Vol. 8(2018), 141-156

 ${\rm DOI:~10.7251/JIMVI1801141C}$

BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS

V. Chinnadurai and K. Arulmozhi

ABSTRACT. In this paper, we introduce the notion of (η, δ) bipolar fuzzy ideal, bi-ideal, interior ideal, $(\epsilon, \epsilon \vee q)$ -bipolar fuzzy ideal of ordered Γ -semigroups and discuss some of their properties.

1. Introduction

Fuzzy set was introduced by Zadeh [17]. Ordered Γ-semigroup was studied by Kehayopula [8]. Bipolar fuzzy set was first studied by Lee [10]. Bipolar fuzzy set is an extension of fuzzy set whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. Faiz Muhammad Khan et al [2] introduced the concepts of (λ, θ) -fuzzy bi-ideal and (λ, θ) -fuzzy subsemigroup. Kazanci and Yamak [4]introduced the concept of a generalized fuzzy bi-ideal in semigroup and established some properties of fuzzy bi-ideals in terms of $(\epsilon, \epsilon \vee q)$ -fuzzy bi-ideals. Jun et al [3] provided some results on ordered semigroups characterized by their $(\epsilon, \epsilon \vee q)$ -fuzzy bi-ideals. Kehayopula and Tsingelies [7] initiated the study of fuzzy ordered semigroups. Bhakat and Das [1] introduced the concepts of $(\epsilon, \epsilon \vee q)$ -fuzzy subgroups using the notion "belongingness (ϵ)" and "quasi-coincidence (q)". In this paper we define the new notions of (η, δ) bipolar fuzzy ideal, bi-ideal,interior ideal, $(\epsilon, \epsilon \vee q)$ -bipolar fuzzy ideal of ordered Γ-semigroup and discuss some properties with examples.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E72, 06D72; Secondary 06F05. Key words and phrases. Ordered Γ -semigroups, bipolar fuzzy set, fuzzy bi-ideals, (η, δ) , $(\epsilon, \epsilon \vee q)$ -fuzzy bi-ideal.

2. Preliminaries

DEFINITION 2.1. ([14]) An ordered Γ -semigroup (shortly po- Γ -semigroup) is a Γ -semigroup S together with an order relation \leq such that $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $a,b,c\in S$ and $\gamma\in\Gamma$.

Definition 2.2. ([14]) Let A and B be two non empty subsets of a Γ - semi-group S. We denote

- (i) $(A] = \{t \in S \mid t \leqslant h \text{ for some } h \in A\},\$
- (ii) $A\Gamma B = \{a\alpha b : a \in A, b \in B \text{ and } \alpha \in \Gamma\},\$
- (iii) $A_x = \{(y, z) \in S \times S \mid x \leqslant y\alpha z\}.$

Definition 2.3. ([9]) A non-empty subset B of a po Γ -semigroup S is called a bi-ideal of S if

- (i) $a \in B$, $b \in S$ and $b \leq a$ implies $b \in B$,
- (ii) $B\Gamma S\Gamma B \subseteq B$.

DEFINITION 2.4. ([17]) Let X be a non-empty set. A fuzzy subset μ of X is a function from X into the closed unit interval [0,1]. The set of all fuzzy subsets of X is called the fuzzy power set of X and is denoted by FP(X).

DEFINITION 2.5. ([10]) A bipolar fuzzy set A in a universe U is an object having the form $A = \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}$, where $\mu_A^+: X \to [0,1]$ and $\mu_A^-: X \to [-1,0]$. Here $\mu_A^+(x)$ represents the degree of satisfaction of the element x to the property and $\mu_A^-(x)$ represents the degree of satisfaction of x to some implict counter property of A. For simplicity the symbol $\langle \mu_A^+, \mu_A^- \rangle$ is used for the bipolar fuzzy set $A = \{\langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X\}$.

Definition 2.6. ([2]) A fuzzy subset μ of an ordered Γ -semigroup S is called a (λ, θ) -fuzzy bi-ideal of S if it satisfies the following conditions

- (i) If $x \leq y$, then $\mu(x) \geqslant \mu(y)$,
- (ii) $\max\{\mu(xy), \lambda\} \geqslant \min\{\mu(x), \mu(y), \theta\},\$
- (iii) $\max\{\mu(xyz), \lambda\} \ge \min\{\mu(x), \mu(z), \theta\}$, for all $x, y, z \in S$.

Definition 2.7. ([5]) A fuzzy subset μ of a po Γ -semigroup S is called a fuzzy bi-ideal of S if

- (i) If $x \leq y$, then $\mu(x) \geqslant \mu(y)$ and
- (ii) $\mu(x\alpha y\beta z) \geqslant \min\{\mu(x), \mu(z)\}\$ for every $x, y, z \in S$ and every $\alpha, \beta \in \Gamma$.

DEFINITION 2.8. ([11]) A fuzzy subset μ of an ordered Γ-semigroup S is called a fuzzy Γ-subsemigroup of S if

- (i) $x \leq y \Rightarrow \mu(x) \geq \mu(y)$ for all $x, y \in S$, and
- (ii) $\mu(x\alpha y) \ge \min\{\mu(x), \mu(y)\}\$ for all $x, y \in S$ and $\alpha \in \Gamma$.

Definition 2.9. ([12]) A fuzzy subset μ of an ordered Γ -semigroup S is called a fuzzy left (resp. right) ideal of S if

- (i) $x \leq y \Rightarrow \mu(x) \geq \mu(y)$ for all $x, y \in S$, and
- (ii) $\mu(x\alpha y) \geqslant \mu(y)$ (resp. $\mu(x\alpha y) \geqslant \mu(x)$) for all $x, y \in S$ and $\alpha \in \Gamma$.

A fuzzy subset μ of an ordered Γ -semigroup S is called a fuzzy ideal of S, if it is both fuzzy left ideal and fuzzy right ideal.

DEFINITION 2.10. ([15]) Let A be a bipolar fuzzy set, if χ_A is the characteriatic function of A, then $(\chi_A)^{\delta}_{\eta}$ is defined as

$$(\chi_{\scriptscriptstyle A})_{\alpha}^{\beta}(x) = \begin{cases} \beta \ if \ x \in A, \\ \alpha \ if \ x \notin A. \end{cases}$$

Definition 2.11. ([13]) For two bipolar fuzzy subsets $\mu = (\mu^+, \mu^-)$ and $\lambda =$ (λ^+, λ^-) of S, the product of two bipolar fuzzy subsets is denoted by $\mu \circ \lambda$ and is defined as

$$(\mu^{+} \circ \lambda^{+})(x) = \begin{cases} \sup_{(s,t) \in A_{x}} \{\mu^{+}(s) \wedge \lambda^{+}(t)\} & \text{if } A_{x} \neq 0 \\ 0 & \text{if } A_{x} = 0 \end{cases}$$
$$(\mu^{-} \circ \lambda^{-})(x) = \begin{cases} \inf_{(s,t) \in A_{x}} \{\lambda^{-}(s) \vee \lambda^{-}(t)\} & \text{if } A_{x} \neq 0 \\ 0 & \text{if } A_{x} = 0 \end{cases}$$

Definition 2.12. A bipolar (η, δ) fuzzy sub Γ-semigroup $B = (μ_B^+, μ_B^-)$ of Sis called a bipolar (1,2) fuzzy- Γ -ideal of S if

- $\begin{array}{l} \text{(i) } \max\{\mu_B^+(p\alpha q\beta(r\gamma s)), \eta^+\} \geqslant \min\{\mu_B^+(p), \mu_B^+(r), \mu_B^+(s), \delta^+\} \text{ and } \\ \text{(ii) } \min\{\mu_B^-(p\alpha q\beta(r\gamma s)), \eta^-\} \leqslant \max\{\mu_B^-(p), \mu_B^-(r), \mu_B^+(s), \delta^-\}, \end{array}$

for all $p, q, r, s \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

3. (η, δ) - bipolar fuzzy bi-ideals of ordered Γ -semigroups

In this section S denote as ordered Γ -semigroup. In what follows, $(\eta^+, \delta^+) \in$ [0,1] and $(\eta^-,\delta^-) \in [-1,0]$ be such that $0 \leqslant \eta^+ < \delta^+ \leqslant 1$ and $-1 \leqslant \delta^- < \eta^- \leqslant 0$, both $(\eta, \delta) \in [0, 1]$ are arbitrary but fixed.

