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EXISTENCE CRITERIA OF POSITIVE SOLUTION
FOR A SYSTEM OF RIENANN - LIOUVILLE TYPE
p-LAPLACIAN PRACTIONAL
ORDER BOUNDARY VALUE PROBLEMS

Boddu Muralee Bala Krushna

ABSTRACT. This paper is concerned with determining the eigenvalue intervals
of A1 and A2 for which there exist positive solutions to a coupled system of
Riemann-Liouville type p-Laplacian fractional order boundary value problems
by utilizing a fixed point theorem on a cone under suitable conditions.

1. Introduction

The main aim of this paper is to study the existence of eigenvalue intervals
of A1, Ao for which there exist positive solutions to the coupled system of
p-Laplacian fractional order boundary value problems

(1.1) Dt (6, (D52mn(0)) = NS (L3032, £ € (0,1),

(1:2) D32 (6p(Dg2a() ) = deg (t31(1), 2(0)). ¢ € (0,1),
1(0) = 41(0) = Dgiy1(0) = 0,

(1.3) Cy1(1) + 9D y1 (1) =0,

6 (D511(0)) = 0 (Dg2n (1)) =0,
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122 B.M.B. KRUSHNA

2(0) = y5(0) = Dt y2(0) = 0,
(1.4) Cya(1) + 9D y2(1) =0,
6p(D5212(0)) = 6 (D5212(1)) =0,

where

Ay Ao >0, dp(s) = |sP 2, p> 1, 6, = ¢, L+ 1 =1, (0

are positive real numbers, «; € (3,4], ¢2 € (2,3], 1 < ¢1,8; < 2 and DS‘;,Dg;,Dg;,
for ¢+ = 1,2 are the standard Riemann-Liouville fractional order derivatives.

The theory of differential equations provides a broad mathematical basis to
understand the problems of modern society which are complex and interdisciplinary
by nature. Fractional order differential equations have attained much importance
due to their applications to almost all areas of science, engineering and technology
2, 4, 8, 10, 13, 14, 16, 17, 19]. Among all the theories, the most applicable
operator is the classical p-Laplacian, given by ¢,(s) = |s|P=?s, p > 1 [3, 5, 6, 11].
These types of problems have a wide range of applications in physics and related
sciences such as biophysics, plasma physics, and chemical reaction design, we refer
[7, 18].

Recently, Prasad and Krushna [15] established the existence of at least three
positive solutions for a coupled system of p-Laplacian fractional order two-point
boundary value problems,

D (¢p(DSu(t))) = fi(t,u(t),v(t)), t € (0,1),
D2 (¢,(D320(t))) = folt, u(t),v(t)), t € (0,1),
u(0) = DA u(0) =0, yu(1) + D% u(1) =0, D§u(0) = DGiu(l) = 0,

0
v(0) =0, yv(1) + 0D v(1) =0, Dgzv(0) = Dgzo(1) =0,
|s|P=2s, p > 1, 7,6 are constants, 2 < o; < 3, 1 < B;,¢; < 2 and

v(0) = Dl
where ¢,(s) =

f1, fo are given functions, by applying five functionals fixed point theorem.

We assume the following conditions hold throughout the paper:
(A1) f,g:[0,1] x R? —» R* are continuous,

(AQ) each of anQOafonga fooagooafooagoo by

fo=__li n Sy oy g(tyry).
o=__lim  min . go= lim

y1ty2—0+ te[1,3] ¢p(y1 + y2) Ui Fya—0t te[L 2] 1 ¢p(y1 + y2)’

¢ t
fO - lim max M go = lim max M
vitya =0t t€l3, ] ¢p(y1 + y2) y1ty2—0t te[§,4] (bp(yl + y2)

t t
fo= lim  min LGW0¥R) oy GYe)
Yy1tyz—oo te[L, 3] ¢p(y1 + yz) Y1 Fya—oo te[L,3] ¢p(y1 + y2)
o= tm ma SO e gy g Shoie)
Yy1tyz—o0 tE[, ¢p(y1 + yz) Ui Fya—oo te[L, ¢p(y1 + yz)
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exists as positive real number.

The rest of the paper is organized as follows. In Section 2, we compute the
Green functions for the homogeneous boundary value problems corresponding to
(1.1), (1.3) and (1.2), (1.4) and estimate the bounds for these Green functions. In
Section 3, we establish criteria to determine the eigenvalue intervals of A1, Ao for
which the p-Laplacian fractional order boundary value problem (1.1)-(1.4) has at
least one positive solution on a cone by utilizing Guo—Krasnosel’skii fixed point
theorem. In Section 4, as an application, we demonstrate our results with an
example.

2. Green Functions and Bounds

In this section, the Green functions for the homogeneous boundary value prob-
lems are constructed and the bounds for the Green functions are estimated, which
are essential to establish the main results.

