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TAC-RATIONAL CONTRACTIVE MAPPINGS
IN af-COMPLETE METRIC SPACES

Venkata Ravindranadh Babu Gutti and Dula Tolera Mosissa

ABSTRACT. In this paper, we introduce generalized T'AC-rational contractive
condition for four selfmaps in metric spaces and prove some new fixed point
results for this class of mappings in af-complete metric spaces. We provide
an example in support of our results.

1. Introduction and Preliminaries

Banach contraction principle plays a vital role in fixed point theory and many
authors used contractive type conditions to generalize or extend this principle. In
1997, Alber and Guerre-Delabriere [1] introduced weakly contractive maps as a
generalization of contraction maps and established fixed point results in the setting
of Hilbert spaces and subsequently Rhoades [17] extended and improved this con-
cept to metric spaces. In 2008, Dutta and Choudhury [8] introduced (v, ¢)- weakly
contractive maps and proved the existence of fixed points in complete metric spaces.
In continuation to the extensions of contraction maps, Doric [7] extended (1, ¢)-
weakly contractive maps and proved the existence of fixed points in complete metric
spaces.

Throughout this paper, R denotes the set of all reals.

THEOREM 1.1. [7] Let (X,d) be a complete metric space and let f, g: X — X
be two selfmaps such that for all x,y € X

Y(d(fz,gy)) < P(M(z,y)) — (M(x,y)))

d(z,9y)+d(y,
where M(x,y) = max{d(z,y),d(, fz),d(y. gy), “=HFAELY,
¥ 1 [0,00) = [0,00) is a continuous and nondecreasing function with (t) = 0 if
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and only if t =0 and ¢ : [0,00) = [0,00) is lower semi-continuous function with
o(t) =0 if and only if t = 0.
Then there exists a unique v € X such that u = fu = gu.

DEerFINITION 1.1. [3] Let X be a nonempty set, f be a selfmap of X and
a,B : X — [0,00) be two mappings. We say that f is a cyclic («, 3) - admissible
mapping if (i) for any x € X with a(z) > 1 = B(fz) > 1, and

(ii) for any y € X with f(y) > 1 = a(fy) > 1.

DEFINITION 1.2. [2] A function f : [0,00)2 — R is called C - class function if
it is continuous and satisfies the following axioms:
(i) f(s,t) < s, and
(ii) for any s,t € [0, 00) with f(s,t) = s implies that either s =0 or ¢ = 0.

Throughout this paper, we denote the set of all C- class functions by €,
U = {¢:[0,00) — [0,00)| % is continuous, nondecreasing and 1~ ({0}) = 0 }, and
D = {p:][0,00) = [0,00)] lim, o0 p(tn) =0 = lim, o0 tn, = 0}.

REMARK 1.1. f(0,0) =0.
REMARK 1.2. If p € & then o(t) =0 = t=0.

ExAMPLE 1.1. The following functions h : [0,00)? — R are elements of 4.
For s,t € [0,00), (i) h(s,t) =s—1t, (i) h(s,t) = 5%, (iii) h(s,t) = and

=2 T
(iv) h(s,t) =

T

DEFINITION 1.3. [12] Let f and g be selfmaps of a metric space (X, d). A point
x € X is said be a coincidence point of f and g if fr = gx. we denote the set of
all coincidence points of f and g by C(f, g).

DEFINITION 1.4. [13] Let f and g be selfmaps of a metric space (X,d). The
pair (f,g) is said to be weakly compatible if they commute at their coincidence
points, i.e., fgr = gfx whenever gz = fz,z € X.

Very recently, Chandok, Tas and Ansari [6] introduced the concept of
T AC-contractive mappings and proved some fixed point results in the setting of
complete metric spaces as follows:

DEFINITION 1.5. [6] Let (X, d) be a metric space and let o, 5 : X — [0,00) be
two given mappings. We say that T : X — X is a T AC- contractive mapping if

z,y € X with a(2)B(y) 21 = (d(Tz,Ty)) < f(¥(d(z,9)), p(d(z,y)))
where ¢ € U and ¢ : [0,00) — [0, 00) is continuous with
lim, o0 @(tn) =0 = lim,y00t, =0and h €%

THEOREM 1.2. [6] Let (X, d) be a complete metric space, o, §: X — [0,00)
be two mappings and let T : X — X s cyclic (a, B)-admissible mapping. Assume
that T be a T AC-contractive mapping. Suppose that there exists xo € X such that
a(zg) =2 1 and B(xo) = 1 and either of the following conditions hold:

(a) T is continuous
(b) If {x,} is a sequence in X such that x, — z and B(x,) = 1 for all n, then
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B(z) = 1.

Then T has a fized point.

Moreover, if a(z) = 1 and B(y) = 1 for all x,y € Fix (T) where Fiz (T) is the
set of all fixed points of T, then T has a unique fixed point.

DEFINITION 1.6. [10] Let f,¢,5,7 : X — X be selfmaps on X and
a,B: X — [0,00) be two maps. We say that (f,g) is a cyclic (o, 8)- admissible
mapping with respect to (S,T) if
(i) for any « € X with «(Sz) > 1 implies 8(fx) > 1,
(ii) for any x € X with 8(Tz) > 1 implies a(gz) > 1.

