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Abstract. In this paper, we introduce a notion of (φ,ψ)-almost generalized

weakly contractive maps involving rational type expressions in partially or-
dered metric spaces and prove the existence of fixed points. These results
generalize the results of Chandok, Choudhury and Metiya [16]. Also we pro-
vide examples in support of our results.

1. Inroduction

Banach contraction principle deals with the existence and uniqueness of fixed
points of contraction mappings in complete metric spaces. In the direction of
generalization of contraction condition, in 1997, Alber and Gurre- Delabrierre [1]
introduced the concept of weakly contractive maps in the setting of Hilbert spaces
and defined weakly contractive maps on a Hilbert spaces and established the corre-
sponding fixed point results. In 2001, Rhoades [28] extended this concept to metric
spaces. Afterwards, in 2008, Dutta and Choudhury [18] introduced (φ,ψ) - weakly
contractive maps by applying altering distance functions ψ and φ and proved the
existence of fixed points of self maps in complete metric spaces.

In 2004, Berinde [8] introduced ‘weak contractions’ as a generalization of con-
traction maps, and in 2008, Berinde [9] renamed ‘weak contractions ’ as ‘Almost
contractions’. For more details on almost contractions and its generalizations, we
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70 G.V.R.BABU AND P.S.KUMAR

refer to Babu, Sandhya and Kameswari [10], Abbas, Babu and Alemayehu [5] and
the related references cited in these papers.

On the other hand, the notion of fixed points in partially ordered sets was
introduced by Brondsted [7]. In 2004, Ran and Reurings [29] initiated the technique
of proving the existence of fixed points of contraction maps in partially ordered
complete metric spaces, in which the operator considered is continuous. In 2005,
Nieto and Rodriguez-Lopez [23] replaced the continuity of the operator by the
sequential convergence in X. For more works in this line of research, we refer
to Abbas, Nazir, Radenovic [6], Agarwal, El-Gebeily and O’Regan [2], Altun and
Simsek [3], Amini-Harandi and Emami [4], Choudhury and Kundu [14], Ciric,
Abbas, Saadati and Hussain [13], Ciric, Cakic, Rajovic and Ume [12], Harjani and
Sadarangani [20], Harajani, Lopez and Sadarangani [21], Nashine and Altun [27],
Nashine and Samet [25], Nashine, Samet and Kim [26], Nieto and Rodriguez [24],
O’Regan and Petrusel [30].

The latest work in this direction is that of Chandok, Choudhury and Metiya
[16], in which the author established some fixed point results of generalized weakly
contractive mappings of rational type in a metric space endowed with a partial
order using some auxillary functions.

In Section 2 of this paper, we write preliminaries and introduce (φ,ψ) - almost
generalized weakly contractive maps involving rational type expressions, by
combining the notation of weakly contractive maps, almost contractions and an
altering distance function in the setting of ordered metric spaces and prove the
existence of fixed points. In Section 3, we prove our main results. In Section 4, we
draw some corollaries to our main results, and provide examples in support of our
results.

2. Preliminaries

In 1975, Dass and Gupta [17] extended the Banach contraction principle thro-
ugh rational expressions as follows.

Theorem 2.1. [17] Let (X, d) be a complete metric space and T : X → X be
a self map of X. If there exist α, β > 0 with α+ β < 1 satisfying

d(Tx, Ty) 6 α
d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y)(2.1)

for all x, y in X, then T has a unique fixed point in X.

Definition 2.1. Let (X,≼) be a partially ordered set. A mapping T : X → X
is said to be non-decreasing if for any x, y in X, x ≼ y =⇒ Tx ≼ Ty.

Definition 2.2. [13] Let X be a nonempty set. Then (X,≼, d) is called a
partially ordered metric space if:

(i) (X, d) is a metric space, and

(ii) (X,≼) is a partially ordered set.

(X,≼, d) is called a partially ordered complete metric space if (X,≼, d) is a

partially ordered metric space in which the metric d is complete.
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In [15], Cabrera, Harjani and Sadarangani extended Theorem 2.1 to the context
of partially ordered metric spaces.

Theorem 2.2. [17] Let (X,≼, d) be a partially ordered complete metric space.
Let T : X → X be a continuous and non-decreasing mapping such that the inequality
(2.1) is satisfied for all x, y in X with x ≼ y. If there exists x0 in X with x0 ≼ Tx0
then T has a fixed point.

