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CHARACTERIZATION OF BIPOLAR FUZZY IDEALS
IN ORDERED GAMMA SEMIGROUPS

V. Chinnadurai and K. Arulmozhi

ABSTRACT. In this paper, we introduce the notion of (7, §) bipolar fuzzy ideal,
bi-ideal,interior ideal, (€, €V q)-bipolar fuzzy ideal of ordered I'-semigroups and
discuss some of their properties.

1. Introduction

Fuzzy set was introduced by Zadeh [17]. Ordered I'-semigroup was studied
by Kehayopula [8]. Bipolar fuzzy set was first studied by Lee [10]. Bipolar fuzzy
set is an extension of fuzzy set whose membership degree range is enlarged from
the interval [0,1] to [—1,1]. Faiz Muhammad Khan et al [2] introduced the con-
cepts of (), 0)-fuzzy bi-ideal and (), )-fuzzy subsemigroup. Kazanci and Yamak
[4]introduced the concept of a generalized fuzzy bi-ideal in semigroup and estab-
lished some properties of fuzzy bi-ideals in terms of (¢, € V ¢)-fuzzy bi-ideals. Jun et
al [3] provided some results on ordered semigroups characterized by their (e, eV q)-
fuzzy bi-ideals. Kehayopula and Tsingelies [7] initiated the study of fuzzy ordered
semigroups. Bhakat and Das [1] introduced the concepts of (e, e V ¢)-fuzzy sub-
groups using the notion “belongingness (€)” and “quasi-coincidence (q)”. In this
paper we define the new notions of (7, §) bipolar fuzzy ideal, bi-ideal,interior ideal,
(e,€ V g)-bipolar fuzzy ideal of ordered I'-semigroup and discuss some properties
with examples.
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2. Preliminaries

DEFINITION 2.1. ([14]) An ordered T'-semigroup (shortly po-T'-semigroup) is a
I'-semigroup S together with an order relation < such that a < b implies ayc < byc
and cya < ¢yb for all a,b,c € S and v €T

DEFINITION 2.2. ([14]) Let A and B be two non empty subsets of a I'- semi-
group S. We denote

(i) (Al={te S|t < hforsomeh e A},

(ii) ATB={aab:a€ A, be Band a €T},

(iii) Ay ={(y,2) € S x S|x < yaz}.

DEFINITION 2.3. ([9]) A non-empty subset B of a po I'-semigroup S is called
a bi-ideal of § if

(i) a € B,be S and b < a implies b € B,

(ii) BTSTB C B.

DEFINITION 2.4. ([17]) Let X be a non-empty set. A fuzzy subset p of X is a
function from X into the closed unit interval [0,1]. The set of all fuzzy subsets of
X is called the fuzzy power set of X and is denoted by FP(X).

DEFINITION 2.5. ([10]) A bipolar fuzzy set A in a universe U is an object
having the form A = {(z,pu}(z),n;(2)) 1z € X}, where p} : X — [0,1] and
py : X — [=1,0]. Here uj () represents the degree of satisfaction of the element z
to the property and p; (x) represents the degree of satisfaction of x to some implict
counter property of A. For simplicity the symbol <,u£, P‘Zx> is used for the bipolar

fuzzy set A = {(z,pfi(z),p,(z)) : 2 € X}.

DEFINITION 2.6. ([2]) A fuzzy subset p of an ordered I'-semigroup S is called
a (A, 0)-fuzzy bi-ideal of S if it satisfies the following conditions

(i) If = < y, then u(z) > uly),

(i) max{p(zy), A} > min{p(z), p(y), 0},

(itl) max{p(zyz), A} > min{u(x), u(z),0}, for all z,y,z € S.

DEFINITION 2.7. ([5]) A fuzzy subset p of a po I'-semigroup S is called a fuzzy
bi-ideal of S if

(i) If z < y, then pu(z) > u(y) and

(ii) p(xayBz) = min{u(x), u(z)} for every x,y,z € S and every o, 5 € T'.

DEFINITION 2.8. ([11]) A fuzzy subset u of an ordered I'-semigroup S is called
a fuzzy I'-subsemigroup of S if

(i) z <y= pr) = py) for all x,y € S, and

(ii) p(zay) > min{u(z), u(y)} for all x,y € S and a € T.

DEFINITION 2.9. ([12]) A fuzzy subset u of an ordered I'-semigroup S is called
a fuzzy left (resp. right) ideal of S if

(i) x <y= plz) = py) for all x,y € S, and

(ii) p(zay) = uly) (resp. p(ray) = p(z)) for all z,y € S and a € T.

