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PRESENCE OF A SCALE PARAMETER
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Abstract. In this paper we apply the classical control theory for the heat

equation depending of a scale parameter. The main results establish a Pon-

tryagyn type maximum principle and give sufficient conditions for the bang-
bang property of optimal controls. In this fact, in first time we build exact

solution. The dependence of this solution compared to the scale parameter

thus lead to study the existence and uniqueness of the time optimal control
for the heat equation. More precisely, Supposing the L∞−controllability to

zero, we can establish a bang-bang type property in the presence of a scale

parameter. Numerical example is given in the last section to illustrate our
main result.

1. Introduction

Let m be a positive integer, let Ω ∈ Rm, ∂Ω is of class C2 and let ω ⊂ Ω be
a non-empty open. The general control problem for the linear heat equation, on a
compact Ω, can be stated as follows:

(1.1)

 ẏ(x, t) = ∆y(x, t) + χω(x)u(x, t) ∀ (x, t) ∈ Ω× R+

y(x, t) = 0 ∀x ∈ ∂Ω, ∀ t ∈ R+

y(x, 0) = y0 ∈ L2(Ω)

where T > 0, ω ⊂ Ω, while χω denotes the characteristic function of the set ω:

∀x ∈ Ω : χω(x) =

{
1 if x ∈ ω
0 if not
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where u is in L∞([0, T ], U), and where:

‖u‖L∞([0,T ],U) 6 1 for almost all t ∈ [0, T ]

The objective of the time optimal control for the system (1) is to find the
control u? which is accessible, with a final time τ? as small as possible ( We refer
for instance to [4-8] ).

One can obtain the bang-bang property by means of the maximum principle,
if the system can be controled exactly (see for example, the article of J. Lohac and
M. Tucsnak [10]).

It is now well known that for specific equations (for the general heat equation,
for instance), the exact controllability is not verified. This is the reason why we
choose to study new conditions, without using the maximum principle. With an
assumption on the L∞− null controllability, we can establish the bang-bang prop-
erty (see also the paper of S. Micu, I. Roventa and M. Tucsnak [11], and the paper
of G. Wang [12]).

The main result in this article asserts that to study the existence and uniqueness
of an optimal time control problem for the linear heat equation, in the presence
of a scaling parameter, and to determine whether the bang-bang property can be
satisfied.

The rest of the paper is organized as follows. Section 2 is devoted to some
definitions and preliminary results. In Section 3 we build the invariant solutions
for the linear heat equation. In Section 4 we prove the existence and uniqueness
of the time optimal control for the heat equation, in the presence of a scaling
parameter. Numerical results are made in Section 5.

2. Preliminaries

We first introduce some notation. Let X and Y be Hilbert spaces. If P ∈
L(X;Y ) then the null-space and the range of P are the subspaces of X and Y
respectively defined by

Ker P = {x ∈ X,Px = 0}, Ran P = {Px, x ∈ X}.
Throughout this paper, X and U are complex Hilbert spaces, identified with

their duals. The inner product and the norm in X are denoted by 〈·, ·〉X and ‖ · ‖X
respectively. We denote by S = (S(t))t>0 a strongly continuous semigroup on X
generated by an operator A : D(A)→ X.

Let B ∈ L(U,X) be a control operator, let y0 ∈ X and let u ∈ L2([0,∞), U).
We consider the infinite dimensional system described by the equation

(2.1) ẏ(t) = Ay(t) +Bu(t), t > 0 y(0) = y0 ∈ X.
With the above notation, the solution y of (2.1) is defined by

(2.2) y(t) = S(t)y0 + Φtu, (t > 0),
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where Φt ∈ L(L2([0, t], U);X) is given by

(2.3) Φtu =

t∫
0

S(t− σ)Bu(σ)dσ, u ∈ L2([0,∞), U).

The maps (Φt) are called input to state maps.

Recall the following classical definitions and preliminary results (We refer for
instance to [10-16]):

Definition 2.1.

• The pair (A,B) is said approximatively controllable in time τ if Ran Φτ is
dense in X.

• The pair (A,B) is exactly controllable in time τ if Ran Φτ = X.

Definition 2.2. Let e ⊂ [0, τ ] be a set of positive Lebesgue measure. The pair
(A,B) is said approximatively controllable in time τ from e if the range of the map
Φτ,e ∈ L(L2([0, τ ], U), X) defined by

Φτ,eu =

∫
e

S(τ − σ)Bu(σ)dσ, (u ∈ L2([0, τ ], U))

is dense in X.

