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SOME COINCIDENCE AND

COMMON FIXED POINT THEOREMS CONCERNING

F -CONTRACTION AND APPLICATIONS

Anita Tomar and Ritu Sharma

Abstract. The aim of this paper is to establish coincidence and common fixed

point theorems for a discontinuous noncompatible pair of self-maps in noncom-

plete metric space without containment requirement of range space of involved
maps acknowledging the notion of F-contraction introduced by Wardowski [D.

Wardowski, Fixed points of a new type of contractive mappings in complete

metric spaces, Fixed Point Theory and Applications (2012) 2012:94, 6 pages,
doi: 10.1186/1687-1812-2012-94]. Our results generalize, extend and improve

analogous results existing in literature and are supported with the help of illus-

trative examples associated with pictographic validations to demonstrate the
authenticity of the postulates. Solution of two-point boundary value problem

of the second order differential equation arising in electric circuit equation and

Volterra type integral equation using Ćirić type as well as Hardy-Rogers-type

F -contaction are also given to exhibit the usability of results obtained.

1. Introduction

Bisht and Shahzad [4] introduced the notion of faint compatibility as an im-
provement of conditional compatibility introduced by Pant and Bisht [16], which
allowed the existence of a common fixed point, multiple common fixed points, coin-
cidence points and multiple coincidence points and is suitable for contraction, strict
contractive, contractive and non-contractive conditions. Recently Tomar et al. [25]
extended the notion of faint compatibility to a hybrid pair of maps. However it is
well known that weak compatibility is most widely used concept among all weaker
forms of commuting maps in fixed-point considerations but is not applicable when
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a pair of self maps has more than one coincidence points. For details on a brief de-
velopment of weaker forms of commuting maps, one may refer to Singh and Tomar
[20]. The aim of this paper is to establish the existence and uniqueness of coinci-
dence and common fixed point of discontinuous non-compatible faintly compatible
pair of self maps in non-complete metric space without using containment require-
ment of range space of involved maps via Ćirić type F -contraction and Hardy-Roger
type F -contraction, which are more general than the F -contraction introduced by
Wardowski [26]. Results obtained are verified with the help of illustrative exam-
ples associated with pictographic validations to demonstrate the authenticity of the
postulates. Also inspired by the fact that the study of two-point boundary value
problem related with second order differential equation plays a significant role in
the real world problems and scientific research, we solve two-point boundary value
problem of the second order differential equation arising in electric circuit equation.
Further Volterra type integral equation is solved using Ćirić type F -contraction as
well as Hardy Roger type F -contraction.

2. Preliminaries

A pair of self maps f and g have a coincidence point at x ∈ X if fx = gx.
Further, a point x ∈ X is a common fixed point of f and g if fx = gx = x. In
this paper we denote the set of all real numbers by R, the set of all positive real
numbers by R+ and the set of all natural numbers by N.

Definition 2.1. ([26]) Let (X, d) be a metric space. A map f : X → X is an
F -contraction if there exists τ > 0 such that τ + F (d(fx, fy)) 6 F (d(x, y)) for all
x, y ∈ X with fx 6= fy, where F : R+ → R is a function satisfying:

(1) F is strictly increasing, i.e., for all α, β ∈ R such that α < β, F (α) < F (β);
(2) For each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and

only if limn→∞ F (αn) = −∞;
(3) There exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

We denote by F , the family of all functions F : R+ → R satisfying the conditions
(1)-(3).

Every F -contraction is a contractive map i.e., d(fx, fy) < d(x, y) for all x, y ∈
X, fx 6= fy and hence is necessarily continuous. In fact Banach contraction [1] is a
particular case of F -contraction. Meanwhile there exist F -contractions, which are
not Banach contractions (Wardowski [26]).

Taking different functions F , we obtain a variety of F -contractions, some of
them being already known in the literature. Some examples of the functions be-
longing to F are:

(1) F (α) = lnα;
(2) F (α) = lnα+ α, α > 0;
(3) F (α) = −1√

α
, α > 0;

(4) F (α) = ln(α2 + α), α > 0.