Motivated by the works on a-complete metric spaces of Hussain, Kutbi and
Salimi [11] and Pansuwon, Sintunavarat,Parvaneh and Cho [16], we introduce
af-complete metric spaces as follows.

DEFINITION 1.7. Let (X,d) be a metric space and let o, 8 : X — [0,00) be
two maps. The metric space X is said to be a8-complete if every Cauchy sequence
{zp} in X with a(x,) > 1 and B(x,) > 1 for all n € N U {0} converges in X.

REMARK 1.3. If X is a complete metric space, then X is also an af-complete
metric space, but its converse need not be true due to the following example.

ExaMPLE 1.2. Let X = (—100,100) with the usual metric. Define mappings
a,f: X — [0,00) by

2 ifz e (-1,1)

a(x)—{ k= 2ifze (—1,1)

0 otherwise, 0 otherwise.

and B(z) = {

With these mappings « and (8, we have (X,d) is an af-complete metric space.
Indeed, if {z,} is a Cauchy sequence in X such that a(z,) > 1 and (z,) > 1 for
all n, then {z,} C (-1,1) C [-1,1], since [—1,1] is closed subset of R, it follows
that ([—1,1],d) is a complete metric space and so that there exists z € [—1, 1] such
that z, — z as n — oo. Hence X is af-complete. But X is not a complete metric
space.

DEFINITION 1.8. Let (X,d) be a metric space and let o, 5 : X — [0,00) be
two maps. A set A C X is said to be af-closed if for any sequence {z,} C A with
axy,) = 1 and B(x,) > 1 for all n € N such that {z,,} converges z € X then z € A.

Motivated by the works of Chandok, Tas and Ansari [6] and Doric [7], we
introduce generalized TAC — (S, T')-rational contractive mappings in metric spaces.

DEFINITION 1.9. Let f,¢g,S and T be selfmaps of a metric space (X, d) and let
a,: X —[0,00) be two given mappings. If there exist » € ¥, p € & and h € ¢
such that

for all z,y € X with a(Sz)B(Ty) > 1

(1.1) = Y(d(fz,gy)) < h(Y(M(z,y)), o(M(z,y))),
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where

M(z,y) = max{d(Si, Ty). d(Sr. [2),d(Ty, gy), X200+ L0 TD),

d(Ty, gy)[1 + d(Sz, fz)] d(fz,Ty)[l + d(Sz, gy)] )
14 d(Sz, Ty) ’ 1+4d(Sz, Ty) ’

then we say that the pair (f,g) is a generalized TAC — (S,T') rational contractive
map.

(1.2)

If we take T'= S5 = I, I is identity map of X in Definition 1.9, we have the
following:

DEFINITION 1.10. Let f and g be selfmaps of a metric space (X,d) and let
a,f: X — [0,00) be two given mappings. If there exist ¢y € U, p € & and h € ¢
such that

for all x,y € X with a(x)B(y) > 1

(1.3) = Y(d(fz,gy)) < h(Y(M(z,y)), o(M(x,y))),

where
M(z,y) = max{d(z,y),d(z, fz),d(y, gy),

d(%qv)-&-d(u,fw) d(y,gy)[1+d(z, fz)] d(f=z,y)[1+d(z,gy)] }
’ 1+d(z,y) ’ 1+d(z,y) ’

then we say that the pair (f, g) is a generalized T'AC-rational contractive map.

If we take f =gand T =S =1, I is identity map of X in above definition,
we have

DEFINITION 1.11. Let f be selfmap of a metric space (X, d) and let
a,fB: X — [0,00) be two given mappings. If there exist v € ¥, p € & and h € €
such that
for all z,y € X with a(x)B(y) > 1

(1.4) = ¢(d(fx, fy)) < MW(M(z,)), ¢(M(z,y)))

where
M(z,y) = max{d(z,y), d(z, fz),d(y, fy),

d(z, fy)+d(y fz) dlyfy)i+d(z,fz)] d(fz,y) 1+d(x fy)]}
’ 1+d(z,y) ’ 1+d(z,y)

then we say that f is a generahzed T AC-rational contractive map.

In Section 2, we prove our main results in which we study the existence of
common fixed points of generalized TAC — (S, T)-rational contractive mappings in
af-complete metric spaces. We provide corollaries and an example in support of
our results in Section 3.

The following lemma is useful in our subsequent discussion.

LEMMA 1.1. [5] Suppose (X, d) is a metric space. Let {x,} be a sequence in X
such that d(Ty, Tpt1) — 0 asn — co. If {x,} is not a Cauchy sequence then there
exists an € > 0 and sequences of positive integers {my} and {ny} with ng > my >k
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such that d(my,ng) > €. For each k > 0, corresponding to my,, we can choose ny,
to be the smallest positive integer such that d(Tm, , Tn,) = €, d(Tmy,Tn,—1) < €
and

(1) lm d(zn,—1,Tm,+1) =€, (41) lm d(zp,,Tm,) =€
k—oo k—oo

(iii) lm d(zm,—1,%n,) =€ and (iv) lm d(zp,,Tm,1+1) = €.
k— o0 k—o0

2. Main results

Let (X,d) be an af-complete metric space. Let f,g,S and T be selfmaps of
X. We assume that
(i) fXCTX, gX C SX and
(ii) there exists xp in X such that a(Sz) > 1 and S(Tx¢) > 1.

