i : 1 6 ai 6 αi, ∀i ∈ B

}
, where B ⊂

{1, 2, . . . , k} and |B| >
⌈
k

2

⌉
+ 1. Then S is an independent set of G, but it is not

maximal because all the vertices of X∗ =
{
u =

∏
i∈B∗

pai
i : 1 6 ai 6 αi, ∀i ∈ B∗},

where B∗ ⊂ {1, 2, . . . , k}, |B∗| =
⌈
k

2

⌉
are not adjacent to any vertex of S and

any vertex of X∗∗ =
{
u =

∏
i∈B∗∗

pai
i : 1 6 ai 6 αi, ∀i ∈ B∗∗}, where B∗∗ ⊂

{1, 2, . . . , k}, |B∗∗| <
⌈
k

2

⌉
is adjacent to at least one vertex of S. Therefore, to get

a maximal independent set S1 of G containing S, we have to determine a maximum
independent set of X∗ and add it to S.
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From the prove of Theorem 3.2, if k is even the subset V0 ⊂ V such that

V0 =
{
u =

∏
i∈B0

pai
i : 1 6 ai 6 αi, ∀i ∈ B0

}
, where B0 ⊂ {1, 2, . . . , k}, |B0| = k

2+1 is

an independent set which has cardinality |V0| =
k− k

2∑
i=1

αi

k− k
2+1∑

j=i+1

αj . . .

k∑
z=y+1

αz, where

y is the index of the before last summation. Since k is odd, then k − 1 is even and

the subset V ∗
0 ⊂ X∗ which has cardinality |V ∗

0 | =
k−⌈ k

2 ⌉∑
i=1

αi

k−⌈ k
2 ⌉+1∑

j=i+1

αj . . .
k−1∑

z=y+1

αz,

is a maximum independent set of X∗. Thus,

|S1| =
k−⌈ k

2
⌉∑

i=1

αi

k−⌈ k
2
⌉+1∑

j=i+1

αj . . .
k∑

z=y+1

αz + · · ·+
k∏

i=2

αi +

k−⌈ k
2
⌉∑

i=1

αi

k−⌈ k
2
⌉+1∑

j=i+1

αj . . .

k−1∑
z=y+1

αz,

where y is the index of the before last summation.
Now, let S2 ⊂ V be the subset of V which consists of all the powers of p1

(except p1 itself) and their product to the other divisors of n i.e. S2 =
{
u =

pa1
∏
i∈B2

pbii : 1 < a 6 α1, 0 6 bi 6 αi, ∀i ∈ B2

}
, where B2 ⊂ {2, . . . , k}. Then S2 is

a maximal independent set of G of order |S2| =
(
α1 − 1

) k∏
i=2

(αi + 1).

By the same argument in the proof of Theorem 3.2, either S1 or S2 is a maxi-
mum independent set of G depending on the powers αi’s, i ∈ {1, 2, . . . , k}. There-
fore,

(1) If |S1| > |S2|, then

α(G) = |V | − |S1| =
k∏

i=1

(αi + 1)− 1−
k−⌈ k

2 ⌉∑
i=1

αi

k−⌈ k
2 ⌉+1∑

j=i+1

αj . . .
k∑

z=y+1

αz

− · · · −
k∏

i=1

αi −
k−⌈ k

2 ⌉∑
i=1

αi

k−⌈ k
2 ⌉+1∑

j=i+1

αj . . .

k−1∑
z=y+1

αz.

Since,

k−⌈ k
2 ⌉+1∑

i=1

αi

k−⌈ k
2 ⌉+2∑

j=i+1

αj . . .
k∑

z=y+1

αz =

k−⌈ k
2 ⌉∑

i=1

αi

k−⌈ k
2 ⌉+1∑

j=i+1

αj . . .
k−1∑

z=y+1

αz

+ αk

k−⌈ k
2 ⌉+1∑

i=1

αi

k−⌈ k
2 ⌉+2∑

j=i+1

αj . . .

k−1∑
z=y+1

αz

then

α(G) =

k∑
i=1

αi +

k−1∑
i=1

αi

k∑
j=i+1

αj + · · ·+ αk

k−⌈ k
2 ⌉+1∑

i=1

αi

k−⌈ k
2 ⌉+2∑

j=i+1

αj . . .

k−1∑
z=y+1

αz.
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(2) If |S1| 6 |S2|, then

α(G) = |V | − |S2| =
k∏

i=1

(αi + 1)− 1−
(
α1 − 1

) k∏
i=2

(αi + 1)

= 2

k∏
i=2

(αi + 1)− 1.