A fuzzy subset p of an ordered I'-semigroup S is called a fuzzy ideal of S, if it
is both fuzzy left ideal and fuzzy right ideal.
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DEFINITION 2.10. ([15]) Let A be a bipolar fuzzy set, if x , is the characteriatic
function of A, then (XA);S] is defined as
Bif xe A,

B(r) —
(Xa)a(®) {MH‘%A.

DEFINITION 2.11. ([13]) For two bipolar fuzzy subsets p = (u*, ™) and A =
(AT,A7) of S, the product of two bipolar fuzzy subsets is denoted by p o A and is
defined as

sup {u"(s) AAT()}if Ag #0
(ut oA (z) = { (e,
0 if A,=0
(4 0 A")(x) = Lmf AT VAT if A £ 0
0 if A, =0

DEFINITION 2.12. A bipolar (1,d) fuzzy sub T-semigroup B = (uj,pug) of S
is called a bipolar (1,2) fuzzy-I'-ideal of S if

(it) min{pp (pagB(rys)),n~} < max{pug(p), up(r), pp(s), 6},
for all p,q,r,s € S and «, B,y €T

3. (n,0)- bipolar fuzzy bi-ideals of ordered I'-semigroups

In this section S denote as ordered I'-semigroup.In what follows, (n™,d%) €
[0,1] and (n~,67) € [-1,0] be such that 0 < nt <d" <land -1 <5 <y~ <0,
both (1, §) € [0,1] are arbitrary but fixed.

DEFINITION 3.1. A fuzzy subset p of S is called a (7, §)-bipolar fuzzy subsemi-
group of S if it satisfies the following conditions:

A)p<qg=pt(p)=>pt(g)and p<g=p (p) <pu (9
(it) max{u* (pagq),n*} = min{u*(p), u*(q), 0"} and
min{u~ (pag),n~ } < max{u~(p),n (q),0” } for all p,q € S.

EXAMPLE 3.1. Let S = {a1,a2,a3,a4} and I' = {a} where « is defined on S
with the following Cayley table:

(0% ap az | asg | a4
ap | ap|ap | a | ay
a2 | a1 | A2 | a3 | A4
az |ay|ag|ag|as
a4 | Q1 | A3 | G3 | A3

<= {(a1aa1),(a1,a2)7(a17a3)7(01,04),(GQ,GQ),(a2,a3)7(02,a4),(03,a3),(a47a3)7
(as,a4)}.

We give the covering relation and the figure of S.

<= {(a1,a2), (a1, a3), (a1, a4), (az, as), (az, aq), (as,as)}.
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as

Q.
a2 4

ay

Define bipolar fuzzy subset i = [ut, 7] : S x'x S — [0,1] x [-1,0]

0.7 if x =aq —09 if x=aq
05 ifxr=a _ —0.7ifxr=a
ph@) =4 0 T () = M
0.2 if z=as —03 if x =as
0.3 if x=aq4 —0.6 if x=aq4

Then f is a (0.6, 0.8) bipolar fuzzy subsemigroup of S.

DEFINITION 3.2. A fuzzy subset p of S is called a (7, d)-bipolar fuzzy bi-ideal
of S if it satisfies the following conditions:
(i) if # < y, then p*(x) > pt(y) and = < y, then p=(x) < p~ (y)
and min{p~(p),n” } < max{u~(p),d } for all p,q € S.
(i) max{u™ (paq),n"} > min{p" (p), n*(q), 7}
min{p~ (pag),n~} < max{p”(p), p~(q),6 }.
(iit) max{p* (pagBr),n*} > min{p" (p), u* (r),6"}
min{p~ (pagpr),n~} < max{p~(p),pn (r),0” }, for all p,q,r € S and o, 5 € T.

EXAMPLE 3.2. Let S = {a1, az2,a3,a4} and I = {a, f} where «, § is defined on
S with the following Cayley tables:

a |aj|ag|az|as || B |a1|ax|az|ay
ap | ap | ai | ap | ap ap | ap | aip | a | ai
az | a1 | Q2 | a3 | Q4 az | a1 | Q2 | a3 | Q4
asz | a; | az | az | ag az | ay | az | az | ag
a4 | 1 | a3 | a3 | A3 a4 | A1 | Q2 | G3 | Q4

Si= {((11, al)a (a17a2)7 (a17a3)7 (ala a4)a (a27a2)7 (a27a3)7 (aQa CL4), (a3ﬂ a3>’ (a4a a3)v
(as,a4)}.
Define bipolar fuzzy subset it = [, p7]: S x T'x S — [0,1] x [~1,0] as
08l if x=a —0.85 if r=ay
0.62 if r=as _ —0.65 if T =as
pt(z) = vl p(x) = v
0.34 if x = a3 —0.30 if z = as
043 if r=ay —0.50 if T =aqy

Then [ is a (0.70,0.90) bipolar fuzzy bi-ideal of S
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THEOREM 3.1. A fuzzy subset p; is a (n,0)-bipolar fuzzy ordered T'-sub semi-
group (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of S. Then the lower level set
i = [p.F s p, ] s an ordered T-subsemigroup (left, right, bi-ideal, interior ideal, (1,
2)-ideal) of S, where yi; = {p € S|u*(p) > n*} and p;; = {p € Slp~(p) <n~}.