Definition 3.1. A fuzzy subset μ of S is called a (η, δ) -bipolar fuzzy subsemigroup of S if it satisfies the following conditions:

- (i) $p \leqslant q \Rightarrow \mu^+(p) \geqslant \mu^+(q)$ and $p \leqslant q \Rightarrow \mu^-(p) \leqslant \mu^-(q)$ (ii) $\max\{\mu^+(p\alpha q), \eta^+\} \geqslant \min\{\mu^+(p), \mu^+(q), \delta^+\}$ and

 $\min\{\mu^-(p\alpha q), \eta^-\} \leqslant \max\{\mu^-(p), \mu^-(q), \delta^-\} \text{ for all } p, q \in S.$

EXAMPLE 3.1. Let $S = \{a_1, a_2, a_3, a_4\}$ and $\Gamma = \{\alpha\}$ where α is defined on S with the following Cayley table:

α	a_1	a_2	a_3	a_4
a_1	a_1	a_1	a_1	a_1
a_2	a_1	a_2	a_3	a_4
a_3	a_1	a_3	a_3	a_3
a_4	a_1	a_3	a_3	a_3

 $\leq := \{(a_1, a_1), (a_1, a_2), (a_1, a_3), (a_1, a_4), (a_2, a_2), (a_2, a_3), (a_2, a_4), (a_3, a_3), (a_4, a_3), (a_4, a_5), (a_5, a_5)$ (a_4, a_4) .

We give the covering relation and the figure of S.

$$\prec = \{(a_1, a_2), (a_1, a_3), (a_1, a_4), (a_2, a_3), (a_2, a_4), (a_4, a_3)\}.$$

Define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-] : S \times \Gamma \times S \to [0, 1] \times [-1, 0]$

$$\mu^{+}(x) = \begin{cases} 0.7 & if \ x = a_1 \\ 0.5 & if \ x = a_2 \\ 0.2 & if \ x = a_3 \\ 0.3 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.9 & if \ x = a_1 \\ -0.7 & if \ x = a_2 \\ -0.3 & if \ x = a_3 \\ -0.6 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.6, 0.8) bipolar fuzzy subsemigroup of S.

DEFINITION 3.2. A fuzzy subset μ of S is called a (η, δ) -bipolar fuzzy bi-ideal of S if it satisfies the following conditions:

- (i) if $x \leq y$, then $\mu^+(x) \geqslant \mu^+(y)$ and $x \leq y$, then $\mu^-(x) \leq \mu^-(y)$
- and $\min\{\mu^-(p), \eta^-\} \leqslant \max\{\mu^-(p), \delta^-\}$ for all $p, q \in S$.
 - (ii) $\max\{\mu^+(p\alpha q), \eta^+\} \ge \min\{\mu^+(p), \mu^+(q), \delta^+\}$
- $\min\{\mu^{-}(p\alpha q), \eta^{-}\} \leq \max\{\mu^{-}(p), \mu^{-}(q), \delta^{-}\}.$
- (iii) $\max\{\mu^+(p\alpha q\beta r), \eta^+\} \geqslant \min\{\mu^+(p), \mu^+(r), \delta^+\}$

 $\min\{\mu^-(p\alpha q\beta r), \eta^-\} \leqslant \max\{\mu^-(p), \mu^-(r), \delta^-\}, \text{ for all } p, q, r \in S \text{ and } \alpha, \beta \in \Gamma.$

EXAMPLE 3.2. Let $S = \{a_1, a_2, a_3, a_4\}$ and $\Gamma = \{\alpha, \beta\}$ where α, β is defined on S with the following Cayley tables:

α	a_1	a_2	a_3	a_4	β	a_1	a_2	a_3	a_4
a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1
a_2	a_1	a_2	a_3	a_4	a_2	a_1	a_2	a_3	a_4
a_3	a_1	a_3	a_3	a_3	a_3	a_1	a_3	a_3	a_3
a_4	a_1	a_3	a_3	a_3	a_4	a_1	a_2	a_3	a_4

 $\leq := \{(a_1, a_1), (a_1, a_2), (a_1, a_3), (a_1, a_4), (a_2, a_2), (a_2, a_3), (a_2, a_4), (a_3, a_3), (a_4, a_4)\}.$

Define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-] : S \times \Gamma \times S \to [0, 1] \times [-1, 0]$ as

$$\mu^{+}(x) = \begin{cases} 0.81 & if \ x = a_1 \\ 0.62 & if \ x = a_2 \\ 0.34 & if \ x = a_3 \\ 0.43 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.85 & if \ x = a_1 \\ -0.65 & if \ x = a_2 \\ -0.30 & if \ x = a_3 \\ -0.50 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.70, 0.90) bipolar fuzzy bi-ideal of S

THEOREM 3.1. A fuzzy subset $\mu_{\tilde{\eta}}$ is a (η, δ) -bipolar fuzzy ordered Γ -sub semi-group (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S. Then the lower level set $\mu_{\tilde{\eta}} = [\mu_{\eta}^+, \mu_{\eta}^-]$ is an ordered Γ -subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S, where $\mu_{\eta}^+ = \{p \in S | \mu^+(p) > \eta^+\}$ and $\mu_{\eta}^- = \{p \in S | \mu^-(p) < \eta^-\}$.

PROOF. Suppose that $\mu_{\tilde{\eta}}$ is a (η, δ) -bipolar fuzzy ordered Γ-subsemigroup. Let μ_{η}^+ is a (η^+, δ^+) fuzzy Γ-subsemigroup. Let $p, q \in S$ and $\alpha \in \Gamma$ such that $p, q \in \mu_{\eta}^+$. Then $\mu^+(p) > \eta^+, \mu^+(q) > \eta^+$. Since μ^+ is a (η^+, δ^+) fuzzy subsemigroup, therefore $\max\{\mu^+(p\alpha q), \eta^+\} \geqslant \min\{\mu^+(p), \mu^+(q), \delta^+\} > \min\{\eta^+, \eta^+, \delta^+\} = \eta^+$. Hence $\mu^+(p\alpha q) > \eta^+$. It shows that $p\alpha q \in \mu_{\eta}^+$. Therefore μ_{η}^+ is a Γ-subsemigroup of S. Let μ_{η}^- is a (η^-, δ^-) fuzzy ordered Γ-subsemigroup. Let $p, q \in S$ such that $p, q \in \mu_{\eta}^-$. Then $\mu^-(p) < \eta^-, \mu^-(q) < \eta^-$. Since μ^- is a (η^-, δ^-) fuzzy ordered Γ-subsemigroup. Therefore $\min\{\mu^-(p\alpha q), \eta^-\} \leqslant \max\{\mu^-(p), \mu^-(q), \delta^-\} < \max\{\eta^-, \eta^-, \delta^-\} = \eta^-$. Hence $\mu^-(p\alpha q) < \eta^-$. It shows that $p\alpha q \in \mu_{\eta}^-$. Therefore μ_{η}^- is a Γ-subsemigroup of S. Hence $\mu_{\tilde{\eta}}^- = [\mu_{\eta}^+, \mu_{\eta}^-]$ is a Γ-subsemigroup of S.

THEOREM 3.2. A non-empty subset A of S is an ordered Γ -subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if the bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-]$ of S defined as

$$\mu^{+}(p) = \begin{cases} \geqslant \delta^{+} \text{ for all } p \in (A], \\ \eta^{+} \text{ for all } p \notin (A], \end{cases} \quad \mu^{-}(p) = \begin{cases} \leqslant \delta^{-} \text{ for all } p \in (A], \\ \eta^{-} \text{ for all } p \notin (A], \end{cases}$$

is a (η, δ) -bipolar fuzzy ordered Γ -subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S.

PROOF. Assume that A is an ordered Γ -subsemigroup of S. Let $p,q \in S$ be such that $p,q \in (A]$ then $p\alpha q \in (A]$ and $\alpha \in \Gamma$. Hence $\mu^+(p\alpha q) \geqslant \delta^+$ and $\mu^-(p\alpha q) \leqslant \delta^-$. Therefore $\max\{\mu^+(p\alpha q),\eta^+\} \geqslant \delta^+ = \min\{\mu^+(p),\mu^+(q),\delta^+\}$ and $\min\{\mu^-(p\alpha q),\eta^-\} \leqslant \delta^- = \max\{\mu^-(p),\mu^-(q),\delta^-\}$. If $p \notin A$ or $q \notin (A]$ then $\min\{\mu^+(p),\mu^+(q),\delta^+\} = \eta^+$, $\max\{\mu^-(p),\mu^-(q),\delta^-\} = \eta^-$. That is $\max\{\mu^+(p\alpha q),\eta^+\} \geqslant \min\{\mu^+(p),\mu^+(q),\delta^+\}$ and $\min\{\mu^-(p\alpha q),\eta^-\} \leqslant \max\{\mu^-(p),\mu^-(q),\delta^-\}$. Therefore $\tilde{\mu} = [\mu^+,\mu^-]$ is a bipolar fuzzy Γ -subsemigroup of S.