Theorem 2.3. [17] Let (X,≼, d) be a partially ordered complete metric space.
Assume that if {xn} is a non-decreasing sequence in X such that xn → x then
xn ≼ x for all n in N . Let T : X → X be a non-decreasing mapping such that
the inequality (2.1) is satisfied for all x, y in X with x ≼ y. If there exists x0 in X
with x0 ≼ Tx0 then T has a fixed point.

Theorem 2.4. [17] In addition to hypotheses of Theorem 2.2 (or Theorem
2.3), suppose that for any x, y in X, there exists u inX such that u ≼ x and u ≼ y.
Then T has a unique fixed point.

Definition 2.3. [22] A function φ : [0,∞) → [0,∞) is called an altering
distance function if the following properties are satisfied:

(i) φ is monotone increasing and continuous

(ii) φ(t) = 0 if and only if t = 0.

We denote the class of all altering distance functions by Φ.

Theorem 2.5. [18] Let (X, d) be a complete metric space and let T : X → X
be a self map of X. If there exist φ,ψ in Φ such that

φ(d(Tx, Ty)) 6 φ(d(x, y))− ψ(d(x, y))(2.2)

for all x, y in X. Then T has a unique fixed point in X.

We denote Ψ = {ψ : [0,∞) → [0,∞) | ψ is lower semi continuous and ψ(t) =
0 iff t = 0}. Dorić [19] extended Theorem 2.5 to a pair of self maps by replacing
the monotonicity and continuity of ψ by lower semi continuity, and Doric’s result
for the case of single self map is the following.

Theorem 2.6. [19] Let (X, d) be a complete metric space and let T : X → X
be a self maps of X. If there exist φ in Φ and ψ in Ψ such that

φ(d(Tx, Ty)) 6 φ(M(x, y))− ψ(M(x, y))(2.3)

for all x, y in X, where

M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y), 12 [d(y, Tx) + d(x, Ty)]}.
Then T has a unique fixed point in X.

Recently, Chandok, Choudhury and Metiya [16] introduced the following class
of functions and used these functions to define weakly contractive maps.

Ψ1 = {ψ : [0,∞) → [0,∞)| for any sequence {xn} in [0,∞)

with xn → t > 0, lim inf
n→∞

ψ(xn) > 0}.
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Example 2.1. We define ψ : R+ → R+, R+ = [0,∞), by

ψ(t) =

{
0 if t ∈ [0, 1]
t
2 if t ∈ (1,∞).

�
Clearly ψ is lower-semi continuous with ψ(0) = 0 so that ψ in Ψ . By choosing

tn = 1
2 + 1

n , we have lim inf
n→∞

ψ(tn) =
1

2
> 0 . But ψ(tn) = 0 for all n > 2 and

lim inf
n→∞

ψ(tn) = 0. Hence ψ /∈ Ψ1. Therefore Ψ * Ψ1.

Example 2.2. We define ψ : R+ → R+ by

ψ(t) =



0 if t = 0
1

1+t if t ∈ (0, 13 )
t+1
4 if t ∈ [ 13 ,

3
4 )

t
2 if t ∈ [ 34 , 1]
1

1+2t if t ∈ (1,∞).

�
Then it is easy to see that ψ ∈ Ψ1 . We choose tn = 1 + 1

n , n = 1, 2, . . . .
Then tn → 1 as n→ ∞. Now

1
2 = ψ(1) � 1

3 = lim inf
n→∞

1

1 + 2tn
= lim inf

n→∞
ψ(tn)

so that ψ is not lower semi continuous on [0.∞). Hence ψ /∈ Ψ. Hence Ψ1 * Ψ .

From Example 2.1 and Example 2.2, we conclude that the class of functions
in Ψ and Ψ1 are distinct. Here, we note that for any ψ ∈ Ψ1, it may happen that
ψ(t) > 0 for t > 0, and ψ(0) may not be equal to zero. For more details, we
refer to [16]. In 2015, Chandok, Choudhury and Metiya [16] improved condition
2.3 of Theorem 2.6 by involving rational expressions using ψ ∈ Ψ1 and proved the
following.

Theorem 2.7. [16] Let (X,≼, d) be a partially ordered complete metric space.
Let T : X → X be a continuous and non-decreasing mapping of X. Assume that
there exist φ ∈ Φ and ψ ∈ Ψ1 such that

φ(d(Tx, Ty)) 6 φ(M(x, y))− ψ(N(x, y))(2.4)

for all x, y in X, where

M(x, y) = max{d(y,Ty)[1+d(x,Tx)]1+d(x,y) , d(y,Tx)[1+d(x,Ty)]1+d(x,y) , d(x, y)} and

N(x, y) = max{d(y,Ty)[1+d(x,Tx)]1+d(x,y) , d(x, y)}.
If there exists x0 ∈ X with x0 ≼ Tx0 then T has a fixed point.