Definition 2.2. A pair of self-maps (f, g) on a metric space (X, d) is
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(1) Compatible ([10]), if limn→∞ d(fgxn, gfxn) = 0, whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = u, for some u ∈ X.

(2) non− compatible, if (f, g) is not compatible, i.e., if there exists at least
one sequence {xn} in X such that limn→∞ fxn = limn→∞ gxn = u for
some u ∈ X, but either limn→∞ d(fgxn, gfxn) 6= 0 or non existent.

(3) weakly compatible ([11]), if the pair commute on the set of their coin-
cidence points, i.e., for x ∈ X, fx = gx implies fgx = gfx.

(4) conditionally compatible ([16]), if whenever the set of sequences {xn}
satisfying limn→∞ fxn = limn→∞ gxn is non-empty, there exists a se-
quence {yn} in X such that limn→∞ fyn = limn→∞ gyn = u , for some
u ∈ X and limn→∞ d(fgyn, gfyn) = 0.

(5) reciprocally continuous ([15]), if limn→∞ fgxn = fx, limn→∞ gfxn =
gx, whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = u, for some u ∈ X.

(6) conditionally reciprocally continuous ([3]), iff whenever the set of
sequences {xn} satisfying limn→∞ fxn = limn→∞ gxn is non empty, there
exists a sequence {yn} satisfying limn→∞ fyn = limn→∞ gyn = u (say)
for some u ∈ X such that limn→∞ fgyn = fu and limn→∞ gfyn = gu.

(7) faintly compatible ([4]), if (f, g) is conditional compatible and f and g
commute on a non-empty subset of the set of coincidence points, whenever
the set of coincidence points is nonempty.

Faint compatibility does not reduce to the class of compatibility in the pres-
ence of unique common fixed point (or unique coincidence point) like most of the
weaker forms of compatibility existing in literature ([4, 20]) and is independent of
compatibility and non-compatibility.

3. Main results

Following Minak et al. [14] and Wardowski and Dung [27], we now extend

notion of Ćirić type F -contraction to a pair of maps. For a single valued map Minak
et al. [14] introduced it as Ćirić type generalized F -contraction and independently
Wardowski and Dung [27] introduced it as F -weak contraction.

Definition 3.1. A pair of self maps (f, g) of a metric space (X, d) is said to be

Ćirić type F -contraction if there exist F ∈ F and τ > 0 such that for all x, y ∈ X :

(1) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = max{d(gx, gy), d(gx, fx), d(gy, fy),
[d(gx, fy) + d(gy, fx)]

2
}.

Notice that every Ćirić type F-contraction for a pair of self maps is also a
F -contraction but the reverse implication does not always hold.

Now we prove our main result using Ćirić type F -contraction for a faintly
compatible pair of maps using conditional reciprocal continuity which is weaker
than continuity of even single map.
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Theorem 3.1. Let a faintly compatible pair of self maps (f, g) of a metric space
(X, d) be conditionally reciprocally continuous. Then f and g have a coincidence
point. Moreover f and g have a unique common fixed point provided that the pair
of self maps (f, g) satisfies Ćirić type F -contraction(1).

Proof. Let {xn} be a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t,

for some t ∈ X. Since pair (f, g) is also faintly compatible, there exists a sequence
{yn} in X satisfying

lim
n→∞

fyn = lim
n→∞

gyn = u,

for some u ∈ X such that

lim
n→∞

d(fgyn, gfyn) = 0.

As pair (f, g) is also conditionally reciprocally continuous, we get

lim
n→∞

fgyn = fu

and

lim
n→∞

gfyn = gu.

Hence fu = gu, i.e., f and g have a coincidence point. Since the pair (f, g) is
faintly compatible, we get fgu = gfu. So ffu = fgu = gfu = ggu. If fu 6= ffu,
by (1),

τ + F (d(fu, ffu)) 6 F (max{d(gu, gfu), d(gu, fu), d(gfu, ffu),

[d(gu, ffu) + d(gfu, fu)]

2
}),

i.e., τ + F (d(fu, ffu)) 6 F (d(fu, ffu)), a contradiction.
Hence fu is a common fixed point of f and g. The uniqueness of the common

fixed point is an easy consequence of the condition (1). �

Example 3.1. Let X = (2, 8) and d be the usual metric on X. Define f, g :
X → X as follows:

fx =

{
3, x 6 3
5, x > 3,

gx =

{
6− x, x 6 3
7, x > 3.