Conversely assume that $\tilde{\mu} = [\mu^+, \mu^-]$ is a bipolar fuzzy Γ -subsemigroup of S. Let $p, q \in (A]$. Then $\mu^+(p) \geqslant \delta^+, \mu^+(q) \geqslant \delta^+$ and $\mu^-(p) \leqslant \delta^-, \mu(q) \leqslant \delta^-$. Now μ^+ is (η^+, δ^+) and μ^- is (η^-, δ^-) - fuzzy Γ -subsemigroup of S. Therefore $\max\{\mu^+(p\alpha q), \eta^+\} \geqslant \min\{\mu^+(p), \mu^+(q), \delta^+\} \geqslant \min\{\delta^+, \delta^+, \delta^+, \} = \delta^+$ and $\min\{\mu^-(p\alpha q), \eta^-\} \leqslant \max\{\mu^-(p), \mu^-(q), \delta^-\} \leqslant \max\{\delta^-, \delta^-, \delta^-, \} = \delta^-$. It follows that $p\alpha q \in (A]$. Therefore A is a ordered Γ -subsemigroup of S. \square

COROLLARY 3.1. A non-empty subset A of S is an ordered Γ -subsemigroup(left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if the fuzzy subset μ of S defined as

$$\mu^{+}(p) = \begin{cases} \geqslant 0.5 \text{ for all } p \in (A], \\ 0 \text{ for all } p \notin (A], \end{cases} \quad \mu^{-}(p) = \begin{cases} \leqslant -0.5 \text{ for all } p \in (A], \\ 0 \text{ for all } p \notin (A], \end{cases}$$

is a $(\epsilon, \epsilon \vee q)$ -bipolar fuzzy subsemigroup(left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S.

PROOF. The proof follows by taking $\eta^+=0, \delta^+=0.5$ and $\eta^-=0, \delta^-=-0.5$ in Theorem 3.2

Theorem 3.3. A fuzzy subset $\tilde{\mu}$ of S is a (η, δ) -bipolar fuzzy subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if each non-empty level subset $(\tilde{\mu}^{(t,s)})$ is a subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S for all $t \in (\eta^+, \delta^+]$. and $s \in (\eta^-, \delta^-]$.

PROOF. Assume that $\tilde{\mu}^{(t,s)}$ is an ordered Γ -subsemigroup over S for each $t \in [0,1]$ and $s \in [-1,0]$. For each $p_1,p_2 \in S$ and $a \in (A]$, let $t = \min\{\mu^+(p_1),\mu^+(p_2)\}$ and $s = \max\{\mu^-(p_1),\mu^-(p_2)\}$, then $p_1,p_2 \in \tilde{\mu}^{(t,s)}$. That is $\max\{\mu^+((p\gamma q),\eta^+\} \geqslant t = \min\{\mu^+(p_1),\mu^+(p_2),\delta^+\}$ and $\min\{\mu^-(p_1\gamma p_2),\eta^-\} \leqslant s = \max\{\mu^-(p_1),\mu^-(p_2),\delta^-\}$. This shows that $\tilde{\mu}$ is bipolar fuzzy Γ -subsemigroup over S.

Conversely, assume that $\tilde{\mu}$ is a bipolar fuzzy ordered Γ -subsemigroup of S. For each $a \in (A], t \in [0,1]$ and $s \in [-1,0]$ and $p_1, p_2 \in \tilde{\mu}^{(t,s)}$ we have $\mu^+(p_1) \geq t, \mu^+(p_2) \geq t$ and $\mu^-(p_1) \leq s, \mu^-(p_2) \leq s$. Since $\tilde{\mu}$ is a bipolar fuzzy Γ -subsemigroup of S,

$$\max\{\mu^{+}(p_{1}\gamma p_{2}), \eta^{+}\} \geqslant \min\{\mu^{+}(p_{1}), \mu^{+}(p_{2}, \delta^{+})\} \geqslant t$$
$$\min\{\mu^{-}(p_{1}\gamma p_{2}), \eta^{-}\} \leqslant \max\{\mu^{-}(p_{1}), \mu^{-}(p_{2}, \delta^{-})\} \leqslant s,$$

 $\gamma \in \Gamma$. Therefore $\tilde{\mu}^{(t,s)}$, this implies that $p_1 \gamma p_2 \in \tilde{\mu}^{(t,s)}$. Therefore $\tilde{\mu}^{(t,s)}$ is a Γ -subsemigroup of S for each $t \in [0,1]$ and $s \in [-1,0]$. Similar proofs holds for left, right, bi-ideal, interior ideal, (1, 2)-ideal also.

Example 3.3. Every bipolar fuzzy subsemigroup $\tilde{\mu} = [\mu^+, \mu^-]$ of ordered Γ -semigroup S is a (η, δ) -bipolar fuzzy subsemigroup of S, but converse is not true.

For the Example 3.1, we define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-]$ by

$$\mu^{+}(x) = \begin{cases} 0.65 & if \ x = a_1 \\ 0.58 & if \ x = a_2 \\ 0.51 & if \ x = a_3 \\ 0.53 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.85 & if \ x = a_1 \\ -0.81 & if \ x = a_2 \\ -0.68 & if \ x = a_3 \\ -0.75 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.56, 0.70) bipolar fuzzy ordered Γ -subsemigroup of S, but not a bipolar fuzzy subsemigroup. Since $\mu^+(a_4\alpha a_4) = \mu^+(a_3) = 0.51 \not\ge \min\{\mu^+(a_4), \mu^+(a_4)\} = 0.53$ and $\mu^-(a_4\alpha a_4) = \mu^-(a_3) = -0.68 \not\le \max\{\mu^-(a_4), \mu^-(a_4)\} = -0.75$

COROLLARY 3.2. Every $(\epsilon, \epsilon \vee q)$ bipolar fuzzy ordered Γ -subsemigroup of S is a (η, δ) -bipolar fuzzy ordered Γ -subsemigroup of S, but converse is not true.

For the Example 3.1, define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-]$

$$\mu^{+}(x) = \begin{cases} 0.42 & if \ x = a_1 \\ 0.38 & if \ x = a_2 \\ 0.26 & if \ x = a_3 \\ 0.30 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.33 & if \ x = a_1 \\ -0.30 & if \ x = a_2 \\ -0.20 & if \ x = a_3 \\ -0.24 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.35, 0.45) bipolar fuzzy ordered Γ -subsemigroup of S, but not a $(\epsilon, \epsilon \vee q)$ bipolar fuzzy ordered Γ -subsemigroup. Since $\mu^+(a_4\alpha a_4) = \mu^+(a_3) = 0.26 \not\ge \min\{\mu^+(a_4), \mu^+(a_4)\} = 0.30$ and $\mu^-(a_4\alpha a_4) = \mu^-(a_3) = -0.20 \not\le \max\{\mu^-(a_4), \mu^-(a_4)\} = -0.24$.

EXAMPLE 3.4. Every bipolar fuzzy bi-ideal $\tilde{\mu} = [\mu^+, \mu^-]$ of an ordered Γ -semigroup S is a (η, δ) -bipolar fuzzy bi-ideal of S, but converse is not true.

For the Example 3.2, we define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-]$

$$\mu^{+}(x) = \begin{cases} 0.81 & if \ x = a_1 \\ 0.62 & if \ x = a_2 \\ 0.34 & if \ x = a_3 \\ 0.43 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.85 & if \ x = a_1 \\ -0.65 & if \ x = a_2 \\ -0.30 & if \ x = a_3 \\ -0.50 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.70, 0.85) bipolar fuzzy bi-ideal of S, but not a bipolar fuzzy bi-ideal, since $\mu^+(a_4\alpha a_4\beta a_4) = \mu^+(a_3) = 0.34 \not\ge \min\{\mu^+(a_4), \mu^+(a_4)\} = 0.43$ and $\mu^-(a_4\alpha a_4\beta a_4) = \mu^-(a_3) = -0.30 \not\le \max\{\mu^-(a_4), \mu^-(a_4)\} = -0.50$

COROLLARY 3.3. Every $(\epsilon, \epsilon \vee q)$ bipolar fuzzy bi-ideal of S is a (η, δ) -bipolar fuzzy bi-ideal of S, but converse is not true.

