
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4866, ISSN (o) 2303-4947
www.imvibl.org /JOURNALS / JOURNAL
Vol. 6(2016), 87-102

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

COMMON FIXED POINTS OF GENERALIZED

TAC-RATIONAL CONTRACTIVE MAPPINGS

IN αβ-COMPLETE METRIC SPACES

Venkata Ravindranadh Babu Gutti and Dula Tolera Mosissa

Abstract. In this paper, we introduce generalized TAC-rational contractive
condition for four selfmaps in metric spaces and prove some new fixed point
results for this class of mappings in αβ-complete metric spaces. We provide

an example in support of our results.

1. Introduction and Preliminaries

Banach contraction principle plays a vital role in fixed point theory and many
authors used contractive type conditions to generalize or extend this principle. In
1997, Alber and Guerre-Delabriere [1] introduced weakly contractive maps as a
generalization of contraction maps and established fixed point results in the setting
of Hilbert spaces and subsequently Rhoades [17] extended and improved this con-
cept to metric spaces. In 2008, Dutta and Choudhury [8] introduced (ψ,φ)- weakly
contractive maps and proved the existence of fixed points in complete metric spaces.
In continuation to the extensions of contraction maps, Doric [7] extended (ψ,φ)-
weakly contractive maps and proved the existence of fixed points in complete metric
spaces.

Throughout this paper, R denotes the set of all reals.

Theorem 1.1. [7] Let (X, d) be a complete metric space and let f, g : X → X
be two selfmaps such that for all x, y ∈ X

ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)))

where M(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2 },

ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function with ψ(t) = 0 if
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and only if t = 0 and φ : [0,∞) → [0,∞) is lower semi-continuous function with
φ(t) = 0 if and only if t = 0.

Then there exists a unique u ∈ X such that u = fu = gu.

Definition 1.1. [3] Let X be a nonempty set, f be a selfmap of X and
α, β : X → [0,∞) be two mappings. We say that f is a cyclic (α, β) - admissible
mapping if (i) for any x ∈ X with α(x) > 1 =⇒ β(fx) > 1, and

(ii) for any y ∈ X with β(y) > 1 =⇒ α(fy) > 1.

Definition 1.2. [2] A function f : [0,∞)2 → R is called C - class function if
it is continuous and satisfies the following axioms:
(i) f(s, t) 6 s, and
(ii) for any s, t ∈ [0,∞) with f(s, t) = s implies that either s = 0 or t = 0.

Throughout this paper, we denote the set of all C- class functions by C ,
Ψ = {ψ : [0,∞) → [0,∞)| ψ is continuous, nondecreasing and ψ−1({0}) = 0 }, and
Φ = {φ : [0,∞) → [0,∞)| limn→∞ φ(tn) = 0 =⇒ limn→∞ tn = 0}.

Remark 1.1. f(0, 0) = 0.

Remark 1.2. If φ ∈ Φ then φ(t) = 0 =⇒ t = 0.

Example 1.1. The following functions h : [0,∞)2 → R are elements of C .
For s, t ∈ [0,∞), (i) h(s, t) = s− t, (ii) h(s, t) = s−t

1+t , (iii) h(s, t) = s
1+t , and

(iv) h(s, t) = s
1+ts .

Definition 1.3. [12] Let f and g be selfmaps of a metric space (X, d). A point
x ∈ X is said be a coincidence point of f and g if fx = gx. we denote the set of
all coincidence points of f and g by C(f, g).

Definition 1.4. [13] Let f and g be selfmaps of a metric space (X, d). The
pair (f, g) is said to be weakly compatible if they commute at their coincidence
points, i.e., fgx = gfx whenever gx = fx, x ∈ X.

Very recently, Chandok, Tas and Ansari [6] introduced the concept of
TAC-contractive mappings and proved some fixed point results in the setting of
complete metric spaces as follows:

Definition 1.5. [6] Let (X, d) be a metric space and let α, β : X → [0,∞) be
two given mappings. We say that T : X → X is a TAC- contractive mapping if

x, y ∈ X with α(x)β(y) > 1 =⇒ ψ(d(Tx, Ty)) 6 f(ψ(d(x, y)), φ(d(x, y)))

where ψ ∈ Ψ and φ : [0,∞) → [0,∞) is continuous with
limn→∞ φ(tn) = 0 =⇒ limn→∞ tn = 0 and h ∈ C

Theorem 1.2. [6] Let (X, d) be a complete metric space, α, β : X → [0,∞)
be two mappings and let T : X → X is cyclic (α, β)-admissible mapping. Assume
that T be a TAC-contractive mapping. Suppose that there exists x0 ∈ X such that
α(x0) > 1 and β(x0) > 1 and either of the following conditions hold:
(a) T is continuous
(b) If {xn} is a sequence in X such that xn → z and β(xn) > 1 for all n, then
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β(z) > 1.
Then T has a fixed point.
Moreover, if α(x) > 1 and β(y) > 1 for all x, y ∈ Fix (T ) where Fix (T ) is the

set of all fixed points of T , then T has a unique fixed point.

Definition 1.6. [10] Let f, g, S, T : X → X be selfmaps on X and
α, β : X → [0,∞) be two maps. We say that (f, g) is a cyclic (α, β)- admissible
mapping with respect to (S, T ) if
(i) for any x ∈ X with α(Sx) > 1 implies β(fx) > 1,
(ii) for any x ∈ X with β(Tx) > 1 implies α(gx) > 1.