Remark 2.1. A self map T of a partially ordered metric space X that satisfies
the inequality (2.4) is said to be a (φ,ψ) - generalized weakly contractive map
involving rational expressions.
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Theorem 2.8. [16] Let (X,≼, d) be a partially ordered complete metric space.
Assume that if {xn} is a non-decreasing sequence in X such that xn → x then
xn ≼ x for all n ∈ N . Let T : X → X be a non-decreasing mapping. Suppose that
(2.4) holds, where M(x, y), N(x, y) and the conditions upon φ and ψ are the same
as in Theorem 2.7. If there exists x0 ∈ X with x0 ≼ Tx0 then T has a fixed point.

Theorem 2.9. [16] In addition to the hypotheses of Theorem 2.7 (or Theorem
2.8), suppose that for each x, y ∈ X, there exists u ∈ X such that u ≼ x and u ≼ y.
Then T has a unique fixed point.

In the following, we introduce (φ,ψ) - almost generalized weakly contractive
map.

Definition 2.4. Let (X,≼, d) be a partially ordered metric space. Let T :
X → X be a self map of X. If there exist φ ∈ Φ and ψ ∈ Ψ1 such that

φ(d(Tx, Ty)) 6 φ(M1(x, y))− ψ(M2(x, y)) + LN(x, y)(2.5)

for all x, y in X with x ≼ y, where

M1(x, y) = max{d(y,Ty)[1+d(x,Tx)]1+d(x,y) , d(y,Tx)[1+d(x,Ty)]1+d(x,y) , d(x, y)},

M2(x, y) = max{d(y,Ty)[1+d(x,Tx)]1+d(x,y) , d(x, y)} and

N(x, y) = min{d(x, Tx), d(y, Ty), d(y, Tx), d(y,Tx)[1+d(x,Ty)]1+d(x,y) },
then we say that T is a (φ,ψ) - almost generalized weakly contractive map on X.

Example 2.3. Let X = [0, 2] with the usual metric. We define partial order
≼ on X as follows:

≼:= {(x, x) ∈ X ×X|x ∈ X} ∪ {( 12 ,
3
2 ), (1, 2), (

1
2 , 2), (

3
2 , 2)}.

We define T : X → X by

T (x) =

{
x+ 1

2 if x ∈ [0, 32 ]

2 if x ∈ [ 32 , 2].

We define φ : [0,∞) → [0,∞) by φ(t) = t2, t > 0. Clearly φ ∈ Φ. We choose
ψ ∈ Ψ1 as in Example 2.2. We now verify that T is a (φ,ψ) - almost generalized
weakly contractive map on X.
Case (i): (x, y) = ( 12 ,

3
2 ). In this case,

(Tx, Ty) = (1, 2), M1(
1
2 ,

3
2 ) = 1, M2(

1
2 ,

3
2 ) = 1, N( 12 ,

3
2 ) =

1
2 ,

and

φ(d(T (
1

2
), T (

3

2
))) = φ(1) = 1 6 1− 1

2
+

1

2

= φ(1)− ψ(1) + L.
1

2
with L = 1

= φ(M1(
1

2
,
3

2
)− ψ(M2(

1

2
,
3

2
) + L.N(

1

2
,
3

2
).

Case (ii): (x, y) = (1, 2). In this case,
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(Tx, Ty) = ( 32 , 2), M1(1, 2) = 1, M2(1, 2) = 1, N(1, 2) = 0,

and

φ(d(T (1), T (2))) = φ(
1

2
) =

1

2
6 1− 1

2
+ 0

= φ(1)− ψ(1) + L.0

= φ(M1(1, 2)− ψ(M2(1, 2)) + L.N(1, 2).

Case (iii): (x, y) = ( 12 , 2). In this case,

(Tx, Ty) = (1, 2), M1(
1
2 , 2) =

3
2 , M2(

1
2 , 2) =

3
2 , N( 12 , 2) = 0,

and

φ(d(T (
1

2
), T (2))) = φ(1) 6 9

4
− 1

4
+ 0

= φ(
3

2
)− ψ(

3

2
) + L.0

= φ(M1(
1

2
, 2)− ψ(M2(

1

2
, 2)) + L.N(

1

2
, 2).

Case (iv): (x, y) = ( 32 , 2). In this case,

(Tx, Ty) = (2, 2), M1(
3
2 , 2) =

1
2 , M2(

3
2 , 2) =

1
2 , N( 32 , 2) = 0,

and

φ(d(T (
3

2
), T (2))) = φ(0) = 0. Hence the inequality (2.5) holds trivially.