For the Example 3.2, we define bipolar fuzzy subset $\tilde{\mu} = [\mu^+, \mu^-]$

$$\mu^{+}(x) = \begin{cases} 0.43 & if \ x = a_1 \\ 0.38 & if \ x = a_2 \\ 0.25 & if \ x = a_3 \\ 0.30 & if \ x = a_4 \end{cases} \quad \mu^{-}(x) = \begin{cases} -0.35 & if \ x = a_1 \\ -0.30 & if \ x = a_2 \\ -0.20 & if \ x = a_3 \\ -0.25 & if \ x = a_4 \end{cases}$$

Then $\tilde{\mu}$ is a (0.40, 0.47) fuzzy bi-ideal of S, but not a fuzzy bi-ideal, since

$$\mu^{+}(a_4 \alpha a_4 \beta a_4) = \mu^{+}(a_3) = 0.25 \not\geqslant \min\{\mu^{+}(a_4), \mu^{+}(a_4)\} = 0.30$$

$$\mu^{-}(a_4 \alpha a_4 \beta a_4) = \mu^{-}(a_3) = -0.20 \nleq \min\{\mu^{-}(a_4), \mu^{-}(a_4)\} = -0.25.$$

DEFINITION 3.3. If χ_A is the characteristic function of A, then $(\chi_A)^{\delta}_{\eta}$ is defined as

$$(\chi_{\scriptscriptstyle A}^+)_\eta^\delta(x) = \begin{cases} \delta^+ \, if \, x \in (A], \\ \eta^+ \, if \, x \not\in (A]. \end{cases} \quad (\chi_{\scriptscriptstyle A}^-)_\eta^\delta(x) = \begin{cases} \delta^- \, if \, x \in (A], \\ \eta^- \, if \, x \not\in (A]. \end{cases}$$

Theorem 3.4. A non empty subset A of S is a subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if fuzzy subset $\tilde{\chi}_A = [\chi_{(A)}^+, \chi_{(A)}^-]$ is a (η, δ) -bipolar fuzzy subsemigroup(left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S.

PROOF. Assume that A is a subsemigroup of S. Then $\tilde{\chi}_{(A]}$ is a bipolar fuzzy subsemigroup of S and hence $\tilde{\chi}_{(A]}$ is an (η, δ) -bipolar fuzzy subsemigroup of S.

Conversely, let $p,q\in S$ be such that $p,q\in (A]$. Then $\chi_{(A)}^+(p)=\delta^+=\chi_{(A)}^+(q)=\delta^+$ and $\chi_{(A)}^-(p)=\delta^-=\chi_{(A)}^-(q)=\delta^-$. Since $\tilde{\chi}_{(A)}$ is a (η,δ) -bipolar fuzzy subsemination. group. Consider

$$\begin{aligned} \max \{ \chi^+_{_{(A]}}(p\alpha q), \eta^+ \} &\geqslant \min \{ \chi^+_{_{(A]}}(p), \chi^+_{_{(A]}}(q), \delta^+ \} \\ &= \min \{ \delta^+, \delta^+, \delta^+ \} \\ &= \delta^+ \end{aligned}$$

as $\eta^+ < \delta^+$, this implies that $\{\chi_{_{(A)}}^+(p\alpha q)\} \geqslant \delta^+$. Thus $p\alpha q \in (A]$. Therefore A is a subsemigroup of S. And

$$\begin{aligned} \min\{\chi_{_{(A]}}^-(p\alpha q),\eta^-\} \leqslant \max\{\chi_{_{(A]}}^-(p),\chi_{_{(A]}}^-(q),\delta^-\} \\ &= \max\{\delta^-,\delta^-,\delta^-\} \\ &= \delta^- \end{aligned}$$

as $\delta^- < \eta^-$, this implies that $\{\chi_{(A)}^-(p\alpha q)\} \leqslant \delta^-$. Thus $p\alpha q \in (A]$. Therefore (A] is a subsemigroup of S.

Let $p, q \in S$ be such that $p, q \notin (A]$. Then $\chi_{(A)}^+(p) = \eta^+ = \chi_{(A)}^+(q) = \eta^+$ and $\chi_{(A)}^-(p) = \eta^+ = \chi_{(A)}^-(q) = \eta^+$. Since $\tilde{\chi}_{(A)}$ is a (η, δ) -bipolar fuzzy subsemigroup.

$$\max\{\chi_{_{(A]}}^{+}(p\alpha q), \eta^{+}\} \geqslant \min\{\chi_{_{(A]}}^{+}(p), \chi_{_{(A]}}^{+}(q), \delta^{+}\}$$

$$= \min\{\eta^{+}, \eta^{+}, \delta^{+}\}$$

$$= \eta^{+}$$

as $\eta^+ < \delta^+$, this implies that $\{\chi_{(A)}^+(p\alpha q)\} \geqslant \eta^+$. Thus $p\alpha q \in (A]$. Therefore (A] is a subsemigroup of S. And

$$\begin{split} \min \{ \chi_{_{(A]}}^{-}(p\alpha q), \eta^{-} \} \leqslant \max \{ \chi_{_{(A]}}^{-}(p), \chi_{_{(A]}}^{-}(q), \delta^{-} \} \\ &= \max \{ \eta^{-}, \eta^{-}, \delta^{-} \} \\ &= \eta^{-} \end{split}$$

as $\delta^- < \eta^-$, this implies that $\{\chi^-_{(A)}(p\alpha q)\} \leqslant \eta^-$. Thus $p\alpha q \in (A]$. Therefore (A] is a subsemigroup of S. Similar to proof holds for left, right, bi-ideal, interior ideal, (1, 2)-ideal also.

DEFINITION 3.4. Let $\tilde{\mu}$ be a bipolar fuzzy subset of an ordered semigroup S. We define the bipolar fuzzy subsets $(\mu^+)^{\delta}_{\eta}(p) = \{\mu^+(p) \wedge \delta^+\} \vee \eta^+ \text{ and } (\mu^-)^{\delta}_{\eta}(p) =$ $\{\mu^-(p) \vee \delta^-\} \wedge \eta^- \text{ for all } p \in S.$

Definition 3.5. Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ be two bipolar fuzzy subsets of an ordered semigroup S. Then we define the bipolar fuzzy subset

- (i) $(\mu_1^+ \wedge_{\eta}^{\delta} \mu_2^+)(x) = \{\mu_1^+ \wedge \mu_2^+(x) \wedge \delta^+\} \vee \eta^+.$

- $\begin{array}{l} \text{(ii) } (\mu_{1}^{-} \wedge_{\eta}^{\delta} \mu_{2}^{-})(x) = \{\mu_{1}^{-} \wedge \mu_{2}^{-}(x) \vee \delta^{-}\} \wedge \eta^{-}. \\ \text{(iii) } (\mu_{1}^{+} \wedge_{\eta}^{\delta} \mu_{2}^{-})(x) = \{\mu_{1}^{+} \wedge \mu_{2}^{-}(x) \vee \delta^{-}\} \wedge \eta^{-}. \\ \text{(iii) } (\mu_{1}^{+} \vee_{\eta}^{\delta} \mu_{2}^{+})(x) = \{\mu_{1}^{+} \vee \mu_{2}^{+}(x) \wedge \delta^{+}\} \vee \eta^{+}. \\ \text{(iv) } (\mu_{1}^{-} \vee_{\eta}^{\delta} \mu_{2}^{-})(x) = \{\mu_{1}^{-} \vee \mu_{2}^{-}(x) \vee \delta^{-}\} \wedge \eta^{-}. \\ \text{(v) } (\mu_{1}^{+} \circ_{\eta}^{\delta} \mu_{2}^{+})(x) = \{\mu_{1}^{+} \circ \mu_{2}^{+}(x) \wedge \delta^{+}\} \vee \eta^{+}. \end{array}$

(vi)
$$(\mu_1^- \circ_\eta^\delta \mu_2^-)(x) = \{\mu_1^- \circ \mu_2^-(x) \vee \delta^-\} \wedge \eta^-.$$

Lemma 3.1. Let A and B be non-empty subsets of S. Then the following hold: $(i) ((\mu_1^+) \wedge_{\eta}^{\delta} (\mu_2^+))(x) = ((\mu_1^+)_{\eta}^{\delta} \wedge (\mu_2^+)_{\eta}^{\delta}) \ and \ ((\mu_1^-) \wedge_{\eta}^{\delta} (\mu_2^-))(x) = ((\mu_1^-)_{\eta}^{\delta} \wedge (\mu_2^-)_{\eta}^{\delta})$ $(ii) \ ((\mu_1^+) \vee_{\eta}^{\delta} (\mu_2^+))(x) = ((\mu_1^+)_{\eta}^{\delta} \vee (\mu_2^+)_{\eta}^{\delta}), \ ((\mu_1^-) \vee_{\eta}^{\delta} (\mu_2^-))(x) = ((\mu_1^-)_{\eta}^{\delta} \vee (\mu_2^-)_{\eta}^{\delta}) \\ (iii) \ ((\mu_1^+) \circ_{\eta}^{\delta} (\mu_2^+))(x) = ((\mu_1^+)_{\eta}^{\delta} \circ (\mu_2^+)_{\eta}^{\delta}) \ and \ ((\mu_1^-) \circ_{\eta}^{\delta} (\mu_2^-))(x) = ((\mu_1^-)_{\eta}^{\delta} \circ (\mu_2^-)_{\eta}^{\delta}) \\$