(1) Let {xn} be a sequence in X such that xn = 3− 1
n , then limn→∞ fxn =

limn→∞ gxn = 3 and limn→∞ fgxn = limn→∞ f(3+ 1
n ) = 5, limn→∞ gfxn

= limn→∞ g3 = 3, i.e., limn→∞ d(fgxn, gfxn) 6= 0, i.e., pair (f, g) is
non compatible. Also limn→∞ fgxn = 5 6= f3, i.e., pair (f, g) is not
reciprocally continuous.

(2) Let {yn} be a sequence in X such that yn = 3, then limn→∞ fyn =
limn→∞ gyn = 3 and limn→∞ gfyn = 3, limn→∞ fgyn = 3, i.e.,
limn→∞ d(fgyn, gfyn) = 0. Therefore pair (f, g) is conditionally compat-
ible. Also f3 = g3, fg3 = gf3, i.e., pair (f, g) is faintly compatible.
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(3) Further limn→∞ fgyn = 3 = f3, limn→∞ gfyn = 3 = g3, pair (f, g) is
conditionally reciprocally continuous.

(4) Also f and g satisfy Ćirić type F -contraction for τ = 0.04 and F (α) =
logα.
Hence all the conditions of Theorem 3.1 are satisfied and x = 3 is a unique
coincidence and common fixed point of f and g. Moreover both the self
maps are discontinuous at common fixed point and are neither compatible
nor reciprocally continuous. Further fX 6⊆ gX.

2 3 4 5 6 7 8

4

6

8

common fixed point
O

Fig.1 (2D-View)

• In fig.1:(2D-view), the red line denotes fx, the blue line denotes gx and
the green line denotes the line y = x. Clearly, the functions f and g
intersect on the line y = x only at x = 3, i.e., x = 3 is the unique common
fixed point of f and g.
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Fig.2(3D-view)

• In fig.2:(3D-view), the plane with the blue lines denotes fx and the plane
with the red lines denotes gx. Clearly both of the planes intersect at x = 3.
Hence x = 3 is unique common fixed point of f and g.

Now we extend Hardy-Rogers-type F -contraction introduced by Cosentino and
Vetro [7] to a pair of map.

Definition 3.2. A pair of self maps (f, g) of a metric space (X, d) is said to
be Hardy-Rogers-type F -contraction if there exist F ∈ F and τ > 0 such that for
all x, y ∈ X :

(2) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = αd(gx, gy) + βd(gx, fx) + γd(gy, fy) + δ[d(gx, fy) + d(gy, fx)],

for α, β, γ > 0, α+ β + γ + 2δ < 1.

Notice that every Hardy-Rogers-type F -contraction for a pair of self maps is
also a F -contraction but the reverse implication does not always hold.

Now we prove the next result using Hardy-Rogers-type F -contraction.

Theorem 3.2. Let a faintly compatible pair of self maps (f, g) of a metric space
(X, d) be conditionally reciprocally continuous. Then f and g have a coincidence
point. Moreover f and g have a unique common fixed point provided that the pair
of self maps (f, g) satisfies Hardy-Rogers-type F -contraction(2).

Proof. For all x, y ∈ X, we have

αd(gx, gy) + βd(gx, fx) + γd(gy, fy) + δ[d(gx, fy) + d(gy, fx)]

6 (α+ β + γ + 2δ) max{d(gx, gy), d(gx, fx), d(gy, fy),
[d(gx, fy) + d(gy, fx)]

2
}
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< max{d(gx, gy), d(gx, fx), d(gy, fy),
[d(gx, fy) + d(gy, fx)]

2
}.

Rest of the proof is similar to Theorem 3.1. �

It is interesting to point out here that Theorem 3.1 is an easy consequence of
Theorem 3.2.

