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GENERALIATION OF FIXED POINT RESULTS

FOR (α∗, η∗, ψ)- CONTRACTIVE MAPPINGS

IN FUZZY METRIC SPACES

K. K. M. Sarma and Yohannes Gebru

Abstract. In this paper, we extend the results of Supak, Cho, Kumam [12]

to a more general, (α∗, η∗) admissible condition and prove a new fixed point
theorem in generalized modified (α∗, η∗, ψ)- contractive mapping. Moreover,
we present some examples to show the necessity of the obtained results.

1. Introduction

Fixed point theorems in fuzzy metric spaces satisfying some contractive con-
dition is a central area of research now a days. The concept of fuzzy sets was
introduced by Zadeh [17] in 1965. The theory of fuzzy metric space has been
studied by many mathematicians. The first mathematicians, who introduced fuzzy
metric spaces, in 1975 are Kramosil and Michálek [8]. In 1994, George and Veera-
mani [2] modified the concept of fuzzy metric space introduced by Kramosil and
Michálek [8]. In 2002, Gregori and Sapene [3] initiated fuzzy contraction map-
pings and proved an important fixed point theorem for this class of mappings. In
2008, Miheţ [9] introduced ψ contractive mappings in non-Archimedean fuzzy met-
ric spaces. For the last 41 years, the concept of fuzzy metric space and fixed point
theorems were studied, generalized and proved by different mathematicians (see [5]
- [13]). In 2012, Samet, Vitero and Vetro [14] introduced the concept of admissible
mapping for single valued map, and in the same year Asl et al. [1] extended the
concept of admissible for single valued mappings to multi valued mappings. Soon
after, Hussain, Salimi and Latif [7] proved fixed point theorem for single and set
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88 K. K. M. SARMA AND G. YOHANNES

valued ( α, η, ψ) contractive mappings. Very recently Supak, Cho, Kumam [12] in-
troduced a new contractive condition and proved fixed point theorems for modified
(α∗, η∗, ψ)- contractive mappings in fuzzy metric space.

2. Preliminaries

We begin with some basic definitions and results which will be used in main
part of our paper.

Definition 2.1. ([16]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to
be a continuous t-norm if it satisfies the following conditions :

(T1): ∗ is associative and commutative,
(T2): ∗ is continuous,
(T3): a ∗ 1 = a for all a ∈ [0, 1],
(T4): a ∗ b 6 c ∗ d whenever a 6 c and b 6 d for all a, b, c, d ∈ [0, 1].

Remark 2.1. A t-norm ∗ is called positive, if a ∗ b > 0 for all a, b ∈ (0, 1). ♢
Examples of continuous t-norms are Lukasievicz t-norm, i.e,

a ∗L b = max{a+ b− 1, 0},
product t-norm, i.e, a ∗ b = ab and minimum t-norm, i.e., a ∗M b = min{a, b}, for
a, b ∈ [0, 1].

The concept of fuzzy metric space is defined by George and Veeramani [2] as
follows.

Definition 2.2. ([2]) Let X be a nonempty set, ∗ be a continuous t-norm. As-
sume that a fuzzy setM : X×X×(0,∞) → [0, 1] satisfies the following conditions;
for each x, y, z ∈ X and t, s > 0,

(M1): M(x, y, t) > 0,
(M2): M(x, y, t) = 1 if and only if x = y,
(M3): M(x, y, t) =M(y, x, t),
(M4): M(x, y, t) ∗M(y, z, s) 6M(x, z, t+ s),
(M5): M(x, y, ·) : (0,∞) → [0, 1] is continuous.

Then we call M a fuzzy metric on X, and we call the 3-tuple (X,M, ∗) a fuzzy
metric space.

Lemma 2.1 ([4]). Let (X,M, ∗) be a fuzzy metric space. For all x, y ∈ X,
M(x, y, ·) is a non-decreasing function.

Remark 2.2. We observe that 0 < M(x, y, t) < 1 provided x ̸= y, for all t > 0
(see [10]).

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a
center x ∈ X and radius 0 < r < 1 is defined by B(x, r, t) = {y ∈ X : M(x, y, t) >
1 − r}. A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and
0 < r < 1 such that B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of
X. Then τ is a topology on X, called the topology induced by the fuzzy metric M .
This topology is metrizable (see [6]). ♢
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Example 2.1. ([2]). Let (X, d) be a metric space. We define a ∗ b = ab (or
a ∗ b = min{a, b}) for all a, b ∈ [0, 1], and M : X ×X × (0,∞) → [0, 1] as

M(x, y, t) = t
t+d(x,y) for all x, y ∈ X and t > 0.

