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COMMON FIXED POINTS OF ALMOST GENERALIZED

(α, ψ, φ, F )-CONTRACTION TYPE MAPPING

IN b-METRIC SPACES

Venkata Ravindranadh Babu Gutti and Sudheer Kumar Pathina

Abstract. In this manuscript, we introduce almost generalized (α,ψ, φ, F )-
contraction type mapping and prove the existence and uniqueness of common
fixed point in the setting of b-metric spaces of these maps. The result

presented in this paper extend/generalize some of the earlier results in the
existing literature. Further, we provide an example to illustrate our main
result.

1. Introduction and Preliminaries

In the development of nonlinear functional analysis fixed point theory plays a
vital role in many aspects. It has been used in various branches of engineering and
sciences. The Banach contraction principle was introduced by Banach [7] is one
of the most important result in fixed point theory. Over the years, many authors
extended and generalized the Banach contraction principle in many directions and
spaces, we refer [11, 15, 16, 14, 21, 25, 28, 29, 30]. The main idea of b-metric was
initiated from the works of Bourbaki [8] and Bakhtin [6]. The concept of b-metric
space or metric type space was introduced by Czerwik [12] as a generalization of
metric space. Since then several authors proved fixed point results of single valued
and multivalued operators in b-metric spaces, we refer [1, 5, 9, 10, 13, 19, 20,
22, 23, 26, 27].

In 2014, Ansari [2] introduced the concept of C-class functions and established
fixed point theorems for certain contractive mappings with respect to the C-class
function, we refer [4, 18, 24].

Definition 1.1. ([12]) Let X be a non-empty set. A function d : X × X →
[0,∞) is said to be a b-metric if the following conditions are satisfied:
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(i) 0 6 d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X, and

(iii) there exists s > 1 such that d(x, z) 6 s
[
d(x, y)+d(y, z)

]
for all x, y, z ∈ X.

In this case, the pair (X, d) is called a b-metric space with coefficient s.
Here, we observe that every metric space is a b-metric space with s = 1.

Definition 1.2. ([10]) Let (X, d) be a b-metric space and {xn} a sequence in
X.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such
that d(xn, x) → 0 as n→ ∞. In this case, we write limn→∞ xn = x.

(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm) → 0 as n,m→ ∞.

(iii) A b-metric space (X, d) is said to be a complete b-metric space if every
b-Cauchy sequence in X is b-convergent.

(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such
that {xn} is b-convergent to z ∈ X then z ∈ B.

In general, a b-metric is not necessarily continuous.

Example 1.1. ([19]) Let X = N∪{∞}. We define a mapping d : X×X → R+

as follows:

d(m,n) =


0 if m = n,

| 1m − 1
n | if one of m,n is even and the other is even or ∞ ,

5 if one of m,n is odd and the other is odd or ∞,

2 otherwise.

Then (X, d) is a b-metric space with coefficient s = 5
2 .

Definition 1.3. ([10]) Let (X, dX) and (Y, dY ) be two b-metric spaces. A
function f : X → Y is b-continuous at a point x ∈ X, if it is b-sequentially
continuous at x i.e., whenever {xn} is b-convergent to x, {fxn} is b-convergent to
fx.

In 2014, Ansari [2] introduced the concept of C-class functions as follows.

Definition 1.4. ([2]) A continuous mapping F : R+ × R+ → R is called a
C-class function if it satisfies the following conditions:

(a) F (s, t) 6 s for all s, t ∈ R+, and

(b) F (s, t) = s implies that either s = 0 or t = 0.

We denote the family of all C-class functions by C.

Example 1.2. ([2]) The following functions F : R+ ×R+ → R are elements of
C, for all s, t ∈ [0,∞):

(i) F (s, t) = s− t, F (s, t) = s implies that t = 0;

(ii) F (s, t) = ks , where 0 < k < 1, F (s, t) = s implies that s = 0;

(iii) F (s, t) = s
(1+t)r , where r > 0;
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(iv) F (s, t) = sβ(s), β : R+ → [0, 1) and is continuous, F (s, t) = s implies
that s = 0;

(v) F (s, t) = s− φ(s), F (s, t) = s implies that s = 0, where φ : R+ → R+ is
a continuous function such that φ(t) = 0 if and only if t = 0;

(vi) F (s, t) = sh(s, t), F (s, t) = s implies that s = 0,where h : R+×R+ → R+

is a continuous function such that h(t, s) < 1 for all t, s > 0. In particular
F (s, t) = st

1+t ;

(vii) F (s, t) = s− t
k+t , F (s, t) = s implies that t = 0;

(viii) F (s, t) = ln 1+es

2 .

