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TWO NATURAL GENERALIZATIONS OF COCYCLES

Árpád Száz

Abstract. In this paper, inspired by a theorem of A. Bahyrycz, Zs. Páles
and M. Piszczek and a lemma of T.M.K. Davison and B.R. Ebanks, we shall
introduce and investigate the following two generalizations

F (x, y ) + F (u, y + v ) + F (x+ y , u+ v )

= F (x, u) + F (y , u+ v ) + F (x+ u, y + v )
and

F (x, y ) + F (x− u, u) + F (y − v , u) + F (y − v, v )

= F (u, v ) + F (u, y − v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v )

of the famous cocycle equation F (x, y )+F (x+y , z ) = F (x, y+z )+F (y , z ),
which seem to differ from the two most important particular cases of a

Pexiderized one studied by B.R. Ebanks, C.T. Ng and T.M.K. Davison.

1. Introduction

In the proofs of Theorems 1 and 5 of [4] , for a function f of one commutative
group X to another Y , Bahyrycz, Páles and Piszczek have used, but not explicitly
stated, the equality

(1.1) f(x+ y )− f(x)− f(y) = f(x− u) + f(u)− f(x)

+ f(y − v) + f(v)− f(y) + f(x+ y − u− v )− f(x− u)− f(y − v)

+ f(u+ v )− f(u)− f(v) + f(x+ y )− f(x+ y − u− v )− f(u+ v ) .

Hence, by using the Cauchy difference

F (x, y ) = f(x+ y )− f(x)− f(y) ,
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we could note that, instead of equality (1.1), it is more convenient to consider the
equality

(1.2) F (x, y ) = F (u, v )− F (x− u, u)− F (y − v , v )

+ F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

Namely thus, for instance, Theorem 1 of [4] can be easily extended to the
solutions of (1.2). Moreover, we can prove that every symmetric cocycle F on X
to Y is a solution of equation (1.2).

That is, if F is a function of X 2 to Y such that F (x, y ) = F (y , x) and

(1.3) F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z )

for all x, y , z ∈ X, then (1.2) also holds for all x, y , u, v ∈ X.

It is well-known that every Cauchy–difference is a symmetric cocycle. More-
over, in Lemma 2 of [13] , Davison and Ebanks have proved that if F is a sym-
metric cocycle on X to Y , then

(1.4) F (x+ y , u+ v ) = F (x+ u, y + v )

+ F (x, u) + F (y , v )− F (x, y )− F (u, v )

also holds for all x, y , u, v ∈ X.

At first seeing, I considered equations (1.2) and (1.4) to be very similar, but
still quite independent. However, Gyula Maksa, my close colleague, has noticed
that they are actually equivalent.

Namely, (1.4) can be immediately derived from (1.2) by replacing x by x+ u
and y by y + v . And conversely, (1.2) can be immediately derived from (1.4) by
replacing x by x − u and y by y − v . Thus, equation (1.1) is a consequence of
(1.4) too.

In this paper, we shall also consider the more difficult equations

(1.5) F (x, y ) + F (u, y + v ) + F (x+ y , u+ v )

= F (x, u) + F (y , u+ v ) + F (x+ u, y + v ) ,

and

(1.6) F (x, y ) + F (x− u, u) + F (y − v , u) + F (y − v, v )

= F (u, v ) + F (u, y − v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

Note that if in particular F is symmetric, then equation (1.6) is equivalent
to (1.2), which is in turn equivalent to (1.4). Moreover, it can be easily shown
that if F is additive in its second variable, then equations (1.5) and (1.6) are also
equivalent.

Now, we shall also prove that equations (1.5) and (1.6) are generalizations of
(1.3) too. Therefore, it seems to be a reasonable research program to extend some
of the basic theorems on equation (1.3) to (1.5) and (1.6). And, to establish some
deeper relationships among the various generalizations of equation (1.3).
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A most general, Pexider type generalization of (1.3) is the equation

(1.7) F1(x+ y , z ) + F2(y + z , x) + F3(z + x, y )

+ F4(x, y ) + F5(y , z ) + F6(z , x) = 0

introduced and solved by Ebanks and Ng [30] .