Then (X,M, ∗) is a fuzzy metric space. We call this fuzzy metric M as the fuzzy
metric induced by the metric d, and this M is known as the standard fuzzy metric.
♢

Now we give some examples of fuzzy metric spaces due to Gregori, Morillas
and Sapena ([5]).

Example 2.2. [5] Let (X, d) be a metric space and g : R+ → [0,∞), R+ =
[0,∞) be an increasing continuous function. Define M : X ×X × (0,∞) → [0, 1] as

M(x, y, t) = e(
−d(x,y)

g(t)
) for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric

space on X where ∗ is the product t-norm. ♢
Example 2.3. ([5]). Let (X, d) be a bounded metric space with d(x, y) < k for

all x, y ∈ X, where k is fixed constant in (0,∞) and g : R+ → (k,∞), R+ = [0,∞)
be an increasing continuous function. Define a functionM : X×X×(0,∞) → [0, 1]

as M(x, y, t) = 1 − d(x,y)
g(t) for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy

metric space, where ∗ is a Lukasievicz t-norm. ♢

Definition 2.3. [2] Let (X,M, ∗) be a fuzzy metric space.

(1) A sequence{xn} in X is said to be convergent to a point x ∈ X if
limn→∞M(xn, x, t) = 1 for all t > 0.

(2) A sequence{xn} in X is called a Cauchy sequence if, for each 0 < ϵ < 1
and t > 0, there exits n0 ∈ N such that M(xn, xm, t) > 1 − ϵ for each
n,m > n0.

(3) A fuzzy metric space in which every Cauchy sequence is convergent is said
to be complete.

(4) A fuzzy metric space in which every sequence has a convergent subse-
quence is said to be compact.

Remark 2.3. In a fuzzy metric space the limit of a convergent sequence is
unique. ♢

Definition 2.4. ([12]) Let (X,M, ∗) be a fuzzy metric space. Then the map-
ping M is said to be continuous on X ×X × (0,∞) if

lim
n→∞

M(xn, yn, tn) =M(x, y, t),

when {(xn, yn, tn)} is a sequence in X ×X × (0,∞) which converges to a point
(x, y, t) ∈ X ×X × (0,∞), i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) =M(x, y, t).

Lemma 2.2 ([11]). If (X,M, ∗) is a fuzzy metric space, then M is a continuous
function on X ×X × (0,∞).

The concept of α-admissible mapping was introduced by Samet,Vetro and Vetro
[14] as follows.
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Definition 2.5. ([14]) Let X be a nonempty set, T : X → X and α : X×X →
[0,∞) be maps. We say that T is an α-admissible mapping if for all x, y ∈ X, we
have α(x, y) > 1 ⇒ α(Tx, Ty) > 1.

In 2013, Salimi, Latif and Hussain ([13]) modified the concept of α− admissible
mapping as follows.

Definition 2.6. ([13]) Let X be a nonempty set, T : X → X and α, η :
X ×X → [0,∞). We say that T is an α-admissible mapping with respect to η if
for all x, y ∈ X, we have α(x, y) > η(x, y) ⇒ α(Tx, Ty) > η(Tx, Ty).

If we take η(x, y) = 1 for all x, y ∈ X, then T is an α-admissible mapping. If
we take α(x, y) = 1, then we say that T is an η-subadmissible mapping.

In 2016, Supak, Cho and Kumam ([12]) introduced the α∗− admissible map-
pings in fuzzy metric spaces.

Definition 2.7. ([12]) Let (X,M, ∗) be a fuzzy metric space. A mapping
T : X → X and let α∗ : X × X × (0,∞) → [0,∞) be a function. We say that
T is an α∗-admissible mapping if, for all x, y ∈ X and t > 0, α∗(x, y, t) > 1 ⇒
α∗(Tx, Ty, t) > 1.

In 2016, Supak, Cho and Kumam ([12]) introduced the (α∗, η∗)- admissible
mappings in fuzzy metric spaces.