Let G1(t, s) be the Green’s function for the homogeneous boundary value prob-
lem

(2.1) ~Dyi(t) =0, t € (0,1),

(22)  31(0) =0,41(0) =0, DL y1(0) = 0, Cy1 (1) + DGy (1) = 0.
LEMMA 2.1. Let
Ay =9 (aq) 4+ (T(aq — g2) #0.
If hq(t) € C[0,1], then the fractional order differential equation
(2.3) Dgiyi(t) +ha(t) =0, t € (0,1),

satisfying (2.2) has a unique solution,

1
i) = /0 Gr(t, 5)hi (5)ds,

where

Gui(t,s), 0<t<
(2.4) Gi(t,s) = { 0<s<

G11(t, 8) :Ail {@(I?‘(loq_)q?) +9(1 - S)—%} (1 — s)]o L,

1 (Il — ¢q2) -1
Gi2(t, s) =G11(t, ——[19 7] t—s)M
1a(t:5) =G (t,9) = 5[0+ =B 1 - )
PROOF. Let y; € C*[0,1] be the solution of fractional order boundary value
problem given by (2.3) and (2.2). An equivalent integral equation for (2.3) is given
by

-1 t
yi(t) = T(ar) / (t — ) " hy(s)ds + et 71 4 cot® 72 4 et T3 gyt T,
0

(€51
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Using the boundary conditions (2.2), one can determine ¢4 = ¢3 = c2 = 0 and

_ 1 [ reb(on —ap) ~5)e=|(1 = 5)™ 1y (s)ds
01_A1/0[ (o) +9(1 - ) (1—s) ha(s)ds.

Hence, the unique solution of the fractional order boundary value problem given
by (2.3) and (2.2) is

y1(t)
_ /O {A11 [W F (1= 5) 7 (1 = ) = “;(‘i;}hl(sws

+ /tl Ail {W +9(1 — 3)—%} (1 — )] by (s)ds

_ / G (t, 5)ha (5)ds,
0

O
LEMMA 2.2. Let g1(t) € C[0,1]. Then the fractional order differential equations
(2.5) D3t (6 (D5ton(®))) = 1(0), € (0,1),
satisfying
(2.6) op (D21 (0)) = & (Dt (1)) =0,

has a unique solution,

t) = /01 Gl(ta5)¢q(/01 Hl(S’T)gl(T)dT)dS,

where
[t =)t 0<t<s<1
- ; NS x 4
(2.7) Hy(t,s) = [t(1 —(f)l})ﬁl_l —(t—s)" 0<s<t<1
ey A

PROOF. An equivalent integral equation for (2.5) is given by

¢p( oty (t )) = F(lﬂl) / (t— T)ﬂlflgl(T)dT—&— feyt9 1 ptP1 2,

Applying (2.6), one can get ko =0 and ky = ! / (1 — 7)1~ 1g,(7)dr. Then,
T(B1)
o B (t — 7—)51 1 1 61 1
on(in) = [ gy - [ e

- / Hy(t,7)g1(T)dT.
0
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1 1
Hence, yl(t):/ Gl(t,s)gbq(/ Hl(S,T)gl(T)dT)dS is the solution of
0 0

fractional order boundary value problem given by (2.5) and (1.3). O
Tl —

LEMMA 2.3. Assume that ¥(qa — 1) — C(I?é(l)(lz) > 0. Then the Green’s func-
aq

tion G1(t, s) given in (2.4) is nonnegative, for all (t,s) € [0,1] x [0, 1].

PrOOF. Consider the Green’s function Gi(t,s) given by (2.4). Let 0 < ¢t <
s < 1. Then, we have

Giltys) =~ [M + (1= s) (1 - 9" > 0.

_Al F(Oél)
Let 0 < s <t < 1. Then, we have
Gu(t, S)
(I'(a1 — g2) g = ts] ! (Tlar —g2)(t =)
— 1— g | L2
|: F(al) + 19( 8) j| Al |:19 * F(al) :| Al
CT(a1 — g2) ot —ts]nt CT(ag — q2)7 (t —ts)r 1
|41 —-s) | — — |V
{ Ty o002 ] A o+ T(a1) ] A,
9 —q2 ap—1
>A—1[(1—s)q—1][t—ts] > 0.
O
T(a —
LEMMA 2.4. Assume that 9¥(qa —1) — W > 0. Then the Green’s
1

function G1(t,s) given in (2.4) satisfies the inequality
Gi(t,s) < Gi(1,s), forall (t,s) €[0,1] x [0,1].

PRrOOF. Consider the Green’s function G (¢, s) given by (2.4).