PROOF. Suppose that p; is a (1, 6)-bipolar fuzzy ordered I'-subsemigroup. Let
pyis a (n*, %) fuzzy I'-subsemigroup. Let p, ¢ € S and a € T such that p,q € p,}.
Then pt(p) > nt,ut(q) > nT. Since u* is a (n™,d%) fuzzy subsemigroup, there-
fore max{yu* (paq),n*} > min{p*(p), x"(q), 07} > min{n*,n*,é*} = n*. Hence
pt(pag) > . Tt shows that pag € . Therefore y.} is a I-subsemigroup of S.
Let p1,, isa (n~,87) fuzzy ordered I'-subsemigroup. Let p, ¢ € S such that p,q € P -
Then u~(p) < n~,n (¢) <n .Since u~ isa (n~, ) fuzzy ordered I'-subsemigroup.
Therefore min{u~ (paq),n~} < max{u=(p),u (¢),0"} < max{n~,n ", "} =n".
Hence p~ (pagq) < n~. It shows that paq € f, - Therefore fi, is a I'-subsemigroup
of S. Hence pj = i}, p,] is a I-subsemigroup of S. O

THEOREM 3.2. A non-empty subset A of S is an ordered T'-subsemigroup (left,
right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if the bipolar fuzzy subset
i=[ut, 1] of S defined as

) = > 6" forallp € (4], () = <6 forallp € (4],
BT\t foraltp ¢ (4), P soralip ¢ (4),

is a (n,0)-bipolar fuzzy ordered T-subsemigroup (left, right, bi-ideal, interior ideal,
(1, 2)-ideal) of S.

PROOF. Assume that A is an ordered I'-subsemigroup of S. Let p,q € S
be such that p,q € (A] then pag € (A] and o € T. Hence pu*(pag) > §+ and
pu~ (paq) < 8. Therefore max{u™*(paq),n*} = 6+ = min{u*(p),u"(q),6"} and
min{p~ (pag),n”} < 67 = max{u~(p),p (q),6"}. If p ¢ Aor g ¢ (A] then
min{u* (p), 1" (g), 07} = 0", max{p~(p), 1~ (g), 0~} = n~.That is max{u" (pag),
n*} = min{u*(p), " (q),6%} and min{p~ (pag),n~} < max{u~(p),n (q),6"}
Therefore ji = [u™, u~] is a bipolar fuzzy I'-subsemigroup of S.

Conversely assume that ji = [u™, 4] is a bipolar fuzzy I'-subsemigroup of S.
Let p,q € (A]. Then p*(p) > 0%, p*(q) = 6% and p=(p) < 6, pu(g) < 0.
Now pt is (n*,67) and p~ is (n~,07)- fuzzy T-subsemigroup of S. Therefore
max{u* (pag),n*} > min{u*(p), x*(q),6"} > min{é*,6*,6%,} =67 and
min{u~ (paq),n~} < max{u~(p),un (¢),0"} < max{d—,6,0,} = . It follows
that pag € (A] . Therefore A is a ordered I'-subsemigroup of S. (]

COROLLARY 3.1. A non-empty subset A of S is an ordered T'-subsemigroup (left,
right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if the fuzzy subset p of S
defined as

) = > 0.5 forallp € (4], ~(p) = < —0.5 forallp € (4],
a B 0 forallp ¢ (A], N 0 forallp ¢ (A],
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is a (e,e V q)-bipolar fuzzy subsemigroup(left, right, bi-ideal, interior ideal, (1, 2)-
ideal) of S.

PROOF. The proof follows by taking ™ = 0,6* = 0.5 and n~ = 0,6~ = —0.5
in Theorem 3.2 O

THEOREM 3.3. A fuzzy subset i of S is a (1, d)-bipolar fuzzy subsemigroup (left,
right, bi-ideal, interior ideal, (1, 2)-ideal) of S if and only if each non-empty level
subset (i'"*)) is a subsemigroup (left, right, bi-ideal, interior ideal, (1, 2)-ideal) of
S forallt € (n*,06"]. and s € (n~,6].

PROOF. Assume that fi(t*) is an ordered T-subsemigroup over S for each t €
[0,1] and s € [—1,0].For each p1,p2 € S and a € (4], let t = min{u™ (p1), " (p2)}
and s = max{u~ (p1), 1~ (p2)}, then p1,py € . That is max{u*((pyg),n*} >
t = min{p" (p1), p" (p2), 0"} and min{p~ (p1yp2),n~} < s = max{u” (p1), u” (p2),
5~ }. This shows that i is bipolar fuzzy I'-subsemigroup over S.