Motivated by the works on α-complete metric spaces of Hussain, Kutbi and
Salimi [11] and Pansuwon, Sintunavarat,Parvaneh and Cho [16], we introduce
αβ-complete metric spaces as follows.

Definition 1.7. Let (X, d) be a metric space and let α, β : X → [0,∞) be
two maps. The metric space X is said to be αβ-complete if every Cauchy sequence
{xn} in X with α(xn) > 1 and β(xn) > 1 for all n ∈ N ∪ {0} converges in X.

Remark 1.3. If X is a complete metric space, then X is also an αβ-complete
metric space, but its converse need not be true due to the following example.

Example 1.2. Let X = (−100, 100) with the usual metric. Define mappings
α, β : X → [0,∞) by

α(x) =

{ 2
|x|+1 if x ∈ (−1, 1)

0 otherwise,
and β(x) =

{
2 if x ∈ (−1, 1)
0 otherwise.

With these mappings α and β, we have (X, d) is an αβ-complete metric space.
Indeed, if {xn} is a Cauchy sequence in X such that α(xn) > 1 and β(xn) > 1 for
all n, then {xn} ⊆ (−1, 1) ⊂ [−1, 1], since [−1, 1] is closed subset of R, it follows
that ([−1, 1], d) is a complete metric space and so that there exists z ∈ [−1, 1] such
that xn → z as n→ ∞. Hence X is αβ-complete. But X is not a complete metric
space.

Definition 1.8. Let (X, d) be a metric space and let α, β : X → [0,∞) be
two maps. A set A ⊂ X is said to be αβ-closed if for any sequence {xn} ⊂ A with
α(xn) > 1 and β(xn) > 1 for all n ∈ N such that {xn} converges z ∈ X then z ∈ A.

Motivated by the works of Chandok, Tas and Ansari [6] and Doric [7], we
introduce generalized TAC−(S, T )-rational contractive mappings in metric spaces.

Definition 1.9. Let f, g, S and T be selfmaps of a metric space (X, d) and let
α, β : X → [0,∞) be two given mappings. If there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C
such that

for all x, y ∈ X with α(Sx)β(Ty) > 1

=⇒ ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))),
(1.1)
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where

M(x, y) = max{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy) + d(Ty, fx)

2
,

d(Ty, gy)[1 + d(Sx, fx)]

1 + d(Sx, Ty)
,
d(fx, Ty)[1 + d(Sx, gy)]

1 + d(Sx, Ty)
},

(1.2)

then we say that the pair (f, g) is a generalized TAC − (S, T ) rational contractive
map.

If we take T = S = I, I is identity map of X in Definition 1.9, we have the
following:

Definition 1.10. Let f and g be selfmaps of a metric space (X, d) and let
α, β : X → [0,∞) be two given mappings. If there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C
such that

for all x, y ∈ X with α(x)β(y) > 1

=⇒ ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))),
(1.3)

where

M(x, y) = max{d(x, y), d(x, fx), d(y, gy),
d(x,gy)+d(y,fx)

2 , d(y,gy)[1+d(x,fx)]
1+d(x,y) , d(fx,y)[1+d(x,gy)]

1+d(x,y) },
then we say that the pair (f, g) is a generalized TAC-rational contractive map.

If we take f = g and T = S = I, I is identity map of X in above definition,
we have

Definition 1.11. Let f be selfmap of a metric space (X, d) and let
α, β : X → [0,∞) be two given mappings. If there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C
such that

for all x, y ∈ X with α(x)β(y) > 1

=⇒ ψ(d(fx, fy)) 6 h(ψ(M(x, y)), φ(M(x, y)))
(1.4)

where

M(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x,fy)+d(y,fx)

2 , d(y,fy)[1+d(x,fx)]
1+d(x,y) , d(fx,y)[1+d(x,fy)]

1+d(x,y) },
then we say that f is a generalized TAC-rational contractive map.

In Section 2, we prove our main results in which we study the existence of
common fixed points of generalized TAC − (S, T )-rational contractive mappings in
αβ-complete metric spaces. We provide corollaries and an example in support of
our results in Section 3.

The following lemma is useful in our subsequent discussion.

Lemma 1.1. [5] Suppose (X, d) is a metric space. Let {xn} be a sequence in X
such that d(xn, xn+1) → 0 as n→ ∞. If {xn} is not a Cauchy sequence then there
exists an ϵ > 0 and sequences of positive integers {mk} and {nk} with nk > mk > k
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such that d(mk, nk) > ϵ. For each k > 0, corresponding to mk, we can choose nk
to be the smallest positive integer such that d(xmk

, xnk
) > ϵ, d(xmk

, xnk−1) < ϵ
and

(i) lim
k→∞

d(xnk−1, xmk+1) = ϵ, (ii) lim
k→∞

d(xnk
, xmk

) = ϵ

(iii) lim
k→∞

d(xmk−1, xnk
) = ϵ and (iv) lim

k→∞
d(xnk

, xmk+1) = ϵ.

2. Main results

Let (X, d) be an αβ-complete metric space. Let f, g, S and T be selfmaps of
X. We assume that
(i) fX ⊂ TX, gX ⊂ SX and
(ii) there exists x0 in X such that α(Sx0) > 1 and β(Tx0) > 1.