Let 0 <t < s < 1. Then, we have
Gu(t,s) 1 [Cr(al — q2)
ot Al F(Oq)

Therefore, G11(t, s) is increasing in ¢, which implies G11(t, s) < G11(1, s).
Let 0 < s <t < 1. Then, we have
0G12(t, s) :[CF(al — ¢2) o1 — S),qz} (o — 1)[t — ts]*172(1 — s)
ot F(Otl) A1

+ (1= )] (1= 5™ oy = 2 > 0,

_ [19 n CF(FOK(;;)%)} (1 — 1)251— 5)*1?
o= 1)(21— ts)o1—2 [19((1 _ gy (@D) 1) _ CF(Fa(;:)qz)S}
=it - B (9 - 1) - CF(;“(; l)q?>)s +0(2)]

=>0.
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Therefore, G12(t, s) is increasing in ¢, which implies G12(t, s) < G12(1, s). O
Tlas —
LEMMA 2.5. Assume that 9(gz — 1) — QW > 0. Then the Green’s func-
1
tion G1(t,s) given in (2.4) satisfies the inequality
1yo1—1
Gi(t,s) > (Z) ' G1(1,s), forall (t,s) €I x[0,1],

where I = [%, %] .

PrOOF. Consider the Green’s function Gy (¢, s) given by (2.4).
Let 0 <t<s<landtel Then

Gui(t,s) = [W T (1 — s)—fh] (1 — s)]*
o — CF(OQ - QQ) —q2 a1 —1
—t 1[Ww(175) }(1—5)
>G)°”_ Gl 5).
Let 0 <s<t<1landtel Then
Glg(t78>
(T'(a1 — g2) . ar—1 (T(a1 — g2) ar—1
=[T+0(1_3) e — syt - [19+W}(t—s)
ar—1 ¢I'(ag — ) —q2 (T(ar — ¢2) ar1—1

>(i)”_1012(1,s).
O

LEMMA 2.6. [?] For t,s € [0,1], the Green’s function Hi(t,s) satisfies the
following inequalities

(i) H(t,s)
(i) Hy(t,s)

LEMMA 2.7. Let £ € (§,3). Then the Green’s function Hi(t,s) holds the
inequality

(2.8) rtnei}lHl(t,s) > Yi(s)Hy(s,s), for 0 <s <1,

0,

>
< Hy(s,s).

where
30—t (35
(2.9) i(s) = L ’
(Z_LS)T’ s € [5, 1)

s € (0,¢],
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PRrROOF. We define

Y e N (A _ g))fi—1
(e, = = r(m(t L halts) = [t(lrw)l]) and
= ! S s B1—1
Hle,9) = gy (1 = 9)
Then
(1) s€(0.4)
I}lei}lH1(t,s)— min hl(%,s),h2(4,s)}7 se[%,%],
h2(4vs)7 s € [%,1),
| m(3s), se(0.¢],
hQ(%’S)’ s € [571)3
B1—s)rt - (2 —5)ht .. .
> | BO=sP Hi(s,s), s€(0,¢,
(ZLS)THl(S,S), = [671),

O

In a similar way, we construct the Green’s function Gs(t, s) for the homogeneous
fractional order boundary value problem

(2.10) —Dg2ys(t) = 0, t € (0,1),

(2.11) y2(0) = 15(0) = D5 y2(0) = 0, Cy2(1) + VDG ya(1) = 0.

LEMMA 2.8. Let Ay = 9T (a2) + (T'(ag — g2) # 0. If ha(t) € C[0,1], then the
fractional order differential equation

(2.12) DE2ys(t) + ha(t) = 0, t € (0,1),

satisfying (2.11) has a unique solution,

yz(t)z/o Ga(t, s)ha(s)ds,

where

- it ={ G 02L 100
Gor(t, ) :Aiz {W +9(1 - s)*%] [t(1 — s)]*2 1,
Ga(t,) =Ga(t,) — 3= [0 + CF}O‘(Q‘)‘”] (t— syt
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PROOF. Proof is similar to Lemma 2.1. O

LEMMA 2.9. Let go(t) € C[0,1]. Then the fractional order differential equation

(2.14) Dt (¢0(Dg212()) ) = 92(8), t € (0, 1),
satisfying
(2.15) 0 (D5212(0)) = 0 (D12(1)) = 0,

has a unique solution,

ya(t) = /01 Ga(t, s)qu(/O1 HQ(S,T)QQ(T)dT)dS,

where
[
(2.16) Hy(t,s) = (1 — 8)}&,1 (= s
) , 0<s<t<l.
PROOF. Proof is similar to Lemma 2.2. (]
LEMMA 2.10. Assume that 9(ga — 1) — W > 0. Then the Green’s
function Ga(t,s) given in (2.13) is nonnegative, for ;ll (t,s) €[0,1] x [0,1].
PRrROOF. Proof is similar to Lemma 2.3. O
(T2 — g2)

LEMMA 2.11. Assume that 9(gz — 1) — > 0. Then the Green’s

['(as)

function Ga(t, s) given in (2.13) satisfies the inequality
Ga(t,s) < Ga(1,s), for all (t,s) €]0,1] x [0,1].