Lemma 3.2. Let A and B be non-empty subsets of S. Then the following hold:

 $(i) \ (\chi_{(A)}^{+} \ \wedge_{\eta}^{\delta} \ \chi_{(B)}^{+}) = (\chi_{A \cap B}^{+})_{\eta}^{\delta} \ and \ (\chi_{(A)}^{-} \ \wedge_{\eta}^{\delta} \ \chi_{(B)}^{-}) = (\chi_{A \cap B}^{-})_{\eta}^{\delta}.$ $(ii) \ (\chi_{(A)}^{+} \ \vee_{\eta}^{\delta} \ \chi_{(B)}^{+}) = (\chi_{A \cup B}^{+})_{\eta}^{\delta} \ and \ (\chi_{(A)}^{-} \ \vee_{\eta}^{\delta} \ \chi_{(B)}^{-}) = (\chi_{A \cup B}^{-})_{\eta}^{\delta}.$ $(iii) \ (\chi_{(A)}^{+} \ \circ_{\eta}^{\delta} \chi_{B}^{+}) = (\chi_{(A \cap B)}^{+})_{\eta}^{\delta} \ and \ (\chi_{-}^{-} \circ_{\eta}^{\delta} \chi_{(B)}^{-}) = (\chi_{(A \cap B)}^{-})_{\eta}^{\delta}.$

(iii)
$$(\chi_{(A)}^+ \circ_{\Gamma_{\eta}^0} \chi_B^+) = (\chi_{(A\Gamma B)}^+)_{\eta}^0 \text{ and } (\chi_A^- \circ_{\Gamma_{\eta}^0} \chi_{(B)}^-) = (\chi_{(A\Gamma B)}^-)_{\eta}^0.$$

PROOF. (i) and (ii) Straightforward.

(iii) Let $p \in S$. If $p \in (A\Gamma B]$, then $(\chi^+_{(A\Gamma B]})(p) = \delta^+$ and $(\chi^-_{(A\Gamma B]})(p) = \delta^-$. Since $p \leq a\alpha b$ for some $a \in (A]$, $b \in (B]$ and $\alpha \in \Gamma$, we have $(a,b) \in A_p$ and $A_p \neq 0$. We have

$$\begin{split} (\chi_{(A]}^{+} \circ_{\Gamma} \chi_{(A]}^{+})(p) &= \sup_{p=y\alpha z} \min\{\chi_{(A]}^{+}(y), \chi_{(A]}^{+}(z)\} \\ &\geqslant \min\{\chi_{(A)}^{+}(a), \chi_{(A)}^{+}(b)\} \\ &= \delta^{+} \\ (\chi_{A}^{-} \circ_{\Gamma} \chi_{(B)}^{-})(p) &= \inf_{p=y\alpha z} \min\{\chi_{(A)}^{-}(y), \chi_{(A)}^{-}(z)\} \\ &\leqslant \max\{\chi_{(A)}^{-}(a), \chi_{(A)}^{-}(b)\} \\ &= \delta^{-} \end{split}$$

Therefore $(\chi_{(A]}^+ \circ_{\Gamma} \chi_{(B]}^+)(p) = \delta^+ = (\chi_{(A\Gamma B]}^+(p) \text{ and } (\chi_{(A]}^- \circ_{\Gamma} \chi_{(B]}^-)(p) = \delta^- = 0$ $(\chi_{(A\Gamma B]}^-(p). \text{ If } p \notin (A\Gamma B] \text{ then } (\chi_{(A\Gamma B]}^+(p)) = \eta^+ \text{ and } (\chi_{(A\Gamma B]}^-(p)) = \eta^-.$ Since $p \leqslant a\alpha b$ for some $a \notin (A]$, $b \notin (B]$ and $\alpha \in \Gamma$. We have

$$\begin{split} (\chi_{(A]}^{+} \circ_{\Gamma} \chi_{(B]}^{+})(p) &= \sup_{p=y\alpha z} \min\{\chi_{(A]}^{+}(y), \chi_{(A]}^{+}(z)\} \\ &\geqslant \min\{\chi_{(A]}^{+}(a), \chi_{(A]}^{+}(b)\} \\ &= \eta^{+} \\ (\chi_{(A]}^{-} \circ_{\Gamma} \chi_{(A]}^{-})(p) &= \inf_{p=y\alpha z} \min\{\chi_{(A)}^{-}(y), \chi_{(A)}^{-}(z)\} \\ &\leqslant \max\{\chi_{(A)}^{+}(a), \chi_{(A)}^{+}(b)\} \\ &= \eta^{-} \end{split}$$

Hence
$$(\chi_{(A]}^+ \circ_{\Gamma} \chi_{(B]}^+)(p) = \eta^+ = (\chi_{(A\Gamma B]}^+)(p)$$
 and $(\chi_{(A]}^- \circ_{\Gamma} \chi_{(B]}^-)(p) = \eta^- = (\chi_{(A\Gamma B]}^-)(p)$

THEOREM 3.5. Let S be an (η, δ) ordered Γ -semigroup. Let $A, B \subseteq S$ and $\{A_i|i\in I\}$ be a family of subsets of S then

 $(i) \ (A) \subseteq (B) \ if \ and \ only \ if \ (\chi_{(A)}^+)_{\eta}^{\delta} \leqslant (\chi_{(B)}^+)_{\eta}^{\delta} \ and \ (\chi_{(A)}^-)_{\eta}^{\delta} \geqslant (\chi_{(B)}^-)_{\eta}^{\delta}.$

(ii)
$$(\bigcap_{i \in I} \chi^+_{(A_i]})^{\delta}_{\eta} = (\chi^+_{\bigcap_{i \in I} (A_i]})^{\delta}_{\eta}$$
 and $(\bigcup_{i \in I} \chi^-_{(A_i]})^{\delta}_{\eta} = (\chi^-_{\bigcap_{i \in I} (A_i]})^{\delta}_{\eta}$.

(iii)
$$(\bigcup_{i \in I} \chi^+_{(A_i]})^{\delta}_{\eta} = (\chi^+_{\bigcup_{i \in I} (A_i]})^{\delta}_{\eta} \text{ and } (\bigcap_{i \in I} \chi^-_{(A_i]})^{\delta}_{\eta} = (\chi^-_{\bigcup_{i \in I} (A_i]})^{\delta}_{\eta}$$

PROOF. The proof follows from Proposition 2.4 [16].

PROPOSITION 3.1. If A is a (η, δ) - bipolar fuzzy left(subsemigroup, right, interior, (1, 2)-ideal)ideal of S, then $A = [(\mu^+)^{\delta}_{\eta}, (\mu^-)^{\delta}_{\eta}]$ is a bipolar fuzzy left(subsemi group, right, interior, (1, 2)-ideal) ideal of S.

PROOF. Assume that A is a (η, δ) -bipolar fuzzy left ideal of S. If there exist $p, q \in S$, and $\alpha \in \Gamma$ then

$$\begin{aligned} \max\{(\mu^+)^{\delta}_{\eta}(p\alpha q),\eta^+\} &= \max\{(\{\mu^+(p\alpha q) \wedge \delta^+\} \vee \eta^+),\eta^+\} \\ &= \{\mu^+(p\alpha q) \wedge \delta^+\} \vee \eta^+ \\ &= \{\mu^+(p\alpha q) \vee \eta^+\} \wedge \{\delta^+ \vee \eta^+\} \\ &= \{(\mu^+(p\alpha q) \vee \eta^+) \vee \eta^+\} \wedge \delta^+ \\ &\geqslant \{(\mu^+(q) \wedge \delta^+) \vee \eta^+\} \wedge \delta^+ \\ &\geqslant (\mu^+)^{\delta}_{\eta}(q) \wedge \delta^+. \end{aligned}$$

and

$$\begin{split} \min\{(\mu^-)_\eta^\delta(p\alpha q),\eta^-\} &= \min\{(\{\mu^-(p\alpha q)\vee\delta^-\}\wedge\eta^-),\eta^-\} \\ &= \{\mu^-(p\alpha q)\vee\delta^-\}\wedge\eta^- \\ &= \{\mu^-(p\alpha q)\wedge\eta^-\}\vee\{\delta^-\wedge\eta^-\} \\ &= \{(\mu^-(p\alpha q)\wedge\eta^-)\wedge\eta^-\}\vee\delta^- \\ &\leqslant \{(\mu^-(q)\vee\delta^-)\wedge\eta^-\}\vee\delta^- \\ &\leqslant (\mu^-)_\eta^\delta(q)\vee\delta^-\} \end{split}$$

Hence $A = [(\mu^+)_{\eta}^{\delta}, (\mu^-)_{\eta}^{\delta}]$ is a bipolar fuzzy left ideal of S. Similar to proofs hold for subsemigroup, right ideals and interior ideal, (1, 2)-ideal also.