We define sequence {yn} in X, under the assumptions (i) and (ii) above, as
follows.

Let x0 ∈ X be as in (ii). By (i), we can choose a point x1 in X such that
fx0 = Tx1 = y0 (say), and again since gX ⊂ SX, corresponding to x1, we can
choose x2 in X such that gx1 = Sx2 = y1(say). On continuing this process, it
follows that there exists a sequence {xn} in X such that fx2n = Tx2n+1 = y2n (say),

and
gx2n+1 = Sx2n+2 = y2n+1 (say) n = 0, 1, 2, ... .

(2.1)

Theorem 2.1. Let (X, d) be an αβ-complete metric space. Let f, g, S and T be
selfmaps of X and let (f, g) be a pair generalized TAC−(S, T ) rational contractive
mappings. Assume that (i) and (ii) hold. Further assume that:
(iii) (f, g) is a cyclic (α, β)-admissible pair with respect to (S, T );
(iv) if {xn} is a sequence in X such that xn → x, and α(xn) > 1 and β(xn) > 1

for all n, then α(x) > 1 and β(x) > 1, and
(v) one of the ranges fX, TX, gX, SX is αβ-closed.

Then the sequence {yn} defined by (2.1) is Cauchy in X. Also, C(f, S) ̸= ∅
and C(g, T ) ̸= ∅. Let limn→∞ yn = z (say), z ∈ X.

In fact, fu = Su = gv = Tv = z for some u ∈ C(f, S) and v ∈ C(g, T ).

Proof. Since α(Sx0) > 1 and (f, g) is cyclic (α, β)-admissible with respect to
(S, T ), we have β(fx0) > 1 i.e., β(Tx1) > 1 which further implies that α(gx1) > 1
i.e.,(Sx2) > 1. Continuing this way, we obtain that

(2.2) α(Sx2n) > 1 and β(Tx2n+1) > 1 for all n ∈ N ∪ {0}.

Similarly, by β(Tx0) > 1, we have

(2.3) β(Tx2n) > 1 and α(Sx2n+1) > 1 for all n ∈ N ∪ {0}.

Thus from (2.2) and (2.3), we have

(2.4) α(Sxn) > 1 and β(Txn) > 1 for all n ∈ N ∪ {0}.

Now, we show that {yn} is a Cauchy sequence.



92 G. V. R. BABU AND T. M. DULA

Suppose that y2n = y2n+1 for some n ∈ N. Now, we have

M(x2n+2, x2n+1) = max{d(Sx2n+2, Tx2n+1), d(Sx2n+2, fx2n+2), d(Tx2n+1, gx2n+1),

d(Sx2n+2, gx2n+1) + d(fx2n+2, Tx2n+1)

2
,

d(Tx2n+1, gx2n+1)[1 + d(Sx2n+2, fx2n+2)]

1 + d(Sx2n+2, Tx2n+1)
,

d(fx2n+2, Tx2n+1)[1 + d(Sx2n+2, gx2n+1)]

1 + d(Sx2n+2, Tx2n+1)
}

= max{d(y2n+1, y2n), d(y2n+1, y2n+2), d(y2n, y2n+1),

d(y2n+1, y2n+1) + d(y2n+2, y2n)

2
,

d(y2n, y2n+1)[1 + d(y2n+1, y2n+2)]

1 + d(y2n+1, y2n)
,

d(y2n+2, y2n)[1 + d(y2n+1, y2n+1)]

1 + d(y2n+1, y2n)
}.

Hence

(2.5) M(x2n+2, x2n+1) = d(y2n+2, y2n+1).

Now, from (1.1) and using (2.5), we have

ψ(d(y2n+2, y2n+1)) = ψ(d(fx2n+2, gx2n+1))

6 h(ψ(M(x2n+2, x2n+1)), φ(M(x2n+2, x2n+1)))

= h(ψ(d(y2n+2, y2n+1)), φ(d(y2n+2, y2n+1))

6 ψ(d(y2n+2, y2n+1))

Hence we have
h(ψ(d(y2n+2, y2n+1)), φ(d(y2n+2, y2n+1))) = ψ(d(y2n+2, y2n+1)), which implies that
ψ(d(y2n+2, y2n+1)) = 0 or φ(d(y2n+2, y2n+1)) = 0, in any case we have
d(y2n+2, y2n+1) = 0, this implies y2n+1 = y2n+2. Therefore y2n = y2n+1 = y2n+2.
In a similar way it is easy to see that y2n = y2n+1 = y2n+2 = y2n+3.
Now, by applying induction it is easy to show that y2n = y2n+k for all k = 0, 1, 2, ....
Therefore, {ym} is a constant sequence for m > 2n, hence {yn} is Cauchy in X.