We are now in position to give a precise definition of time optimal controls.

Definition 2.3. Let y0, y1 ∈ X with y0 6= y1. A function u∗ ∈ L∞([0,∞), U)
is said a time optimal control for the pair (A,B), associated to the initial state y0

and the final state y1, if there exists τ∗ > 0 such that

1. y1 = S(τ∗)y0 + Φτ∗u
∗ and ‖u∗‖L∞([0,τ∗],U) 6 1;

2. if τ > 0 is such that there exists u ∈ L∞([0, τ ], U) with

y1 = S(τ)y0 + Φτu, ‖u‖L∞([0,τ ],U) 6 1,

then τ > τ∗.

Proposition 2.1. ([5]). With the above notation and assumptions, assume
moreover that y0, y1 ∈ X, y0 6= y1 are such that there exists t > 0 with y1−S(t)y0 ∈
B∞1 (t).

Then there exists τ∗ > 0 such that

τ∗ = min{t > 0 | y1 − S(t)y0 ∈ B∞1 (t)} > 0

where B∞1 (t) = {Φtu, u ∈ L∞([0, t], u), ‖u‖L∞([0,t],u 6 1}.
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In other words τ∗ is the minimal time in which y0 can be steered to y1 by
controls satisfying ‖u(t)‖ 6 1 for almost every t. Therefore, any u∗ ∈ L∞([0, τ∗], u)
satisfying

y1 − S(τ∗)y0 = Φτ∗u
∗,

is called a time optimal control for the pair (A,B).

The below result provides a class of infinite dimensional system for which the
maximum principle from the linear finite dimensional case can be extended in its
classical form.

Theorem 2.1. [10](Pontryagyn maximum principle)
Suppose that (A,B) is exactly controllable in any time τ > 0. Then, for every
y0, y1 ∈ X with y0 6= y1, there exists a time optimal control u∗ steering y0 to y1 in
time τ∗ = τ∗(y0, y1). Moreover, there exists η ∈ X, η 6= 0 such that

(2.4)
〈B∗S∗(τ∗ − t)η, u(t)〉U = max

v∈U,‖v‖U61
〈B∗S∗(τ∗ − t)η, v〉U , (t ∈ (0, τ∗) a.e.)

The following result shows that, under an extra assumption, the time optimal
controls in the above theorem are bang-bang.

Corollary 2.1. ([6]). With the notation and the assumptions in Theorem
2.5, assume moreover that the pair (A,B) is approximatively controllable in time
τ∗ from any e ⊂ [0, τ∗] of positive measure. Then the time optimal control u

∗
is

bang-bang, in the sense that

(2.5) ‖u∗(t)‖U = 1 (t ∈ (0, τ∗) a.e.).

Moreover, the time optimal control is unique.

Theorem 2.2. ([11]). Suppose that (A,B) is L∞ null controllability in any
time τ > 0 over e ⊂ [0, τ ] of positive measure. Then, for every y0, y1 ∈ X with
y0 6= y1, there exists a unique time optimal control u∗ steering y0 to y1 in time τ∗

and u
∗

has the bang-bang property (2.5).

In the following results, we are interested to a method introduced by Lebeau
and Robbiano [15] to study the null controllability of the heat equation. More
precisely, supposing the L∞-controllability to zero, we can establish a bang-bang
type property(We refer for instance to [11,12].).

The operator A : D(A) → X is supposed to be a self-adjoint (possibly un-
bounded) operator on X such that

〈Aψ,ψ〉 6 0 ( ψ ∈ D(A)).

Such an operator will be briefly called a negative operator. We also assume
that A is diagonalizable with an orthonormal basis of eigenvectors {ϕk}k>0 and
corresponding family of eigenvalues {−λk}k>0, where the sequence {λk} is positive,
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non decreasing and satisfies λk → ∞ as k tends to infinity. According to classical
results, this holds, in particular, if A has compact resolvents. With the above
assumptions on A, we have

(2.6) Aψ = −
∑
k>0

λk〈ψ,ϕk〉ϕk (ψ ∈ D(A)),

so that the semigroup S generated by A is a contraction semigroup on X satisfying

(2.7) S(t)y =
∑
k>0

e−λkt〈y, ϕk〉ϕk (t > 0, y ∈ X).