�

Hence T is a (φ,ψ) - almost generalized weakly contractive map on X. Here
we observe that T is not a (φ,ψ) - generalized weakly contractive map, for any
φ ∈ Φ and ψ ∈ Ψ1. For, by choosing x = 1

2 and y = 3
2 we have

φ(d((T (
1

2
), T (

3

2
))) = φ(1) � φ(1)− ψ(1) = φ(M1(

1

2
,
3

2
)− ψ(M2(

1

2
,
3

2
)).

Hence the class of (φ,ψ)- almost generalized weakly contractive maps properly
contains the class of (φ,ψ)- generalized weakly contractive maps.

We state the following lemma which is useful in proving our main results.

Lemma 2.1. [11] Let (X, d) be a metric space. Let {xn} be a sequence in X
such that d(xn, xn+1) → 0 as n→ ∞. If {xn} is not a Cauchy sequence then there
exists an ϵ > 0 and sequence of positive integers {mk} and {nk} with nk > mk > k
such that d(xmk

, xnk
) > ϵ, d(xmk

, xnk−1) < ϵ and

(i) lim
k→∞

d(xnk−1, xmk+1) = ϵ ; (ii) lim
k→∞

d(xmk
, xnk

) = ϵ;

(iii) lim
k→∞

d(xnk−1, xmk
) = ϵ; (iv) lim

k→∞
d(xnk

, xmk+1) = ϵ.
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3. Main results

Theorem 3.1. Let (X,≼, d) be a partially ordered complete metric space. Let
T : X → X be a continuous and non-decreasing mapping. Assume that T is a
(φ,ψ)- almost generalized weakly contractive map involving rational expressions. If
there exists x0 ∈ X with x0 ≼ Tx0 then T has a fixed point.

Proof. We choose x0 ∈ X such that x0 ≼ Tx0 (hypothesis). We define {xn}
in X by xn+1 = Txn for each n = 0, 1, 2, . . . . Since x0 ≼ Tx0 and T is a non-
decreasing function, by mathematical induction, it follows that

x0 ≼ Tx0 ≼ Tx1 ≼ . . . Txn−1 ≼ Txn . . .

i.e., x0 ≼ x1 ≼ x2 ≼ . . . xn ≼ xn+1 ≼ . . . so that xn ≼ xn+1 for each n = 0, 1, 2, . . . .

If xn = xn+1 for each n then xn is a fixed point of f . With out loss of generality,
we assume that xn ̸= xn+1 for each n. Since xn−1 ≼ xn for each n > 1 from (2.5),
we have

φ(d(xn, xn+1)) = φ(d(Txn−1, Txn)) 6 φ(M1(xn−1, xn))− ψ(M2(xn−1, xn))(3.1)

+LN(xn−1, xn)

where

M1(xn−1, xn) = max{d(xn, Txn)[1 + d(xn−1, Txn−1)]

1 + d(xn−1, xn)
,

d(xn, Txn−1)[1 + d(xn−1, Txn)]

1 + d(xn−1, xn)
, d(xn−1, xn)}

= max{d(xn, xn+1), d(xn−1, xn)},

M2(xn−1, xn) = max{d(xn, Txn)[1 + d(xn−1, Txn−1)]

1 + d(xn−1, xn)
, d(xn−1, xn)}

= max{d(xn, xn+1), d(xn−1, xn)}and

N(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn), d(xn, Txn−1),

d(xn, Txn−1)[1 + d(xn−1, Txn)]

1 + d(xn−1, xn)
}

= min{d(xn−1, xn), d(xn, xn+1), 0, 0} = 0.

Let Rn = d(xn+1, xn). Hence from (3.1), we have

φ(Rn) 6 φ(max(Rn, Rn−1)− ψ(max(Rn, Rn−1).(3.2)

Suppose that Rn > Rn−1. Then φ(Rn) 6 φ(Rn) − ψ(Rn) which implies that
ψ(Rn) 6 0, a contradiction. Therefore Rn 6 Rn−1. Therefore {Rn} is a decreasing
sequence of nonnegative reals, and so there exists r > 0 such that lim

n→∞
Rn = r (r >

0). Suppose that r > 0. Since {Rn} is decreasing, from (3.2) we have

φ(Rn) 6 φ(Rn−1)− ψ(Rn−1).(3.3)

On taking limit superior on both sides of (3.3), we get
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lim sup
n→∞

φ(Rn) 6 lim sup
n→∞

φ(Rn−1) + lim sup
n→∞

(−ψ(Rn−1))

6 lim sup
n→∞

φ(Rn−1)− lim inf
n→∞

ψ(Rn−1)

implies

φ(r) 6 φ(r)− lim inf
n→∞

ψ(Rn−1)

implies

lim inf
n→∞

ψ(Rn−1) 6 0,

a contradiction. Therefore r = 0. i.e., lim
n→∞

Rn = 0.