Hence, with out loss of generality, we assume that y2n ̸= y2n+1 for all n ∈ N.
First we show that limn→∞ d(yn, yn+1) = 0. By (2.4) we have α(Sx2n) > 1 and
β(Tx2n+1) > 1 for all n ∈ N∪ {0} which implies that α(Sx2n)β(Tx2n+1) > 1, and
hence by putting x = x2n and y = x2n+1 in (1.1), we have
(2.6)
ψ(d(y2n, y2n+1)) = ψ(d(fx2n, gx2n+1)) 6 h(ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1))),
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where

M(x2n, x2n+1) = max{d(Sx2n, Tx2n+1), d(Sx2n, fx2n), d(Tx2n+1, gx2n+1),

d(Sx2n, gx2n+1) + d(fx2n, Tx2n+1)

2
,

d(Tx2n+1, gx2n+1)[1 + d(Sx2n, fx2n)]

1 + d(Sx2n, Tx2n+1)
,

d(fx2n, Tx2n+1)[1 + d(Sx2n, gx2n+1)]

1 + d(Sx2n, Tx2n+1)
}

= max{d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n+1) + d(y2n, y2n)

2
,

d(y2n, y2n+1)[1 + d(y2n−1, y2n)]

1 + d(y2n−1, y2n)
,

d(y2n, y2n)[1 + d(y2n−1, y2n+1)]

1 + d(y2n−1, y2n)
},

= max{d(y2n−1, y2n), d(y2n, y2n+1)}.

Suppose that d(y2n−1, y2n) < d(y2n, y2n+1) for some n ∈ N ∪ {0}. From (2.6) we
have

ψ(d(y2n, y2n+1)) = ψ(d(fx2n, gx2n+1)) 6 h(ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1)))

= h(ψ(d(y2n, y2n+1)), φ(d(y2n, y2n+1)) 6 ψ(d(y2n, y2n+1)).

Hence we have h(ψ(d(y2n, y2n+1), φ(d(y2n, y2n+1))) = ψ(d(y2n, y2n+1)), and from
property (ii) of h, we have either ψ(d(y2n, y2n+1) = 0 or φ(d(y2n, y2n+1)) = 0. In
either case we have d(y2n, y2n+1) = 0, a contradiction, since y2n ̸= y2n+1.

Hence d(y2n−1, y2n) > d(y2n, y2n+1) for all n ∈ N ∪ {0}.
Similarly it can be shown that d(y2n+1, y2n) > d(y2n+1, y2n+2) for all
n ∈ N ∪ {0}. Hence it follows that {d(yn, yn+1)} is a decreasing sequence of reals,
which is bounded from below. Thus there exists r > 0 such that
limn→∞ d(yn, xn+1) = r. Suppose that r > 0. We consider

ψ(d(y2n, y2n+1)) = ψ(d(fx2n, gx2n+1))

6 h(ψ(M(x2n, x2n+1)), φ(M(x2n, x2n+1))

= h(ψ(d(y2n−1, y2n)), φ(d(y2n−1, y2n))

6ψ(d(y2n−1, y2n)).

(2.7)

On letting n→ ∞ in (2.7) and using the continuity of ψ and f , we have
ψ(r) 6 f(ψ(r), limn→∞ φ(d(y2n−1, y2n))) 6 ψ(r), so that
f(ψ(r), limn→∞ φ(d(y2n−1, y2n))) = ψ(r). Now, by using property (ii) of h, we
have either ψ(r) = 0 or limn→∞ φ(d(y2n−1, y2n)) = 0 which implies that r = 0
Hence limn→∞ d(yn, yn+1) = 0.

We now prove that {yn} is a Cauchy sequence. To prove it, it is sufficient
to show that {y2n} is a Cauchy sequence in X. Suppose {y2n} is not a Cauchy
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sequence. Then by Lemma 1.1 there exist ϵ > 0 and sequence of positive integers
{2nk} and {2mk} such that 2nk > 2mk > k satisfying

(2.8) d(y2mk
, y2nk

) > ϵ.

Let us choose the smallest 2nk satisfying (2.8). Then we have 2nk > 2mk > k with
d(y2mk

, y2nk
) > ϵ and d(y2mk

, y2nk−2) < ϵ. Also from (i)- (iv) of Lemma 1.1 we
have (i) limk→∞ d(y2nk−1, y2mk+1) = ϵ (ii) limk→∞ d(y2nk

, y2mk
) = ϵ

(iii) limk→∞ d(y2mk−1, y2nk
) = ϵ and (iv) limk→∞ d(y2nk

, y2mk+1) = ϵ.
Since α(Sx2mk

) > 1 and β(Tx2nk+1) > 1, we have α(Sx2mk
)β(Tx2nk+1) > 1, and

by substituting x = x2nk
and y = x2mk+1 in (1.1) we have

ψ(d(y2nk
, y2mk+1)) = ψ(d(fx2nk

, gx2mK+1))

6 h(ψ(M(x2nk
, x2mk+1)), φ(M(x2nk

, x2mk+1))),
(2.9)

where

M(x2nk
, x2mk+1) = max{d(Sx2nk

, Tx2mk+1), d(Sx2nk
, fx2nk

), d(Tx2mk+1, gx2mk+1),

d(Sx2nk
, gx2mk+1) + d(fx2nk

, Tx2mk+1)

2
,

d(Tx2mk+1, gx2mk+1)[1 + d(Sx2nk
, fx2nk

)]

1 + d(Sx2nk
, Tx2mk+1)

,

d(fx2nk
, Tx2mk+1)[1 + d(Sx2nk

, gx2mk+1)]

1 + d(Sx2nk
, Tx2mk+1)

}

On taking limits as k → ∞, we have

lim
k→∞

M(x2nk
, x2mk+1) = max{ϵ, 0, 0, ϵ+ϵ

2 , 0, ϵ[1+ϵ]
1+ϵ } = ϵ,

From (2.9), we have

ψ(d(y2nk
, y2mK+1)) = ψ(d(fx2nk

, gx2mK+1))

6 h(ψ(M(x2nk
, x2mk+1)), φ(M(x2nk

, x2mk+1))),

6 ψ(M(x2nk
, x2mk+1)).