We denote by Ψd
τ (respectively Ψd

τ,e) the output maps corresponding (respec-
tively the restriction to a set of positive measure e ⊂ [0, τ ] of these output maps)
corresponding to the pair (A∗, B∗), i.e., we set :

(Ψd
τy0)(t) = B∗S∗(t)y0 (y0 ∈ X, t ∈ [0, τ ]),

Ψd
τ,e ∈ L(X,L2([0, τ ], U)), Ψd

τ,e = χeΨ
d
τ .

We are now in a position to enunciate the following results :

Proposition 2.2. [10]
Let τ > 0, e ⊂ [0, τ ] be a set of positive measure and Kτ,e > 0. The following

two properties are equivalent

1. The inequality

(2.8) Kτ,e‖Ψd
τ,éϕ‖L1([0,τ ],U) > ‖S∗(τ)ϕ‖X ,

holds for any ϕ ∈ X, where é = {(x, τ − t)|(x, t) ∈ e}.

2. The pair (A,B) is L∞-null controllable in time τ over e at cost not larger
than Kτ,e.

We denote by µk the Lebesgue measure in Rk and

Vζ = span{ϕk | λ
1
2

k 6 ζ, ∀ζ > 0}.

Theorem 2.3. ([12]). Let τ > 0 and e ⊂ [0, τ ] be a set of positive measure and
Kτ,e > 0. Moreover, assume that there exist positive constants d0 > 0 and d1 > 0
such that for every ζ > 0, s, t > 0, with 0 < s < t 6 τ and ε := {σ ∈ e | s 6 σ 6 t}
of positive measure, we have

(2.9) ‖S(τ)∗ϕ‖X 6 d0e
d1ζ

µ(ε) ‖Ψ
d
τ,ε′ϕ‖L1([0,τ ];U), ∀ϕ ∈ Vζ ,

where ε′ := {τ − σ | σ ∈ ε}.

Then the pair (A,B) is L∞-null controllable in time τ over e.
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Proposition 2.3. for any ζ > 0 and if the paire (A,B) satisfies the inequality

(2.10) ∃d0, d1 > 0,∀ϕ ∈ Vς , ‖ϕ‖X 6 d0e
d1ς‖B∗ϕ‖U ,

Then the pair (A,B) satisfying the inequality (2.9), so imply that is L∞-null
controllable in time τ over e.

Proof. For any τ > 0 and any e ⊂ [0, τ ] of positive measure, we consider the
the following adjoint system of (2.1) :

(2.11)

{
ż(t) = −A∗z(t), t ∈ [0, τ ],

z(t) ∈ Vζ .

we can write z(τ) =
∑

k,ϕk∈Vζ
αkϕk where (αk)k ⊂ R and (ϕk)k are the eigenvectors

of the operator A corresponding to the eigenvalue (λk)k
Then the solution z of (2.11) writes :

(2.12) z(t) =
∑

k,ϕk∈Vζ
e−λk(τ−t)αkϕk.

From the inequality (2.10) imply that for every (ak)k ⊂ R we have :

(2.13) ‖
∑

k,ϕk∈Vζ
akϕk‖X 6 d0e

d1ζ‖B∗
∑

k,ϕk∈Vζ
akϕk‖U .

Let ak = e−λk(τ−t)αk in (2.13). Then Integrating the above formula over the
measurable set ε := e ∩ [s, t] for 0 < s < t 6 τ we deduce that :∫

ε

‖
∑

k,ϕk∈Vζ

e−λk(τ−t)αkϕk‖Xdt 6 d0e
d1ζ

∫
ε

‖B∗
∑

k,ϕk∈Vζ

e−λk(τ−t)αkϕk‖Udt

⇔
∫
ε

(
∑

k,ϕk∈Vζ

e−2λk(τ−t)|αk|2)1/2dt 6 d0e
d1ζ‖χε(.)B∗

∑
k,ϕk∈Vζ

e−λk(τ−.)αkϕk‖L1([0,τ ];U)

(2.14)
⇒ µ(ε)‖

∑
k,ϕk∈Vζ

e−λk(τ)αkϕk‖X 6 d0e
d1ζ‖χε′(.)B∗

∑
k,ϕk∈Vζ

e−λk(.)αkϕk‖L1([0,τ ];U),

where ε′ := {τ − t | t ∈ ε}.