Conversely, assume that i is a bipolar fuzzy ordered I'-subsemigroup of S.
For each a € (A],t € [0,1] and s € [~1,0] and p1,ps € a>*) we have put(p;) >
t,uT(p2) = tand p=(p1) < s, u~ (p2) < s. Since i is a bipolar fuzzy I'-subsemigroup
of S,

max{p* (p1yp2),n*} = min{u® (p1), p (p2,67)} > ¢

min{p~ (p1yp2),n~ } <max{u” (p1),n” (p2,67)} < s,
v € T. Therefore i(+*), this implies that p;yps € at®). Therefore a(t*) is a I-
subsemigroup of S for each t € [0,1] and s € [—1,0]. Similar proofs holds for left,
right, bi-ideal, interior ideal, (1, 2)-ideal also. O

ExAMPLE 3.3. Every bipolar fuzzy subsemigroup fi = [u™, | of ordered T'-
semigroup S is a (1, §)-bipolar fuzzy subsemigroup of S, but converse is not true.

For the Example 3.1, we define bipolar fuzzy subset i = [u*, u~] by

0.65 if x=a —0.85 if r=a;
058 if xr=a _ —081l if z=a
pt(x) = ST p ()= o
0.51 if z=a3 —0.68 if r=ag3
0.53 if x = a4 —0.75 if v =ay

Then fi is a (0.56,0.70) bipolar fuzzy ordered I'-subsemigroup of S, but not a bipolar
fuzzy subsemigroup. Since put(asaay) = pt(az) = 0.51 2 min{ut(aq),u"(as)} =
0.53 and p~ (asaaq) = p~ (az) = —0.68 £ max{p~ (as),n (as)} = —0.75

COROLLARY 3.2. Every (e,eV q) bipolar fuzzy ordered I'-subsemigroup of S is
a (n,8)-bipolar fuzzy ordered T'-subsemigroup of S, but converse is not true.

For the Example 3.1, define bipolar fuzzy subset ji = [, u™]

042 if x=a —033 if r=ay
038 if x=ua _ —030 if r=a
pt(x) = ST p ()= o
0.26 if r =ag —0.20 if x =ag

0.30 if T =ay —0.24 if r=aqy
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Then fi is a (0.35,0.45) bipolar fuzzy ordered I'-subsemigroup of S, but not a (e, eV
q) bipolar fuzzy ordered I'-subsemigroup. Since pt(aqcays) = pt(az) = 0.26 %
min{u" (as), pt (as)} = 0.30 and p~ (ageas) = p~(az) = —0.20 £ max{yu~ (as),

u (aq)} = —0.24.

EXAMPLE 3.4. Every bipolar fuzzy bi-ideal i = [u*,u~] of an ordered I'-
semigroup S is a (), §)-bipolar fuzzy bi-ideal of S, but converse is not true.

For the Example 3.2, we define bipolar fuzzy subset fi = [, ]

081l if x=a —0.85 if r=ay
0.62 if T =as _ —0.65 if T =as
ph(z) = S po () = S
0.34 if r=as3 —0.30 if r=as3
043 if ©=ay —0.50 if T =aqy

Then f is a (0.70,0.85) bipolar fuzzy bi-ideal of S, but not a bipolar fuzzy bi-
ideal, since ut(agaaqBay) = pt(az) = 0.34 ¥ min{ut(aq), n"(as)} = 0.43 and
u (agaaqfay) = p~(az) = —0.30 € max{p (aq), p~ (ag)} = —0.50

COROLLARY 3.3. Ewvery (e,eV q) bipolar fuzzy bi-ideal of S is a (n,0)-bipolar
fuzzy bi-ideal of S, but converse is not true.

For the Example 3.2, we define bipolar fuzzy subset ji = [u*, 1]

043 if x=a —-0.35 if r=ay
038 if x=a _ —030 if z=a
wha) = Lo n @)= o
0.25 if T =a3 —0.20 if z=a3
0.30 if T =ay —0.25 if r=aqy

Then fi is a (0.40,0.47) fuzzy bi-ideal of S, but not a fuzzy bi-ideal, since
put(agaasBay) = pt(az) = 0.25 ¥ min{p™ (aq), u" (aq)} = 0.30

p~ (ageasBag) = p~ (ag) = —0.20 € min{p ™ (aq), p~ (aq)} = —0.25.