Example 3.2. Let X = (1, 6) and d be the usual metric in X. Define f, g :
X → X as follows:

fx =

{
2, x 6 2
3, x > 2,

gx =

{
4− x, x 6 2
5, x > 2.

(1) Let {xn} be a sequence in X such that xn = 2− 1
n , then limn→∞ fxn =

limn→∞ gxn = 2 and limn→∞ fgxn = 3, limn→∞ gfxn = 2, i.e.,
limn→∞ d(fgxn, gfxn) 6= 0, i.e., pair (f, g) is non compatible. Also
limn→∞ fgxn = 3 6= f2, i.e., pair (f, g) is not reciprocally continuous.

(2) Let {yn} be a sequence in X such that yn = 2, then limn→∞ fyn =
limn→∞ gyn = 2, limn→∞ gfyn = limn→∞ fgyn = 2, i.e.,
limn→∞ d(fgyn, gfyn) = 0. Therefore f and g are conditionally compati-
ble. Also f2 = g2, fg2 = gf2, i.e., pair (f, g) is faintly compatible.

(3) Further limn→∞ fgyn = 2 = f2, limn→∞ gfyn = 2 = g2.
Hence (f, g) is conditionally reciprocally continuous.

(4) Further f and g satisfy Hardy-Rogers type F -contraction (2) for τ = 0.01
and F (x) = logx, α = 1

5 , β = 1
5 , γ = 1

6 , δ = 1
12 .

Hence all the conditions of Theorem 3.2 are satisfied and x = 2 is a unique
coincidence and common fixed point of f and g. Moreover both the self
maps are discontinuous at common fixed point and are neither compatible
nor reciprocally continuous. Further fX 6⊆ gX.

1 2 3 4 5 6

2

3

4

5

6

common fixed point
O

Fig.3(2D-View)
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• In fig.3:(2D-view), the red line denotes fx, the blue line denotes gx and
the green line denotes the line y = x. Clearly, the functions f and g
intersect on the line y = x only at x = 2, i.e., x = 2 is the unique common
fixed point of f and g.

2
4

6
2

4

6

−2

0

2

common fixed point

O

Fig.4(3D-View)

• In fig.4:(3D-view), the plane with the blue lines denotes fx and the plane
with the red lines denotes gx. Clearly both of the planes intersect at x = 2.
Hence x = 2 is unique common fixed point of f and g.

Now we extend Hardy-Rogers-type F -contraction introduced by Cosentino and
Vetro [7] to a pair of self map.

Definition 3.3. A pair of self maps (f, g) of a metric space (X, d) is said to be
weak Hardy-Rogers-type F -contraction if there exist F ∈ F and τ > 0 such that
for all x, y ∈ X :

(3) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = αd(gx, gy) + βd(gx, fx) + γd(gy, fy) + δd(gx, fy) + Ld(gy, fx),

for α, β, γ, δ, L > 0 such that α+ β + γ + δ + L < 1 and γ 6= 1.

Theorem 3.3. Let a faintly compatible pair of self maps (f, g) of a metric space
(X, d) be conditionally reciprocally continuous. Then f and g have a coincidence
point. Moreover f and g have a unique common fixed point provided that the pair
of self maps (f, g) satisfies weak Hardy-Rogers-type F -contraction (3).

Proof. Proof follows on the same lines as of Theorem 3.2. �

Example 3.3. Let X = (3, 15) and d be the usual metric in X. Define f, g :
X → X as follows:

fx =

{
4, x 6 4
8, x > 4,

gx =

{
8− x, x 6 4
14, x > 4.
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(1) Let {xn} be a sequence in X such that xn = 4− 1
n , then limn→∞ fxn =

limn→∞ gxn = 4 and limn→∞ fgxn = 8, limn→∞ gfxn = 4, i.e.,
limn→∞ d(fgxn, gfxn) 6= 0. Hence pair (f, g) is non compatible. Also
limn→∞ fgxn = 8 6= g4, i.e., pair (f, g) is not reciprocally continuous.