We now define the F -class functions as follows:

Definition 1.5. A continuous mapping F : R+×R+ → R is said to be F -class
function if

(a′) F (s, t) < s for all s > 0 and t > 0.
We denote the family of F -class functions by F

Here we observe that the classes C and F both are same.
Let F ∈ C. Let s, t > 0. From (b), F (s, t) ̸= s. From (a), F (s, t) 6 s so that

F (s, t) < s. Therefore F ∈ F . Hence C ⊆ F .
Let F ∈ F . Now we show that the condition (b). Suppose that it fails to hold,

so that there exist s, t > 0 such that F (s, t) = s. But from (a’) s = F (s, t) < s, a
contradiction. Now we show that condition (a) from the following cases.

Case (i): Let s, t > 0. By condition (a′), we have F (s, t) < s, follows that
F (s, t) 6 s.

Case (ii): We show that F (s, 0) 6 s for all s > 0, t = 0. Let s > 0, t = 0. Then
there exists a sequence {(sn, tn)} in (0.∞)× (0,∞) such that lim

n→∞
(sn, tn) = (s, 0).

Since F is continuous at (s, 0), it follows that lim
n→∞

F (sn, tn) = F (s, 0). From (a’),

we have F (sn, tn) < sn for all n. On taking limits as n → ∞, we have F (s, 0) =
lim
n→∞

F (sn, tn) 6 lim
n→∞

sn = s.

Case (iii). t > 0, s = 0. In this case, we follow similar to Case (ii) to show
F (0, t) 6 0. Therefore F ∈ C, so that F ⊆ C. Hence F = C.

Therefore, we identify C by F .

From the following examples, we observe that for any F ∈ C, F (0, 0) may not
be equal to zero.

Example 1. F (s, t) = s− 1
1+t ∈ C and F (0, 0) = −1 ̸= 0.

2. F (s, t) = s− es+t ∈ C and F (0, 0) = −1 ̸= 0.
If we restrict the codomain of F to R+ then F (0, t) = 0 for all t > 0, by Case (iii).

Here onwards, in this paper, we use F -class functions to prove our results.
In 2017, Huang, Deng and Radenović [18] proved the following result in b-

metric spaces for a single selfmap by using a C-class function.
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Theorem 1.1. Let (X, d) be a complete b-metric space with coefficient s > 1
and f : X → X be a mapping such that

(1.1) ψ(sαd(fx, fy)) 6 F (ψ(Mi(x, y)), φ(Mi(x, y))) + LN(x, y)

for all x, y ∈ X, where α > 0, L > 0 are constants, ψ,φ : R+ → R+ are altering
distance functions, F : R+×R+ → R is a C-class function, andMi(x, y)(i = 0, 1, 2)
and N(x,y) are defined as follows:

M1(x, y) = max{d(x, y), d(x,fx)d(y,fy)1+d(x,y) , d(x,fx)d(y,fy)1+d(fx,fy) },

M2(x, y) = max{d(x, y), d(x,fx)d(x,fy)+d(y,fy)d(y,)fx1+s[d(x,fx)+d(y,fy)] , d(x,fx)d(x,fy)+d(y,fy)d(y,fx)1+s[d(x,fy)+d(y,fx) },

M3(x, y) = max{d(x, y), d(x,fx)d(y,fy)
1+s[d(x,y)+d(x,fy)+d(y,fx) ,

d(x,fy)d(x,y)
1+sd(x,fx)+s3[d(y,fx)+d(y,fy)]} and

N(x, y) = min{d(x, fx), d(y, fy), d(x, fy), d(y, fx)}.
Then for each i ∈ {1, 2, 3}, f has a unique fixed point in X. Moreover, for any
x ∈ X, the iterative sequence {fn(x)}(n ∈ N) b-converges to the fixed point.

In 2017, He, Sun and Zhao [17] proved the following theorem in complete
metric spaces for a pair of selfmaps.