PROOF. Proof is similar to Lemma 2.4. O
Tlao —
LEMMA 2.12. Assume that 9(gz — 1) — W > 0. Then the Green’s
s
function Ga(t,s) given in (2.13) satisfies the inequality

agfl
Gaol(t,s) > (i) Ga(1,s), forall (t,s) €I x[0,1],

where I = [%, %] .
PROOF. Proof is similar to Lemma 2.5. O

LEMMA 2.13. [?] For t,s € [0,1], the Green’s function Hs(t,s) satisfies the
following inequalities
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LEMMA 2.14. Let £ € (3,2). Then the Green’s function Ha(t,s) holds the
inequality

(2.17) rtnei}ng(t,s) > 3 (s)Ha(s, s), for 0<s <1,
where
B2—1 _
Bo-a]" -G own
(2.18) Pi(s) = . [s(1—s)]™ 7"
W» s€§1).
PROOF. Proof is similar to Lemma 2.7. O

3. Existence of Positive Solutions

In this section, we establish criteria to determine the eigenvalue intervals of
A1, A2 for which the p-Laplacian fractional order boundary value problem (1.1)-
(1.4) has at least one positive solution on a cone by utilizing Guo—Krasnosel’skii
fixed point theorem.

THEOREM 3.1. [9, 12] Let X be a Banach Space,ﬁP C X be a cone and suppose
that Q1,€2 are open subsets of X with 0 € 1y and Qy C Q. Suppose further that
T:PN(Q\Q) — P is completely continuous operator such that either

@) [[Tull<||u], we PN and || Tu ||Z]| v, w€ PNoQa, or
) | Tu Iz ull, we PNIQ and || Tu ||<|| w ||, v € PNoQy holds.
Then T has a fized point in PN (Q2\Q1).
Consider the Banach space B = E x E, where E = {y; : y1 € C[0,1]} equipped

with the norm ||(y1,y2)|| = lly1llo + ly2llo, for (y1,¥2) € B and the norm is defined
as

lyllo = Jnax 1 ().
Define a cone P C B by
pP= {(yl,yg) € Blyi(t) >0, ya(t) >0, t €[0,1] and
min (32 (1) + 92 (8)) > ll (1. 9211 .
where

1) - mm{(jl)a“, (i)“?l}.

Let 11,715 : P — E and T : P — B be the operators defined by

Ti (1. 92) () = /Glts /H (.0 (7). 2 (r))dr ) s,
To(y1,y2)(t )\2/ Ga(t, s)d, /0HQ(S,T)g(T,yl(T),yg(T))dT)dS,
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and

(32)  T(rw)®) = (Tl v2)(0), Talyn,32)(1), for (41,92) € B,
LEMMA 3.1. The operator T defined by (3.2) is a self map on P.

PROOF. Let (yl,yg) e P. Clearly, T (yl,yg)(t) > 0 and Tg(yhyg)(t) >0, for
€ [0,1]. Also, for (y1,y2) € P,

1
T2 (y192)llo <As / Ga(1, )6, ( /0 Hi(s,7)f (7,1 (7), ya(7))dr ) ds,

ITatonsvalo < [ Galt, 5100 [ Hatos o (r)vn(r))ir) s,

and

1 1
r{g}lTl(yhy?)(t):r?eiP)‘l/o Gl(tas)¢q< ; H1(577)f(77y1(7),y2(7))d7>d5

>0 [ G0 ( [ il m) (). sm(r)r ) ds
Z 0T (y1, y2)llo-

SimilarIY7 rtnel}l T2 (y17 3/2)(t) = 77||T2 (y17 yQ) ||0 Thereforev

min {73 (41, 92) (8) + To(yn,32) (0 | > 0l T3 (wn,92) o + Ty, o)l
=nll(T1(y1,y2), T2 (y1, y2)) |

=0T (y1,92)|-
Hence, T'(y1,y2) € P and so T : P — P. Standard arguments involving the
Arzela—Ascoli theorem shows that 7' is completely continuous. O

Let
1

= max { 2 {fsel n2G1(1, 8) ¢, ( fTEI Y*(T)Hy (T, T)dT) ds} (foo)t™!