DEFINITION 3.3. If y,, is the characteristic function of A, then (x, )3 is defined
dtifxe (A _ 0 ifx e (A
+\0 — ’ S — )
(@) {nwfw(m. (st =0

THEOREM 3.4. A non empty subset A of S is a subsemigroup (left, right, bi-
ideal, interior ideal, (1, 2)-ideal) of S if and only if fuzzy subset X, = [XE:],X(_A]] is

as

a (n,d)-bipolar fuzzy subsemigroup(left, right, bi-ideal, interior ideal, (1, 2)-ideal)
of S.

PROOF. Assume that A is a subsemigroup of S. Then X, is a bipolar fuzzy
subsemigroup of S and hence X, is an (n, d)-bipolar fuzzy subsemigroup of S.
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Conversely, let p, ¢ € S be such that p,q € (A]. Then X(J;] (p) =46t = X(J;] (q) =
5t and Xy (P) =67 = x(,,(¢) = 6. Since ¥, is a (n,0)-bipolar fuzzy subsemi-
group. Consider

max{x ", (pag),n"} > min{x, (p), X, (2),6"}
= min{d", 57,57}
as nt < 6T, this implies that {X(t&] (pagq)} = 6%. Thus paq € (A].
Therefore A is a subsemigroup of S. And
min{x, (peq),n”} < max{x, (p),x, ()07}
=max{0",07,0" }
=0
as 6~ <", this implies that {x_, (paq)} <d~. Thus pag € (4].
Therefore (A] is a subsemigroup of S.

Let p,q € S be such that p,q ¢ (A]. Then X;:] (p) =n" = x;’;] (¢9) = n* and

Xia (p)=nt = X(a) (g) =n™T. Since X(a 18 a (1, 6)-bipolar fuzzy subsemigroup.

max{x/, (paq),n*} = min{x}, (), x7, (@), 6"}
= min{n", 7", 6"}
as nt < 6T, this implies that {X(t] (paq)} = nT. Thus paq € (A]. Therefore (A] is
a subsemigroup of S. And

min{x_, (peq),n” } < max{x_, (»), x_, (2),0"}
=max{n",n",6"}
= ’]’I_
as 6~ <", this implies that {x (paq)} <7n~. Thus pag € (A]. Therefore (4] is

a subsemigroup of S. Similar to proof holds for left, right, bi-ideal, interior ideal,
(1, 2)-ideal also. O

DEFINITION 3.4. Let i be a bipolar fuzzy subset of an ordered semigroup S.
We define the bipolar fuzzy subsets (u™)?(p) = {u"(p) A6} vyt and (17)(p) =
{p=(p)vVo—}An forallpeS.

DEFINITION 3.5. Let fi; and fis be two bipolar fuzzy subsets of an ordered
semigroup S. Then we define the bipolar fuzzy subset

(i) (uf A pz ) () = {puf Apg(z) AdTE vyt
i) (uy A9 pg ) (@) ={py Apy (z) VYA,
iii) (uf VO pg) () = {uf Vs (@) AstrvayT
iv) (py Vo g )(x) = {py Vg () VAT,
v) (uf o8 p3)(x) = {pf opd (x) AdT} vt

(
(
(
(
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(vi) (uy o hz )(@) = {py o pg (x) VO } An.

LEMMA 3.1. Let A and B be non—empty subsets of S. Then the following hold:
(i) ((u])A (13)) () = ((/~L1) Nes )y )and((uf)Ai(ME))(iﬂ) = ((n A (12)7)
(it) () Vo (3 ) (@) = () V (13 )3), (1) Vi (@) = (1) V (12 )7)
(iti) ((ny)op (n3) (@) = ((Ml) o(u3); )and((uf)og(ug_))(ﬂf) = ((u1 )9o(uz)y)
LEMMA 3 2 Let A and B be non-empty subsets of S. Then the following hold:
(i) (X[, ) X(B]) (Xhng)s and (X5, Ay X)) = (Xang)y:

(i) (x (t,] Vs X<B ) = (XAup)y and (x vi " X) = (Xaus)y:

(iii) (x, oran) (X{arp))y and (XA OFnX(B]) (X(ars))-

PRrOOF. (i) and (ii) Straightforward.

(ii) Let p € S. If p € (AT'B], then (X?AFB})(p) = 6T and (X(arp)(p) =07

Since p < aab for some a € (4] , b € (B] and o € T', we have (a,b) € A, and
A, #0. We have

(X(_AFB] (p). Ifpé¢ (AFB] then (X?_AFB])(ZD) = 77+ and (X(_AFB])(p)

(X(JFAI or X(JFA])( ) = psggz mln{X(A] (y), X?;] (2)}
ot +
= min{x, (a), x7, ()}
(X4 or X)) (p) = inf min{x(, (), X, (2)}
< max{x_, (a),x, (0)}
= 5_

Therefore (x{, or x7, )(p) = 0% = (x4rp(P) and (x_, or x;,)(p) =0~ =

n .