Theorem 1.2. Let (X, d) be a complete metric space and f, g : X → X such
that for every x, y ∈ X

1

2
min{d(x, fx), d(y, gy)} 6 d(x, y)

implies that

(1.2) ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)))

where

(i) ψ : R+ → R+ is a continuous and monotone nondecreasing function with
ψ(t) = 0 if and only if t = 0;

(ii) φ : R+ → R+ is a lower semi continuous function with φ(t) = 0 if and
only if t = 0 and

M(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x, gy) + d(y, fx)

2
}.

Then f and g have a unique common fixed point in X.

Lemma 1.1 (Huang, Deng, Radenovic, [18]). Let (X, d) be a b-metric space
with coefficient s > 1. Suppose that {xn} is a sequence in X such that

(1.3) d(xn, xn+1) 6 kd(xn−1, xn) for all n ∈ N, where k ∈ [0, 1) is a constant.

Then {xn} is a b-Cauchy sequence in X.

We denote Ψ to be the set of all continuous functions ψ : R+ → R+ satisfying
the following conditions:

(i) ψ is monotonically increasing function;
(ii) ψ(t) = 0 if and only if t = 0.
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We call an element ψ ∈ Ψ, an altering distance function [21].
We denote Φ to be the set of all continuous functions φ : R+ → R+ such that

φ(t) = 0 if and only if t = 0.

Inspired and motivated by the results of He, Sun and Zhao [17] and Huang,
Deng and Radenović [18], we introduce a pair of almost (α,ψ, φ, F )-contraction
type maps in b-metric spaces through F -class functions and prove the existence of
common fixed points .

Definition 1.6. Let (X, d) be a b-metric space with coefficient s > 1 and
f, g : X → X be two selfmaps of X. If there exist α > 0, L > 0, ψ ∈ Ψ, φ ∈ Φ and
F ∈ F such that for every x, y ∈ X

1

2s
min{d(x, fx), d(y, gy)} 6 d(x, y)

implies that

(1.4) ψ(sαd(fx, gy)) 6 F (ψ(M(x, y)), φ(M(x, y))) + LN(x, y)

where

M(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x, gy) + d(y, fx)

2s
}

and
N(x, y) = min{d(x, fx), d(y, gy), d(x, gy), d(y, fx)}

then we say that the pair (f, g) is an almost generalized (α,ψ, φ, F )- contraction
type maps.

2. Main results

Proposition 2.1. Let (X, d) be a b-metric space with coefficient s > 1 and
f, g : X → X be two selfmaps. Assume that the pair (f, g) is an almost generalized
(α,ψ, φ, F )-contraction type maps. Then z is a fixed point of f if and only if z is
a fixed point of g. In that case, z is a common fixed point of f and g, and z is
unique.

Proof. Let z be a fixed point of f . i.e., fz = z. Now, we prove that
z is a fixed point of g. Suppose that z ̸= gz. i.e., d(z, gz) > 0. We have
1
2s min{d(z, fz), d(z, gz)} = 0 6 d(z, z). Hence from (1.4), we have

(2.1) ψ(sαd(fz, gz)) 6 F (ψ(M(z, z)), φ(M(z, z))) + LN(z, z)

where

M(z, z) = max{d(z, z), d(z, fz), d(z, gz), d(z, gz) + d(z, fz)

2s
} = d(z, gz)

and
N(x, y) = min{d(z, fz), d(z, gz), d(z, gz), d(z, fz)} = 0.

Therefore, using the values of M(z, z) and N(z, z) in (2.1) and using the property
(a′) of F -class function, we get

(2.2) ψ(sαd(z, gz)) 6 F (ψ(d(z, gz)), φ(d(z, gz))) + L.0 < ψ(d(z, gz)).
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Since ψ is monotonically increasing, we have sαd(z, gz) 6 d(z, gz). Since sα−1 > 0,
we have d(z, gz) 6 0, what is a contradiction. Therefore z = gz. Hence z is a fixed
point of g.

Similarly, it is easy to see that if z is a fixed point of g then z is a fixed point
of f also.