1
2 fuer 12G2(1,9)04 [ 0 () Ha(7,7)dr ) ds ] (gac)r! }

and
Ay = min{ 1
2[[01 G1(1, 8)¢q ( fol Hiy(T, T)dT) ds} (f0)a-1
1
2[f01 Ga(1, )¢ ( fol Hy(r, T)dT) ds} (g0)a—1 }’
where

(3.3) ¥ (7) = min {wi (r), v3(7) }.



SYSTEM OF RIEMANN-LIOUVILLE TYPE p-LAPLACIAN FBVPS 131
THEOREM 3.2. Assume that the conditions (A1)-(A2) are satisfied. Then, for
each X\;, fori=1,2 satisfying
(34) A1, A € (Al, Az),

there exists at least one positive solution to the coupled system of p-Laplacian frac-
tional order boundary value problem (1.1)-(1.4) that lies in P.

PROOF. Let A1, A2 be given as in (3.4). Now, let € > 0 be chosen such that
{ 1

max

2 |: stI nzGl(lv 5)¢q ( f'rGI w*(T)Hl (T7 T)dT) d5:| (foo - E)q_l

! } <A, A2
2[fs€] 772G2(17s)qbq(frel *(T)Ha (T, T)dT) ds} (goo — €)1

and

. 1
. {Z{fol G (1, s)(bq(fol Hy(T, T)dT)dS} (fO+e)at

A1, Ao <

1
2[[01 Ga(1,5)¢p, ( fol Hy (T, T)dT) ds} (g0 4 €)1 }

Let T be the cone preserving, completely continuous operator defined by (3.2).
Now from the definition of f°, we may choose H!" > 0 so that

(3.5) Ftyiye) < (fO 4+ €)dp(yr +y2), for 0< (y1,y2) < HY
Similarly from the definition of ¢, there exists an H' > 0 such that
(3.6) 9t y1,92) < (¢° + €)¢p(y1 +y2), for 0 < (y1,y2) < H'

In particular, then by putting H* = min{H'", H'""}. We find both (3.5) and (3.6)
hold for 0 < (y1,y2) < H*. So, define ; by

(3.7) Q= {1p2) € Bl w)ll < H'}.
Then for (y1,y2) € PN 0Oy, we have

I3 (. w2) (8) \—Al/ Gi(t, )64 /H £ (). a(r))dr ) ds

(

)\1/ G1(1,s) ¢q(/ Hy(s,7)f(r, yl,yg)dT)ds
(
(

1
SM/ G1(1, 5)pq Hy(r,7)(f° +€)¢p(y1+y2)d7')d5

0

1
Al/ G (L, 5)6, /Hd )0+ w2 s
0

X §||(y1,y2)||.
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Therefore,
1
(3.8) 1T (y1, y2) ()| < §||(Z‘/1,y2)||7 for t € [0, 1].
Similarly,
1
(3.9) T2 (y1, y2) ()| < §||(y1,y2)||, for t € [0, 1].

For (y1,y2) € PN 9OQy, we have
1T (y1, y2) @)l = (T2 (y1, y2) (F), Ta(y1, y2) (1))l

1 1
< §||(y1,y2)\| + §||(y1,y2)||

= [|(y1, y2)I-
Hence,
(3.10) 1T (y1, y2) |l < [[(y1,92)|ls for (y1,92) € PN OQy.
By the definition of f., and g there exists - > 0 such that
(3.11) Ftyn,y2) > (foo — ©p(y1 +32), for 0< (yr2) > H
(812)  gl(t.y1,92) > (g0 — Bplyr +12), for 0< (y1,3) > H -

—2
H

If we set H?> = max {2H17 —} and define
Ui

(3.13) Qz={(y1,yz)€B:H(yl,yz)ll <H2}.

If (y1,y2) € PN OQ, then it follows that ||(y1,y2)|| = H?, we have
(3.14) minfy (¢) + y2(6)] > 0l o) | > H

and so

T (y1, y2)(1)
N [ Gatt.s)on( [ s () () ) ds
2 [ 6oy [0 @)~ 6y + o))

> [ a6y [ @ nar) (e =0 o+ s

Tel

> [ G, [ ) (e = ) s

1
>§||(Z/17y2)||~
Thus,

1
(3.15) T2 Cyr, y2)ll = Sy, 92)ll, for (y1,92) € P 1 OQ.
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Similarly,

1
(3.16) T2 (y1, y2)|| = §||(y17y2)||, for (y1,y2) € P NOQs.
Thus, (3.15)-(3.16) imply that

1T (y1, y2) )| = (T2 (1, y2) (1), Ta(y1, y2) (8)) ]
= T1(y1, y2) )| + [|T2(y1, y2) (@)
> 2l )l + 3w, w)]
= [[(y1, y2) |-

Hence,

(3.17) 1T (y1, y2)ll = [[(y1, y2)ll, for (y1,y2) € PN 0OQy.