(2.10)

on taking limits as k → ∞ in (2.10) we have
ψ(ϵ) 6 h(ψ(ϵ), lim

k→∞
φ(M(x2nk

, x2mk+1))) 6 ψ(ϵ), which implies that

h(ψ(ϵ), lim
k→∞

φ(M(x2nk
, x2mk+1))) = ψ(ϵ). Now, from the property (ii) of h we

have, ψ(ϵ) = 0 or lim
k→∞

φ(M(x2nk
, x2mk+1)) = 0, which implies that ϵ = 0 or

lim
k→∞

M(x2nk
, x2mk+1) = ϵ = 0, in both cases ϵ = 0, a contradiction.

Therefore {y2n} is a Cauchy sequence, hence {yn} is a Cauchy sequence in X.
Since α(yn) > 1 and β(yn) > 1 for all n and X is αβ-complete, there exists z ∈ X
such that lim

n→∞
yn = z. Hence from (2.1) we have

lim
n→∞

fx2n = lim
n→∞

Tx2n+1 = lim
n→∞

gx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

y2n = z

Case (i): Suppose that SX is αβ-closed.
In this case z ∈ SX and hence we can choose u ∈ X such that z = Su.
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Now, we show that fu = z. From (ii), we have α(Su) > 1 and β(Tx2n+1) > 1.
Now, by substituting x = u and y = x2n+1 in (1.1), we have

(2.11) ψ(d(fu, gx2n+1)) 6 h(ψ(M(u, x2n+1)), φ(M(u, x2n+1))),

where M(u, x2n+1) = max{d(Su, Tx2n+1), d(Su, fu), d(Tx2n+1, gx2n+1),

d(Su, gx2n+1) + d(fu, Tx2mk+1)

2
,

d(Tx2n+1, gx2n+1)[1 + d(Su, fu)]

1 + d(Su, Tx2n+1)
,

d(fu, Tx2n+1)[1 + d(Su, gx2n+1)]

1 + d(Su, Tx2n+1)
}.

On taking limits as n→ ∞ we have

lim
n→∞

M(u, x2n+1) = d(fu, z).(2.12)

On letting n→ ∞ in (2.11) and using (2.12), we have
ψ(d((fu, z)) 6 h(ψ(d(fu, z)), lim

k→∞
φ(M(u, x2n+1))) 6 ψ(d(fu, z)), and hence

h(ψ(d(fu, z)), lim
k→∞

φ(M(u, x2n+1))) = ψ(d(fu, z)), which implies that

ψ(d(fu, z)) = 0 or lim
k→∞

φ(M(u, x2n+1)) = 0 which further implies d(fu, z) = 0

or lim
k→∞

M(u, x2n+1) = d(fu, z) = 0.

Therefore

(2.13) fu = z, i.e., z = fu = su.

Hence Su = fu, and u is a coincidence point of f and S.
Since z = fu ∈ fX and fX ⊆ TX, we have z ∈ TX and hence there exists

v ∈ X such that Tv = z. By (2.4), we have α(Sx2n) > 1 and by (iv), β(Tv) > 1.
Now, by substituting x = x2n and y = v in (1.1), we have

(2.14) ψ(d(fx2n, gv)) 6 h(ψ(M(x2n, v)), φ(M(x2n, v))),

where

M(x2n, v) = max{d(Sx2n, T v), d(Sx2n, fx2n), d(Tv, gv),
d(Sx2n, gv) + d(fx2n, T v)

2
,

d(Tv, gv)[1 + d(Sx2n, fx2n)]

1 + d(Sx2n, T v)
,
d(fx2n, T v)[1 + d(Sx2n, gv)]

1 + d(Sx2n, T v)
}.

(2.15)

On letting limit as n→ ∞ in (2.15), we have

lim
n→∞

M(x2n, v) = d(z,gv).(2.16)

On letting n→ ∞ in (2.14) and using (2.16), we have
ψ(d((z, gv)) 6 h(ψ(d(z, gv)), lim

k→∞
φ(M(x2n, v))) 6 ψ(d(z, gv)),

hence h(ψ(d(z, gv)), lim
k→∞

φ(M(x2n, v))) = ψ(d(z, gv)), which implies that

ψ(d(z, gv)) = 0 or lim
k→∞

φ(M(x2n, v)) = 0 in both cases d(z, gv) = 0. Since
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lim
k→∞

M(x2n, v) = d(z, gv) = 0, which implies that gv = z.

Therefore

(2.17) z = Tv = gv,

and v is a coincidence point of T and g. From (2.13) and (2.17), we have
z = fu = Su = gv = Tv.

Hence the pairs C(f, S) ̸= ∅ and C(g, T ) ̸= ∅.
Case (ii): Suppose that gX is αβ-closed.
In this case z ∈ gX, since gX ⊆ SX, we have z ∈ SX and hence we can choose
u ∈ X such that z = Su. Hence the proof follows as in case (i).