Now, we prove that z is a unique common fixed point of fand g. Let w be
another common fixed point of fand g. i.e., fw = gw = w. Since

1

2s
min{d(z, fz), d(w, gw)} = 0 6 d(z, w),

from (1.4), we have

(2.3) ψ(sαd(fz, gw)) 6 F (ψ(M(z, w)), φ(M(z, w))) + LN(z, w)

where

M(z, w) = max{d(z, w), d(z, fz), d(w, gw), d(z, gw) + d(w, fz)

2s
} = d(z, w)

and

N(x, y) = min{d(z, fz), d(w, gw), d(z, gw), d(w, fz)} = 0.

Therefore, using the values of M(z, z) and N(z, z) in (2.3) and by property (a′) of
F -class function, we get

(2.4) ψ(sαd(z, w)) 6 F (ψ(d(z, w)), φ(d(z, w))) + L.0 < ψ(d(z, w)).

Since ψ is increasing, we have sαd(z, w) 6 d(z, w). Since sα − 1 > 0, we have
d(z, w) 6 0, which is a contradiction. Therefore z = w. Hence z is a unique
common fixed point of f and g. �

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient s > 1
and f, g : X → X be two self maps. Suppose that the pair (f, g) is an almost
generalized (α, ψ, φ, F )-contraction type maps. Then f, g have a unique common
fixed point in X, provided either f or g is b-continuous.

Proof. Let x0 ∈ X be an arbitrary point. We define a sequence {xn} ⊂ X by

x2n+1 = fx2n and x2n+2 = gx2n+1 for n = 0, 1, 2, . . . .

We note that
1

2s
min{d(x, fx), d(y, gy)} 6 d(x, y)

if and only if either

1
2sd(x, fx) 6 d(x, y) or 1

2sd(y, gy) 6 d(x, y).

Suppose that x2n = x2n+1 for some n, then x2n = fx2n so that x2n is a fixed
point of f . Hence by Proposition 2.1, we have x2n is a fixed point of g also so that
x2n is a common fixed point of f and g.



COMMON FIXED POINTS OF ALMOST GENERALIZED (α, ψ, φ, F )-CONTRACTION .... 129

Similarly if x2n+1 = x2n+2 then x2n+1 is a fixed point of g so that by using
Proposition 2.1, we have x2n+1 is a common fixed point of f and g. Hence, with
out loss of generality, we may assume that xn ̸= xn+1 for n = 0, 1, 2, . . . . Since

1

2s
min{d(x2n, fx2n), d(x2n+1, gx2n+1)} 6 d(x2n, x2n+1),

from (1.4), we have

ψ(sαd(x2n+1, x2n+2) = ψ(sαd(fx2n, gx2n+1)

6 F (ψ(M(x2n, x2n+1), φ(M(x2n, x2n+1)))

+ LN(x2n, x2n+1)(2.5)

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1),

1

2s
(d(x2n, gx2n+1) + d(x2n+1, fx2n)}

= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

1

2s
(d(x2n, x2n+2) + d(x2n+1, x2n+1)}

= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

1

2s
(d(x2n, x2n+2)}

6 max{d(x2n, x2n+1), d(x2n+1, x2n+2)} 6M(x2n, x2n+1),

so that M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n+1, x2n+2)}
and

N(x2n, x2n+1) = min{d(x2n, fx2n), d(x2n+1, gx2n+1), d(x2n, gx2n+1),

d(x2n+1, fx2n)}
= min{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+2),

d(x2n+1, x2n+1)}
= min{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+2), 0}
= 0.

Now using the values of M(x2n, x2n+1), N(x2n, x2n+1) and property (a′) of F -class
function in (2.5), we get

ψ(sαd(x2n+1, x2n+2)) = ψ(sαd(fx2n, gx2n+1))

6 F (ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1))) + L.0.

< ψ(M(x2n, x2n+1)).(2.6)

Suppose that d(x2n+1, x2n+2) > d(x2n+1, x2n+2) for some n then from (2.6), we
have

ψ(sαd(x2n+1, x2n+2) 6 F (ψ(d(x2n+1, x2n+2)), φ(d(x2n+1, x2n+2)))
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< ψ(d(x2n+1, x2n+2)).(2.7)

Since ψ is monotonically increasing and from (2.7), we have

(2.8) sαd(x2n+1, x2n+2) 6 d(x2n+1, x2n+2).