An application of Theorem 3.1 to (3.10) and (3.17) yields a fixed point (y1,y2) of
T that lies in P N (22\4). This fixed point is the solution of the fractional order
boundary value problem (1.1)-(1.4). O

Let

= max L ,
e {2[[86,77201(17s)szsq(fTe,w*mHl(m)dT)ds}(fo>q1

1
2|:f8€[ n?Ga(1, 5)¢q ( f-rel Y*(1)Ha (T, T)dT) ds} (go)a—1 }

and
Ay Zmin{ 1 |
Q{IOI Gu(1, s)¢4<f01 Hy (T, T)dT)ds} (foe)a—1

1
2[ fy Ga(1, )4 ( fy Halr,7)dr)ds|(g)o1 }
where ¢*(7) is given in (3.3).

THEOREM 3.3. Assume that the conditions (A1)-(A2) are satisfied. Then, for
each X\;, for i = 1,2 satisfying

(318) )\1;)\2 S (A3aA4)a

there exists at least one positive solution to the coupled system of p-Laplacian frac-
tional order boundary value problem (1.1)-(1.4) that lies in P.
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PROOF. Let A1, A2 be given as in (3.18). Now, let € > 0 be chosen such that

1
o { Q[ISGI ?Gi(1, 5)0q ( Joep ¥ (T)Hy(r, T)d7'> ds} (fo—e)at ’
1
Z[fsej n2Ga(1, s)gﬁq(f_re[ W (7) Ha (T, T)dT)ds] (g0 — )11 } <AL A2

and

1
2[]01 G1(1, S)d)q(fol Hy(r, T)dT>d3:| (f° + e)a—1

)

)\17/\2 < min{

1
2[[01 G>(1, 3)¢q(f01 Hy(r, T)dT)dS] (g +¢€)1-1 }

Let T be the cone preserving, completely continuous operator defined by (3.2).
Now from the definition of fy, go there exist J'* > 0, J'** > 0 such that

(3.19) Fty1,y2) = (fo — €)dp(yr +y2), for 0. < (y1,42) < J',
— 1%
(3.20) 9t y1,92) = (90 — €)p(y1 +y2), for 0. < (y1,42) < J
In particular, then by putting J' = min {Jl* LU } In this case, we define
(3.21) % ={(.2) € B )l < T},

Then for (y1,y2) € PN9IQ; and ¢t € I, we have
T1(y1,y2)(t)

— N\ /01 Gl(t,s)¢q(/()lHl(S,T)f(T,yl,yg)dT>ds
> [ a6y [ v m I~ 9yl + i) ds

> [ e[ v o) o - 9l e)las

Tel
> [ Gisge,( [ v mmin ) s - 9t )l
s€ TE
1
> §||(y1,y2)H~

Therefore,

(322) 1Ty 32) )] > 3l 0)l, for t € [0,1).

Similarly,

(3.23) 1T 92) )] > 3l 0)l, for t < [0.1).
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And so
1T (Y1, y2) (O = (T2 (y1, y2) (1), Ta(y1, y2) (1))
= [T (y1, y2) O] + 1 T2(y1, y2) (D) ]
1 1
2 a ) a 9
1)l + 3w,
= ||(y1,y2)||.
Hence,
(3.24) 1T (y1, y2)ll = [[(y1, y2)l, for (y1,y2) € PN OQ;.
By the definition of f°°, g°° there exists 7> > 0 such that
—2
(3.25) Fty1,y2) < (f° +€)op(y1 +y2), for (y1,y2) > J
—2
(3.26) 9(t, y1,92) < (97 + €)dp(y1 +y2), for (yi,42) = J .

There are two subcases.

Case(i) : Suppose L > 0 is such that m[(e)ui] ft,y1,y2) < L, max g(t,y1,92) <
telo,

t€0,1]
for all 0 < (y1,y2) < o0.
Let

1 1
JQ:max{2J1,2Lq_1)\1/ G1(1,3)¢q(/ Hl(T,T)dT)ds,
0 0

9Ly, /01 G2(1,5)¢q(/01 HQ(T,T)dT)ds},

% = {12 € B | (.w)ll < I2.
Then for (y1,y2) € PN O with ||(y1,92)|| = J?, we have

and

Ti(y1,y2)(t) = M /01 Gi(t, 5)¢q</01 Hy(s,7)f(7, y1,y2)d7)d3
<M /01 G1(1,3)¢q(/01 Hl(s,T)Ldr)ds
<M /01 Gl(l,s)¢q(/01 Hiy (T, T)dr)Lq—lds

< M\ Lat /01 G1(1,5)¢q(/01 Hiy (T, T)dT)ds

1 1
< =J% = (v, vl
2 2H(y1y2)||

Therefore,

(3.27) 1T 92) )] < 3l 0)l, for t < [0.1).