Concerning its solutions, Davison [12] has explicitly established the impor-
tance of the particular cases

(1.8) F (x+ y , z )− F (x, z )− F (y , z ) = F (y + z , x)− F (y , x)− F (z , x)

and

(1.9) F (x+ y , z )− F (x, z )− F (y , z ) + F (y + z , x)− F (y , x)− F (z , x)

+ F (x+ z , y )− F (x, y )− F (z , y ) = 0 .

Note that if in particular F is symmetric, then equation (1.8) is equivalent to
(1.3), and equation (1.9) is equivalent to

(1.10) F (x+ y , z ) + F (y + z , x) + F (x+ z , y )

= 2F (x, y ) + 2F (y , z ) + 2F (x, z )

By Theorem 3.3 of [30] , it is curious that Székelyhidi’s equation [79]

(1.11) F (x+ y , z ) + F (x− y , z )− 2F (y , z )

= F (x, y + z ) + F (x, y − z )− 2F (x, y )

has been considered to be still unsolved by Ebanks and Ng in [31] and [23] .

Some fundamental results of Székelyhidi [80] on equations (1.3) and (1.11)
have been extended by Páles [70] to the more attractive equation

(1.12) F (x, y ) +
1

n

n∑
i=1

F
(
x+ ϕi(y) , z

)
=

1

n

n∑
i=1

F
(
x, y + ϕi(z)

)
+ F (y , z )

with suitable functions ϕi . This equation could certainly be also used to extend
some further results on equation (1.3) and establish some reasonable generalizations
of equations (1.5) and (1.6) too.

Finally, we note that equations (1.5) and (1.6) may also be compared to the
equation

(1.13) F (x+ u, y + v ) + F (x− u, y ) + F (x, y − v )

= F (x− u, y − v ) + F (x, y + v ) + F (x+ u, y )

used by Kannappan and Sahoo [59] , Sahoo and Riedel [72, Lemma 4.3] , and
Sahoo and Székelyhidi [73, 74] .

And also to the generalized rhombic and rectangular equations

(1.14) F (x+ u, y ) + F (x− u, y )

+ F (x, y + v ) + F (x, y − v ) = k F (x, y ) + l F (u, v ) ,
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and

(1.15) F (x+ u, y + v ) + F (x+ u, y − v )

+ F (x− u, y + v ) + F (x− u, y − v ) = k F (x, y ) + l F (u, v )

considered, for some k, l ∈ Z , by Aczél et al. [3] and Chung et al. [9] . ( For
some generalizations of the rectangle equation see also Lajkó [65] .)

To solve equations containing the variables x, y , u, v , by an observation of
Sahoo and Székelyhidi [73, 74] , it is enough to solve only the u = v particular
cases of these equations. However, to prove some Bahyrycz, Páles and Piszczek type
stability theorems [78] for such equations, it is necessary to have the independence
of the variables u and v .

2. Cauchy differences and symmetric cocycles

Notation 2.1. In this section, and the subsequent Sections 3 and 5, we shall
assume that X and Y are commutative groups, and F is a function of X 2

to Y .

Remark 2.1. Now, by defining (x, y) + (z , w) = (x + z , y + w ) for all
x, y , z , w ∈ X, the set X 2 can also be turned into a commutative group.

Definition 2.1. The function F will be called Cauchy if there exists a function
f of X to Y such that, for any x, y ∈ X, we have

f(x+ y ) = f(x) + f(y) + F (x, y ) .

Remark 2.2. In this case, by Davison and Ebanks [13] and Stetkaer [77,
pp. 16, 280] , we may also say that F is the Cauchy difference (or kernel) of f , or
that F is a coboundary with generator function −f .

Moreover, analogously to the case of a generalized Hyers–Ulam stability [50] ,
we may also say that f is F–approximately additive, or more briefly F–additive.
Thus, f is additive if and only if it is 0–additive.