We define sequence {y,} in X, under the assumptions (i) and (ii) above, as
follows.

Let 2y € X be as in (ii). By (i), we can choose a point z; in X such that
fxo = Tx1 = yo (say), and again since gX C SX, corresponding to x1, we can
choose x5 in X such that gz; = Sze = yi(say). On continuing this process, it
follows that there exists a sequence {z,} in X such that

f-r2n = Tx2n+1 = Y2n (Say)a
(2.1) and

9Zont+1 = STonta = Yont1 (say) n=0,1,2,....

THEOREM 2.1. Let (X, d) be an af3-complete metric space. Let f,g,S and T be
selfmaps of X and let (f,g) be a pair generalized TAC — (S, T) rational contractive
mappings. Assume that (i) and (ii) hold. Further assume that:

(i1i) (f,9) is a cyclic (o, B)-admissible pair with respect to (S,T);

(i) if {xz,} is a sequence in X such that x, — x, and a(z,) =2 1 and B(x,) > 1
for all n, then a(x) > 1 and B(x) > 1, and

(v) one of the ranges fX, TX, gX, SX is af-closed.

Then the sequence {y,} defined by (2.1) is Cauchy in X. Also, C(f,S) # 0
and C(g,T) # 0. Let lim, oo yn = 2 (say), z € X.

In fact, fu= Su=gv="Tv=2z for someu € C(f,5) and v e C(g,T).

PROOF. Since a(Szg) > 1 and (f, g) is cyclic (a, 8)-admissible with respect to
(S,T), we have 5(fxzo) > 1 ie., B(Tz1) > 1 which further implies that a(gx;) > 1
i.e.,(Sze) > 1. Continuing this way, we obtain that

(2.2) a(Sxe,) 21 and B(Twant1) = 1 for all n € N U {0}.
Similarly, by 8(Tz¢) > 1, we have

(2.3) B(Txe,) > 1 and a(Sxza,y1) = 1 for all n € N U {0}.
Thus from (2.2) and (2.3), we have

(2.4) a(Sz,) 21 and f(Tx,) > 1 for all n € NU{0}.

Now, we show that {y,} is a Cauchy sequence.
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Suppose that y2, = Y2, +1 for some n € N. Now, we have

M(x2p12, Tont1) = max{d(Szant2, Txont1), d(STont2, front2), d(TTon41, 9T2n11),
d(ST2n42, gT2n+1) + d(fTons2, T2n41)
5 ;
d(Tz2n+1, 9%2n41)[1 + d(Sz2n2, [T2n42)]
1+ d(Szonta, TTont1)
d(frant2, Txons1)[1 + d(S22n42, gT2n+1)] )
L+ d(Szany2, Tron11)
= max{d(Y2n+1,Y2n ), A(Y2n+1, Y2n+2), A(Y2n, Y2n+1),
d(Y2n+1, Y2n+1) + d(Y2n+2, Y2n)
5 ;
d(Yan, Yon+1)[1 + d(Y2n+1, Y2n+t2)]
1+ d(y2n+1,Y2n)
d(y2n+2,Y2n)[1 + d(Y2ni1, Y2n+1)] )
1+ d(y2nt1,Y2n) .

)

)

Hence

(2.5) M (x2n42, Tont1) = d(Y2n+2, Yon+1)-

Now, from (1.1) and using (2.5), we have

V(d(y2n+2, Y2n+1)) = Y(d(fT2n+2, gT2n+1))

< h(Y(M (22042, Tant1)), (M (22ni2, Tani1)))
Y(d(Y2nt2: Y2n+1))s (d(Y2n+2,Y2n+1))
< Y(d(y2n+2; Y2nt1))

=

Hence we have

h(¥(d(y2n+2,Y2n+1)), ©(d(Y2n+2,Y2n+1))) = ¥(d(y2n+2,Y2n+1)), which implies that

Y(d(Y2n+2, Yant1)) = 0 or @(d(Y2nt2,Y2n+1)) = 0, in any case we have

d(Yan+2, Yon+1) = 0, this implies yo,+1 = Yo2ns2. Therefore yo, = yont1 = Yont2-

In a similar way it is easy to see that ya, = Yon+1 = Y2n+2 = Yon+3-

Now, by applying induction it is easy to show that yo, = Yo,k forallk =0,1,2,....

Therefore, {y,,} is a constant sequence for m > 2n, hence {y,} is Cauchy in X.
Hence, with out loss of generality, we assume that ys,, # y2,4+1 for all n € N.