(2) Let {yn} be a sequence in X such that yn = 4, then limn→∞ fyn =
limn→∞ gyn = 4, limn→∞ gfyn = 4, limn→∞ fgyn = 4, i.e.,
limn→∞ d(fgyn, gfyn) = 0. Therefore f and g are conditionally compati-
ble. Also f4 = g4, fg4 = gf4, i.e., pair (f, g) is faintly compatible.

(3) Further limn→∞ fgyn = 4 = f4, limn→∞ gfyn = 4 = g4, i.e., (f, g) is
conditionally reciprocally continuous.

(4) Also f and g satisfy Hardy-Rogers type F -contraction condition (3) for
τ = 1

20 and F (x) = − 1√
x
, α = 1

9 , β = 1
9 , γ = 1

9 , δ = 1
3 , L = 1

9 .

Hence all the conditions of Theorem 3.3 are satisfied and x = 4 is a unique
coincidence and common fixed point of f and g. Moreover both the self
maps are discontinuous at common fixed point and are neither compatible
nor reciprocally continuous. Further fX 6⊆ gX.

2 4 6 8 10 12 14 16

4

6

8

10

12

14

common fixed point
O

Fig.5(2D-View)

• In fig.5:(2D-view), the red line denotes fx, the blue line denotes gx and
the green line denotes the line y = x. Clearly, the functions f and g
intersect on the line y = x only at x = 4, i.e., x = 4 is the unique common
fixed point of f and g.
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Fig.6(3D-View)

• In fig.6:(3D-view), the plane with the blue lines denotes fx and the plane
with the red lines denotes gx. Clearly both of the planes intersect at x = 4.
Hence x = 4 is unique common fixed point of f and g.

Further, putting α = δ = L = 0 and β = γ ∈ [0, 12 ] in (3) we obtain the
following version of Kannan’s result [12].

Corollary 3.1. Let a faintly compatible pair of self maps (f, g) of a metric
space (X, d) be conditionally reciprocally continuous. Then f and g have a coinci-
dence point. Moreover f and g have a unique common fixed point provided that the
pair of self maps (f, g) satisfies:

(4) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = β[d(gx, fx) + d(gy, fy)]

for all x, y ∈ X, β ∈ [0, 12 ], F ∈ F and τ ∈ R+.

A following version of the Chatterjee’s [5] fixed point Theorem is obtained from
the Theorem 3.3 putting α = β = γ = 0 and δ = L ∈ [0, 12 ].

Corollary 3.2. Let a faintly compatible pair of self maps (f, g) of a metric
space (X, d) be conditionally reciprocally continuous. Then f and g have a coinci-
dence point. Moreover f and g have a unique common fixed point provided that the
pair of self maps (f, g) satisfies:

(5) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = δ[(gx, fy) + d(gy, fx)]

for all x, y ∈ X, δ ∈ [0, 12 ], F ∈ F and τ ∈ R+.

If we choose δ = L = 0, we obtain a Reich [17] type result.
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Corollary 3.3. Let a faintly compatible pair of self maps (f, g) of a metric
space (X, d) be conditionally reciprocally continuous. Then f and g have a coinci-
dence point. Moreover f and g have a unique common fixed point provided that the
pair of self maps (f, g) satisfies:

(6) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (M(x, y)),

where

M(x, y) = αd(gx, gy) + βd(gx, fx) + γd(gy, fy)

for all x, y ∈ X, α+ β + γ < 1, F ∈ F and τ ∈ R+.

Finally, taking g = I(the identity map of X) in Theorem 3.3 and α < 1,
β = γ = δ = L = 0, we obtain Theorem 2.1 of Wardowski [26] as a corollary to our
result.

Corollary 3.4. Let a faintly compatible pair of self maps (f, g) of a metric
space (X, d) be conditionally reciprocally continuous. Then f and g have a coinci-
dence point. Moreover f and g have a unique common fixed point provided that the
pair of self maps (f, g) satisfies:

(7) d(fx, fy) > 0⇒ τ + F (d(fx, fy)) 6 F (d(x, y)),

where F ∈ F and τ ∈ R+.