Now, we show that {xn} is Cauchy. Suppose that {xn} is not a Cauchy
sequence. Then by Lemma 2.1, there exists an ϵ > 0 for which we can find sequences
of positive integers {mk} and {nk} with nk > mk > k such that d(xmk

, xnk
) > ϵ

and d(xmk
, xnk−1

) 6 ϵ and the identities (i) − (iv) of Lemma 2.1 hold. Since
nk > mk, we have xmk−1

≼ xnk−1
. Now

φ(d(xmk
, xnk

)) = φ(d(Txmk−1
, Txnk−1

))(3.4)

6 φ(M1(xmk−1
, xnk−1

))− ψ(M2(xmk−1
, xnk−1

))

+LN(xmk−1
, xnk−1

)

where

M1(xmk−1
, xnk−1

) = max{d(xnk−1
,Txnk−1

)[1+d(xmk−1
,Txmk−1

)]

1+d(xmk−1
,xnk−1

) ,

d(xnk−1
,Txmk−1

)[1+d(xmk−1
,Txnk−1

)]

1+d(xmk−1
,xnk−1

) , d(xmk−1
, xnk−1

)}

= max{d(xnk−1
,xnk

)[1+d(xmk−1
,xmk

)]

1+d(xmk−1
,xnk−1

) ,

d(xnk−1
,xmk

)[1+d(xmk−1
,xnk

)]

1+d(xmk−1
,xnk−1

) , d(xmk−1
, xnk−1

)},

M2(xmk−1
, xnk−1

) = max{d(xnk−1
,xnk

)[1+d(xmk−1
,xmk

)]

1+d(xmk−1
,xnk−1

) , d(xmk−1
, xnk−1

)} and

N(xmk−1
, xnk−1

) = min{d(xmk−1
, Txmk−1

), d(xnk−1
, Txnk−1

), d(xnk−1
, Txmk−1

),

d(xnk−1
,Txmk−1

)[1+d(xmk−1
,Txnk−1

)]

1+d(xmk−1
,xnk−1

) }

= min{d(xmk−1
, xmk

), d(xnk−1
, xnk

), d(xnk−1
, xmk

),

d(xnk−1
,xmk

)[1+d(xmk−1
,xnk

)]

1+d(xmk−1
,xnk−1

) }.

On letting k → ∞, we get

lim
k→∞

M1(xmk−1
, xnk−1

) = max{0, ϵ, ϵ} = ϵ, lim
k→∞

M2(xmk−1
, xnk−1

) = max{0, ϵ} = ϵ

and

lim
k→∞

N(xmk−1
, xnk−1

) = min{0, 0, ϵ, ϵ} = 0.
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Now, on taking limit superior on both sides of (3.4), we have

φ(ϵ) 6 φ(ϵ)− limψ(M2(xmk−1
, xnk−1

)) + L.0,

which implies that limψ(M2(xmk−1
, xnk−1

)) 6 0, a contradiction. Therefore {xn}
is a Cauchy sequence. Since X is a complete metric space, there exists u ∈ X such
that lim

n→∞
xn = u. Now by the continuity of T , we have

Tu = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = u.

�

Theorem 3.2. Let (X,≼, d) be a partially ordered complete metric space. Let
T : X → X be a non-decreasing mapping. Assume that if {xn} is a non-decreasing
sequence in X such that xn → x then xn ≼ x for all n ∈ N. Suppose that (2.5)
holds where M1(x, y),M2(x, y), N(x, y) and the condition upon (φ,ψ) are same as
in Theorem 3.1. If there exists x0 ∈ X with x0 ≼ Tx0 then T has a fixed point.