First we show that lim,_,cc d(Yn,Yn+1) = 0. By (2.4) we have a(Sx2,) > 1 and

B(Txan+1) = 1 for all n € NU {0} which implies that a(Sxa,)B(Tx2,41) > 1, and

hence by putting x = x9,, and y = zg9,41 in (1.1), we have

(2.6)

Y(d(Y2n, yan+1)) = Y(A(fr2n, gT2n11)) < M(P(M (220, T2n+41)), P(M (T2n, T2n+1))),
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where

max{d(Szan, TTan+1), d(STan, fron), d(TTant+1, 9T2n+1)s
d(Sxon, gxon+1) + d(fron, TToni1)
) )
d(Tz2n+1, 9%2n+1)[1 + d(Sx2n, fr2n)]
1+ d(Szan, Txont1) ’
d(fron, Tront1)[l + d(Szan, gTon11)] )
14+ d(Swon, Troni1)
= max{d(y2n—1,Y2n), A(Y2n-1, Y2n), A(Y2n, Y2n+1),
d(Yon—1,Yon+1) + d(Yon, yon)
5 ;
d(y2n, Y2n+1)[1 + d(Y2n—1,Y2n)]
1+ d(y2n—1,Y2n)
d(y2n, Y2 )[1 + d(Y2n—1, Y2n+1)] }
1+ d(y2n—1,Y2n) ’
= max{d(y2n—1,Y2n), d(Y2n, Y2nt1)}-

M (x2pn, T2n41)

)

Suppose that d(y2n—1,Y2n) < d(Y2n,Y2n+1) for some n € NU {0}. From (2.6) we
have

Y(d(Y2n, yan+1)) = Y(d(fran, gT2n41)) < A(O(M (220, T2n41)), P(M (T20, T2n41)))
h((d(Yan, Yan+1)), ©(d(Y2n,Y2nt1)) < Y(d(Y2n, Y2n+1))-

Hence we have h(¥(d(y2n, Yon+1), ©(d(Y2n, Y2nt1))) = ¥(d(y2n, Y2n+1)), and from
property (ii) of h, we have either ¢¥/(d(y2n, Yon+1) = 0 or ©(d(yan, Yan+1)) = 0. In
either case we have d(yan, y2n+1) = 0, a contradiction, since Yo, 7# Yan+1-

Hence d(Yon—1,Y2n) = d(Yan, Y2n+1) for all n € N U {0}.
Similarly it can be shown that d(y2n+1,y2n) = d(Y2n+1, Y2nt2) for all
n € N U{0}. Hence it follows that {d(yn,yn+1)} is a decreasing sequence of reals,
which is bounded from below. Thus there exists r > 0 such that
limy, s 00 d(Yn, Tny1) = r. Suppose that r > 0. We consider

V(d(y2n, y2n+1)) = Y(d(fr2n, gT2041))
< h(W(M(22n, T2n+41)), (M (T2n, Tans1))
= h(¥(d(y2n—1,Y2n)), P(d(y2n—1,Y2n))
<Y(d(Yan—1,Y2n))-

On letting n — oo in (2.7) and using the continuity of ¢ and f, we have
’lp(’l") < f(w(r)a hmn%oo <p(d(y2n717y2n>)) < w(r)7 so that
f@(r), lim, e 9(d(y2n—1,y24))) = %(r). Now, by using property (ii) of h, we
have either ¢(r) = 0 or lim, o ©(d(y2n—1,¥y2r)) = 0 which implies that r = 0
Hence lim, o0 d(Yn, Ynt+1) = 0.

We now prove that {y,} is a Cauchy sequence. To prove it, it is sufficient
to show that {ya2,} is a Cauchy sequence in X. Suppose {y2,} is not a Cauchy

2.7)
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sequence. Then by Lemma 1.1 there exist ¢ > 0 and sequence of positive integers
{2ni} and {2my} such that 2ny > 2my, > k satisfying

(28) d(y2mk7y2nk) Z €

Let us choose the smallest 2ny, satisfying (2.8). Then we have 2ng > 2my, > k with
d(Y2my» Y2n,) = € and d(Yam,,, Yon,—2) < €. Also from (i)- (iv) of Lemma 1.1 we
have (i) limg o0 d(Y2n,—1, Y2my+1) = € (ii) limg 00 d(Y2n, s Y2m, ) = €

(111) limy 00 d(y2mk717 y2nk) =¢€ and (1V) limy o0 d(y2nk7y2mk+1) = €.

Since a(Sxam, ) = 1 and B(Txan,+1) = 1, we have a(Sxam, )3(Txan,+1) = 1, and
by substituting © = 22, and y = o, +1 in (1.1) we have

l/f(d(ank ) mek-&-l)) = w(d(fonk ) ngmK+1))

(2.9) < h(W(M (220, T2my+1))s P(M(Xon,, Tame+1))),

where
M(.T)an, x2mk+1) = maX{d(S.’Ean ) Tx2mk+1)7 d(Sl'an, f'ran)v d(TQOk-i-l? gx2mk+1)7
d(SIan ) g'r2mk+1) + d(szHk ) Tmek-‘rl)
2 )
d(Tx2m;, +1, 9T2m,+1)[1 + d(ST2n,, fT2n, )]
1 + d(SIL‘gnk y T:L'ka+1)
d(fx2nk ) Tmek-‘rl)[l + d(Sxan ) g'r2mk+1)] }
1 + d(SQ’,‘an 5 Txgmk+1)