For some functions F , solutions of the inhomogeneous Cauchy equation, consi-
dered in Definition 2.1, were given in [10, 11, 42, 36, 37, 64, 66, 40, 6, 29, 8,
57, 71, 46, 39] .

Moreover, in [24] and [26] , B.R. Ebanks has solved the much more general
equation f(x+ y) = f(x) + f(y) + g

(
F (x, y )

)
for unknown functions f and g .

Note that this equation, in contrast to the one considered in Definition 2.1,
allows of the investigation of the functional dependence of two Cauchy differences.

For easy illustrations of Definition 2.1, one can easily check the statements of
following examples inspired by those of Prunescu [71] and Stetkaer [77, p. 288] .

Example 2.1. If X = Z and F (x, x) = x y for all x, y ∈ X, then F is
a Cauchy function of X 2 to X with a generator function f defined by f(x) =
x (x+ 1)/2 for all x ∈ X.



70 SZÁZ

Example 2.2. If X = RΓ , for a nonvoid set Γ, and F (x, y ) = x y for all
x, y ∈ X, then F is a Cauchy function of X 2 to X with a generator function f
defined by f(x) = x2/ 2 for all x ∈ RΓ.

Example 2.3. If X is a real inner product space and F (x, y ) = ⟨x, y ⟩ for
all x, y ∈ X, then F is a Cauchy function with a generator function f defined
by f(x) = ∥x ∥ 2/ 2 for all x ∈ X.

Remark 2.3. Note the if F is a Cauchy function of X to Y and f is a
generator function of F , then a function g of X to Y is another generator function
of F if and only if f − g is an additive function.

Thus, to get all solutions f of the inhomogeneous Cauchy equation, considered
in Definition 2.1, it is enough to find only one solution of this inhomogeneous
equation and all solutions of the corresponding homogeneous equation.

Definition 2.2. Under Notation 2.1, we shall also say that :

(1) F is symmetric (skew-symmetric) if, for any x, y ∈ X, we have

F (x, y ) = F (y , x)
(
F (x, y ) = −F (y , x)

)
(2) F is cocyclic if, for any x, y , z ∈ X, we have

F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z ) .

Remark 2.4. If F is skew-symmetric, then by Hosszú [54] , Aczél [1] , Ebanks
[17] and Stetkaer [77, p. 17] , we may also say that F is antisymmetric.

While, if F is a cocyclic function of X 2 to Y , then by Davison and Ebanks
[13] and Stetkaer [77, p. 280] , we may also say that F is a cocycle on X to Y .

The cocycle equation, consider in Definition 2.2, can also be written in the less
general, but more instructive difference forms

F (x+ y , z )− F (y , z ) = F (x, y + z )− F (x, y )
and

F (x+ y , z )− F (x, z )− F (y , z ) = F (x, y + z )− F (x, y )− F (x, z ) .

References, listed in [13] and [77] and the present paper, show that the cocycle
equation has been utilized in several different branches of mathematics.

They seem to first appear in the context of group extensions. ( See Kurosh
[63, § 50] , Fuchs [43, § 60], Hosszú [55] and Stetkaer [77, Lemma 16.3] .)

However, in the theory of functional equations, the following theorem was
certainly first established by Kurepa [62] . The simple proof is included here for
the reader’s convenience.

Theorem 2.1. If F is Cauchy, then F is both symmetric and cocyclic.

Proof. By Definition 2.1, there exists a function f of X to Y such that

F (s, t) = f(s+ t)− f(s)− f(t)

for all s, t ∈ X.
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Hence, it is clear that F is symmetric. Moreover, we can easily check that

F (x, y ) + F (x+ y , z )− F (x, y + z )− F (y , z )

= f(x+ y )− f(x)− f(y) + f(x+ y + z )− f(x+ y )− f(z)

− f(x+ y + z ) + f(x) + f(y + z )− f(y + z ) + f(y) + f(z) = 0

for all x, y , z ∈ X. Therefore, F is also cocyclic. �

In this respect, it is also worth mentioning the following theorem which was
already used by Erdős [38] . Later, Aczél [1, p. 66] and Stetkaer [77, p. 283]
stated it explicitly by leaving the proof to the reader.