�

Corollary 3.2. Let G be a Vn-Arithmetic graph, where n = pα1
1 pα2

2 pα3
3 , α1 >

α2 > α3 and α1 ̸= 1. Then the vertex covering number of G is

α(G) =


3∑

i=1

αi + α3(α1 + α2), if α1 6 α2 + 1;

2(α2 + 1)(α3 + 1)− 1, otherwise.

Theorem 3.4. For any Vn-Arithmetic graph G, where n = p1p2 . . . pk (all
αi = 1, i ∈ {1, 2, . . . , k}), the edge covering number of G is given by α′(G) = 2k−1.

Proof. Let G be a Vn-Arithmetic graph, where n = p1p2 . . . pk. Then |V | =

2k − 1. Since

(
k

k − 1

)
=

(
k

1

)
= k, then we can make a matching of size k join the

prime vertices with the vertices which consist of a product of k − 1 primes. Also,

since

(
k

k − 2

)
=

(
k

2

)
, then we can make a matching of size

(
k

2

)
join the vertices

pipj , i, j ∈ {1, 2, . . . , k} and the vertices which consist of a product of k− 2 primes,

and so on to

(
k

⌈k
2 ⌉

)
=

(
k

⌊k
2 ⌋

)
. Therefore,

(1) If k is odd, then β′(G) =

⌊
2k − 1

2

⌋
and hence,

α′(G) =

⌈
2k − 1

2

⌉
= 2k−1.

(2) If k is even, then

(
k

⌈k
2 ⌉

)
and

(
k

⌊k
2 ⌋

)
are same which are

(
k
k
2

)
. Therefore,

we can make a matching of size
1

2

(
k
k
2

)
and hence, β′(G) =

⌊
2k − 1

2

⌋
and

α′(G) = 2k−1.

�

Proposition 3.1. If G is a Vn-Arithmetic graph, where n = pα1 p2, α > 1, then
the edge covering number of G is

α′(G) =

{
3, if α = 2;
2(α− 1), if α > 3.
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Proof. Let n = pα1 p2, α > 1. Then |V | = 2α+ 1. In this case all the vertices
of the form pa1p2, 1 6 a 6 α form an independent set in G. Therefore,

(1) If α = 2 ⇒ n = p21p2. The subset M ⊂ E, where
M =

{
{p1, p21p2}, {p2, p1p2}

}
is a maximum matching set in G. Then

β′(G) = 2 and hence, α′(G) = 3.
(2) If α > 3. Since the number of vertices which are adjacent only to the

primes p1, p2 is α − 1 > 2, then we have exactly a matching of size two
join p1 and p2 with only two vertices from these vertices. Also, we have
exactly one edge joins one vertex from the power vertices of p1 with the
vertex p1p2. Then the maximum matching set M of G has cardinality
|M | = 3. Thus, β′(G) = 3 and hence, α′(G) = 2(α− 1).

�

Proposition 3.2. If G is a Vn-Arithmetic graph, where n = pα1
1 pα2

2 , α1 >
α2 > 1, then the edge covering number of G is

α′(G) =

{
α1α2, if α1 6 α2 + 1;
(α1 − 1)(α2 + 1), otherwise.

Proof. Let n = pα1
1 pα2

2 , α1 > α2 > 1. Then |V | = (α1 + 1)(α2 + 1) − 1.
In this case the number of vertices which are adjacent only to the primes p1, p2
is (α1 − 1)(α2 − 1). Therefore, we have a matching of size two joins the primes
p1 and p2 with only two vertices from these vertices. Since the power vertices
of p1 and p2 are adjacent to the vertices of the forms {p1pb2 : 1 6 b 6 α2} and
{pa1p2 : 1 6 a 6 α1} which have orders α2 and α1, respectively, then

(1) If α1 = α2 or α1 = α2 + 1, then we have a matching of size α1 − 1
joins the powers of p1 with α1 − 1 or all the vertices of {p1pb2 : 1 6
b 6 α2} respectively. Also, we have a matching of size α2 − 1 joins
the powers of p2 with α2 − 1 vertex of {pa1p2 : 1 6 a 6 α1}. Thus,
β′(G) = 2 + α1 − 1 + α2 − 1 = α1 + α2 and hence, α′(G) = α1α2.