)

On taking limits as k — oo, we have

Hm M (2n, , Zom, +1) = max{e,0,0, << 0, Lrdy — ¢
k—o0

v 2 0¥ T 14e

From (2.9), we have

V(d(Y2nes Yomic+1)) = Y(A(fT2n,, 9T2m i +1))

h(P(M (z2n,,, 2m,+1)); (M (Tan,, T2m,+1)))
(M (22n,,, T2m+1))-

on taking limits as k — oo in (2.10) we have

P(e) < h(Y(e), klingo (M (x2n,,, Tam,+1))) < 1(€), which implies that

h(v(e), kli_)ngo (M (zan,, Tam,+1))) = ¥(e). Now, from the property (ii) of h we

(2.10)

NN

have, () = 0 or klim (M (x2n,, Tam,+1)) = 0, which implies that ¢ = 0 or
—00

klirn M (zan,, Tam,+1) = € = 0, in both cases e = 0, a contradiction.
— 00

Therefore {y2,} is a Cauchy sequence, hence {y,} is a Cauchy sequence in X.
Since a(y,) = 1 and B(y,) = 1 for all n and X is af-complete, there exists z € X
such that lim y, = z. Hence from (2.1) we have
n—oo
lim fzo, = lim Txo,41 = lim gxon11 = lim Sxopyo = lim yo, = 2
n— oo n— oo n— 00 n—o0o n— 00
Case (i): Suppose that SX is af-closed.
In this case z € SX and hence we can choose u € X such that z = Su.
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Now, we show that fu = z. From (ii), we have a(Su) > 1 and 8(Tzan4+1) = 1.
Now, by substituting = v and y = x9,41 in (1.1), we have

(2.11) Y(d(fu, grans1)) < h(p(M(u, 22n41)), ©(M(u; 2n41))),
Where M(U, Cr2n+1) = max{d SU, Tx2n+1)a d(Sua fu)» d(Tx2n+1agl'2n+1)a
d(Sua gm2n+1> + d(fu7 Tx?mk+1)
2 )
d(Tl'2n+17 ngnJrl)[l + d(S’LL, fu)]
1+ d(Su, Tl‘gn_H) ’
d(fu, Txons1)[1l + d(Su, gxoni1)] )
1 + d(SU, T$2n+1) '

On taking limits as n — oo we have

(2.12) lim M (u, xon41) = d(fu, 2).

n—oo
On letting n — oo in (2.11) and using (2.12), we have
D(d((fu,2)) < h(P(d(fu,2)), Hm o(M(u,w2041))) < P(d(fu,2)), and hence
h(¢¥(d(fu, z)), leH;O (M (u, z2n+1))) = ¥(d(fu, z)), which implies that
Y(d(fu,z)) =0 or kli_>nolo (M (u, xon+1)) = 0 which further implies d(fu,z) =0
or klin;o M (u, xop+1) = d(fu,z) =0.
Therefore
(2.13) fu=z1ie., z= fu=su.

Hence Su = fu, and w is a coincidence point of f and S.

Since z = fu € fX and fX C TX, we have z € TX and hence there exists
v € X such that Tv = z. By (2.4), we have a(Sx2,) > 1 and by (iv), 8(Tv) > 1.
Now, by substituting z = zg, and y = v in (1.1), we have

(2.14) Y(d(fr2n, gv)) < R(Y(M (22,,0)), (M (220,0))),
where
(2.15)

M (z9p,v) = max{d(Sza,, Tv),d(Sxap, fx2n),d(Tv, gv), d(Sz2n, gv) —'2_ d(fx%’Tv),

d(Tw, gv)[1 + d(Sxan, fxon)] d(fzon, Tv)[1 4+ d(Sxzan, gv)] )
1+ d(Swapn, Tv) ’ 1+ d(Szap, Tv) '

On letting limit as n — oo in (2.15), we have

(2.16) lim M (xap,v) = d(z,9v).

n—oo
On letting n — oo in (2.14) and using (2.16), we have
Dz, g)) < (e (2 gv)), i oM (220, ) < (d(z. gv),
hence h(y(d(z, gv)), kli—>llgo (M (x2,,v))) = ¥(d(z, gv)), which implies that
P(d(z,gv)) =0 or ler{:o o(M(x2,,v)) = 0 in both cases d(z, gv) = 0. Since
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klim M (zap,v) = d(z,gv) = 0, which implies that gv = z.
— 00

Therefore
(2.17) z=Tv = gv,

and v is a coincidence point of T" and g. From (2.13) and (2.17), we have
z= fu=Su=gv="Tv.

Hence the pairs C(f,S) # 0 and C(g,T) # 0.
Case (ii): Suppose that gX is afS-closed.
In this case z € gX, since gX C SX, we have z € SX and hence we can choose
u € X such that z = Su. Hence the proof follows as in case (i).