Let ϕ =
∑

k,ϕk∈Vζ
αkϕk. From (2.14) we have for every ϕ ∈ Vε :

‖S(τ)∗ϕ‖X 6
d0e

d1ζ

µ(ε)
‖χε′(.)B∗S(.)∗ϕ‖L1([0,τ ];U) =

d0e
d1ζ

µ(ε)
‖Ψd

τ,ε′ϕ‖L1([0,τ ];U).

Thus, the inequality (2.9) of the theorem (2.3) is verified, which implies that
the paire (A,B) is L∞-null controllable in time τ over e, which ends the proof. �
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3. A scaling invariant solutions for linear heat equation and main
objective

We consider the linear heat equation of one-dimensional:

∂y

∂t
=
∂2y

∂x2
∀ (x, t) ∈ R× [0, T ]

where T is a positive real number, with the initial condition:

y(x, 0) = y0(x) ∀x ∈ R
and where y0 denotes a given function.
The analytical solution is given, for any (x, t) ∈ R× [0, T ], by:

yclassical(x, t) =
1

2
√
πt

∫ ∞
−∞

y0(z) e−
(x−z)2

4t dz

The linear heat equation has a natural scaling invariance. Let us denote by y a
solution. Then, for any strictly positive real number λ, the mapping:

(t, x) 7→ yλ(t, x) = λy(λ2 t, λ x)

is also a solution.
By applying the method developed by Jean-Yves Chemin and Claire David [1], [3],
one can introduce the mapping F , belonging to L2

loc(R)× R?+ × N?, by:

F (y0, λ,N0) = y0 + ε

N0∑
j=1

λ−j y0(λ−j ·) , ε ∈ {−1,+1}, N0 ∈ N?

The building of thus mapping takes its origin in the profile theory, introduced
by P. Gérard et H. Bahouri [3]. It is based on the idea that two solutions of an
evolution equation, of scales, sufficiently different, almost not interact.
We are thus interested, in the following, to initial data of the form:

y0(x) + ε

N0∑
j=1

y0
λ,j(x) = y0(x) + ε

N0∑
j=1

1

λj
y0
( x
λj

)
, λ > 0

The exact analytical solution yλ, which depends on the space variable x, the time
variable t, and the scaling parameter λ, is given by:

yλ(x, t, λ) = yclassical(x, t) + ε
1

2
√
π t

∫ ∞
−∞

N0∑
j=1

y0
λ,j(u) e−

(x−u)2
4 t du

It is interesting to note that:

yλ(x, t, λ) = yclassical(x, t) + ε

N0∑
j=1

1

λ
yclassical

(
x

λj
,
t

λ2j

)
Hence, we have:
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∆yλ(x, t, λ) = ∆yclassical(x, t) +
ε

λ

N0∑
j=1

∆yclassical

(
x

λj
,
t

λ2j

)
One builds thus an exact solution of the afore mentioned linear heat equation.

The dependence of this solution towards the scaling parameter λ, naturally leads
to an internal control problem, which can be formulated as follows:

Let m be a positive integer, let Ω ∈ Rm, ∂Ω is of class C2 and let ω ⊂ Ω be
a non-empty open. we consider the following control problem for the linear heat
equation with scale invariance

(3.1)

 ẏλ(x, t, λ) = ∆yλ(x, t, λ) + χω(x)u(x, t) ∀ (x, t, λ) ∈ Ω× R+ × R?+
yλ(x, t, λ) = 0 ∀ x ∈ ∂Ω,∀ (t, λ) ∈ R+ × R?+
yλ(x, 0, λ) = y0

λ ∈ L2(Ω) ∀ λ ∈ R?+
where χω is the characteristic function of ω:

∀x ∈ Ω : χω(x) =

{
1 if x ∈ ω
0 if not

In the following Section we study the existence and uniqueness of time optimal
controls for (3.1) with the presence of a scale parameter. More precisely, supposing
the L∞-controllability to zero, we can establish a bang-bang type property.

4. Time optimal controls for (3.1)

We are now in a position to enunciate the our main result :

Proposition 4.1. We consider the optimal control problem for heat equation
in the presence of a scale parameter defined by (3.1).

For every y0
λ, y

f
λ ∈ L2(Ω), with y0

λ 6= yfλ, there exits a unique solution u∗ of the time

optimal control problem (3.1) steering y0
λ to yfλ in time τ∗ and this solution u∗ has

the bang-bang property:

(4.1) ‖u(σ)‖L2(ω) = 1, (for all σ ∈ [0, τ∗]a.e.).