Since sα − 1 > 0, we have d(x2n+1, x2n+2) 6 0, which is a contradiction. Hence
M(x2n, x2n+1) = d(x2n, x2n+1). Therefore from (2.6), we have

ψ(sαd(x2n+1, x2n+2)) 6 F (ψ(d(x2n, x2n+1)), φ(d(x2n, x2n+1))) < ψ(d(x2n, x2n+1).

(2.9)

Similarly, we can prove that

ψ(sαd(x2n+2, x2n+3)) 6 F (ψ(d(x2n+1, x2n+2)), φ(d(x2n+1, x2n+2)))

< ψ(d(x2n+1, x2n+2)).(2.10)

Therefore from (2.9) and (2.10), we have

ψ(sαd(xn+1, xn+2)) 6 F (ψ(d(xn, xn+1)), φ(d(xn, xn+1)))

< ψ(d(xn, xn+1)) for n = 0, 1, 2, . . . .(2.11)

Since ψ is monotonically increasing, we have

(2.12) sαd(xn+1, xn+2) 6 d(xn, xn+1) for n = 0, 1, 2, . . . .

which implies that

(2.13) d(xn+1, xn+2) 6
1

sα
d(xn, xn+1) for n = 0, 1, 2, . . . .

We now study the following two cases.

Case (i): s = 1. From (2.13), we have

(2.14) d(xn+1, xn+2) 6 d(xn, xn+1) for n = 0, 1, 2 . . . .

and hence {d(xn, xn+1)} is a decreasing sequence which is bounded below by zero.
Therefore there exists r > 0 such that lim

n→∞
d(xn, xn+1) = r. Suppose that r > 0.

From (2.11) with s = 1, we have

ψ(d(xn+1, xn+2)) 6 F (ψ(d(xn, xn+1)), φ(d(xn, xn+1))).(2.15)

Now by taking limits as n → ∞ on (2.15) and using property (a′) of F -class
function, we get

ψ(r) 6 F (ψ(r), φ(r)) < ψ(r),(2.16)

which is a contradiction. Therefore

(2.17) r = lim
n→∞

d(xn, xn+1) = 0.

Also, by the triangular inequality, we have

(2.18) d(xn, xn+2) 6 d(xn, xn++1) + d(xn+1, xn+2)

Now taking limits as n→ ∞ on (2.18) and using (2.17), we get

(2.19) lim
n→∞

d(xn, xn+2) = 0.
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We now prove the following:

“For any ϵ > 0 there exists N ∈ N such that d(xm, xn) < ϵ for all m,n ∈ N with

m > n > N and m− n ≡ 1 (mod 2).”(2.20)

On the contrary, we assume that there exists ϵ > 0 such that for any N ∈ N
there exist m,n ∈ N with m > n > N , m− n ≡ 1 (mod 2) and d(xm, xn) > ϵ.
From (2.17) and (2.19), there exists N0 such that for every n > N0

(2.21) d(xn, xn+1) < ϵ and d(xn, xn+2) < ϵ.

We now construct two subsequences {xmk
} and {xnk

} of the sequence {xn} such
that

(2.22) d(xmk
, xnk

) > ϵ, d(xmk−2, xnk
) < ϵ and mk − nk ≡ 1 (mod 2)

as follows.
From our assumption there exists l1 > n1 > N0 such that l1 − n1 ≡ 1 (mod 2)

and d(xl1 , xn1) > ϵ. From (2.21), we choose the smallest integer m1 ∈ {n1+3, n1+
5, n1 + 7, . . . , l1} such that d(xm1

, xn1
) > ϵ. Therefore

d(xm1 , xn1) > ϵ, d(xm1−2, xn1) < ϵ and m1 − n1 ≡ 1 (mod 2).

Again, from our assumption there exist l2 > n2 > m1 such that l2−n2 ≡ 1 (mod 2)
and d(xl2 , xn2

) > ϵ. From (2.21), we choose the smallest integer m2 ∈ {n2+3, n2+
5, n2 + 7, . . . , l2} such that d(xm2 , xn2) > ϵ. Therefore

d(xm2 , xn2) > ϵ, d(xm2−2, xn2) < ϵ and m2 − n2 ≡ 1 (mod 2).