For the cases TX is af-closed and fX is afB-closed, we follow the arguments
similar to the cases of SX is af-closed and gX is af-closed receptively. O

THEOREM 2.2. In addition to the hypotheses of Theorem 2.1, if
(i) (f,S) and (g,T) are weakly compatible and,
(i1) a(Su) > 1 and B(Tv) > 1 whenever u and v are coincidence points of (f,.S)
and (T, g) respectively.

Then f,g,T and S have a unique common fized point.

PROOF. By Theorem 2.1, we have z = fu = Su = Tv = gv. Since (f,95) is
weakly compatible we have fz = fSu = Sfu = Sz, so that z is also a coincidence
point of (f,S). By hypotheses, we have a(Sz) > 1 and S(Tv) > 1 which implies
that a(Sz)5(Tv) > 1.

Now, substituting = z and y = v in (1.1) we have

(2.18) Y(d(fz,9v)) < hY(M(z,v)), (M(z,0)))
where
(Sz,gv) +d(fz,Tv)

M(z,v) = max{d(Sz,Tv),d(Sz, fz),d(Tv, gv), d

2 9
(2.19) d(Tv, gv)[1 +d(Sz, fz)] d(fz,Tv)[1+d(Sz, gv)] }
1+ d(Sz,Tv) ’ 1+ d(Sz,Tv)

= d(Sz,Tv) =d(fz,gv).
From (2.18) and (2.19), we have
(2.20) P(d(fz,9v)) <h(P(d(fz 9v)), e(d(fz 9v))) < P(d(fz gv)),

which implies that h(¢(d(fz, gv)), @(d(fz,gv))) = ¥ (d(fz,gv)) which further
implies that 1 (d(fz, gv)) =0 or ¢(d(fz,gv)) = 0 in either case we have
d(fz,gv) = 0. Therefore fz = gv, hence fz = Sz = gv = z so that z is a common
fixed point of f and S.

Similarly we can show that z = gz =Tz. Hence z = fz = Sz =gz =Tx.

We now show that f, g, S and T have unique fixed point. Suppose that
u= fu=gu=Su=Tuand z= fz =gz =S5z =Tz By hypothesis (ii), we have
a(Su)B(Tz) = 1 and from (1.1) we have

(2.21) P(d(fu, 92)) < W(P(M(u, 2))), p(M (u, 2)),
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where
M(u,2) = max{d(Su, T2),d(Su, fu),d(Ts, g2), 2509 ;d(fusz)7
(2.22) d(Tz,g2)[1 +d(Su, fu)] d(fu,T2)[1 + d(Su, gz)] \
1+d(Su,Tz) 7 1+d(Su,Tz)

= d(u, 2).
By using (2.22) in (2.21), we have
P(d(fu, 92)) = P(d(fu, 92)) < h((M(u, 2)), o(M (u, 2)))
h((d(u, 2)), (d(u,2)) < p(d(u, 2)).

Hence h(¢¥(d(u, 2)), ¢(d(u,2))) = 1 (d(u, z)) which implies that ¥ (d(u, z)) =0 or
klim w(d(u, z)) = o(d(u, z)) = 0. In either case we have d(u,z) = 0. Hence u = z.

(2.23)

Therefore f,S,g and T have a unique common fixed point in X. O

THEOREM 2.3. Let A and B be two closed subsets of a complete metric space
(X,d) such that ANB # 0. Let f,g: AUB — AU B be mappings with fA C B
and gB C A. Assume that there exist v € ¥ , ¢ € & and h € € such that

(2.24)  Y(d(fz,9y)) < h(p(M(2,y)), ¢(M(z,y))) for all z € A and y € B,

where M (x,y) is defined as in (1.3).
Then f and g have a unique common fized point w € AN B.

PRrROOF. Let us define a,5: AUB — AU B by
a(az){llfxeA and 5(x){11f1'€B

0 otherwise, 0 otherwise.
We have, for any z,y € AU B with a(z)8(y) > 1 if and only if a(z) > 1 and
B(y) > 1if and only if z € A and y € B. Hence from (2.24), we have

Y(d(fz,gy)) < h(P(M(z,y)), (M (z,y))) for allz € Aand y € B.

Therefore (f,g) is a generalized T AC- rational contractive map.

Suppose ¢ € AU B with a(z) > 1. Then « € A and hence fx € fA C B so
that B(fx) > 1. And suppose y € AU B with 8(y) > 1. Then y € B and hence
gr € gB C A so that a(gy) > 1. Therefore, (f,g) is a cyclic (¢, 8)-admissible
mapping.

Since AN B # ) there exists g € AN B so that a(xg) > 1 and B(zg) > 1.

If {x,,} is a sequence in AU B such that z,, — z, and a(z,,) > 1 and B(z,) > 1

for all n then x,, € A and z,, € B. Since A and B are closed we have x € A and
x € B, which implies that a(z) > 1 and g(z) > 1.
Therefore, by choosing S = T = I, 1 is identity mapping on X, it follows that f
and g satisfy all hypotheses of Theorem 2.1. Hence there exist z,u,v € AU B such
that z = fu = u,z = gv = v. If z € A implies that a(u) = a(fu) = a(z) > 1. If
z € B implies that f(v) = B(gv) = B(z) > 1.