Proof. Let u ∈ L2([0, T ];U) with ∀t > 0, ‖u(., t)‖l2(Ω) 6 1.

We set X = L2(Ω), U = L2(ω), the operator A is defined by

A :=

{
D(A) = H2(Ω) ∩H1

0 (Ω)→ X
ϕ→ Aϕ = ∆ϕ,

and the operator B ∈ L(U,X) with Bu = χωu, u ∈ L2(ω).
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With the above assumptions and notation, we can write the system (3.1) as
follows :

(4.2) ẏλ(t) = Ayλ(t) +Bu(t), yλ(0) = y0
λ,

where A = ∆ and B = χω.
and we know that A is a negative operator and diagonalizable with an or-

thonormal basis of eigenvectors {ϕk}k>0 and corresponding family of eigenvalues
{−λk}k>0, where the sequence {λk}is positive, non decreasing and satisfies λk →∞
as k tends to infinity. It is also known that the operator A has compact resolvents.

In order to prove proposition 4.1 we need to apply theorem 2.2. Then we only
need to establish the inequality (3.10) and to use the proposition 2.3 for to conclude.

It is known that the inequality (2.9) is verified for the operator A = ∆ and
B = χω ( see theorem 3 of G. Lebeau et E. Zuazua [16]).

Then, the (A,B) is L∞ null controllability in any time τ > 0 over e ⊂ [0, τ ] of
positive measure.

The existence of a time optimal control u∗ is given by Proposition 2.1. And the
uniqueness is verified because that the control u∗ verifies the bang-bang property
and by the using the strict convexity of U ( see Corollary 2.1.)

Now, we prove the bang-bang property (4.1). Assume, by contradiction, we
suppose that u∗ is time optimal control in time τ∗ and that there exist ε > 0 and
e ⊂ [0, τ∗] of positive measure such that :

‖u∗(σ)‖U 6 1− ε, ∀σ ∈ e.
We denote by y∗λ(t) = yλ(t, y0

λ, u
∗) the trajectory engendered by u∗ from the

initial point y0
λ in time t with the presence of a scale parameter λ > 0.

We remark that there exist δ0 > 0 such that :
e0 = {t ∈ [δ0, τ

∗ − δ0] | t ∈ e} of positive measure .

It is easily seen that y∗λ(t) t→ 0−−−→ y0
λ. Then there exist 0 < δ < δ0 such that :

(4.3) ‖y0
λ − y∗λ(δ)‖X 6 ε

M , where M = sup
0<δ<δ0

{Cτ∗−δ,e0−δ}.

note that Cτ∗−δ,e0−δ is called the control cost in time τ∗ − δ over e0 − δ and is
defined by the smallest constant of Kτ,e which verifies the observability inequality
(2.8) (see proposition 2.2).

From the L∞ null controllability in time τ∗− δ over e0− δ, we know that there
exist a control v ∈ L∞([0, τ∗];U) such that the support of v included in e0 − δ and
we have:
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0 = S(τ∗ − δ)(y0
λ − y∗λ(δ)) + Φτ∗−δ,e0−δv

= S(τ∗ − δ)(y0
λ − y∗λ(δ)) +

τ∗−δ∫
0

χe0−δ(σ)S(τ∗ − δ − σ)Bv(σ)dσ

(4.4) = S(τ∗ − δ)(y0
λ − y∗λ(δ)) +

τ∗∫
σ

χe0−δ(σ − δ)S(τ∗ − σ)Bv(σ − δ)dσ

with

(4.5) ‖v(σ)‖U 6 Cτ∗−δ,e0−δ‖y0
λ − y∗λ(δ)‖X 6 Cτ∗−δ,e0−δ ε

M 6 ε (σ ∈ e0 − δ)

we denote ṽ(σ) = v(σ − δ). Then the support of v is included in e0 − δ, and
we deduce that ṽ(σ) = v(σ − δ) is not null if σ − δ ∈ supp v ⊂ e0 − δ. This means
that the support of v is icluded in e0.

Now, we can write (4.4) and (4.5) as follows :

(4.6)

0 = S(τ∗ − δ)(y0
λ − y∗λ(δ)) +

τ∗∫
σ

χe0(σ)S(τ∗ − σ)Bṽ(σ)dσ,

with

(4.7) ‖ṽ(σ)‖U 6 ε, σ ∈ e0.