For the cases TX is αβ-closed and fX is αβ-closed, we follow the arguments
similar to the cases of SX is αβ-closed and gX is αβ-closed receptively. �

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, if
(i) (f, S) and (g, T ) are weakly compatible and,
(ii) α(Su) > 1 and β(Tv) > 1 whenever u and v are coincidence points of (f, S)
and (T, g) respectively.

Then f, g, T and S have a unique common fixed point.

Proof. By Theorem 2.1, we have z = fu = Su = Tv = gv. Since (f, S) is
weakly compatible we have fz = fSu = Sfu = Sz, so that z is also a coincidence
point of (f, S). By hypotheses, we have α(Sz) > 1 and β(Tv) > 1 which implies
that α(Sz)β(Tv) > 1.
Now, substituting x = z and y = v in (1.1) we have

(2.18) ψ(d(fz, gv)) 6 h(ψ(M(z, v)), φ(M(z, v)))

where

M(z, v) = max{d(Sz, Tv), d(Sz, fz), d(Tv, gv), d(Sz, gv) + d(fz, Tv)

2
,

d(Tv, gv)[1 + d(Sz, fz)]

1 + d(Sz, Tv)
,
d(fz, Tv)[1 + d(Sz, gv)]

1 + d(Sz, Tv)
}

= d(Sz, Tv) = d(fz, gv).

(2.19)

From (2.18) and (2.19), we have

ψ(d(fz, gv)) 6 h(ψ(d(fz, gv)), φ(d(fz, gv))) 6 ψ(d(fz, gv)),(2.20)

which implies that h(ψ(d(fz, gv)), φ(d(fz, gv))) = ψ(d(fz, gv)) which further
implies that ψ(d(fz, gv)) = 0 or φ(d(fz, gv)) = 0 in either case we have
d(fz, gv) = 0. Therefore fz = gv, hence fz = Sz = gv = z so that z is a common
fixed point of f and S.

Similarly we can show that z = gz = Tz. Hence z = fz = Sz = gz = Tz.
We now show that f, g, S and T have unique fixed point. Suppose that

u = fu = gu = Su = Tu and z = fz = gz = Sz = Tz. By hypothesis (ii), we have
α(Su)β(Tz) > 1 and from (1.1) we have

(2.21) ψ(d(fu, gz)) 6 h(ψ(M(u, z))), φ(M(u, z)),
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where

M(u, z) = max{d(Su, Tz), d(Su, fu), d(Tz, gz), d(Su, gz) + d(fu, Tz)

2
,

d(Tz, gz)[1 + d(Su, fu)]

1 + d(Su, Tz)
,
d(fu, Tz)[1 + d(Su, gz)]

1 + d(Su, Tz)
}

= d(u, z).

(2.22)

By using (2.22) in (2.21), we have

ψ(d(fu, gz)) = ψ(d(fu, gz)) 6 h((M(u, z)), φ(M(u, z)))

= h(ψ(d(u, z)), φ(d(u, z)) 6 ψ(d(u, z)).
(2.23)

Hence h(ψ(d(u, z)), φ(d(u, z))) = ψ(d(u, z)) which implies that ψ(d(u, z)) = 0 or
lim
k→∞

φ(d(u, z)) = φ(d(u, z)) = 0. In either case we have d(u, z) = 0. Hence u = z.

Therefore f, S, g and T have a unique common fixed point in X. �

Theorem 2.3. Let A and B be two closed subsets of a complete metric space
(X, d) such that A ∩ B ̸= ∅. Let f, g : A ∪ B → A ∪ B be mappings with fA ⊂ B
and gB ⊂ A. Assume that there exist ψ ∈ Ψ , φ ∈ Φ and h ∈ C such that

(2.24) ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))) for all x ∈ A and y ∈ B,

where M(x, y) is defined as in (1.3).
Then f and g have a unique common fixed point u ∈ A ∩B.

Proof. Let us define α, β : A ∪B → A ∪B by

α(x) =

{
1 if x ∈ A
0 otherwise,

and β(x) =

{
1 if x ∈ B
0 otherwise.

We have, for any x, y ∈ A ∪ B with α(x)β(y) > 1 if and only if α(x) > 1 and
β(y) > 1 if and only if x ∈ A and y ∈ B. Hence from (2.24), we have

ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))) for all x ∈ A and y ∈ B.

Therefore (f, g) is a generalized TAC- rational contractive map.
Suppose x ∈ A ∪ B with α(x) > 1. Then x ∈ A and hence fx ∈ fA ⊂ B so

that β(fx) > 1. And suppose y ∈ A ∪ B with β(y) > 1. Then y ∈ B and hence
gx ∈ gB ⊂ A so that α(gy) > 1. Therefore, (f, g) is a cyclic (α, β)-admissible
mapping.

Since A ∩B ̸= ∅ there exists x0 ∈ A ∩B so that α(x0) > 1 and β(x0) > 1.
If {xn} is a sequence in A∪B such that xn → x, and α(xn) > 1 and β(xn) > 1

for all n then xn ∈ A and xn ∈ B. Since A and B are closed we have x ∈ A and
x ∈ B, which implies that α(x) > 1 and β(x) > 1.
Therefore, by choosing S = T = I, I is identity mapping on X, it follows that f
and g satisfy all hypotheses of Theorem 2.1. Hence there exist z, u, v ∈ A∪B such
that z = fu = u, z = gv = v. If z ∈ A implies that α(u) = α(fu) = α(z) > 1. If
z ∈ B implies that β(v) = β(gv) = β(z) > 1.