Definition 2.8. ([12]) Let(X,M, ∗) be a fuzzy metric space. A mapping
T : X → Xand let α∗, η∗ : X × X × (0,∞) → [0,∞) be two functions. We
say that T is an (α∗, η∗)- admissible mapping if, for all x, y ∈ X and t > 0,
α∗(x, y, t) > η∗(x, y, t) ⇒ α∗(Tx, Ty, t) > η∗(Tx, Ty, t).

Note that, if η∗(x, y, t) = 1 then it is clear that T is an α∗ admissible mapping.
if we take α∗(x, y, t) = 1, then we say that T is an η∗-subadmissible mapping.

Now we sate a proposition which is useful to prove our main result.

Proposition 2.1. ([15]) Suppose (X,M, ∗) is fuzzy metric space. Let {xn}
be a sequence in X such that M(xn, xn+1, t) → 1 as n → ∞, for all t > 0. If
{xn} is not a Cauchy sequence then there exist 0 < ϵ < 1, t0 > 0 and sequences
of positive integers {m(k)} and {n(k)} with m(k) > n(k) > k for each k ∈ N such
that M(xm(k), xn(k), t0) 6 1− ϵ and

(i) limk→∞M(xm(k), xn(k), t0) = 1− ϵ,

(ii) limk→∞M(xm(k), xn(k),
t0
2 ) = 1− ϵ,

(iii) limk→∞M(xm(k), xn(k),
t0
4 ) = 1− ϵ,

(iv) limk→∞M(xm(k)−1, xn(k)+1,
t0
2 ) = 1− ϵ,

(v) limk→∞M(xm(k)−1, xn(k),
t0
2 ) = 1− ϵ,

(vi) limk→∞M(xm(k)+1, xn(k)+1,
t0
2 ) = 1− ϵ.

Throughout the paper we denote Ψ be a class of all mappings ψ : [0, 1] → [0, 1]
which are satisfying the following conditions:

(a): ψ is continuous
(b): ψ is non-decreasing
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(c): ψ(a) > a, ∀a ∈ (0, 1)

Remark 2.4. For ψ ∈ Ψ, ψ(a) = a if and only if a = 0 or a = 1. ♢

In 2016, Supak, Cho and Kumam Introduced modified (α∗, η∗, ψ) contractive
mapping in fuzzy metric space and prove a fixed point theorem.

Definition 2.9. ([12]) Let (X,M, ∗) be a fuzzy metric space. Let T : X → X
and let α∗, η∗ : X × X × (0,∞) → [0,∞) be two functions. We say that T is a
modified (α∗, η∗, ψ)-contractive mapping if there exists a function ψ ∈ Ψ such that,

α∗(x, Tx, t)α∗(y, Ty, t) > η∗(x, Tx, t)η∗(y, Ty, t) ⇒M(Tx, Ty, t) > ψ(N(x, y, t)),

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}.

Theorem 2.1 ([12]). Let (X,M, ∗) be a complete fuzzy metric space. Let
T : X → X be a modified (α∗, η∗, ψ)- contractive mapping. Suppose that the
following assertions hold:

(a): T is (α∗, η∗) admissible mapping;

(b): there exists x0 ∈ X such that α∗(x0, Tx0, t) > η∗(x0, Tx0, t) for all
t > 0;

(c): for any sequence{xn} ⊂ X such that α∗(xn, xn+1, t) > η ∗ (xn, xn+1, t),
for all n ∈ N, t > 0 and {xn} → x as n → ∞, then α∗(x, Tx, t) >
η ∗ (x, Tx, t) for all t > 0.

Then T has a fixed point.

Now, we define generalized modified (α∗, η∗, ψ)- contractive mapping in fuzzy
metric spaces.

Definition 2.10. Let (X,M, ∗) be a fuzzy metric space. Let T : X → X be a
self map and let α∗, η∗ : X ×X × (0,∞) → [0,∞) be two functions. We say that T
is a generalized modified (α∗, η∗, ψ)- contractive mapping if there exists a function
ψ ∈ Ψ such that,

(2.1)
α∗(x, Tx, t)α∗(y, Ty, t) > η∗(x, Tx, t)η∗(y, Ty, t) =⇒

M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t),

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.