(2) If α1 > α2 + 1, then we have a matching of size α2 − 1 joins the powers
of p2 with α2 − 1 vertex of {pa1p2 : 1 < a 6 α1} and a matching of
size α2 joins exactly α2 vertex of the power of p1 with all the vertices of
{p1pb2 : 1 6 b 6 α2}. Thus,

β′(G) = 2 + α2 − 1 + α2 = 2α2 + 1,

and hence, α′(G) = (α1 − 1)(α2 + 1).

�

4. Conclusion

As remarked earlier, the authors in [12] have studied some properties of the Vn-
Arithmetic graph. In this research work, we continue the study of Vn-Arithmetic
graph by determining domination parameters of Vn. Bounds for some Vn parame-
ters are established. The authors recommend many problems for future studies like
domatic number, coloring problems and the eigenvalues of Vn-Arithmetic graph.
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[1] A. Alwardi, B. Arsić, I. Gutman, N. D. Soner. The common neighborhood graph and its
energy. Iran. J. Math. Sci. Inf., 7(2)(2012), 1–8.

[2] A. Alwardi, R. Rangarajan and A. Alqesmah. On the Injective domination of graphs. Pales-

tine J. Math., 7(1)(2018), 202–210.
[3] C. Berge. The Theory of Graphs and its Applications. Methuen, London, 1962.
[4] R. C. Brigham and R. D. Dutton. Factor domination in graphs. Discrete Math., 86 (1990),

127–136.

[5] F. Harary. Graph theory. Addison-Wesley, Reading Mass, 1969.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Domination in graphs: Advanced Topics.

Marcel Dekker, Inc., New York, 1998.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in graphs.

Marcel Dekker, Inc., New York, 1998.
[8] V. R. Kulli and S. C. Sigarkanti. Inverse domination in graph. Nat. Acad. Sci. Lett., 14

(1991), 473–475.
[9] M. Manjuri and B. Maheswari. Some domination parameters of arithmetic Vn graph. Inter-

national Journal of Computer Applications, 92(11)(2014), 29–32.
[10] M. Manjuri and B. Maheswari. Strong dominating sets of some arithmetic graphs. Interna-

tional Journal of Computer Applications, 83(3)(2013), 36–40.
[11] O. Ore. Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962.

[12] R. Rangarajan, A. Alqesmah and A. Alwardi. On Vn-arithmetic graph. International Journal
of Computer Applications, 125(9)(2015), 1–7.

[13] E. Sampathkumar. The global domination number of a graph. J. Math. Phys. Sci., 23(1989)

377–385.
[14] S. U. Maheswari and B. Maheswari. Some domination parameters of arithmetic graph Vn.

IOSR, Journal of Mathematics, 2(6)(2012), 14–18.
[15] N. Vasumathi. Number theoretic graphs. Ph. D. Thesis, S. V. University, Tirupati, India,

1994.
[16] H. B. Walikar, B. D. Acharya and E. Sampathkumar. Recent developments in the theory of

domination in graphs. In MRI Lecture Notes in Math. Mehta Research Instit., Allahabad
No.1, (1979).

Receibed by editors 20.04.2018; Revised version 26.11.2018; Available online 03.12.2018.

R. Rangarajan, Department of Studies in Mathematics, University of Mysore,
Mysore 570 006, India

E-mail address: rajra63@gmail.com

Akram Alqesmah, Department of Studies in Mathematics, University of Mysore,
Mysore 570 006, India

E-mail address: aalqesmah@gmail.com

Anwar Alwardi, Department of Studies in Mathematics, University of Mysore,

Mysore 570 006, India
E-mail address: a−wardi@hotmail.com