Since p < aab for some a ¢ (4] , b ¢ (B] and a € I'. We have

(X, or X)) () = Sup min{x, (¥),x/, (2)}
> min{x, (a),x{, (b)}

(X or X)) (p) = mf min{x, (y),xc,, (2)}
< max{y*, (a),x%, ()}
= ’[’]7
Hence (x ", orx(, )(0) =17 = (X{ar ) () and (x, orx 7, )(®) =1~ = (X(app) (P)
O

THEOREM 3.5. Let S be an (n,0) ordered I'-semigroup. Let A,B C S and

{4;]i € I} be a family of subsets of S then

(i) (A] C (B] if and only if (X(A )77 X (X(B]) and (X(A]) (X(B])?y'
(it) (ﬁiEIX(Ai])n (XmieI(Ai])n and (UzeIX(Ai])n (Xnie,(Ai])i-
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(iii) (Vierx(a ) = O, a5 and (Nierx(a)s = (X0, an)-

PROOF. The proof follows from Proposition 2.4 [16]. O

PROPOSITION 3.1. If A is a (n,0)- bipolar fuzzy left(subsemigroup, right, inte-

rior, (1, 2)-ideal )ideal of S, then A = [(;ﬁ‘)f], (,u_)fl} is a bipolar fuzzy left(subsems

group, right, interior, (1, 2)-ideal) ideal of S.

PROOF. Assume that A is a (n,0)-bipolar fuzzy left ideal of S. If there exist

p,q € S, and o € T" then
max{(u" )y (paq), "} = max{({u* (pag) AT} v 0*), 0"}

{t*(pag) AT}V
= {u"(paq) v} A{0T vt}
={(u" (pag) V") v} AOT
{(w™ (@ ndT)vyTpAcT
(1F)y(a) A O*.

>
>

and

min{(u")9 (peq),n” } = min{({x" (paq) V5~ } An~),n"}
={u (pag) Vo~ } An~
={p (pag) An"}t V{5~ An~}
={(u" (pag) An") AR~} Vi~

(W (@) Vo )An }vé

(L )2(g) vo}

Hence A = [(uT), (17)3] is a bipolar fuzzy left ideal of S.

n’
Similar to proofs hold for subsemigroup, right ideals and interior ideal, (1, 2)-ideal
also. 0

<
<

PROPOSITION 3.2. If A is a (n,d)-bipolar fuzzy bi-ideal,then A = [(/ﬁ)%, (,u_)%]
is a bipolar fuzzy bi-ideal of S.

PROOF. Assume that A is a (1, d)-bipolar fuzzy bi-ideal of S. If there exist
p,q,r €S, and o, 8 € T" then
max{(u*); (pagBr),n*} = max{({x* (pagBr) A 6T} v t),nt}
= {u" (pagBr) Ao} vyt
= {u" (pagBr) vt} A{8F Vt}
= {uF(pagBr) vt} ns*
= {(u" (pagBr) Vo) vy At
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>{(uF ) Apt(r)AST)VTIAGT

={( @ AT () AT AST) VT VT AGT

= {(w <p)A6+)Vn+}A{( Ty VT AGT

= {(uN)y@) A (wF)p(r)} A ST

) A
) A

and

min{ (1) (pagBr), n~} = min{({x~ (pagBr) v~} An~),n"}
= {n" (pagBr) Ve~ } An~
={u (pagBr)An~} V{6~ An"}
= {u (pagBr) An~} Vo~
={(n" (pagBr) A=) A"}V
<{w @) Vu (r)vVoT)An v
={(w" () Vu (r)Vé VT )AN AntVvi
={" (Vo )An }Vv{(w (r)ve )An }} Vs
={(u7)5 @)V (u7)o(r)} V.

By similar way we can show the remaining part of the proposition. O

THEOREM 3.6. Let A = (ul,puy) be a bipolar (n,8)- fuzzy right ideal and
B = (u}, ug) be a bipolar (n,0)- fuzzy left ideal of S then ((AorpB])) € AN B
and ((Ao pB]) DA U5 B.