Now we give an example of a generalized (α∗, η∗, ψ) modified contractive map-
ping.
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Example 2.4. let X = [0,∞) and M(x, y, t) =
(

t
t+1

)d(x,y)
, where d(x, y) =

|x − y| for x, y ∈ X, ∗ is product continuous t-norm. Here (X,M, ∗) is complete
fuzzy metric space. Let T : X → X be a map defined by

Tx =

{
x2

4 if x ∈ [0, 12 ]
0, ifx ∈ ( 12 ,∞)

Let α∗, η∗ : X ×X × (0,∞) → [0,∞) defined by

α∗(x, y, t) =

{
3 if x, y ∈ [0, 1],
0, otherwise,

and η∗(x, y, t) =

{
1, if x, y ∈ [0, 1],
4 otherwise.

♢

Suppose α∗(x, Tx, t)α∗(y, Ty, t) > η∗(x, Tx, t)η∗(y, Ty, t). Then we have x, y ∈
[0, 1].

Case i: If x, y ∈ [0, 12 ] and ψ(t) = t
1
2 . This implies

M(Tx, Ty, t) =

(
t

t+ 1

)d(Tx,Ty)
=

(
t

t+ 1

)|Tx−Ty|

=

(
t

t+ 1

)| x2

4 − y2

4 |

=

(
t

t+ 1

) 1
4 |x−y||x+y|

>
(

t

t+ 1

) 1
2 |x−y|

)

= ψ(M(x, y, t)).(2.2)

Since ψ is non decreasing, from (2.2) we have

M(Tx, Ty, t) > ψ(M(x, y, t)) > ψ(N(x, y, t)) > ψ(N(x, y, t))K(x, y, t).

Thus, the theorem follows in this case.

Case ii: If x ∈ [0, 12 ] and y ∈ ( 12 , 1]

M(Tx, Ty, t) =
(

t
t+1

)| x2

4 −0|
=

(
t
t+1

) x2

4

, M(x, y, t) =
(

t
t+1

)y−x
,

M(x, Tx, t) =
(

t
t+1

)x− x2

4

, M(y, Ty, t) =
(

t
t+1

)y
, M(x, Ty, t) =

(
t
t+1

)x
,

M(y, Tx, t) =
(

t
t+1

)(y− x2

4 )

.
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Here we have

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

= min

{
(

t

t+ 1
)y−x,max{( t

t+ 1
)x−

x2

4 , (
t

t+ 1
)y}

}

=


(

t
t+1

)y−x
, if y > 2x− x2

4(
t
t+1

)x− x2

4

, if y 6 2x− x2

4

(2.3)

Sub case i: If y > 2x− x2

4 .

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}

= max


(

t

t+ 1

)y−x
,

(
t

t+ 1

)x− x2

4

,

(
t

t+ 1

)y
,

(
t

t+ 1

)x
,

(
t

t+ 1

)(y− x2

4 )


=

(
t

t+ 1

)(x− x2

4 )

.

Since

x2

4
6 y − x

2
+ x− x2

4
,

we get that (
t

t+ 1

) x2

4

>
(

t

t+ 1

) y−x
2

(
t

t+ 1

)(x− x2

4 )

.

This implies

M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t).

Sub case ii: If y 6 2x− x2

4 then N(x, y, t) =
(

t
t+1

)(x− x2

4 )

.

Here

K(x, y, t)

= max


(

t

t+ 1

)y−x
,

(
t

t+ 1

)x− x2

4

,

(
t

t+ 1

)y
,

(
t

t+ 1

)x
,

(
t

t+ 1

)(y− x2

4 )


= max

{(
t

t+ 1

)y−x(
t

t+ 1

)x}
.

If K(x, y, t) = ( t
t+1 )

y−x. Then we can easily observe that

x2

4
6 y − x2

8
− x

2
.
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Thus (
t

t+ 1

) x2

4

=M(Tx, Ty, t) >
(

t

t+ 1

) x
2−

x2

4
(

t

t+ 1

)y−x
= ψ(N(x, y, t))K(x, y, t).

On the other hand if K(x, y, t) =
(

t
t+1

)x
.

From the fact that
x2

4
6 x

2
− x2

8
+ x.

we have

(
t

t+ 1

) x2

4

=M(Tx, Ty, t) >
(

t

t+ 1

) x
2−

x2

8
(

t

t+ 1

)x
= ψ(N(x, y, t))K(x, y, t).

It is easy to see that M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t) for x ∈ ( 12 ,∞),

y ∈ ( 12 ,∞).

Hence T is a generalized modified (α∗, η∗, ψ)- contractive mapping.

In Section 3, we prove the existence of fixed points for generalized modified
(α∗, η∗, ψ)-contractive mappings in a complete fuzzy metric spaces. We provide an
example to show the validity of our results. Our results generalize the results of
([12]).