Proof. Suppose x0 ≼ Tx0 and let xn+1 = Txn for n = 0, 1, 2, . . . . Further, we
have xn ≼ xn+1 for all n i.e., {xn} is an increasing sequence. Now as in Theorem
3.1, it can be shown that {xn} is a Cauchy sequence in X. Also this sequence
converges to u. Then xn ≼ u for all n ∈ N. Suppose u ̸= Tu. i.e, d(u.Tu) > 0.
Since xn ≼ u for each n then by condition (2.5), we have

φ(d(xn+1, u)) = φ(d(Txn, Tu)) 6 φ(M1(xn, u))− ψ(M2(xn, u))) + LN(xn, u)

(3.5)

where

M1(xn, u) = max{d(u,Tu)[1+d(xn,Txn)]
1+d(xn,u)

, d(u,Txn)[1+d(xn,Tu)]
1+d(xn,u)

, d(xn, u)}

= max{d(u,Tu)[1+d(xn,xn+1)]
1+d(xn,u)

, d(u,xn+1)[1+d(xn,Tu)]
1+d(xn,u)

, d(xn, u)} ,

M2(xn, u) = max{d(u,Tu)[1+d(xn,Txn)]
1+d(xn,u)

, d(xn, u)}

= max{d(u,Tu)[1+d(xn,xn+1)]
1+d(xn,u)

, d(xn, u)} and

N(xn, u) = min{d(xn, xn+1), d(u, xn+1), d(u, Tu),
d(u,xn+1)[1+d(xn,Tu)]

1+d(xn,u)
}

On letting n→ ∞, we get

lim
n→∞

M1(xn, u) = max{d(u, Tu), 0, 0} = d(u, Tu),

lim
n→∞

M2(xn, u) = max{d(u, Tu), 0, } = d(u, Tu) and

lim
n→∞

N(xn, u) = min{0, , 0, d(u, Tu), 0} = 0.

Taking limit superior on both sides of the inequality (3.5) we have

φ(d(u, Tu)) 6 φ(d(u, Tu))− limψ(M2(xn, u)) + L.0,

which implies that limψ(M2(xn, u)) 6 0, a contradiction. Therefore u = Tu. �
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Theorem 3.3. In addition to the hypotheses of either Theorem 3.1 or Theorem
3.2, assume the following condition (H): Suppose that for every x, y ∈ X, there
exists u ∈ X such that u ≼ x and u ≼ y then T has a unique fixed point.

Proof. From Theorem 3.1, the set of fixed points of T is nonempty. Suppose
x∗ and y∗ are two fixed points of T i.e., x∗ = Tx∗, y∗ = Ty∗. By the assumption,
there exists u0 ∈ X such that u0 ≼ x∗ and u0 ≼ y∗. We define the sequence
{un} such that un+1 = Tun for n = 0, 1, 2, . . . . Since T is non-decreasing, we have
Tnu = un ≼ x∗ = Tnx∗ and Tnu0 = un ≼ y∗ = Tny∗. Suppose x∗ = un for some
n then x∗ = Tx∗ = Tun = un+1 for all n > m then un → x∗ as n → ∞. Suppose
x∗ ̸= un for all n i.e., un ≼ x∗ for all n. Let pn = d(un, x

∗) for each n. Since
un ≼ x∗, by condition (2.5), we have

φ(d(un+1, x
∗)) = φ(d(Tun, Tx

∗)) 6 φ(M1(un, x
∗))− ψ(M2(un, x

∗))) + LN(un, x
∗)

(3.6)

where

M1(un, x
∗) = max{d(x

∗,Tx∗)[1+d(un,Tun)]
1+d(un,x∗) , d(x

∗,Tun)[1+d(un,Tx
∗)]

1+d(un,x∗) , d(un, x
∗)}

= max{d(x
∗,Tx∗)[1+d(un,un+1)]

1+d(un,x∗) , d(x
∗,un+1)[1+d(un,Tx

∗)]
1+d(un,x∗) , d(un, x

∗)}
= max{d(x∗, un+1), d(un, x

∗)},
M2(un, x

∗) = max{d(x
∗,Tx∗)[1+d(un,Tun)]

1+d(un,x∗) , d(un, x
∗)}

= max{d(x
∗,Tx∗)[1+d(un,un+1)]

1+d(un,x∗) , d(un, x
∗)}

= max{0, d(un, x∗)}, and
N(un, x

∗) = min{d(un, un+1), d(x
∗, Tx∗), d(x∗, Tun),

d(x∗,un+1)[1+d(un,Tx
∗)]

1+d(un,x∗) }
= min{d(un, un+1), 0, d(x

∗, un+1)} = 0.

Suppose pn+1 > pn. Then from (3.6), we have

φ(pn+1) 6 φ(pn+1)− ψ(pn) + L.0,

which implies that ψ(pn) 6 0, a contradiction. Therefore pn+1 6 pn. Hence {pn}
is a decreasing sequence of nonnegative reals, and so there exists r > 0 such that
lim
n→∞

d(un, x
∗) = r(> 0).