PROOF. Let A = (u}i,u,) be a bipolar (n,0)- fuzzy right ideal and B =
(15, up) be a bipolar (n,4)- fuzzy left ideal of S. Let (p,q) € I,. If I, # 0, then

r < pyg. Thus pj(r) > ph(paq) > pi(p) and py(r) < p(peq) < py(p).
Similarly p%(r) > ph(paq) > ph(q) and pg(r) < pp(pag) < pg(q). we have

(/‘EFAOFB])TJ&(T) (M(AOFB] (ryAdT) vt
= (max{u}(p) A pf(@)} A 6T) vt

= (max{p}(p) A pp(@)} ASTAST) VT

= (max{(u5(p) A 6%) A (@) A 5)} A5Vt
{(ar) V) A (uh(r) v )} AeT) vt

YA ) vty Ast) vyt
— {(50) A ) v ) A SVt
{(( JAST} VT
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and

= (min{(p (p) V0~ )V(u (q) v )}V5*)

= ({(ua(r) An=)V (pa(r) An=)} v )
= ((a(r) A7)V (ug(r) An")VET) A
={((ua(r) Vug(r) An )V} A~
={((ua Vug)r)Vé }An~

~~

“Aué B) )

Let p,q ¢ I. If I, = 0, then (uf or u3)(r) = 0 = (u; or pp)(r) and @ € T such
that r < paq.We have

(a0 ) (1) = (B a0rpy () A OT) Vg™
=0V n+
< (Whnp®) NOT) vt
= (uhnp(P) N OT)

and
(“(_AOrB])g(T) = (B(aopp (M) V) A
=0An"
= 177
2 (Haup®) VO~ ) AN~
= (Haup(P) V)
Therefore ((AorB])S C An® B and (AorB])) 2 AU B. 0

COROLLARY 3.4. Let A = (ul, ) be a bipolar (e, eV q)- fuzzy right ideal and
B = (uh, up) be a bipolar (e,€V q)- fuzzy left ideal of S then (AorB]) C ANB
and ((AorB]) 2 AUB.

PROOF. The proof follows taking n* = 0,67 = 0.5 and = = 0,6~ = —0.5 in
Theorem 3.6. U

COROLLARY 3.5 ([6]). Let S be an ordered T'-semigroup is reqular if and only
if every right ideal A and every left ideal B of S then ANB = (AorB].

THEOREM 3.7. An ordered T-semigroup S is reqular,let A = (u¥, ) be a
bipolar (1, 8)-fuzzy right ideal and B = (uf, up) be a bipolar (n,0)- fuzzy left ideal
of S if and only if (Ao pBD‘fI =A ﬂg B and ((Ao pB])f] =A Ui B.
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PrOOF. Let S be an ordered I'-regular semigroup and A = (,uj,,u:‘) be a
bipolar (1, §)-fuzzy right ideal and B = (u};, ) be a bipolar (1, §)- fuzzy left ideal
of S. Let I be a non-empty set, then I, = {(p,q) € S x S|r < pyq} from definition
2.2 in (iii). Thus pi(r) > ph(paq) > pi(p) and py(r) < py(paq) < py(p).
Similarly i (r) > pp(paq) > pp(q) and pp(r) < pp(paq) < pp(q).

(b)) = (4 sor (1) A 65V
15 (g )}/\5+ ) vt

= (max{pu}(p) A
= (max{u}(p) A pp (@)} ASTAST) VT
= (max{(u%(p) A5T) A (uh(@) ANST)} A OF) vt
> ({(ua(raz) V") A (uh(r) vrt)y AdT) vag®
> ((h(r) V) A () vty Adt) vt
= {((LA () Aup () V) A 5+}V77
= {((h A ugp)(r) A +}Vn
= (g ) ()
and
(/‘(AopB]) (r) = N(_AOFB](T)\/‘T)/\ni

AP Vugl@}ver)v
A(P)Vup(@)} Ve V) An
min{(u, (p) V67) V (up(q) VOT)} V) An~
{(ua(raz) An7)V (ua(r) AnT)}VET)An~
((pa(r) A7)V (up(r) An~) Vo) An~

= {((x(r )VMB( NDANT)VOTF AN

{((ug Vug)(r) Vet An~

= (W) (1)

—~

Thus ((A o pB])f7 oA Og B and ((Ao pB])‘f] cA Ug B, by Theorem 3.7 and
hence ((A o FB])‘s A ﬂf) B and ((Ao pBDf, =A Uf] B. Conversely assume that
((AorBI)) Aﬂ‘5B and ((AorB])) = AU B.

Let A= (uj, Ha) be a bipolar (1, §)-fuzzy right ideal and B = (1}, 13) be a bipolar
(1, 0)- fuzzy left ideal of S. Then by Theorem 3.4, x 4 be a bipolar (7, §)-fuzzy right
ideal and x4 be a bipolar (n, 0)- fuzzy left ideal of S. By Lemma 3.2 and Theorem
3.5, we have (X(AOB]) (XA f,XE) = (X:: or XE) (X(AOFB]) and (X(AQB])(;
(X5 U x5) = (X; or xz)) = (X(AOFB]);;,. This implies (AN B)) = ((Aop B])).
Hence by Corollary 3.5 S is regular. (|
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COROLLARY 3.6. Let A = (u}, ;) be a bipolar (e,€V q)-fuzzy right ideal and
B = (u}, 1) be a bipolar (e,€V q)- fuzzy left ideal of an ordered T-semigroup S.
S is regular if and only if (AorB])=ANDB and (AorB]) = AUB.