PROPOSITION 3.2. If A is a (η, δ) -bipolar fuzzy bi-ideal, then $A = [(\mu^+)^{\delta}_{\eta}, (\mu^-)^{\delta}_{\eta}]$ is a bipolar fuzzy bi-ideal of S.

PROOF. Assume that A is a (η, δ) -bipolar fuzzy bi-ideal of S. If there exist $p, q, r \in S$, and $\alpha, \beta \in \Gamma$ then

$$\begin{split} \max\{(\mu^+)^{\delta}_{\eta}(p\alpha q\beta r),\eta^+\} &= \max\{(\{\mu^+(p\alpha q\beta r)\wedge\delta^+\}\vee\eta^+),\eta^+\} \\ &= \{\mu^+(p\alpha q\beta r)\wedge\delta^+\}\vee\eta^+ \\ &= \{\mu^+(p\alpha q\beta r)\vee\eta^+\}\wedge\{\delta^+\vee\eta^+\} \\ &= \{\mu^+(p\alpha q\beta r)\vee\eta^+\}\wedge\delta^+ \\ &= \{(\mu^+(p\alpha q\beta r)\vee\eta^+)\vee\eta^+\}\wedge\delta^+ \end{split}$$

$$\geq \{(\mu^{+}(p) \wedge \mu^{+}(r) \wedge \delta^{+}) \vee \eta^{+}\} \wedge \delta^{+}$$

$$= \{(\mu^{+}(p) \wedge \mu^{+}(r) \wedge \delta^{+} \wedge \delta^{+}) \vee \eta^{+} \vee \eta^{+}\} \wedge \delta^{+}$$

$$= \{\{(\mu^{+}(p) \wedge \delta^{+}) \vee \eta^{+}\} \wedge \{(\mu^{+}(r) \wedge \delta^{+}) \vee \eta^{+}\}\} \wedge \delta^{+}$$

$$= \{(\mu^{+})_{n}^{\delta}(p) \wedge (\mu^{+})_{n}^{\delta}(r)\} \wedge \delta^{+}.$$

and

$$\begin{aligned} \min\{(\mu^-)_\eta^\delta(p\alpha q\beta r),\eta^-\} &= \min\{(\{\mu^-(p\alpha q\beta r)\vee\delta^-\}\wedge\eta^-),\eta^-\} \\ &= \{\mu^-(p\alpha q\beta r)\vee\delta^-\}\wedge\eta^- \\ &= \{\mu^-(p\alpha q\beta r)\wedge\eta^-\}\vee\{\delta^-\wedge\eta^-\} \\ &= \{\mu^-(p\alpha q\beta r)\wedge\eta^-\}\vee\delta^- \\ &= \{(\mu^-(p\alpha q\beta r)\wedge\eta^-)\wedge\eta^-\}\vee\delta^- \\ &= \{(\mu^-(p)\vee\mu^-(r)\vee\delta^-)\wedge\eta^-\}\vee\delta^- \\ &= \{(\mu^-(p)\vee\mu^-(r)\vee\delta^-)\wedge\eta^-\wedge\eta\}\vee\delta^- \\ &= \{(\mu^-(p)\vee\mu^-(r)\vee\delta^-)\wedge\eta^-\}\vee\{(\mu^-(r)\vee\delta^-)\wedge\eta^-\}\}\vee\delta^- \\ &= \{(\mu^-(p)\vee\delta^-)\wedge\eta^-\}\vee\{(\mu^-(r)\vee\delta^-)\wedge\eta^-\}\}\vee\delta^- \\ &= \{(\mu^-)_\eta^\delta(p)\vee(\mu^-)_\eta^\delta(r)\}\vee\delta^-. \end{aligned}$$

By similar way we can show the remaining part of the proposition.

Theorem 3.6. Let $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) - fuzzy right ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) - fuzzy left ideal of S then $((A\circ_{\Gamma}B])^{\delta}_{\eta}\subseteq A\cap_{\eta}^{\delta}B$ and $((A\circ_{\Gamma}B])^{\delta}_{\eta}\supseteq A\cup_{\eta}^{\delta}B$.

PROOF. Let $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) - fuzzy right ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) - fuzzy left ideal of S. Let $(p,q)\in I_r$. If $I_r\neq\emptyset$, then $r\leqslant p\gamma q$. Thus $\mu_A^+(r)\geqslant \mu_A^+(p\alpha q)\geqslant \mu_A^+(p)$ and $\mu_A^-(r)\leqslant \mu_A^-(p\alpha q)\leqslant \mu_A^-(p)$. Similarly $\mu_B^+(r)\geqslant \mu_B^+(p\alpha q)\geqslant \mu_B^+(q)$ and $\mu_B^-(r)\leqslant \mu_B^-(p\alpha q)\leqslant \mu_B^-(q)$, we have

$$\begin{split} (\mu_{(A \circ_{\Gamma} B]}^{+})_{\eta}{}^{\delta}(r) &= (\mu_{(A \circ_{\Gamma} B]}^{+}(r) \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{(\mu_{A}^{+}(p) \wedge \delta^{+}) \wedge (\mu_{B}^{+}(q) \wedge \delta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &\leqslant (\{(\mu_{A}^{+}(r) \vee \eta^{+}) \wedge (\mu_{A}^{+}(r) \vee \eta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &= ((\mu_{A}^{+}(r) \vee \eta^{+}) \wedge (\mu_{B}^{+}(r) \vee \eta^{+}) \wedge \delta^{+}) \vee \eta^{+} \\ &= \{((\mu_{A}^{+}(r) \wedge \mu_{B}^{+}(r)) \vee \eta^{+}) \wedge \delta^{+}\} \vee \eta^{+} \\ &= \{((\mu_{A}^{+} \wedge \mu_{B}^{+})(r) \wedge \delta^{+}\} \vee \eta^{+} \\ &= (\mu_{A \cap B}^{+})(r) \end{split}$$

and

$$\begin{split} (\mu_{(A\circ_{\Gamma}B]}^{-})_{\eta}^{\delta}(r) &= (\mu_{(A\circ_{\Gamma}B]}^{-}(r)\vee\delta^{-})\wedge\eta^{-} \\ &= (\min\{\mu_{A}^{-}(p)\vee\mu_{B}^{-}(q)\}\vee\delta^{-})\vee\eta^{-} \\ &= (\min\{\mu_{A}^{-}(p)\vee\mu_{B}^{-}(q)\}\vee\delta^{-})\wedge\eta^{-} \\ &= (\min\{(\mu_{A}^{-}(p)\vee\delta^{-})\vee(\mu_{B}^{-}(q)\vee\delta^{-})\}\vee\delta^{-})\wedge\eta^{-} \\ &\geq (\{(\mu_{A}^{-}(r)\wedge\eta^{-})\vee(\mu_{A}^{-}(r)\wedge\eta^{-})\}\vee\delta^{-})\wedge\eta^{-} \\ &= ((\mu_{A}^{-}(r)\wedge\eta^{-})\vee(\mu_{B}^{-}(r)\wedge\eta^{-})\vee\delta^{-})\wedge\eta^{-} \\ &= \{((\mu_{A}^{-}(r)\vee\mu_{B}^{-}(r))\wedge\eta^{-})\vee\delta^{-}\}\wedge\eta^{-} \\ &= \{((\mu_{A}^{-}\vee\mu_{B}^{-})(r)\vee\delta^{-}\}\wedge\eta^{-} \\ &= (\mu_{A}^{-}(\theta_{$$