Again from condition (3.6), we have

φ(pn+1) 6 φ(pn)− ψ(pn).(3.7)

On taking limit superior on both sides of (3.7), we get

φ(r) 6 φ(r)− limψ(pn),

which implies that limψ(pn) 6 0, a contradiction. Therefore r = 0. i.e., un → x∗

as n→ ∞.
Similarly, we can prove that un → y∗ as n → ∞. By the uniqueness of the

limit we have, x∗ = y∗, and the conclusion of the theorem follows. �
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4. Corollaries and examples

If M1(x, y) =M2(x, y) in Theorem 3.1, Theorem 3.2 and Theorem 3.3 then we
get the following.

Corollary 4.1. Let (X,≼, d) be a partially ordered complete metric space.
Let T : X → X be a continuous and non-decreasing mapping such that for all
x, y ∈ X with x ≼ y

φ(d(Tx, Ty)) 6 φ(M2(x, y))− ψ(M2(x, y)) + LN(x, y)(4.1)

where N(x, y),M2(x, y) and the conditions upon (φ,ψ) are same as in Theorem
3.1. If there exists x0 ∈ X with x0 ≼ Tx0, then T has a fixed point.

Proof. Since the inequality (4.1) implies the inequality (3.1), by Theorem 3.1,
the conclusion follows. �

Corollary 4.2. Let (X,≼, d) be a partially ordered complete metric space.
Assume that if {xn} is a non-decreasing sequence in X such that xn → x, then
xn ≼ x, for all n ∈ N. Let T : X → X be a non-decreasing mapping. Suppose that
(4.1) holds, where N(x, y),M2(x, y) and the conditions upon (φ,ψ) are the same as
in theorem 3.1. If there exists x0 ∈ X with x0 ≼ Tx0, then T has a fixed point.

Proof. Since the inequality (4.1) implies the inequality (3.1), by Theorem 3.2,
the conclusion follows. �

Corollary 4.3. In addition to the hypotheses of Corollary 4.1 or Corollary
4.2, suppose that for every x, y ∈ X , there exists u ∈ X such that u ≼ x and u ≼ y.
Then T has a unique fixed point.

Remark 4.1. If L = 0 in Theorem 3.1, Theorem 3.2 and Theorem 3.3 we get
Theorem 2.7, Theorem 2.8 and Theorem 2.9 respectively as corollaries.

We now present an example in support of Theorem 3.1.

Example 4.1. Let X = {0, 12 ,
3
4 ,

9
8 ,

3
2} with the usual metric. We define partial

order ≼ on X as follows:

≼:= {(x, x) ∈ X ×X|x ∈ X} ∪ {( 12 ,
9
8 ), (

3
4 ,

3
2 ), (

3
4 ,

9
8 ), (

9
8 ,

3
2 ), (

1
2 ,

3
2 )}.

We define T : X → X by T (0) = 0, T ( 12 ) =
3
4 , T (

3
4 ) = T ( 98 ) = T ( 32 ) =

3
2 . Then T is

a non-decreasing map. We define φ : [0,∞) → [0,∞) by φ(t) = t2, t > 0. Clearly
φ ∈ Φ. We choose ψ ∈ Ψ1 as in Example 2.2. We now verify the inequality (2.5)
for the elements ( 12 ,

9
8 ), (

1
2 ,

3
2 ) with L = 3.

Case (i): (x, y) = ( 12 ,
9
8 ). In this case,

(Tx, Ty) = ( 34 ,
3
2 ), M1(

1
2 ,

9
8 ) =

5
8 , M2(

1
2 ,

9
8 ) =

5
8 , N( 12 ,

9
8 ) =

1
4 ,
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and

φ(d(T (
1

2
), T (

9

8
))) = φ(

3

4
) =

9

16
6 25

64
− 13

32
+

3

4

= φ(
5

8
)− ψ(

5

8
) + L.

1

4
with L = 3

= φ(M1(
1

2
,
9

8
)− ψ(M2(

1

2
,
9

8
) + L.N(

1

2
,
9

8
).

Case (ii): (x, y) = ( 12 ,
3
2 ). In this case,

(Tx, Ty) = ( 34 ,
3
2 ), M1(

1
2 ,

3
2 ) = 1, M2(

1
2 ,

3
2 ) = 1, N( 12 ,

3
2 ) = 0,

and

φ(d(T (
1

2
), T (

3

2
))) = φ(

3

4
) =

9

16
6 1− 1

3
+ 0

= φ(1)− ψ(1) + L.0

= φ(M1(
1

2
,
3

2
)− ψ(M2(

1

2
,
3

2
)) + L.N(

1

2
,
3

2
).