On continuing this process, we can get two subsequences {xmk
} and {xnk

} of the
sequence {xn} satisfying (2.22). Also, we can easily see that the following hold:

(i) lim
k→∞

d(xmk
, xnk

) = ϵ

(ii) lim
k→∞

d(xmk+1, xnk
) = ϵ

(iii) lim
k→∞

d(xmk
, xnk+1) = ϵ and

(iv) lim
k→∞

d(xmk+1, xnk+1) = ϵ.

From the condition mk − nk ≡ 1 (mod 2), the following two subcases arise.

Subcase (i): mk = 2pk and nk = 2qk − 1 for some pk, qk ∈ N.
From (2.21) and (2.22), we have

1

2
min{d(xmk

, fxmk
), d(xnk

, gxnk
)} 6 1

2
d(xmk

, xmk+1) <
ϵ

2
< ϵ 6 d(xmk

, xnk
).

From (1.4) with s = 1, we have

ψ(d(xmk+1, xnk+1)) = ψ(d(fxmk
, gxnk

)) 6 F (ψ(M(xmk
, xnk

)), φ(M(xmk
, xnk

)))

+ LN(xmk
, xnk

)(2.23)
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where

M(xmk
, xnk

) = max{d(xmk
, xnk

), d(xmk
, fxmk

), d(xnk
, gxnk

),

1

2
(d(xmk

, gxnk
) + d(fxmk

, xnk
)}

= max{d(xmk
, x

k
), d(xmk

, xmk+1), d(xnk
, xnk+1),

1

2
(d(xmk

, xnk+1) + d(xmk+1, xnk
)}.

and

N(xmk
, xnk

) = min{d(xmk
, fxmk

), d(xnk
, gxnk

), d(xmk
, gxnk

), d(fxmk
, xnk

)}
= min{d(xmk

, xmk+1), d(xnk
, xnk+1), d(xmk

, xnk+1), d(xmk+1, xnk
)}.

On taking limits as k → ∞ on M(xmk
, xnk

) and N(xmk
, xnk

), we get

(2.24) lim
k→∞

M(xmk
, xnk

) = ϵ and lim
k→∞

N(xmk
, xnk

) = 0.

Now on taking limits as k → ∞ on (2.23), using (2.24) and property (a′) of F -class
function, we get

(2.25) ψ(ϵ) 6 F (ψ(ϵ), φ(ϵ)) + L.0 < ψ(ϵ),

a contradiction.

Subcase (ii): mk = 2pk − 1 and nk = 2qk for some pk, qk ∈ N.
From (2.21) and (2.22), we have

1

2
min{d(xnk

, fxnk
), d(xmk

, gxmk
)} 6 1

2
d(xmk

, xmk+1) <
ϵ

2
< ϵ 6 d(xnk

, xmk
).

From (1.4) with s = 1, we have

ψ(d(xmk+1, xnk+1)) = ψ(d(fxnk
, gxmk

)) 6 F (ψ(M(xnk
, xmk

)), φ(M(xnk
, xmk

)))

+ LN(xnk
, xmk

).(2.26)

Now as in Subcase (i), we get a contradiction in this case also. Therefore, (2.20)
holds.

Now, we prove that the sequence {xn} is a Cauchy sequence in X. Let ϵ > 0.
From the claim, we find N1 ∈ N such that if m > n > N1 with m− n ≡ 1 (mod 2)
then

d(xn, xm) <
ϵ

2
.

From (2.17), there exists N2 such that for any n > N2

d(xn, xn+1) <
ϵ

2
.

Let N = max{N1, N2} with m > n > N . Here we have the following two cases.

Case (a): m− n ≡ 1 (mod 2). In this case,

d(xm, xn) <
ϵ

2
< ϵ,

so that {xn} is a b-Cauchy sequence in X.



COMMON FIXED POINTS OF ALMOST GENERALIZED (α, ψ, φ, F )-CONTRACTION .... 133

Case (b): m− n ≡ 0 (mod 2). Here

d(xm, xn) 6 d(xm, xn+1) + d(xn+1, xn) <
ϵ

2
+
ϵ

2
= ϵ.

Hence sequence {xn} is a Cauchy sequence when s = 1.

Case (ii): s > 1. In this case, from (2.13), we have

(2.27) d(xn+1, xn+2) 6
1

sα
d(xn, xn+1) for n = 0, 1, 2, . . . .