Hence the pair (f, g) satisfies all the hypotheses of Theorem 2.2 with S = T = I.
and therefore f and g have a unique common fixed point.
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Suppose w = fw = gw, if w ∈ A then w = fw ∈ fA ⊂ B, hence w ∈ B, and
also if w ∈ B, we have w = gw ∈ gB ⊂ A, hence w ∈ A. Therefore the fixed point
w ∈ A ∩B. �

3. Corollaries and an example

Corollary 3.1. Let α, β : X → [0,∞) be two mappings. Let f, g, S and T
be selfmaps of an αβ-complete metric space (X, d) with fX ⊂ TX, gX ⊂ SX and
(f, g) be a pair of cyclic (α, β)-admissible mapping with respect to (S, T ). Assume
that there exist ψ ∈ Ψ and φ ∈ Φ such that

for all x, y ∈ X with α(Sx)β(Ty) > 1 =⇒
ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)),

where M(x, y) is defined as in (1.2).
Further, suppose that the following conditions hold:

(i) there exists x0 ∈ X such that α(Sx0) > 1 and β(Tx0) > 1,
(ii) if {xn} is a sequence in X such that xn → z, and α(xn) > 1 and β(xn) > 1 for
all n, then α(z) > 1 and β(z) > 1
(iii) one of the ranges fX, TX, gX, SX is αβ-closed.
(iv) (f, S) and (g, T ) are weakly compatible, and
(v) α(Su) > 1 and β(Tv) > 1 whenever u and v are coincidence point of (f, S) and
(T, g) respectively.

Then f, g, T and S. have a unique common fixed point.

Proof. Follows from Theorem 2.2 by taking h(s, t) = s− t. �

Corollary 3.2. Let α, β : X → [0,∞) be two mappings. Let f, g, S and T be
selfmaps of an αβ-complete metric space (X, d) with fX ⊂ TX, gX ⊂ SX and
(f, g) be a pair of cyclic (α, β)-admissible mapping with respect to (S, T ). Assume
that there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C such that

α(Sx)β(Ty)ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))), for all x, y ∈ X(3.1)

where M(x, y) is defined as in (1.2).
Further, suppose that the following conditions hold:

(i) there exists x0 ∈ X such that α(Sx0) > 1 and β(Tx0) > 1,
(ii) if {xn} is a sequence in X such that xn → z, and α(xn) > 1 and β(xn) > 1 for
all n, then α(z) > 1 and β(z) > 1
(iii) one of the ranges fX, TX, gX, SX is αβ-closed.
(iv) (f, S) and (g, T ) are weakly compatible, and
(v) α(Su) > 1 and β(Tv) > 1 whenever u and v are coincidence point of (f, S) and
(T, g) respectively.

Then f, g, T and S. have a unique common fixed point.

Proof. Let x, y ∈ X with α(Sx)β(Ty) > 1. Then we have
ψ(d(fx, gy)) 6 α(Sx)β(Ty)ψ(d(fx, gy)) 6 h(ψ(M(x, y)), ϕ(M(x, y))). Hence the
inequality (3.1) implies the inequality (1.1). Now by applying Theorem 2.2, it
follows that f, g, T and S. have a unique common fixed point. �
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Corollary 3.3. Let f, g, S and T be selfmaps of a complete metric space
(X, d) with fX ⊂ TX, gX ⊂ SX and one of the ranges fX, TX, gXand SX is
closed. Assume that there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C such that

ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))), for all x, y ∈ X(3.2)

where M(x, y) is defined as in (1.2).
Then f, g, T and S. have a unique common fixed point.

Proof. The result follows from Theorem 2.2 by taking α(x) = β(x) = 1 for
all x ∈ X. �

Corollary 3.4. Let f, g, S and T be selfmaps of a complete metric space
(X, d) with fX ⊂ TX and gX ⊂ SX Assume that there exist ψ ∈ Ψ and φ ∈ Φ
such that

ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)),(3.3)

whereM(x, y) is defined as in (1.2). Then f, g, T and S. have a common fixed point.

Proof. The result follows from Corollary 3.3 by taking h(s, t) = s− t. �

Corollary 3.5. Let f, g : X → X be selfmappings on complete metric space
(X, d). Assume that there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C such that

(3.4) ψ(d(fx, gy)) 6 h(ψ(M(x, y)), φ(M(x, y))),

where
M(x, y) =

max{d(x, y), d(x, fx), d(y, gy), d(x,gy)+d(y,fx)
2 , d(y,gy)[1+d(x,fx)]

1+d(x,y) , d(fx,y)[1+d(x,gy)]
1+d(x,y) }.

Then f and g have a unique fixed point.

Proof. Follows from Corollary 3.3 by taking T = S = I, I identity map ofX.
�

Corollary 3.6. Let α, β : X → [0,∞) be two mappings and (X, d) be an
αβ-complete metric space. Let f : X → X is cyclic (α, β)-admissible mapping.
Assume that there exist ψ ∈ Ψ, φ ∈ Φ and h ∈ C such that

for all x, y ∈ X with α(x)β(y) > 1

=⇒ ψ(d(fx, fy)) 6 h(ψ(M(x, y)), φ(M(x, y))),
(3.5)

where
M(x, y) =

max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)
2 , d(y,fy)[1+d(x,fx)]

1+d(x,y) , d(fx,y)[1+d(x,y)]
1+d(x,y) }.