3. Main results

The following proposition is needed to establish the main result.

Proposition 3.1. Let (X,M, ∗) be a fuzzy metric space. Let T : X → X
be a generalized modified (α∗, η∗, ψ)- contractive mapping. Fix x0 ∈ X and de-
fine a sequence {xn} by xn+1 = Txn for all n = 0, 1, 2, · · · . If α∗(xn, xn+1, t) >
η∗(xn, xn+1, t) for all n and limn→∞M(xn, xn+1, t) = 1 then {xn} is Cauchy se-
quence in X.

Proof. Suppose on the contrary that {xn} is not a Cauchy sequence. By
Proposition 2.1, there exist 0 < ϵ < 1, t0 > 0 and a positive integers {m(k)}, {n(k)}
with m(k) > n(k) > k for any k ∈ N such that

(3.1)
lim
k→∞

M(xn(k), xm(k), t0) = 1− ϵ, lim
k→∞

M(xn(k), xm(k),
t0
2
) = 1− ϵ and

lim
k→∞

M(xn(k)+1, xm(k)+1, t0) = 1− ϵ.

Here we have

α∗(xn(k), Txn(k),
t0
2 )α

∗(xm(k), Txm(k),
t0
2 )

> η∗(xn(k), Txn(k),
t0
2 )η

∗(xm(k), Txm(k),
t0
2 ).
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Hence, from (2.1), we have

M(Txn(k), Txm(k),
t0
2
) > ψ(N(xn(k), xm(k),

t0
2
))K(xn(k), xm(k),

t0
2
).(3.2)

where

K(xn(k), xm(k),
t0
2
) = max{M(xn(k), xm(k),

t0
2
),M(xn(k), xm(k)+1,

t0
2
),

M(xm(k), xn(k)+1,
t0
2
),M(xn(k), xn(k)+1,

t0
2
),M(xm(k), xm(k)+1,

t0
2
)}

and

N(xn(k), xm(k),
t0
2
) = min{M(xn(k), xm(k),

t0
2
),max{M(xn(k), xn(k)+1,

t0
2
),

M(xm(k), xm(k)+1,
t0
2
)}}.

Hence we have

(3.3) lim
k→∞

K(xn(k), xm(k),
t0
2
) = 1 and lim

k→∞
N(xn(k), xm(k),

t0
2
) = 1− ϵ.

On taking limit as k → ∞ in (3.2), and by using (3.1) and (3.3) it follows that

1− ϵ > ψ(1− ϵ) > 1− ϵ,

which is a contradiction. Therefore,{xn} is a Cauchy sequence. �

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space. Let T : X →
X be a generalized modified (α∗, η∗, ψ)- contractive mapping. Suppose that the
following assertions hold:

(a): T is (α∗, η∗) admissible mapping;

(b): there exists x0 ∈ X such that α∗(x0, Tx0, t) > η∗(x0, Tx0, t) for all
t > 0;

(c): for any sequence{xn} ⊂ X such that α∗(xn, xn+1, t) > η ∗ (xn, xn+1, t),
for all n ∈ N, t > 0 and {xn} → x as n → ∞, then α∗(x, Tx, t) >
η ∗ (x, Tx, t) for all t > 0.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α∗(x0, Tx0, t) > η∗(x0, Tx0, t) for all t > 0.
Define a sequence {xn} in X such that xn = Tnx0 = Txn−1 for all n ∈ N . If
xn = xn+1 for some n ∈ N , then xn = Txn and hence xn is a fixed point of T and
we are done. Assume that xn ̸= xn+1 for all n ∈ N . Since T is (α∗, η∗) admissible
mapping and since α∗(x0, Tx0, t) > η∗(x0, Tx0, t) it follows that

α∗(x1, x2, t) = α∗(Tx0, Tx1, t) > η∗(Tx0, Tx1, t) = η∗(x1, x2, t),

so that

α∗(x0, Tx0, t)α
∗(x1, Tx1, t) > η∗(x0, Tx0, t)η

∗(x1, Tx1, t).