135
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Similarly,

1
(3.28) IT2(y1, y2) N < 511 (y1,92), for t € [0,1].
Thus by putting (3.27)-(3.28) together we find that for (y1,y2) € P N 0o,

1T (g1, y2) )| = (T1(y1, y2)(t), To(yr, y2)(1)) ||
=T (y1, y2) O + [ T2(y1, y2) (D)l

1 1
< 5 ) o )
vl + 5w, )]
= (v, y2)lI-

Hence,

(3.29) 1T, o)l < (1. 32)l, for (y1,92) € POy

Case(ii) : Let J? > max{2J1,72} be such that f(t,y1,y2) < f(t, J%, J?),
g(t,y1,y2) < g(t,J?, J?) and

Q= {(12) € B+ ()| < 72}

Choosing (y1,y2) € P NN, with ||(y1,32)| = J?, we have

1 1
Ti(y1,y2)(t) = )\1/0 Gl(t75)¢q Hl(SaT)f(Ta yl7y2)d7>d5

1
é)q/ G1(1,s) (/ Hy(r,7)f(r,J? J2)d7')ds
0

< /O1 Gi(1,5) ¢>q(/ Hy (1, 7)(f* +6)¢p(J2)dT)ds

<A1/0101<1s¢q(/ Hy(r, 7)) (£ + 1|1, 92) s

1
X §||(y1,yg)\|.

Therefore,

1
(3.30) 173 (y1, 92) O < 511 (y1,92), - for t € [0,1].
Similarly,

1
(3.31) T2y, g2) N < 511 (y1,92)l, for t € [0,1].

Thus by putting (3.30)-(3.31) together we find that for (yi,y2) € P N0y,
1T (y1, y2) (O] = (T2 (Y1, y2) (1), Ta(y1, y2) (1)) |
1 1
< Z —
< )l + S w2)]
= [I(y1, y2)lI-
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And so

(3.32) 1T (s y2) | < [y, w2)lls for (y1,92) € P 0 OQ.

An application of Theorem 3.1 to (3.24), (3.29) and (3.32) yields a fixed point
(y1,y2) of T that lies in PN(€22\1). This fixed point is the solution of the fractional
order boundary value problem (1.1)-(1.4). O

4. Example

In this section, as an application, the result is demonstrated with an example.

Consider a coupled system of p-Laplacian fractional order boundary value prob-
lem,

(4.1) DLE (¢,, (Dg’fyl(t))) = M f(t i), te(0,1),
(12) D (6 (DE12() ) = deglt 1, p2), € (0,1),

y1(0) = y1( )= D(1)+ y1(0) =0,

(4.3) 6y1(1) +8D5lyi(1) = 0,
Op (ij’fyl(O)) = ( oiy(1)) =0,

Y2 (O) = ?/2(0) o+ y2(0) =0,

(4.4) 6y2(1) +8D5y2(1) = 0,
0p (D303>(0) = 6, (DEE(1)) =0

fty1,y2) =(y1 + v2) (6370000 — 6369960e 31 +y2>),

g(t,y1,y2) =(y1 + y2) (4560000 - 45599806*2<y1+y2>>.
Then the Green’s function Gy (¢, s) for the homogeneous boundary value problem,
—Diyi(t) =0, t € (0,1),
y1(0) = 1/4(0) = Dyy1(0) = 0, 6y1(1) +8D5:y1 (1) = 0,

is given by
1 [era.n Y _
Gi(ts)— 4 3907 | TGD +8(1 =) 20 [t(L = s)]*7, t < s
1(ts) = _1_|6ry , g —2.6|14(1 2.7 _ (=) oy
307 | Ty T 81— ) [t(1—9)*" = Tz s <t

and the Green’s function G(t, s) for the homogeneous boundary value problem,
D(?))+ yZ( ) =0,1t¢ (071)7
y2(0) = y5(0) = Dg?y2(0) = 0, 6y2(1) + 8DFCy(1) = 0,
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is given by
1 6 —2. .
Golt,s) = 7 o +8(1—s) 20Nt —5)]*0, t < s,
) - _ )26
35%74 F(§.6) +8(1— )70 [t(1 - 5)]*° — 7(?(3_)6) ; <L

Also the Green’s function Hi(t,s) for the boundary value problem,
D (00 (DT (1)) ) = 0, € (0,1),
6p (D3T11(0)) = 6, (DT (1)) =0,

is given by

[t(1—5)]® t< s
H, (t, 5) = [t(llﬂ(_lg])as_(t_s)o.s
T(1.7)

and the Green’s function Hs (¢, s) for the boundary value problem,
DT (6 (D3a(®)) ) =0, e (0,1),

6p (D}12(0)) = 6 (D}1(1)) = 0,

7s<t7

.. b
is given by et
X 57
Hz(t S) = I‘(1'7)0.7’ 0.7
’ [(tA=s)]""—(t—s)
: T(1.7) T, s< L

Clearly, the Green functions G;(t,s) and H;(t,s), for ¢ = 1,2 are positive, Let
p = 2. By direct calculations, one can determine n = 0.0237, f° = 40,¢" = 20,
foo = 6370000, g, = 4560000. Applying Theorem 3.3, we get an eigenvalue in-
terval 0.0000087214 < A1, A2 < 0.8901146789, for which the p-Laplacian fractional
order boundary value problem (4.1)-(4.4) has at least one positive solution.