Further, suppose that the following conditions hold:
(i) there exists x0 ∈ X such that α(x0) > 1 and β(x0) > 1,
(ii) if {xn} is a sequence in X such that xn → z, and α(xn) > 1 and β(xn) > 1

for all n, then α(z) > 1 and β(z) > 1
Moreover, if α(x) > 1 and β(y) > 1 for all x, y ∈ Fix (f) where Fix (f) is the

set of all fixed points of f , then f has a unique fixed point.
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Proof. Follows from Theorem 2.2 by taking f = g and T = S = I, where
I identity map of X. �

Remark 3.1. Corollary 3.6 is an extension of Theorem 1.2 to αβ-complete
metric spaces.

Corollary 3.7. Let A and B be two closed subsets of a complete metric
space (X, d) such that A ∩ B ̸= ∅. Let f, g : A ∪ B → A ∪ B be mappings with
fA ⊂ B and gB ⊂ A. Assume that there exist ψ ∈ Ψ and φ ∈ Φ such that
ψ(d(fx, gy)) 6 ψ(M(x, y))− φ(M(x, y)) for all x ∈ A and y ∈ B
where M(x, y) is defined as in (1.3).

Then f and g have a unique common fixed point in A ∩B.

Proof. Follows from Theorem 2.3 by taking h(s, t) = s− t. �

Example 3.1. Let X = [0, 10) with the usual metric d. We define f, g, S and
T on X by

f(x) =

{
x
8 if x ∈ [0, 1]
x− 1

3 if x ∈ (1, 10),
g(x) =

{
x
4 if x ∈ [0, 1]
x− 1 if x ∈ (1, 10),

S(x) =

{
x
2 if x ∈ [0, 1]
x− 1

2 if x ∈ [1, 10),
and T (x) = x.

Now, we have fX = [0, 18 ] ∪ ( 23 ,
29
3 ) ⊆ [0, 10) = TX and

gX = [0, 14 ] ∪ (0, 9) = [0, 9) ⊆ [0, 192 ) = SX. It is clear that the pairs (f, S) and
(g, T ) are weakly compatible.

we now define α, β : X → [0,∞) by

α(x) =

{
1 if x ∈ [0, 12 ]
0 otherwise

and β(x) =

{
e if x ∈ [0, 1]
0 otherwise.

Since for any x ∈ X with α(Sx) > 1 ⇔ Sx ∈ [0, 12 ] ⇔ x ∈ [0, 1], we have fx ∈ [0, 18 ]
which implies that β(fx) = e > 1. Also, for any x ∈ X with
β(Tx) > 1 ⇔ Tx ∈ [0, 1] which implies that x ∈ [0, 1], and hence gx ∈ [0, 14 ], so
that α(gx) = 1. Therefore (f, g) is a cyclic (α, β)-admissible mapping with respect
to (S, T ). Moreover at x0 = 0, α(Sx0) = α(0) > 1 and β(Tx0) = β(0) > 1.

If {xn} is any sequence in X such that α(xn) > 1 and β(xn) > 1 for all
n ∈ N ∪ {0} and xn → x, by the definition of α and β, we have xn ∈ [0, 12 ].

Therefore x ∈ [0, 12 ]. Hence α(x) > 1 and β(x) > 1.
Now, we show that (f, g) is a generalized TAC − (S, T ) rational contractive

mapping. For this purpose, we choose ψ, φ : [0,∞) → [0,∞) by ψ(t) = t, t > 0,

φ(t) =

{
1 if t = 0
t
2 if t ∈ (0,∞),

and h : [0,∞)2 → R by h(s, t) =
s

1 + t
, ∀s, t ∈ [0,∞).

Then clearly ψ ∈ Ψ and φ ∈ Φ . We now verify the inequality (1.1).
It is easy to see that α(Sx)β(Ty) > 1 if and only if x ∈ [0, 1] and y ∈ [0, 1].

Hence we verify inequality (1.1) for x, y ∈ [0, 1].
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Now, for x, y ∈ [0, 1], we have

ψ(d(fx, gy)) = d(fx, gy) = |fx− gy| = |x
8
− y

4
| = 1

8
|x− 2y| = 1

4
.
1

2
|x− 2y|

=
1

4
d(Sx, Ty) 6 d(Sx, Ty)

1 + d(Sx,Ty)
2

,
(3.6)

since d(Sx, Ty) = |Sx− Ty| = |x2 − y| 6 1.

Since the function c : [0,∞) → R defined by c(t) = t
1+ t

2

, t > 0 monotonically

increasing on [0, 4], it follows from (3.6) that

ψ(d(fx, gy)) 6 d(Sx, Ty)

1 + d(Sx,Ty)
2

6 M(x, y)

1 + M(x,y)
2

=
ψ(M(x, y))

1 + φ(M(x, y))
= h(ψ(M(x, y)), φ(M(x, y))),

so that the inequality (1.1) holds.
Clearly X = [0, 10) is αβ-complete and TX = X = [0, 1) is αβ-closed. Hence

f, g, S and T satisfy all the hypotheses of Theorem 2.2 and {0} is the unique
common fixed point of f, g, S and T.

Here we observe that (X, d) is not complete, φ is not continuous and ϕ(0) ̸= 0.
Hence Theorem 1.1 is not applicable.
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