On continuing this process, we have α∗(xn, Txn, t) > η∗(xn, Txn, t), for all n > 1
and so we have
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α∗(xn−1, Txn−1, t)α
∗(xn, Txn, t) > η∗(xn−1, Txn−1, t)η

∗(xn, Txn, t) for all n ∈ N
and t > 0. Now, from the inequality in (2.1), we have

M(xn, xn+1, t) = M(Txn−1, Txn, t)

> ψ(N(xn−1, xn, t))K(xn−1, xn, t),(3.4)

where

N(xn−1, xn, t) = min{M(xn−1, xn, t),max{M(xn−1, Txn−1, t),M(xn, Txn, t)}}
= min{M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}}.(3.5)

and

K(xn−1, xn, t) = max{M(xn−1, xn, t),M(xn−1, Txn, t),M(xn, Txn−1, t),

M(xn, Txn, t),M(xn−1, Txn−1, t)}.

Since M(xn, Txn−1, t) = 1 for all n ∈ N and t > 0, we have

(3.6) K(xn−1, xn, t) = 1.

Moreover, since min{a,max{a, b}} = a, we have

(3.7) N(xn−1, xn, t) =M(xn−1, xn, t) for each n ∈ N and t > 0.

From (3.4), (3.6) and (3.7) we have
(3.8)
M(xn, xn+1, t) > ψ(M(xn−1, xn, t)) > M(xn−1, xn, t) ∀n ∈ N and t > 0.

It follows that the sequence{M(xn, xn+1, t)} is an increasing sequence in (0, 1].
Thus, there exists lt ∈ (0, 1] such that

lim
n→∞

M(xn, xn+1, t) = lt for all t > 0.

We now prove that lt = 1 for each t > 0. Let t > 0. Now from (3.8), we have

M(xn, xn+1, t) > ψ(M(xn−1, xn, t)) > M(xn−1, xn, t).

Since ψ is continuous, if we take limit as n → ∞ in the above inequality, we get
that

lt > ψ(lt) > lt.

This implies ψ(lt) = lt. By remark 2.4 and the sequence {M(xn, xn+1, t)} is in-
creasing follows lt = 1. Thus by Proposition 3.1, {xn} is Cauchy Sequence.

Since (X,M, ∗) is a complete fuzzy metric space and {xn} is a Cauchy sequence
in X, there exist x∗ ∈ X such that xn → x∗ as n → ∞. i.e M(xn, x

∗, t) → 1 as
n→ ∞ for each t > 0.

Moreover, Since

α∗(xn, Txn, t) > η∗(xn, Txn, t) for all n ∈ N ∪ {0}, t > 0,

by condition (c) in the Theorem 3.1 we have α∗(x∗, Tx∗, t) > η∗(x∗, Tx∗, t).
Hence we get that α∗(xn, Txn, t)α

∗(x∗, Tx∗, t) > η∗(xn, Txn, t)η
∗(x∗, Tx∗, t),

for all n ∈ N ∪ {0} and t > 0.
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By the hypothesis of the theorem

M(Tx∗, Txn, t) =M(Tx∗, xn+1, t) > ψ(N(x∗, xn, t))K(x∗, xn, t)

> N(x∗, xn, t)K(x∗, xn, t),(3.9)

where

N(x∗, xn, t) = min{M(x∗, xn, t),max{M(x∗, Tx∗, t),M(xn, Txn, t)}}.
and

K(x∗, xn, t) = max{M(x∗, xn, t),M(x∗, xn+1, t),M(xn+1, Tx
∗, t)M(x∗, Tx∗, t),

M(xn, Txn, t)}.
As n→ ∞,

lim
n→∞

N(x∗, xn, t) = 1 and lim
n→∞

K(x∗, xn, t) = 1.

This implies that

1 > lim
n→∞

M(Tx∗, xn+1, t) > 1.

Therefore, limn→∞M(Tx∗, xn+1, t) = 1. Hence, the sequence {xn} converges to
Tx∗. Since the limit of a convergent sequence in a fuzzy metric space is unique, it
follows that Tx∗ = x∗.

Therefore, x∗ is a fixed point of T . �

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, we assume the
following.

condition (H): α∗(x, y, t) = η∗(x, y, t) if and only if x = y.

Then T has a unique fixed point in X.

Proof. Suppose x and y are fixed points of T . Thus, Tx = x and Ty = y
which implies that

α∗(x, Tx, t) = α∗(x, x, t) and α∗(y, Ty, t) = α∗(y, y, t).