Hence the inequality (2.5) holds in both the cases. Hence T is a (φ,ψ)-almost
generalized weakly contractive map of X. Hence T satisfies all the hypotheses of
Theorem 3.1 and T has two fixed points 0 and 1.

�
Now we present an example in support of Theorem 3.2.

Example 4.2. Let X = [0, 3] with the usual metric. We define partial order
≼ on X as follows:

≼:= {(x, x) ∈ X ×X|x ∈ X} ∪ {( 14 ,
3
4 ), (

1
2 ,

3
2 ), (1, 3), (2, 3)}.

We define T : X → X by

T (x) =

{
2x if x ∈ [0, 1]

3 if x ∈ [1, 3].

Moreover, we choose x0 = 2 ∈ X then x0 ≼ Tx0. We define φ : [0,∞) → [0,∞) by
φ(t) = t2, t > 0. Clearly φ ∈ Φ. We choose ψ ∈ Ψ1 as in Example 2.2. We now
verify the inequality (2.5) for the elements ( 14 ,

3
4 ) and ( 12 ,

3
2 ) with L = 7 and in the

remaining cases the inequality (2.5) holds trivially.

Case (i): (x, y) = ( 14 ,
3
4 ). In this case,

(Tx, Ty) = ( 12 ,
3
2 ), M1(

1
4 ,

3
4 ) =

5
8 , M2(

1
4 ,

3
4 ) =

5
8 , N( 14 ,

3
4 ) =

1
2 ,

and

φ(d(T (
1

4
), T (

3

4
)an)) = φ(1) = 1 6 25

64
− 13

32
+

7

4

= φ(
5

8
)− ψ(

5

8
) + L.

1

4
with L = 7

= φ(M1(
1

4
,
3

4
)− ψ(M2(

1

4
,
3

4
) + L.N(

1

4
,
3

4
).

Case (ii): (x, y) = ( 12 ,
3
2 ). In this case,
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(Tx, Ty) = (1, 3), M1(
1
2 ,

3
2 ) =

9
8 , M2(

1
2 ,

3
2 ) =

9
8 , N( 12 ,

3
2 ) =

1
2 ,

and

φ(d(T (
1

2
), T (

3

2
))) = φ(2) = 4 6 81

64
− 4

13
+

7

2

= φ(
9

8
)− ψ(

9

8
) + L.

1

2
with L = 7

= φ(M1(
1

2
,
3

2
)− ψ(M2(

1

2
,
3

2
) + L.N(

1

2
,
3

2
).

Hence the inequality (2.5) holds in both the cases with L = 7. Hence T is a (φ,ψ)
- almost generalized weakly contractive map, and T satisfies all the hypotheses
of Theorem 3.2 and T has two fixed points 0 and 3. Here we observe that T is
not continuous. Further, T fails to satisfy condition (H) of Theorem 3.3. For, we
choose 1

5 ,
1
2 ∈ X . Then we have u � 1

5 or u � 1
2 for every u ∈ X.

�
Now we present an example in support of Theorem 3.3.

Example 4.3. Let X = {2, 4, 6, 8} with the usual metric. We define partial
order ≼ on X as follows:

≼:= {(x, x) ∈ X ×X|x ∈ X} ∪ {(2, 2), (4, 4), (6, 6), (8, 8), (2, 4), (2, 6), (4, 8), (2, 8)}.
Hence x ≼ y ⇐⇒ x/y. We define T : X → X by T (2) = T (4) = 4, T (6) =
8, T (8) = 4. Then T is continuous and non-decreasing map. Moreover, we choose
x0 = 2 ∈ X then x0 ≼ Tx0. We define φ,ψ : [0,∞) → [0,∞) by φ(t) = t2, t > 0 and

ψ(t) =

{
0 if t = 0
t+1
4 if t ∈ (0,∞).

Then φ ∈ Φ and ψ ∈ Ψ1. We now verify the inequality (2.5) for the element
(2, 6) with L = 1 and in the remaining cases the inequality (2.5) holds trivially.
For (x, y) = (2, 6), we have (Tx, Ty) = (4, 8),M1(2, 6) = 4,M2(2, 6) = 4, N(2, 6) =
2, and

φ(d(T (2), T (6))) = φ(4) = 16 6 16− 5

4
+ 1.2

= φ(4)− ψ(4) + L.2 with L = 1

= φ(M1(2, 6)− ψ(M2(2, 6) + L.N(2, 6).

Hence the inequality (2.5) holds with L = 1. Hence T is a (φ,ψ) - almost generalized
weakly contractive map, and T satisfies all the hypotheses of Theorem 3.3 and T
has a unique fixed point 4.

�
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