Now we prove that u∗ is not the optimal control in τ∗ for obtain the contra-
diction.

Let ũ(t) = u∗(t+ δ) + ṽ(t+ δ) for every t ∈ [0, τ∗ − δ].

We first check that ũ ∈ L1(τ∗−δ), where L1(t) is a set of an admissible control
which defined by :

L1(t) = {u ∈ L∞([0, t];U) | ‖u‖L∞([0,t];U) 6 1}
.

In this fact, if t+ δ ∈ e0, therefore in view of (4.7), we obtain that

‖ũ(t)‖U 6 ‖u∗(t+ δ)‖U + ‖ṽ(t+ δ)‖U 6 (1− ε) + ε = 1.

And if t+ δ is not included in e0, we have that ‖ũ(t)‖U = ‖u∗(t+ δ)‖U 6 1.
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By using (4.6) and the fact that the support of ṽ is included in e0, we obtain :

S(τ∗−δ)y0
λ+Φτ∗−δũ = S(τ∗−δ)(y0

λ−y∗λ(δ))+S(τ∗−δ)

 S(δ)y0
λ +

δ∫
0

S(δ − σ)Bu∗(σ)dσ


+Φτ∗−δ ṽ(.+ δ) + Φτ∗−δu

∗(.+ δ)

= S(τ∗ − δ)(y0
λ − y∗λ(δ)) + Φτ∗−δ ṽ(.+ δ) + S(τ∗)y0

λ +

δ∫
0

S(τ∗ − σ)Bu∗(σ)dσ

+

τ∗−δ∫
0

S(τ∗ − δ − σ)Bu∗(σ + δ)dσ

= S(τ∗ − δ)(y0
λ − y∗λ(δ)) +

τ∗−δ∫
0

S(τ∗ − δ − σ)Bṽ(σ + δ)dσ + S(τ∗)y0
λ

+

δ∫
0

S(τ∗ − σ)Bu∗(σ)dσ +

τ∗∫
δ

S(τ∗ − σ)Bu∗(σ)dσ

= S(τ∗ − δ)(y0
λ − y∗λ(δ)) +

τ∗∫
δ

χe0(σ)S(τ∗ − σ)Bṽ(σ)dσ + S(τ∗)y0
λ + Φτ∗u

∗

= 0 + yfλ.

Hence, the control u∗ steer y0
λ to yfλ in time τ∗ − δ which contradicts with the

optimality of u∗ in time τ∗.

Finally, u∗ has the bang-bang property.
�

5. Numerical results

Our numerical application is carried out by means of a direct type method (total
discretization), of the afore mentioned linear heat equation, in the presence of a
scaling parameter Λ > 0, with an internal control, in a domain ω ⊂ [0, 1]. More
precisely, we consider the following system:

(5.1) Λ2ẏ(Λx,Λ2t) = Λ2∆y(Λx,Λ2t) +[ 13 ,
2
3 ] (x)u(x),∀x ∈ [0, 1],∀ t ∈ [0, tf ]

(5.2) y(0, t,Λ) = 0 , y(1, t,Λ) = 0 , ∀ t ∈ [0, tf ], Λ > 0

The discretization is carried out by finite differences, with an implicit Euler scheme
in time. To this purpose, let us consider the time discretization:
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0 = t0 < t1 < . . . < ti < . . . < tn = tf

and the space discretization:

0 = x0 < x1 < . . . < xj < . . . < xN+1 = 1

For any integer i belonging to {0, . . . , n}, and for any j belonging to {0, . . . , N + 1},
let us denote by:

yi,j = yΛ(ti, xj)

the value of the solution at t = ti and x = xj , for the scaling parameter Λ.
We assume:

ẏλ(ti, xj) ≈
yi,j − yi−1,j

th
and:

∆yΛ(ti, xj) ≈
yi,j+1 + yi,j−1 − 2 yi,j

x2
h

where:

th =
tf
n

, xh =
Λ

N + 1
, tf = Λ2

For each integer i belonging to {1, . . . , N}, we set:

Yi =


yi,1
yi,2

...
yi,N


The related discrete system can be written under the following matrix form:

(5.3) Λ2 Yi+1 − Yi
th

= Ah.Yi+1 +Bh.Ui+1

where the N ×N matrix Ah is given by:

Ah =
Λ2

x2
h



−2 1 0 . . . 0

1 −2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −2 1

0 . . . 0 1 −2


and where the N ×N diagonal matrix Bh is given by:

Bh = diag (α1, . . . , αN )
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while, for any integer i belonging to {1, . . . , N}:

αi =

{
1 if

1

3
6 xi 6

2

3
0 otherwise

and:

Ui+1 =

 ui,1
...

ui,N


where ui,j is the value chosen for the control at t = ti and x = xj .