Now from Lemma 1.1, we have, the sequence {xn} is a b-Cauchy sequence in X.
Since X is a complete b-metric space, we have {xn} is b-convergent to some point
z(say) in X. Therefore

z = lim
n→∞

x2n+1 = lim
n→∞

fx2n and z = lim
n→∞

x2n+2 = lim
n→∞

gx2n+1

so that

lim
n→∞

fx2n = z = lim
n→∞

gx2n+1.

We, assume that f is b-continuous. Since x2n → z as n → ∞, we have fx2n → fz
as n→ ∞. Hence

0 6 d(z, fz) 6 s(d(z, fx2n) + d(fx2n, fz)) → 0 as n→ ∞
so that d(z, fz) = 0. Hence z is a fixed point of f .

Now by proposition 2.1, we have z is a unique common fixed point of f and g.
Similarly, we can prove that z is a unique common fixed point of f and g

whenever g is b-continuous.
Hence the theorem follows. �

3. Corollaries and examples

By choosing f = g and F (s, t) = s − t in Theorem 2.1, we get the following
corollary.

Corollary 3.1. Let (X, d) be a complete b-metric space and f : X → X be a
selfmapping such that for every x, y ∈ X, 1

2sd(x, fx) 6 d(x, y) implies

ψ(sαd(fx, fy)) 6 ψ(M(x, y))− φ(M(x, y))) + LN(x, y)

where ψ, φ, M(x, y) and N(x, y) as in Theorem 2.1. Then f has a unique fixed
point in X, provided f is b-continuous.

By choosing F (s, t) = sβ(s) in Theorem 2.1, where β : [0,∞) → [0, 1) is
continuous, we get the following corollary.

Corollary 3.2. Let (X, d) be a complete b-metric space and f : X → X be a
selfmapping such that for every x, y ∈ X, 1

2sd(x, fx) 6 d(x, y) implies

ψ(sαd(fx, fy)) 6 ψ(M(x, y))β(ψ(M(x, y))) + LN(x, y)

where ψ, φ, M(x, y) and N(x, y) as in Theorem 2.1. Then f has a unique fixed
point in X, provided f is b-continuous.
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By choosing L = 0 in Theorem 2.1, we obtain the following result.

Corollary 3.3. Let (X, d) be a complete b-metric space and f, g : X → X be
such that for every x, y ∈ X,

1

2s
{d(x, fx), d(y, gy)} 6 d(x, y)

implies that

ψ(sαd(fx, gy)) 6 F (ψ(M(x, y)), φ(M(x, y)))

where ψ, φ and M(x, y) as in Theorem 2.1. Then f and g have a unique common
fixed point in X, provided either f or g is b-continuous.

By choosing f = g in Theorem 2.1, we get the following corollary.

Corollary 3.4. Let (X, d) be a complete b-metric space and f, g : X → X be
such that for every x, y ∈ X, 1

2sd(x, fx) 6 d(x, y) implies

ψ(sαd(fx, fy)) 6 F (ψ(M(x, y)), φ(M(x, y))) + LN(x, y)

where ψ, φ, M(x, y) and N(x, y) as in Theorem 2.1. Then f has a unique fixed
point in X, provided f is b-continuous.

Remark 3.1. Theorem 2.1 extends Theorem 1.2 for a pair (f, g) of almost
generalized (α, ψ, φ, F )-contraction type maps for the case of continuous function
φ in b-metric spaces.

The following corollaries are consequences of Theorem 2.1 in b-metric spaces
with s = 1.

Corollary 3.5. Let (X, d) be a complete metric space and f : X → X.
Assume that there exist φ ∈ Φ and ψ ∈ Ψ such that 1

2d(x, fx) 6 d(x, y) implies

ψ(d(fx, fy)) 6 ψ(M(x, y))− φ(M(x, y)),

for all x, y ∈ X, and M(x, y) as in Theorem 2.1. Then f has a unique fixed point
in X.

Proof. Follows by choosing f = g, F (s, t) = s − t, s, t > 0 and L = 0 in
Theorem 2.1 �

Corollary 3.6. Let (X, d) be a complete metric space and f, g : X → X.
Assume that there exist φ ∈ Φ and ψ ∈ Ψ such that

ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)),

for all x, y ∈ X, and M(x, y) as in Theorem 2.1. Then f and g have a unique
common fixed point in X.