Theorem 2.2. If F is biadditive, then F is cocyclic.

Proof. Now, we also have

F (x, y ) + F (x+ y , z )− F (x, y + z )− F (y , z )

= F (x, y ) + F (x, z ) + F (y , z )− F (x, y )− F (x, z )− F (y , z ) = 0

for all x, y , z ∈ X. Therefore, F is cocyclic. �

In this respect, it is also worth proving the following theorem which seems not
to be stated explicitly in the existing literature.

Theorem 2.3. If F is cocyclic and additive in one of its variables, then F is
biadditive.

Proof. Since F is cocyclic, for any x, y , z ∈ X we have

F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z ) .

Hence, if for instance F is additive in its second variable, we can infer that

F (x, y ) + F (x+ y , z ) = F (x, y ) + F (x, z ) + F (y , z ) ,

and thus F (x + y , z ) = F (x, z ) + F (y , z ) . Therefore, F is additive in its first
variable too, and thus it is also biadditive. �

Now, as an immediate consequence of the latter two theorems, we can also
state

Corollary 2.1. The following assertions are equivalent :

(1) F is biadditive ,

(2) F is cocyclic and additive in one of its variables .

In addition to Theorem 2.3, it is also worth mentioning the following widely
used theorem.

Theorem 2.4. If F is additive in one of its variables and F is either sym-
metric or skew-symmetric, then F is biadditive.
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Proof. If for instance F is skew-symmetric and additive in its first variable,
then for any x, y , z ∈ X, we have

F (x, y + z ) = −F (y + z , x) = −
(
F (y , x) + F (z , x)

)
= −F (y , x)− F (z , x) = F (x, y ) + F (x, z ) .

Therefore, F is additive in its second variable too, and thus it is also biadditive. �

From this theorem, by using Theorem 2.2, we can immediately derive

Corollary 2.2. If F is as in Theorem 2.4, then F is cocyclic.

Now, by using Theorem 2.2 and the following example, we can also see that
even a cocycle on R to itself need not be symmetric, and thus a Cauchy function.
This was a conjecture of Kurepa [62] justified by Erdős [38] .

Example 2.4. With the help a Hamel basis for R [51, 72, 7] , it can be
easily shown that there exist an additive function φ of R to itself which is not
homogeneous. Thus, there exists λ ∈ R such that φ(λ) ̸= λφ(1) .

Now, by defining Φ(x, y ) = φ(x) y for all x, y ∈ R , we can also easily see
that Φ is a biadditive function of R2 to R such that Φ(1 , λ) = φ(1)λ ̸= φ(λ) =
Φ(λ, 1) , and thus Φ is not symmetric.

Remark 2.5. By weakening the differentiability assumption of Kurepa [62] ,
János Aczél in 1958 proved that a continuous cocycle on R to itself is necessarily
symmetric.

This result was announced by Erdős [38] who, by using a Hamel basis, directly
defined a non-symmetric biadditive function to show the necessity of some regularity
conditions.

Because of Theorem 2.1 and the existence of nonsymmetric cocycles, we may
naturally introduce the following

Definition 2.3. The function F , considered in Notation 2.1, will be called
quasi–Cauchy if it is both symmetric and cocyclic.

Remark 2.6. Thus, the main problem on cocycles can be briefly reformulated
by asking that when a quasi-Cauchy function is a Cauchy function.

Now, for instance, by an argument of Erdős [38] , we can already state that if
Y is N-divisible and F is quasi-Cauchy, then F is already Cauchy.

Remark 2.7. Here, the group Y is called N–divisible if it is n–divisible for
all n ∈ N in the sense that Y = nY , or equivalently Y ⊆ nY .

In a detailed form, this means only that for any y ∈ Y there exists z ∈ Y
such that y = n z . That is, the set n−1y = { z ∈ Y : y = n z} is not empty.