By condition (H), we have

α∗(x, x, t) = η∗(x, x, t) and α∗(y, y, t) = η∗(y, y, t)

for all t > 0. This implies that

α∗(x, Tx, t)α∗(y, Ty, t) > η∗(x, Tx, t)η∗(y, Ty, t).

Since T is a generalized modified (α∗, η∗, ψ) contractive mapping, we have that

M(x, y, t) =M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t),

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}} =M(x, y, t)

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)} = 1.
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This implies that

M(x, y, t) > ψ(M(x, y, t)).

By the property of ψ we have M(x, y, t) = 1. This implies that x = y. Therefore
T has a unique fixed point. �

By taking η∗(x, y, t) = 1 in Theorem 3.1 we obtain the following corollary.

Corollary 3.1. Let (X,M, ∗) be a complete fuzzy metric space and T : X →
X be α∗-admissible map. Assume that there exists a function ψ ∈ Ψ such that

α∗(x, Tx, t)α∗(y, Ty, t) > 1 ⇒M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t),

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}},
and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}
for all x, y ∈ X and t > 0. Suppose that the following assertions hold

(a): there exists x0 ∈ X such that α∗(x0, Tx0, t) > 1 for all t > 0,
(b): for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) > 1, for all n ∈

N, t > 0 and xn → x as n→ ∞, then α∗(x, Tx, t) > 1 for all t > 0.

Then T has a fixed point.

Corollary 3.2. Let (X,M, ∗) be a complete fuzzy metric space and T : X →
X be α∗-admissible map. Assume that there exists a function ψ ∈ Ψ such that

1

α∗(x, Tx, t)α∗(y, Ty, t)
M(Tx, Ty, t) > ψ(N(x, y, t)))K(x, y, t),

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}
and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)},
for all x, y ∈ X and t > 0. Suppose that the following assertions hold

(a): there exists x0 ∈ X such that α∗(x0, Tx0, t) > 1 for all t > 0,

(b): for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) > 1, for all n ∈
N, t > 0 and xn → x as n→ ∞, then α∗(x, Tx, t) > 1 for all t > 0.

Then T has a fixed point.

Proof. Suppose α∗(x, Tx, t)α∗(y, Ty, t) > 1. it follows that

1

α∗(x, Tx, t)α∗(y, Ty, t)
M(Tx, Ty, t) 6M(Tx, Ty, t).

Which implies that M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t). By Corollary 3.1 T has
a fixed point. �

By taking α∗(x, y, t) = 1 in Theorem 3.1, we draw the following corollary.
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Corollary 3.3. Let (X,M, ∗) be a complete fuzzy metric space. A mapping
T : X → X be η∗-sub admissible map. Assume that there exists a function ψ ∈ Ψ
such that

η∗(x, Tx, t)η∗(y, Ty, t) 6 1 ⇒M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t),

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)},
for all x, y ∈ X and t > 0. Suppose that the following assertions hold

(a): there exists x0 ∈ X such that η∗(x0, Tx0, t) 6 1 for all t > 0,
(b): for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) 6 1, for all n ∈

N, t > 0 and xn → x as n→ ∞, then α∗(x, Tx, t) 6 1 for all t > 0.

Then T has a fixed point.

Corollary 3.4. Let (X,M, ∗) be a complete fuzzy metric space. T : X → X
be η∗-sub admissible map. Assume that there exists a function ψ ∈ Ψ such that

M(Tx, Ty, t) > 1

η∗(x, Tx, t)η∗(y, Ty, t)
ψ(M(x, y, t))K(x, y, t),

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)},
for all x, y ∈ X and t > 0. Suppose that the following assertions hold

(a): there exists x0 ∈ X such that η∗(x0, Tx0, t) 6 1 for all t > 0,
(b): for any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) 6 1, for all n ∈

N, t > 0 and xn → x as n→ ∞, then α∗(x, Tx, t) 6 1 for all t > 0.

Then T has a fixed point.

If we take α∗(x, y, t) = 1 in Corollary3.2 or η∗(x, y, t) = 1 in Corollary 3.4, we
draw the following Corollary

Corollary 3.5. Let (X,M, ∗) be a complete fuzzy metric space. Let T : X →
X be a self map. Assume that there exists a function ψ ∈ Ψ such that

M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)},
for all x, y ∈ X and t > 0. Then T has a fixed point.