Proof. Follows by choosing F (s, t) = s − t, s, t > 0 and L = 0 in Theorem
2.1. �

The following is an example in support of Theorem 2.1.
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Example 3.1. Let X = {0, 1, 2, 4, 5, 7, 9}. Define the b-metric by
d(x, y) = (x− y)2 with coefficient s = 2. Define two self maps fand g such that

f =

(
0 1 2 4 5 7 9
7 7 7 9 7 7 7

)
, g =

(
0 1 2 4 5 7 9
7 5 9 9 9 7 7

)
.

Define ψ,φ : [0,∞) → [0,∞) by ψ(t) = t2, φ(t) = t
1+t and F : [0,∞)× [0,∞) → R

by F (s, t) = st
1+t .Then clearly F is a F -class function. By choosing α = 1

7 , we get

sα = 2
1
7 . In this example 49 cases arise to verify the inequality (1.4). Among these

we consider the non trivial cases for the verification of the inequality (1.4) which
are mentioned in the following tabular form.

For simplicity, we write ψ(sαd(fx, gy)) = A , F (ψ(M(x, y))), φ(M(x, y))) = B
and N(x, y) = C.

(x, y) sαd(fx, gy) A M(x, y) B C B + L.C

(0,1) 44
10

1936
100 49 117649

99 16
117649

99 + L.16

(0,4) 44
10

1936
100 49 117649

99 9
117649

99 + L.9

(2,4) 44
10

1936
100 25 15625

51 9
15625
51 +L.9

(2,5) 44
10

1936
100 25 15625

51 4
15625
51 + L.4

(4,1) 176
10

30976
100 25 15625

51 1
15625
51 + L.1

(4,7) 44
10

1936
100 25 15625

51 0
15625
51 + L.0

(5,1) 44
10

1936
100 16 4096

33 0
4096
33 + L.0

(5,2) 44
10

1936
100 25 15625

51 4
15625
51 + L.4

(5,4) 44
10

1936
100 25 15625

51 4
15625
51 + L.4

(7,4) 44
10

1936
100 25 15625

51 0
15625
51 + L.0

(9,1) 44
10

1936
100 25 262144

129 4
262144
129 + L.4

(9,5) 44
10

1936
100 16 4096

33 0
4096
33 + L.0

In the following, we mention that the importance of L in the inequality (1.4) of
Theorem 2.1.
When (x, y) = (4, 1), we have d(f4, g1) = d(9, 5) = 16, M(4, 1) = 25 , N(x, y) = 1
and

1

2s
min{d(x, fx), d(y, gy)} =

1

4
min{d(4, f4), d(1, g1)}

=
1

4
min{d(4, 9), d(1, 5)

= 4 6 d(4, 1) = 9 = d(x, y)}

.
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Therefore from (1.4), we have

ψ(sαd(fx, gy)) = ψ(2
1
7 d(f4, g1)) = ψ(

176

10
) =

30976

100

6 15625

51
+

7

2
.1

= F (ψ(25), φ(25)) +
7

2
.1

= F (ψ(M(4, 1)), φ(M(4, 1)) +
7

2
.N(4, 1)

= F (ψ(M(x, y)), φ(M(x, y)) + L.N(x, y).(3.1)

Therefore the inequality (1.4) holds for any L > 7
2 . Further, it easy to see from the

inequality (3.1) that it fails to hold when L = 0 which in turn the inequality (1.4)
fails to hold. Further 7 is the unique common fixed point of f and g in X.

Also we observe that, in the above example, if we choose f = g then g does
not satisfy the condition (1.1) of Theorem 1.1 at x = 5 and y = 7 for Mi(x, y) (i =
1, 2, 3) and N(x, y) as in Theorem 1.1, even though g satisfies all conditions of
Theorem 2.1. Hence Theorem 1.1 is not applicable.
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[18] H. Huang, G. Deng and S. Radenović. Fixed point theorems for c-class functions in b-metric

spaces and applications. J. Nonlinear Sci. Appl., 10(2017), 5853-5868.
[19] N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg. Fixed points of cycle weakly

(ψ,φ, L,A,B)-contractive mappings in ordered b-metric spaces with applications. Fixed
Point Theory Appl., 2013(2013): 256, 18 pages.
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