Remarks (1). In all the results, unique coincidence and common fixed point
is established for a pair of discontinuous self maps without using containment of
range space of involved maps and completeness (or closedness) of underlying space.
Moreover the notion of faint compatibility, which is weaker than commutativity of
a pair of maps is used, thereby extending and improving the result of Batra et al.
[2] which establishes only unique coincidence point for F -g-contraction by taking
containment of range space of involved maps, completeness of space along with
continuity and commutativity of both the maps.

(2). The notion of conditional reciprocal continuity used is weaker than most
of the variants of continuity. For details on this aspect one may refer to Tomar and
Karapinar [23].

(3). It is interesting to note that Ćirić type F -contraction, Hardy-Rogers type
F -contractions and weak Hardy-Rogers type F -contraction are more general than
the analogous contractions existing in the literature, since F -contraction is proper
generalization of ordinary contraction. Our results generalize, extend and improve
multitude of common fixed point results existing in the literature (for instance
Banach [1], Batra et al. [2], Bisht and Pant [3], Bisht and Shahzad [4], Chatterjea

[5], Ćirić [6], Cosentino and Vetro [7], Djoric et al. [8], Hardy-Rogers [9], Kannan
[12], Manro and Tomar [13], Minak et al. [14], Pant [15], Pant and Bisht [16],
Reich [17], Shukla and Radenovic [18], Shukla et al. [19], Tomar et al. [21]-
[22], Tomar and Upadhyay [24], Wardowski [26], Wardowski and Dung [27] and
references there in).
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4. Applications

4.1. Application to electric circuit equation. As an application of our
main result now we solve electric circuit equation which is in the form of second
order differential equation. It is well known that electric circuit contains an elec-
tromotive force E (supplied by a battery or generator), a resistor R, an inductor L
and a capacitor C in series. If the current I is the rate of change of charge q with
respect to time t, I = dq

dt . We are familiar with the following relations:

(1) V = IR;
(2) V = q

C ;

(3) V = LdIdt ,

+
−V

R1 L1

C1

where V = voltage. Now by Kirchhoffs voltage law, the sum of these voltage
drops is equal to the supplied voltage, i.e.,

IR+
q

c
+ L

dI

dt
= V (t),

or

L
d2q

dt2
+R

dq

dt
+
q

c
= V (t);

(4.1) q(0) = 0, q′(0) = 0.

The Green function associated to (4.1) is given by

(4.2) G(t, s) =


−seτ(s−t), 0 6 s 6 t 6 1

−teτ(s−t), 0 6 t 6 s 6 1,

where τ > 0 is a constant, calculated in terms of R and L. Let X = C([0, a],R+) be
the set of all non negative real valued functions defined on [0, a]. For an arbitrary
u ∈ X, we define

(4.3) ‖u‖τ = sup
t∈[0,a]

{|x(t)|e−2τt}.
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Define d : X ×X → R+ by

(4.4) d(u, v) = ‖u− v‖τ = sup
t∈[0,a]

{|u(t)− v(t)|e−2τt}.

Then clearly (X, d) is a metric space. We now state and the prove the result for the
existence of a solution of the LCR-circuit equation of the second order differential
equation:

Theorem 4.1. Let f, g : C([0, a]) → C([0, a]) be self maps of a metric space
(X, d) such that the following conditions hold:

(1) there exists a function K : [0, a] × [0, a] × R → R such that |K(t, s, u) −
K(t, s, v)| 6 τ2e−τM(u, v), where

M(u, v) = max{d(gu, gv), d(gu, fu), d(gv, fv), [d(gu,fv)+d(gv,fu)]2 }, for F ∈
F , τ ∈ R+, t, s ∈ [0, a] and u, v ∈ R+;

(2) limn fxn = t = limn gxn for some t ∈ C([0, a]), there exists a sequence
{yn} satisfying limn fyn = u = limn gyn for some u ∈ C([0, a]) such that
limn fgyn = fu, limn gfyn = gu and limn fgyn = limn gfyn;

(3) for all x ∈ X, fx = gx implies fgx = gfx.

Then equation (4.1) has a solution.