Remark 3.1. Theorem 2.1 follows as a corollary to Theorem 3.1 since
K(x, y, t) 6 1 for all x, y ∈ X and t > 0. ♢
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Now we give an example in which to Theorem 2.1 fail to apply but Theorem
3.1 can be applied to prove the existence of fixed point. From this it follows that
Theorem 3.1 is a generalization of Theorem 2.1.

Example 3.1. let X = [0, 23 ] ∪ [1,∞) and M(x, y, t) =
(

t
t+1

)d(x,y)
, where

d(x, y) = |x− y|, ∗ is product continuous t-norm. Here (X,M, ∗) is complete fuzzy
metric space.

Let T : X → X be a map defined by

Tx =

{
2
3x, if x ∈ [0, 23 ],
0, if x ∈ [1,∞).

Let α∗, η∗ : X ×X × (0,∞) → [0,∞) defined by

α∗(x, y, t) =

{
3, if x, y ∈ [0, 23 ] ∪ {1}
0, otherwise

,

η∗(x, y, t) =

{
1, if x, y ∈ [0, 23 ] ∪ {1}
2, otherwise.

Claim T is (α∗, η∗) admissible map.
Suppose α∗(x, y, t) > η∗(x, y, t), then x, y ∈ [0, 23 ] ∪ {1}. On the other hand ,

for all x, y ∈ [0, 23 ] ∪ {1}, we have Tx ∈ [0, 23 ] and Ty ∈ [0, 23 ]. This implies

α∗(Tx, Ty, t) > η∗(Tx, Ty, t).

Hence T is (α∗, η∗) admissible mapping.
Moreover, α∗( 14 , T

1
4 , t) > η∗( 14 , T

1
4 , t).

Let {xn} be a sequence in X such that α∗(xn, xn+1, t) > η∗(xn, xn+1, t) for
all n ∈ N ∪ {1} and xn → x as n → ∞, then {xn} ⊂ [0, 23 ] ∪ {1}, and hence

x ∈ [0, 23 ] ∪ {1}. This implies that α∗(x, Tx, t) > η∗(x, Tx, t) for all n ∈ N and
t > 0.

Suppose

α∗(x, Tx, t)α∗(y, Ty, t) > η∗(x, Tx, t)η∗(y, Ty, t),

then x, y ∈ [0, 23 ] ∪ {1}.
Case i: If x, y ∈ [0, 23 ] and ψ(t) = t

2
3

Let at =
t
t+1 < 1. Then M(Tx, Ty, t) = at

2
3 |x−y|,M(x, y, t) = at

|x−y|,

M(x, Tx, t) = at
x
3 ,M(y, Ty, t) = at

y
3 . We wish to show that

M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t),

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}.

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.
Since ψ is non-decreasing and K(x, y, t) 6 1, we get that

at
2
3 |x−y| = ψ(M(x, y, t)) > ψ(N(x, y, t)).

Thus, M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t). So, the hypothesis of Theorem 3.1 is
satisfied in this case.
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Case ii: Let x ∈ [0, 23 ] and y = 1.

M(Tx, Ty, t) = at
2
3x,M(x, y, t) = at

1−x, M(x, Tx, t) = at
x
3 ,M(y, Ty, t) = at,

M(x, Ty, t) = at
x,M(y, Tx, t) = at

1− 2
3x.

Now, we may see that N(x, y, t) = at
1−x and K(x, y, t) = at

x
3 . Since

2

3
x 6 2

3
(1− x) +

x

3
, ∀x 6 2

3
,

we have

M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t).

Case iii: If x = 1, y = 1 then M(Tx, Ty, t) = 1, ψ(N(x, y, t)) 6 1 and
K(x, y, t) 6 1. This implies that M(Tx, Ty, t) > ψ(N(x, y, t))K(x, y, t), So the
result follows in this case. Therefore, from case i-case iii all conditions in Theorem
3.1 are satisfied. Therefore, T has a fixed point. In fact, 0 is a fixed point of T .

Here we can’t apply Theorem 2.1 to this example to prove the existence of fixed
point, because if we take x = 3

5 and y = 1, we have

M(Tx, Ty, t) = at
2
5 ,M(x, y, t) = at

2
5 ,M(x, Tx, t) = at

1
5 ,M(y, Ty, t) = at.

Now, N(x, y, t) = a
2
5 . If there exist ψ ∈ Ψ such that M(Tx, Ty, t) > ψ(N(x, y, t))

then at
2
5 > ψ(a

2
5 ) > at

2
5 , which is a contradiction. ♢
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