References

[1] R. P. Agarwal, D. O’'Regan and P. J. Y. Wong. Positive Solutions of Differential, Difference
and Integral Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[2] B. Ahmed and J. J. Nieto. Existence results for a coupled system of nonlinear fractional differ-
ential equations with three-point boundary conditions. Comput. Math. Appl., 58(9)(2009),
1838-1843.

[3] R. 1. Avery and J. Henderson. Existence of three positive pseudo-symmetric solutions for a
one-dimensional p-Laplacian. J. Math. Anal. Appl., 277(2)(2003), 395-404.

[4] Z. Bai and H. Lii. Positive solutions for boundary value problem of nonlinear fractional
differential equation. J. Math. Anal. Appl., 311(2)(2005), 495-505.

[5] G. Chai. Positive solutions for boundary value problem of fractional differential equation
with p-Laplacian operator. Bound. Value Probl., 2012(2012): 18.

[6] T. Chen and W. Liu. An anti-periodic boundary value problem for the fractional differential
equation with a p-Laplacian operator. Appl. Math. Lett., 25(11)(2012), 1671-1675.

[7] L. Diening, P. Lindgvist and B. Kawohl. Mini-Workshop: The p-Laplacian Operator and
Applications. Oberwolfach Reports, 10(2013) 433-482.



SYSTEM OF RIEMANN-LIOUVILLE TYPE p-LAPLACIAN FBVPS 139

[8] C. S. Goodrich. Existence of a positive solution to systems of differential equations of frac-
tional order. Comput. Math. Appl., 62(3)(2011), 1251-1268.

[9] D. Guo and V. Lakshmikantham. Nonlinear Problems in Abstract Cones. Acadamic Press,
San Diego, 1988.

[10] A. A. Kilbas, H. M. Srivasthava and J. J. Trujillo. Theory and Applications of Fractional
Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science, Amster-
dam, 2006.

[11] L. Kong and J. Wang. Multiple positive solutions for the one-dimensional p-Laplacian. Non-
linear Anal., 42(8)(2000), 1327-1333.

[12] M. A. Krasnosel’skii. Positive Solutions of Operator Equations. Noordhoff, Groningen, 1964.

[13] 1. Podulbny. Fractional Diffrential Equations, Academic Press, San Diego, 1999.

[14] K. R. Prasad and B. M. B. Krushna. Multiple positive solutions for a coupled system of
Riemann-Liouville fractional order two-point boundary value problems. Nonlinear Stud.,
20(2013), 501-511.

[15] K. R. Prasad and B. M. B. Krushna. Multiple positive solutions for a coupled system
of p-Laplacian fractional order two-point boundary value problems. Int. J. Differ. Equ.,
2014(2014), 1-10, DOI: 10.1155/2014/485647.

[16] K. R. Prasad and B. M. B. Krushna. Eigenvalues for iterative systems of Sturm-Liouville
fractional order two-point boundary value problems. Fract. Calc. Appl. Anal., 17(2014),
638-653, DOI: 10.2478/s13540-014-0190-4.

[17] K. R. Prasad and B. M. B. Krushna. Multiple positive solutions for the system of (n, p)-type
fractional order boundary value problems. Bull. Int. Math. Virtual Inst., 5 (2015), 1-12.

[18] K. R. Prasad and B. M. B. Krushna. Solvability of p-Laplacian fractional higher order two-
point boundary value problems. Commun. Appl. Anal., 19(2015), 659-678.

[19] K. R. Prasad, B. M. B. Krushna and L. T. Wesen. Existence results for multiple positive
solutions of Riemann-Liouville fractional order three-point boundary value problems. Bull.
Int. Math. Virtual Inst., 6(2016), 25-36.

Receibed by editors 03.04.2017; Accepted 19.12.2017; Available online 02.01.2018.

B.M.B. KRUSHNA: DEPARTMENT OF MATHEMATICS, MVGR COLLEGE OF ENGINEERING (AU-
TONOMOUS), VIZIANAGARAM, 535 005, INDIA
E-mail address: muraleebalu@yahoo.com