Basic calculations enable one to solve, for all i in {1, . . . , N}, the system equivalent
to (5.3) :

C Yi+1 = Yi +
th
Λ2

Bh.Ui

where

C = IN −
1

Λ2
th.Ah

IN denoting the N ×N identity matrix.

At each time step, the matrix C is inverted, in order to calculate Yi+1.
Let us denote by X a variable which contains the whole set of values{

ui,j
∣∣ i ∈ [1, N ], j ∈ [1, N ]

}
∪ {tf}

One has to bear in mind that the principle of direct methods lay in minimizing a
function F that yields tf with constraints, i.e., for each integer i of {1, . . . , N}:

‖Ui‖L2([ 13 ,
2
3 ]) 6 1

with the final condition:
Y (tf ) = Y f

The initial and final conditions are:

∀x ∈ K : y0(x) = sin(π x) , yf (x) = 0

Our simulation is carried for: n = N
In practice, we choose the number of discretizations (N = 10 for instance), while
changing the value of the scaling parameter.

Numerical results are given in the Table 1.

Comparison with the shooting method ( The indirect method )

To transform the problem (5.1)-(5.2) into a control problem governed by or-
dinary differential equation, we discretize the heat equation (5.1) in the spatial
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direction x. By dividing the interval [0, 1] into N intervals of lenght xh = Λ
N , we

obtain the following optimal control governed by ordinary differential equations.

(5.4) min
∫ tf

0
dt

(5.5) Ẏi(t) = AhYi(t) +Bh Ui(t), Yi(0) = Yi0 , ∀ ∈ [0, tf ]

where Ah and Bh are defined in (5.3).

Furthermore, by using the shooting method technique [17] for the system , we
get the adjoint system solution Pi(t) and the solution of Yi(t) with a final condition
Yi(tf) = 0
The obtained results are illustrated in Table 1, and a comparison with the shooting
method is done, show that the obtained results are very close to each other.

Λ 1 2 8 10 15 20
τ? (Total discretization method ) 0.6129 2.5506 44.8033 63.9311 79.1337 109.8435
τ? (Shooting method ) 0.6013 2.5089 43.9041 62.7097 77.8107 109.1337

Table 1. Final time - Optimal time

The following figures show the evolution of the L2 norm of the time control
made by the two methods with the scale parameter change. A comparison between
the obtained results by the presented method with those obtained directly using
the shooting method is made which shows that are the same.

Figure 1. The norm evolution L2 for time control with Λ = 1
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Figure 2. The norm evolution L2 for time control with Λ = 2

Figure 3. The norm evolution L2 for time control with Λ = 8

It is interesting to note that the L2 norm of the time control take the value 1
for any time t in [0, τ?]. Thus, the control has the bang-bang property. Moreover,
as the scaling parameter Λ increases, so does the numerical final time, with the
bang-bang property still verified.

6. Perspectives

Our approach has conventionaly, consisted in studying a system with an inter-
nal control, in the presence of a scaling parameter. It is interesting to note that,
due to the expression of the solution with parameter:
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yλ(x, t,Λ) = yclassical(x, t) + ε

N0∑
j=1

1

Λj
yclassical

(
x

Λj
,
t

Λ2j

)
it appears interesting to consider a control of the form:

ε

N0∑
j=1

uj
Λj

yclassical

(
x

Λj
,
t

Λ2j

)
This thus leads to an affine control system. For any integer j belonging to {1, . . . , N0},
the control uj corresponds to a displacement in the direction

fj = ε
1

Λj
yclassical

(
x

Λj
,
t

Λ2j

)
It is then natural to study in the Lie algebra generated by the family

(fj)16i6N0

in the spirit of what is presented in [18], [19], in so far the displacements on subin-
tervals of K, in the given directions fi, fj , i 6= j, involve their Lie bracket.
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