Let $p, q \notin I$. If $I_r = \emptyset$, then $(\mu_A^+ \circ_\Gamma \mu_B^+)(r) = 0 = (\mu_A^- \circ_\Gamma \mu_B^-)(r)$ and $\alpha \in \Gamma$ such that $r \leq p\alpha q$. We have

$$\begin{split} (\mu_{(A \circ_{\Gamma} B]}^{+})_{\eta}^{\delta}(r) &= (\mu_{(A \circ_{\Gamma} B]}^{+}(p) \wedge \delta^{+}) \vee \eta^{+} \\ &= 0 \vee \eta^{+} \\ &= \eta^{+} \\ &\leqslant (\mu_{A \cap B}^{+}(p) \wedge \delta^{+}) \vee \eta^{+} \\ &= (\mu_{A \cap B}^{+}(p) \wedge \delta^{+}) \end{split}$$

and

$$\begin{split} (\mu^-_{(A\circ_{\Gamma}B]})^{\delta}_{\eta}(r) &= (\mu^-_{(A\circ_{\Gamma}B]}(r) \vee \delta^-) \wedge \eta^- \\ &= 0 \wedge \eta^- \\ &= \eta^- \\ &\geqslant (\mu^-_{A\cup B}(p) \vee \delta^-) \wedge \eta^- \\ &= (\mu^-_{A\sqcup B}(p) \vee \delta^-) \end{split}$$

Therefore $((A \circ_{\Gamma} B))_{\eta}^{\delta} \subseteq A \cap_{\eta}^{\delta} B$ and $((A \circ_{\Gamma} B))_{\eta}^{\delta} \supseteq A \cup_{\eta}^{\delta} B$.

COROLLARY 3.4. Let $A = (\mu_A^+, \mu_A^-)$ be a bipolar $(\epsilon, \epsilon \vee q)$ - fuzzy right ideal and $B = (\mu_B^+, \mu_B^-)$ be a bipolar $(\epsilon, \epsilon \vee q)$ - fuzzy left ideal of S then $((A \circ {}_{\Gamma}B]) \subseteq A \cap B$ and $((A \circ {}_{\Gamma}B]) \supseteq A \cup B$.

PROOF. The proof follows taking $\eta^+=0, \delta^+=0.5$ and $\eta^-=0, \delta^-=-0.5$ in Theorem 3.6.

COROLLARY 3.5 ([6]). Let S be an ordered Γ -semigroup is regular if and only if every right ideal A and every left ideal B of S then $A \cap B = (A \circ_{\Gamma} B]$.

Theorem 3.7. An ordered Γ -semigroup S is regular, let $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) -fuzzy right ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) -fuzzy left ideal of S if and only if $((A\circ_\Gamma B])^\delta_\eta=A\cap_\eta^\delta B$ and $((A\circ_\Gamma B])^\delta_\eta=A\cup_\eta^\delta B$.

PROOF. Let S be an ordered Γ -regular semigroup and $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) -fuzzy right ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) -fuzzy left ideal of S. Let I be a non-empty set, then $I_r=\{(p,q)\in S\times S|r\leqslant p\gamma q\}$ from definition 2.2 in (iii). Thus $\mu_A^+(r)\geqslant \mu_A^+(p\alpha q)\geqslant \mu_A^+(p)$ and $\mu_A^-(r)\leqslant \mu_A^-(p\alpha q)\leqslant \mu_A^-(p)$. Similarly $\mu_B^+(r)\geqslant \mu_B^+(p\alpha q)\geqslant \mu_B^+(q)$ and $\mu_B^-(r)\leqslant \mu_B^-(p\alpha q)\leqslant \mu_B^-(q)$.

$$\begin{split} (\mu_{(A\circ_{\Gamma}B]}^{+})_{\eta}^{\delta}(r) &= (\mu_{(A\circ_{\Gamma}B]}^{+}(r) \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{(\mu_{A}^{+}(p) \wedge \delta^{+}) \wedge (\mu_{B}^{+}(q) \wedge \delta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &\geqslant (\{(\mu_{A}^{+}(r\alpha x) \vee \eta^{+}) \wedge (\mu_{A}^{+}(r) \vee \eta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &\geqslant ((\mu_{A}^{+}(r) \vee \eta^{+}) \wedge (\mu_{B}^{+}(r) \vee \eta^{+}) \wedge \delta^{+}) \vee \eta^{+} \\ &= \{((\mu_{A}^{+}(r) \wedge \mu_{B}^{+}(r)) \vee \eta^{+}) \wedge \delta^{+}\} \vee \eta^{+} \\ &= \{((\mu_{A}^{+} \wedge \mu_{B}^{+})(r) \wedge \delta^{+}\} \vee \eta^{+} \\ &= (\mu_{A\cap_{B}^{\eta}B}^{+})(r) \end{split}$$

and

$$\begin{split} (\mu_{(A \circ_{\Gamma} B]}^{-})_{\eta}^{\delta}(r) &= (\mu_{(A \circ_{\Gamma} B]}^{-}(r) \vee \delta^{-}) \wedge \eta^{-} \\ &= (\min\{\mu_{A}^{-}(p) \vee \mu_{B}^{-}(q)\} \vee \delta^{-}) \vee \eta^{-} \\ &= (\min\{\mu_{A}^{-}(p) \vee \mu_{B}^{-}(q)\} \vee \delta^{-} \vee \delta^{-}) \wedge \eta^{-} \\ &= (\min\{(\mu_{A}^{-}(p) \vee \delta^{-}) \vee (\mu_{B}^{-}(q) \vee \delta^{-})\} \vee \delta^{-}) \wedge \eta^{-} \\ &\leqslant (\{(\mu_{A}^{-}(r\alpha x) \wedge \eta^{-}) \vee (\mu_{A}^{-}(r) \wedge \eta^{-})\} \vee \delta^{-}) \wedge \eta^{-} \\ &\leqslant ((\mu_{A}^{-}(r) \wedge \eta^{-}) \vee (\mu_{B}^{-}(r) \wedge \eta^{-}) \vee \delta^{-}) \wedge \eta^{-} \\ &= \{((\mu_{A}^{-}(r) \vee \mu_{B}^{-}(r)) \wedge \eta^{-}) \vee \delta^{-}\} \wedge \eta^{-} \\ &= \{((\mu_{A}^{-} \vee \mu_{B}^{-})(r) \vee \delta^{-}\} \wedge \eta^{-} \\ &= (\mu_{A \cup_{\alpha}^{\delta} B}^{-})(r) \end{split}$$

Thus $((A \circ_{\Gamma} B])_{\eta}^{\delta} \supseteq A \cap_{\eta}^{\delta} B$ and $((A \circ_{\Gamma} B])_{\eta}^{\delta} \subseteq A \cup_{\eta}^{\delta} B$, by Theorem 3.7 and hence $((A \circ_{\Gamma} B])_{\eta}^{\delta} = A \cap_{\eta}^{\delta} B$ and $((A \circ_{\Gamma} B])_{\eta}^{\delta} = A \cup_{\eta}^{\delta} B$. Conversely assume that $((A \circ_{\Gamma} B])_{\eta}^{\delta} = A \cap_{\eta}^{\delta} B$ and $((A \circ_{\Gamma} B])_{\eta}^{\delta} = A \cup_{\eta}^{\delta} B$.

Let $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) -fuzzy right ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) - fuzzy left ideal of S. Then by Theorem 3.4, χ_A be a bipolar (η,δ) -fuzzy right ideal and χ_A be a bipolar (η,δ) - fuzzy left ideal of S. By Lemma 3.2 and Theorem 3.5, we have $(\chi_{(A\cap B]}^+)^\delta_\eta=(\chi_A^+\cap^\delta_\eta\chi_B^+)=(\chi_A^+\circ_\Gamma\chi_B^+)^\delta_\eta=(\chi_{(A\circ_\Gamma B]}^+)^\delta_\eta$ and $(\chi_{(A\cap B]}^-)^\delta_\eta=(\chi_A^-\cup^\delta_\eta\chi_B^-)=(\chi_A^-\circ_\Gamma\chi_B^-)^\delta_\eta=(\chi_{(A\circ_\Gamma B]}^-)^\delta_\eta$. This implies $(A\cap B)^\delta_\eta=((A\circ_\Gamma B])^\delta_\eta$. Hence by Corollary 3.5 S is regular.

COROLLARY 3.6. Let $A = (\mu_A^+, \mu_A^-)$ be a bipolar $(\epsilon, \epsilon \vee q)$ -fuzzy right ideal and $B = (\mu_B^+, \mu_B^-)$ be a bipolar $(\epsilon, \epsilon \vee q)$ - fuzzy left ideal of an ordered Γ -semigroup S. S is regular if and only if $((A \circ \Gamma B)) = A \cap B$ and $((A \circ \Gamma B)) = A \cup B$.