Proof. Above problem is equivalent to the integral equation

(4.5) u(t) =

t∫
0

G(t, s)K(t, s, u(s))ds,

t, s ∈ [0, a].
Consider the self-maps f : X → X, defined by

(4.6) fx(t) =

t∫
0

G(t, s)K(t, s, u(s))ds,

t ∈ [0, a], a > 0. Then clearly u∗ is a solution of (4.5), if and only if u∗ is a common
fixed point of f and g. From (1), for all u, v ∈ X, we have

|fu(t)− fv(t)| 6
t∫

0

G(t, s)|K(t, s, u(s))−K(t, s, v(s))|ds

6

t∫
0

G(t, s)τ2e−τM(u, v)ds

|fu(t)− fv(t)| 6
t∫

0

τ2e−τe2τse−2τsM(u, v)G(t, s)ds

6 τ2e−τ‖M(u, v)‖τ ×
t∫

0

e2τsG(t, s)ds
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6 τ2e−τ‖M(u, v)‖τ × [−e
2τt

τ2
(2τt− τte−τt + e−τt − 1)]

|fu(t)− fv(t)|e−2τt 6 e−τ‖M(u, v)‖τ × [(1− 2τt+ τte−τt − e−τt)]

‖fu(t)− fv(t)‖τ 6 e−τ‖M(u, v)‖τ × [(1− 2τt+ τte−τt − e−τt)].
Clearly, (1− 2τt+ τte−τt − e−τt) 6 1. Hence

‖fu(t)− fv(t)‖τ 6 e−τ‖M(u, v)‖τ ,
or

d(fu, fv) 6 e−τ‖M(u, v)‖τ .
Taking logarithm,

ln(d(fu, fv)) 6 ln[e−τ‖M(u, v)‖τ ].

or
τ + ln(d(fu, fv)) 6 ln‖M(u, v)‖τ .

Clearly using (2) and (3), all conditions of Theorem 3.1 are satisfied by operators
f and g taking F (x) = lnx. Hence f and g has a common fixed point which is the
solution of differential equation arising in electric circuit equation. �

4.2. Application to Volterra type integral equation for Ćirić type F -
contraction. Motivated by the fact that a large class of boundary value problem
can be converted to a Volterra integral equation, in this section, we discuss the
application of Theorem 3.1 to the Volterra type integral equation:

(4.7) u(t) =

t∫
0

K(t, s, u(s))ds+ h(t);

for t, s ∈ [0, a], where a > 0. Let X = C([0, a],R) be the space of all functions
defined on [0, a].
For u ∈ C([0, a],R), define supremum norm as: ‖u‖ = supt∈[0,a]{u(t)e−τt}, where
τ > 0 is arbitrary. Let (X, d) be a metric space endowed with the metric

(4.8) d(u, v) = supt∈[0,a]{|(u(t)− v(t))|e−τt},
for all u, v ∈ C([0, a],R).

Theorem 4.2. Let f, g : C([0, a]) → C([0, a]) be self maps of a metric space
(X, d) such that the following conditions hold:

(1) there exists a function K : [0, a]× [0, a]× R→ R such that
‖K(t, s, u)−K(t, s, v)‖ 6 τe−τ [M(u, v)],

where M(u, v) = max{d(gu, gv), d(gu, fu), d(gv, fv), [d(gu,fv)+d(gv,fu)]2 },
for F ∈ F , τ ∈ R+, t, s ∈ [0, a] and u, v ∈ C([0, a],R);

(2) limn fxn = t = limn gxn for some t ∈ C([0, a]), there exists a sequence
{yn} satisfying limn fyn = u = limn gyn for some u ∈ C([0, a]) such that
limn fgyn = fu, limn gfyn = gu and limn fgyn = limn gfyn.
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(3) for all x ∈ X, fx = gx implies fgx = gfx.

Then the integral equation (4.7) has a solution.

Proof. Let

fu(t) =

t∫
0

K(t, s, u(s))ds+ h(t), t ∈ [0, a], a > 0.

Now by assumption (2)

|fu(t)− fv(t)| =
t∫

0

|K(t, s, u(s))−K(t, s, v(s))|ds

6

t∫
0

τe−τ ([M(u, v)]e−τs)eτsds

6

t∫
0

τe−τ‖M(u, v)‖τeτsds

6 τe−τ‖M(u, v)‖τ

t∫
0

eτsds

6 τe−τ‖M(u, v)‖τ
1

τ
.eτt

6 e−τ‖M(u, v)‖τeτt.