PRroor. Taking 7 = 0,6 = 0.5 and n~ = 0,6~ = —0.5 in Theorem 3.7 the
proof follows. O

THEOREM 3.8. Let A = (ul, ;) be a bipolar (n,d)-fuzzy bi-ideal and B =
(nf, 1) be a bipolar (n,6)- fuzzy left ideal of an ordered T-semigroup S. S is
reqular if and only if (Ao pB)f7 =A ﬁg B and (Ao pB)f7 =A Ug B.

PrOOF. Let S be an ordered I'-regular semigroup and A = (,ujg,,ug) be a
bipolar (1, §)-fuzzy bi-ideal and B = (ujf, up) be a bipolar (n,)- fuzzy left ideal
of S. Let I be a non-empty set, then I, = {(p,q) € S x S|r < pyq}. Thus
ph(r) = wilpag) > ph(p) and py(r) < py(paq) < py(p). Similarly ph(r) >
pg(paq) > pg(q) and pp(r) < pp(paq) < pp(q)-

For r € S, there exists € S such that r < razpr = ra(zfr) < (razxfr)a(zpr).
Then (raxpfr), (xpr) € I,. We have
(MXOFB)Z(T) = (MXOFB(T) A 6+) N n
= (max{u} (p) A g ()} A6T) vVt
— (max{u}(p) A (@)} A 0F ATVt
= (max{(u}(p) A6T) A (ug(a) NI AST) vt
{(uk (TO@ﬂT) m) A (uh (zBr) V) y AT v
(up(r) V) AneT) vyt
7”)) )NV T

and

(:U’AOFB) (r)= (/’LAOFB(T)V(S )ANT

= (min{puy, (p) V pup(@)} Vo)V

= (min{uy (p) V pp(@)} vV~ V5 ) A
= (min{(u4(p) V7))V (upl@) VI )} VIT) AN~
{(ua(razBr) An~) V (ua(zBr) An~)}VE~) An
(HA(r) A7)V (up(r) An" )V ) An~
((g(r) \/uB( DANT)VET AN
((ma Vug)(r) Vo~ An~
= (Haus ) (1)

NN

(
(
{
{
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Thus (Ao pB)f7 DA ﬂg Band (Ao pB)f] cA Ug B.

Conversely assume that (A o pB)fl DA ﬂf? Band (Ao pB)fI CA Ug B.

Let A = (u, ;) be a bipolar (5, §)-fuzzy bi ideal and B = (u};, 15) be a bipolar
(n,0)- fuzzy left ideal of S. Since every bipolar fuzzy (n,d)-right ideal of S is a
bipolar fuzzy (1, §)-bi-ideal of S. Thus (AopB)? 2 AN B and (AorB)) € AU) B,
by Theorem 3.7. Hence S is regular. O

COROLLARY 3.7. Let A = (u},uy) be a bipolar (e,e \V q)-fuzzy bi-ideal and
B = (u}, 1) be a bipolar (e,€V q)- fuzzy left ideal of an ordered T'-semigroup S.
S is regular if and only if (AorB) = A ﬂg B and (AorB)=A Ug B.

PRrOOF. Follows from Theorem 3.8 O

THEOREM 3.9. Let A = (u},uy) be a bipolar (n,8)-fuzzy right ideal and B =
(nh, up) be a bipolar (n,8)- fuzzy left ideal of an ordered I'-semigroup S. S weakly
regular if and only if (Ao pB)f, DA ﬁ‘f] B and (Ao pB)fI CcA Ug B.

PRrROOF. Straightforward. O

COROLLARY 3.8. Let A = (u}, ) be a bipolar (¢,€V q)-fuzzy right ideal and
B = (u}, 1) be a bipolar (e,€V q)- fuzzy left ideal of an ordered T'-semigroup S.
S is weakly regular if and only if (AorB) 2 ANDB and (AorB) C AUB.

PrOOF. Straightforward. O

THEOREM 3.10. Let A = (ulj,pu4) be a bipolar (n,8)-fuzzy bi-ideal and B =
(nf, up) be a bipolar (n,6)- fuzzy left ideal of an ordered T'-semigroup S. S is
weakly regular if and only if (Ao pB)fI DA ﬂf] B and (Ao pB)fI CA Ug B.

PROOF. Straightforward. O

COROLLARY 3.9. Let A = (uf, ) be a bipolar (e,e \V q)-fuzzy bi-ideal and
B = (u}, 1) be a bipolar (e,€V q)- fuzzy left ideal of an ordered T'-semigroup S.
S is weakly regular if and only if (AorB) D ANDB and (AorB) C AUB.

PRrROOF. Straightforward. O
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