PROOF. Taking $\eta^+=0, \delta^+=0.5$ and $\eta^-=0, \delta^-=-0.5$ in Theorem 3.7 the proof follows.

Theorem 3.8. Let $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) -fuzzy bi-ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) - fuzzy left ideal of an ordered Γ -semigroup S. S is regular if and only if $(A\circ_{\Gamma}B)^{\delta}_{\eta}=A\cap_{\eta}^{\delta}B$ and $(A\circ_{\Gamma}B)^{\delta}_{\eta}=A\cup_{\eta}^{\delta}B$.

PROOF. Let S be an ordered Γ -regular semigroup and $A=(\mu_A^+,\mu_A^-)$ be a bipolar (η,δ) -fuzzy bi-ideal and $B=(\mu_B^+,\mu_B^-)$ be a bipolar (η,δ) - fuzzy left ideal of S. Let I be a non-empty set, then $I_r=\{(p,q)\in S\times S|r\leqslant p\gamma q\}$. Thus $\mu_A^+(r)\geqslant \mu_A^+(p\alpha q)\geqslant \mu_A^+(p)$ and $\mu_A^-(r)\leqslant \mu_A^-(p\alpha q)\leqslant \mu_A^-(p)$. Similarly $\mu_B^+(r)\geqslant \mu_B^+(p\alpha q)\geqslant \mu_B^+(q)$ and $\mu_B^-(r)\leqslant \mu_B^-(p\alpha q)\leqslant \mu_B^-(q)$. For $r\in S$, there exists $x\in S$ such that $r\leqslant r\alpha x\beta r=r\alpha(x\beta r)\leqslant (r\alpha x\beta r)\alpha(x\beta r)$. Then $(r\alpha x\beta r),(x\beta r)\in I_r$. We have

$$\begin{split} (\mu_{A\circ_{\Gamma}B}^{+})_{\eta}^{\delta}(r) &= (\mu_{A\circ_{\Gamma}B}^{+}(r) \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{\mu_{A}^{+}(p) \wedge \mu_{B}^{+}(q)\} \wedge \delta^{+} \wedge \delta^{+}) \vee \eta^{+} \\ &= (\max\{(\mu_{A}^{+}(p) \wedge \delta^{+}) \wedge (\mu_{B}^{+}(q) \wedge \delta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &\geqslant (\{(\mu_{A}^{+}(r\alpha x\beta r) \vee \eta^{+}) \wedge (\mu_{A}^{+}(x\beta r) \vee \eta^{+})\} \wedge \delta^{+}) \vee \eta^{+} \\ &\geqslant ((\mu_{A}^{+}(r) \vee \eta^{+}) \wedge (\mu_{B}^{+}(r) \vee \eta^{+}) \wedge \delta^{+}) \vee \eta^{+} \\ &= \{((\mu_{A}^{+}(r) \wedge \mu_{B}^{+}(r)) \vee \eta^{+}) \wedge \delta^{+}\} \vee \eta^{+} \\ &= \{((\mu_{A}^{+} \wedge \mu_{B}^{+})(r) \wedge \delta^{+}\} \vee \eta^{+} \\ &= (\mu_{A\cap\delta}^{+}_{B})(r) \end{split}$$

and

$$\begin{split} (\mu_{A\circ_{\Gamma}B}^{-})_{\eta}^{\delta}(r) &= (\mu_{A\circ_{\Gamma}B}^{-}(r)\vee\delta^{-})\wedge\eta^{-} \\ &= (\min\{\mu_{A}^{-}(p)\vee\mu_{B}^{-}(q)\}\vee\delta^{-})\vee\eta^{-} \\ &= (\min\{\mu_{A}^{-}(p)\vee\mu_{B}^{-}(q)\}\vee\delta^{-}\vee\delta^{-})\wedge\eta^{-} \\ &= (\min\{(\mu_{A}^{-}(p)\vee\delta^{-})\vee(\mu_{B}^{-}(q)\vee\delta^{-})\}\vee\delta^{-})\wedge\eta^{-} \\ &\leqslant (\{(\mu_{A}^{-}(r\alpha x\beta r)\wedge\eta^{-})\vee(\mu_{A}^{-}(x\beta r)\wedge\eta^{-})\}\vee\delta^{-})\wedge\eta^{-} \\ &\leqslant ((\mu_{A}^{-}(r)\wedge\eta^{-})\vee(\mu_{B}^{-}(r)\wedge\eta^{-})\vee\delta^{-})\wedge\eta^{-} \\ &= \{((\mu_{A}^{-}(r)\vee\mu_{B}^{-}(r))\wedge\eta^{-})\vee\delta^{-}\}\wedge\eta^{-} \\ &= \{((\mu_{A}^{-}\vee\mu_{B}^{-})(r)\vee\delta^{-}\}\wedge\eta^{-} \\ &= (\mu_{A\cup_{\eta}^{\delta}B}^{-})(r) \end{split}$$

PROOF. Straightforward.

Acknowledgement : The research of the second author is partially supported by UGC-BSR grant : F.25-1/2014-15(BSR)/7-254/2009(BSR) dated 20-01-2015 in India.

References

- S. K. Bhakat P. DaS. (ε, ε, ∨q)-Fuzzy subsemigroup. Fuzzy Sets and Systems, 80(3)(1996), 359–368
- [2] F. M. Khan, N. H. Sarmin and A. Khan. Some new characterization of ordered semigroups in terms of (λ, θ) -fuzzy bi-ideals. *International Journal of Algebra and Statistics*, $\mathbf{1}(1)(2012)$, 22-32.
- [3] Y. B. Jun, A. Khan and M. Shabir. Ordered semigroups characterized by their $(\epsilon, \epsilon, \vee q)$ -fuzzy bi-ideals. *Bull. Malays. Math. Sci. Soc.* (2), **32**(3)(2009), 391-408.
- [4] O. Kazanci and S. Yamak. Generalized fuzzy bi-ideals of semigroup. Soft Computing, 12(11)(2008), 1119–1124.

- [5] N. Kehayopula. On fuzzy po Γ-semigroups. Armenian Journal of Mathematics 6(2)(2014), 43-52.
- [6] N.Kehayopulu and M. Tsingelis. Regular ordered semigroups in terms of fuzzy subsets. Inform. Sci., 176(24)(2006), 3675-3693.
- [7] N. Kehayopulu and M. Tsingelis. Fuzzy sets in ordered groupoids. Semigroup Forum, 65(1)(2002), 128–132.
- [8] N. Kehayopulu. On ordered Γ-semigroups. Scientiae Mathematicae Japonicae, 23(e-2010), 37-43.
- [9] K. Hila and E. Pisha. On bi-ideals on ordered Γ-semigroups. Hacettepe Journal of Mathematics and Statistics, 40(6)(2011), 793-804.
- [10] K. M. Lee. Bi-polar-valued fuzzy sets and their operations. Proc. Int Conf. Intelligent Technologies Bangkok (pp. 307–312)), Thailand, 2000.
- [11] W. J. Lie. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems. 8(2)(1982), 133-139.
- [12] Pavel Pal, Samit Kumar Majumder, Bijan Davvaz, Sujit Kumar Sardar, Regularity of Po-Γ-semigroups in terms of fuzzy subsemigroups and fuzzy bi-ideals. Fuzzy information and Engineering, 7(2015), 165-182.
- [13] M. Shabir and Z. Iqbal. Characterizations of ordered semigroups by the properties of their bipolar fuzzy ideals. *Information Science Letters.*, 2(3)(2013), 129–137.
- [14] M. K. Sen and A. Seth. On po Γ-semigroups. Bull. Calcutta Math. Soc., 85(5)(1993), 445-450.
- [15] M. Shabir and A. Khan. Semigroups characterized by the properties of their fuzzy generalized bi-ideals. New Mathematics and Natural Computation, 4(2)(2008), 237–250.
- [16] T. Mahmood, M.Ibrar, A. Khan, H. U. Khan and F. Abbas. Classification of ordered semigroups in terms of bipolar fuzzy bi-ideals. *Journal of Applied Environmental and Biological Sciences (JAEBS)*, 7(10)(2017), 134–142.
- [17] L. A Zadeh. Fuzzy sets. Information and control, 8(3)(1965), 338–353.

Receibed by editors 25.12.2017; Revised version 21.01.2018; Available online 12.02.2018.

Department of Mathematics, Annamalai University, Chidambaram, Tamilnadu $E\text{-}mail\ address$: kv.chinnadurai@yahoo.com

Department of Mathematics, Annamalai University, Chidambaram, Tamilnadu $E\text{-}mail\ address:}$ arulmozhiems@gmail.com