Hence the pair (f, g) satisfies all the hypotheses of Theorem 2.2 with S =T = I.
and therefore f and g have a unique common fixed point.
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Suppose w = fw = gw, if w € A then w = fw € fA C B, hence w € B, and
also if w € B, we have w = gw € gB C A, hence w € A. Therefore the fixed point
weANB. O

3. Corollaries and an example

COROLLARY 3.1. Let o, 8 : X — [0,00) be two mappings. Let f,g,S and T
be selfmaps of an af-complete metric space (X,d) with fX C TX, gX C SX and
(f,9) be a pair of cyclic («, B)-admissible mapping with respect to (S,T). Assume
that there exist v € U and ¢ € ® such that

for all z,y € X with a(Sz)8(Ty)

Y(d(fz, gy))

where M (x,y) is defined as in (1.2).
Further, suppose that the following conditions hold:

(i) there exists xg € X such that a(Sxzg) =2 1 and B(Txo) > 1,
(i) if {zn} is a sequence in X such that x,, — z, and a(x,) =1 and B(x,) = 1 for
alln, then «(z) 21 and B(z) > 1
(iii) one of the ranges fX,TX,gX,SX is af-closed.
() (f,S) and (9,T) are weakly compatible, and
(v) a(Su) = 1 and B(Tv) > 1 whenever u and v are coincidence point of (f,S) and
(T, g) respectively.

Then f,g,T and S. have a unique common fixed point.

R
Y(M(z,y)) — o(M(z,y)),

VA N\

PRrROOF. Follows from Theorem 2.2 by taking h(s,t) = s —t. O

COROLLARY 3.2. Let o, 3: X — [0,00) be two mappings. Let f,g,S5 and T be
selfmaps of an af-complete metric space (X,d) with fX C TX, ¢X C SX and
(f,q) be a pair of cyclic («, 8)-admissible mapping with respect to (S, T). Assume
that there exist v € U, ¢ € ® and h € € such that

(3.1)  a(Sz)B(Ty)y(d(fz,gy)) < h(p(M(z,y)), p(M(z,y))), for all z,y € X

where M (x,y) is defined as in (1.2).
Further, suppose that the following conditions hold:
(i) there exists xg € X such that a(Sxzg) =2 1 and B(Txo) > 1,
(ii) if {zn} is a sequence in X such that x,, — z, and a(zxy,) = 1 and B(x,) = 1 for
alln, then «o(z) 21 and B(z) > 1
(iii) one of the ranges fX,TX,gX,SX is af-closed.
() (f,S) and (9,T) are weakly compatible, and
(v) a(Su) = 1 and B(Tv) > 1 whenever u and v are coincidence point of (f,S) and
(T, g) respectively.
Then f,g,T and S. have a unique common fized point.

PROOF. Let z,y € X with a(Sz)8(Ty) > 1. Then we have

P(d(fz,9y)) < a(Sx)B(Ty)P(d(fz, 9y)) < h(P(M(z,y)), (M (z,y))). Hence the
inequality (3.1) implies the inequality (1.1). Now by applying Theorem 2.2, it
follows that f,g,T and S. have a unique common fixed point. O
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COROLLARY 3.3. Let f,9,S and T be selfmaps of a complete metric space
(X,d) with fX C TX, gX C SX and one of the ranges fX, TX, gXand SX is
closed. Assume that there exist ¥ € ¥, o € & and h € € such that

(3.2) Y(d(fz,g9y)) < h(P(M(z,y)), (M (z,y))), for all z,y € X

where M (x,y) is defined as in (1.2).
Then f,g,T and S. have a unique common fixed point.

ProOOF. The result follows from Theorem 2.2 by taking a(z) = f(x) = 1 for
all z € X. 0

COROLLARY 3.4. Let f,g,S and T be selfmaps of a complete metric space
(X,d) with fX C TX and gX C SX Assume that there exist ¢ € ¥ and ¢ €
such that

(3.3) (d(fz, gy)) < P(M(z,y)) — p(M(z,y)),
where M (z,y) is defined as in (1.2). Then f,g,T and S. have a common fized point.
PROOF. The result follows from Corollary 3.3 by taking h(s,t) = s — . d

COROLLARY 3.5. Let f,g: X — X be selfmappings on complete metric space
(X,d). Assume that there exist ¢ € ¥, ¢ € ® and h € € such that

(3-4) P(d(fr, gy)) < h(P(M(z,y)), o(M(z,y))),

where
M(z,y) =

d(z, d(y,fz) d(y, d(z,fzx d(fx, d(z,
max{d(xvy)a d(‘ra fx)a d(yagy)7 ( gy)-;— ./ )a L quJ)r[:lE;,l(/) J )]7 & 11/4),[;(-;135) gu)l }

Then f and g have a unique fixed point.