So

|fu(t)− fv(t)|e−τt 6 e−τ‖M(u, v)‖τ

or

‖fu(t)− fv(t)‖τ 6 e−τ‖M(u, v)‖τ .

Taking logarithm on both sides, we get

τ + ln‖fu(t)− fv(t)‖τ 6 ln‖M(u, v)‖τ .

Using (2) and (3), all the conditions of Theorem 3.1 are satisfied for F (x) = lnx.
Hence integral equations given in (4.7) has a unique solution. �
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4.3. Application to Volterra type integral equation for Hardy-Rogers
-type F -contraction. In this section, we solve Volterra type integral equation us-
ing Hardy-Rogers-type F -contraction.
Define supremum norm as: ‖u‖ = supt∈[0,a]{u(t)e−τt}, where τ > 0 is arbitrary.
Let X = (C[0, a],R) and (X, d) be the metric space of all real-valued functions
endowed with the metric d(u, v) = supt∈[0,a]{|u(t)− v(t)|e−τt}, a > 0.

Consider an integral equation

(4.9) u(t) =

t∫
0

K(t, s, u(s))ds+ h(t);

for t, s ∈ [0, a].

Theorem 4.3. Let f, g : C([0, a]) → C([0, a]) be self maps of a metric space
(X, d) such that

(1) there exists a function K : [0, a]× [0, a]× R→ R and τ > 0 such that

|K(t, s, u)−K(t, s, v)| 6 e−τ

α(u+ v)
|u− v|,

|
t∫
0

eτs

α(u(s)+v(s))ds| 6 e
τt, for all t, s ∈ [0, a] and u, v ∈ X;

(2) limn fxn = t = limn gxn for some t ∈ C([0, a]), there exists a sequence
{yn} satisfying limn fyn = u = limn gyn such that for some u ∈ C([0, a])
limn fgyn = fu, limn gfyn = gu and limn fgyn = limn gfyn;

(3) e−τs|u(s)−v(s)| = ‖M(u, v)‖, where M(u, v) = αd(gu, gv)+βd(gu, fu)+
γd(gv, fv)+δ[d(gu, fv)+d(gv, fu)], α, β, γ > 0, α+β+γ+2δ < 1, F ∈ F
and τ ∈ R+;

(4) for all x ∈ X, fx = gx implies fgx = gfx.

Then the integral equation (4.9) has a solution in X.

Proof. Let

(4.10) fu(t) =

t∫
0

K(t, s, u(s))ds+ h(t),

for t, s ∈ [0, a], h : [0, a]→ R are functions for each t ∈ [0, a], a > 0.
First we show that f is an Hardy-Rogers-type F -contraction.

|fu(t)− fv(t)| =
t∫

0

|K(t, s, u(s))−K(t, s, v(s))|ds

6

t∫
0

e−τ

α(u(s) + v(s))
|u(s)− v(s)|ds
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=

t∫
0

e−τeτs

α(u(s) + v(s))
|u(s)− v(s)|e−τsds

6 e−τ‖M(u, v)‖τ

t∫
0

eτs

α(u(s) + v(s))
ds

6 eτte−τ‖M(u, v)‖τ .
Hence

|fu(t)− fv(t)|e−τt 6 e−τ‖M(u, v)‖τ
or

d(fu, fv) 6 e−τ‖M(u, v)‖τ .
Taking logarithm,

ln(d(fu, fv)) 6 lne−τ‖M(u, v)‖τ ,
i.e.,

τ + ln(d(fu, fv)) 6 ln‖M(u, v)‖τ .
Thus f is an F -contraction of Hardy-Rogers-type with α < 1, β = γ = δ = 0 and
F (x) = lnx. Using (2) and (3) all other conditions of Theorem 3.2 immediately
hold. Therefore, the operators f and g have a common fixed point, i.e., the integral
equation (4.9) has a solution in X.

�
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