Proor. Follows from Corollary 3.3 by taking T'= S = I, I identity map ofX.
O

COROLLARY 3.6. Let «, f: X — [0,00) be two mappings and (X,d) be an
af-complete metric space. Let f : X — X is cyclic (o, §)-admissible mapping.
Assume that there exist v € U, o € ® and h € € such that

for all z,y € X with a(z)B8(y) > 1

(35) — pd(fa ) < BB y) oM (2,9))),
where

M(x’ y) =

max{d(z,y),d(z, fz),d(y, fy), d(ﬂ&fy);d(yyfﬂv)7 d(yvf%/_)i_[cllz;i(}if’ﬂ)], d(fwii)c[ll(;z()w:y)] 1.

Further, suppose that the following conditions hold:
(i) there exists xg € X such that a(xg) = 1 and B(xg) > 1,
(ii) if {xn} is a sequence in X such that x,, — z, and a(x,) > 1 and B(z,) > 1
for alln, then a(z) 2 1 and B(z) > 1
Moreover, if a(z) > 1 and B(y) = 1 for all x,y € Fix (f) where Fiz (f) is the
set of all fixed points of f, then f has a unique fized point.
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ProOOF. Follows from Theorem 2.2 by taking f = g and T = S = I, where
I identity map of X. O

REMARK 3.1. Corollary 3.6 is an extension of Theorem 1.2 to af-complete
metric spaces.

COROLLARY 3.7. Let A and B be two closed subsets of a complete metric
space (X,d) such that AN B # (. Let f,g: AUB — AU B be mappings with
fA C B and gB C A. Assume that there exist ¢ € ¥ and ¢ € ® such that

B(d(f2, 99) < (M (z,y)) — $(M(z,y)) for all 2 € Aand y € B
where M (z,y) is defined as in (1.3).

Then f and g have a unique common fixed point in AN B.

Proor. Follows from Theorem 2.3 by taking h(s,t) = s —t. O

EXAMPLE 3.1. Let X = [0,10) with the usual metric d. We define f, g, S and
T on X by

_ [ gifxze(0,1] [ Zifxzel0,1]
fm%_{x—ﬁxe(LmL gu%_{;—lﬁerJm,

Z2itxe]0,1]
—J 2 —
S(x)—{ e Lifee[1,10), and T(z) =2z
Now, we have fX =[0,1] U (3,2) C [0,10) = TX and
gX =10,7]U(0,9) = [0 9) C [0,12) = SX. It is clear that the pairs (f,S) and

(g,T) are weakly compatible.
we now define «, 5 : X — [0,00) by

lifxe|o,i eifz e [0,1
o) = { 0 othervx[isez] and f(z) = { 0 otherwi[se. |
Since for any € X with a(Sz) > 1< Sz € [0,3] < z € [0,1], we have fz € [0, 1]
which implies that S(fx) = e > 1. Also, for any = € X with
B(Tz) > 1 < Tz € [0,1] which implies that € [0,1], and hence gz € [0, 1], so
that a(gz) = 1. Therefore (f,g) is a cyclic (a, §)-admissible mapping with respect
o (S,T). Moreover at g =0, a(Szg) = @(0) > 1 and S(Txz¢) = B(0) > 1.
If {z,} is any sequence in X such that a(x,) > 1 and B(x,) > 1 for all
n € NU{0} and z, — =z, by the definition of o and 3, we have z, € [0,1].
Therefore z € [0, ]. Hence a(z) > 1 and B(z) > 1
Now, we show that (f,g) is a generalized TAC — (S,T) rational contractive
mapping. For this purpose, we choose ¥, ¢ : [0,00) — [0,00) by ¥(t) =t, t >0,

[ 1ift=0 o, s
o(t) —{ Lift e (0,00), and h : [0,00)° = R by h(s,t) = .

, Vs, t €[0,00).

_l’_
Then clearly v € ¥ and ¢ € ® . We now verify the inequality (1.1).
It is easy to see that a(Sz)B(Ty) > 1 if and only if x € [0,1] and y € [0,1].
Hence we verify inequality (1.1) for z,y € [0, 1].
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Now, for z,y € [0, 1], we have

=]z — 2y

Y(d(fz,gy)) = d(fz,gy) = |fx —gy| = Ig - %I = élx -2yl =

d(Sz, Ty)
14+ d(SwQ,Ty) ’

1
2

1=

(3.6) 1
= id(Sa:, Ty) <

since d(Sxz,Ty) = |Sx — Ty| = |5 —y| < L.

Since the function ¢ : [0,00) — R defined by ¢(t) = 1fr , t > 0 monotonically

VBN

increasing on [0, 4], it follows from (3.6) that

ASe,Ty) _  M(z,y)

1+ d(S:cZ,Ty) 1+ M(Zac,y)

Y(d(fz,gy)) <

PY(M(z,y))
L+ p(M(z,y))

so that the inequality (1.1) holds.

Clearly X = [0,10) is aS-complete and TX = X = [0,1) is af-closed. Hence
fyg9,S and T satisfy all the hypotheses of Theorem 2.2 and {0} is the unique
common fixed point of f, g, S and T.

Here we observe that (X, d) is not complete, ¢ is not continuous and ¢(0) # 0.
Hence Theorem 1.1 is not applicable.

= h(W(M(z,y)), p(M(z,y))),
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