Quite similarly the group Y is called n–cancelable if n y = n z implies y = z
for all y , z ∈ Y . Thus, Y is uniquely n–divisible if and only if its both n–divisible
and n–cancelable. ( For some more general observations see [45].)
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The following example, inspired by those of Ebanks [18] and Statkaer [77, p.
286] , shows that a quasi-Cauchy function F of X 2 to Y need not be a Cauchy
function, even when card(X) = 2 and Y = Z .

Example 2.5. Define X = {u, v } and

u+ u = u , u+ v = v , v + u = v , v + v = u .

Then, it is clear that this addition is commutative. Moreover, by considering several
possible cases for the variables x, y , z ∈ X, it can be easily seen that it is also
associative. Hence, it is clear that X is a commutative group with zero element
u , and inverse elements −u = u and −v = v .

Moreover, define a function F of X 2 such that

F (u, u) = 0 , F (u, v ) = 0 , F (v , u) = 0 , F (v , v ) = 1 .

Then, it is clear that F is a symmetric function of X to Z . Moreover, analogously
to the proof of the associativity of the addition, it can be easily seen that F is
cocyclic, and thus it is also quasi-Cauchy.

However, F cannot be a Cauchy function of X 2 to Z. Namely, if it is Cauchy,
then for any generator function f of F we have

f(u) = f(u+ u ) = f(u) + f(u) + F (u, u) = 2 f(u) ,

and thus f(u) = 0 . Moreover, we also have

0 = f(u) = f ( v + v ) = f(v) + f(v) + F (v , v ) = 2 f(v) + 1 ,

and thus f(v) = −1/2 . And, this contradicts the assumption that f(v) ∈ Z.

Remark 2.8. Note that now we have

F (v + v , v ) = F (u, v ) = 0 and F (v , v ) + F (v , v ) = 2F (v , v ) = 2 .

Therefore, F is not additive in its first variable, and thus also in its second variable.

Moreover, by using the forthcoming Theorem 3.1, every quasi-Cauchy function
F of X 2 to Y can be easily determined with a = F (u, u) and b = F (v , v ) in
place of 0 and 1 , respectively.

3. Some further useful results on cocycles

Among the many known results on cocycles, we shall only mention here a few
elementary ones which are closely connected with additivity and biadditivity.

The following preliminary observation has already been stated in [13, Lemma
1] by Davison and Ebanks and [77, Lemma 16.2] by Stetkaer. The simple proof
is included here for the reader’s convenience.

Theorem 3.1. If F is cocyclic, then for any x, y ∈ X we have

F (x, 0) = F (0 , 0) and F (0 , y ) = F (0 , 0) .
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Proof. From (2) in Definition 2.2, by taking y = 0 , we can infer that

F (x, 0) + F (x, z ) = F (x, z ) + F (0 , z ) ,

and thus F (x, 0) = F (0 , z ) for all x, z ∈ X. Hence, by putting first z = 0 and
then x = 0 , we can already see that the required assertions are also true. �

Hence, by Theorem 2.1, it is clear that in particular we also have

Corollary 3.1. If F is a Cauchy function with generator function f , then
for any x, y ∈ X we have F (x, 0) = −f(0) and F (0 , y ) = −f(0) .

In addition to Theorems 2.1 and 2.2, we can now also easily prove the following
theorem which seems not to be stated in the existing literature.

Theorem 3.2. If F is additive and F (x, 0) = F (0 , y ) for all x, y ∈ X,
then F is cocyclic.

Proof. Now, we also have

F (x, y ) + F (x+ y , z )− F (x, y + z )− F (y , z )

= F (x, y ) + F
(
(x, 0) + (y , z )

)
− F

(
(x, y ) + (0 , z )

)
− F (y , z )

= F (x, y ) + F (x, 0) + F (y , z )− F (x, y )− F (0 , z )− F (y , z )

= F (x, 0)− F (0 , z ) = 0

for all x, y , z ∈ X. Therefore, F is also cocyclic. �
Now, as an immediate consequence of the latter two theorems, we can also

state

Corollary 3.2. If F is additive, then the following assertions are equivalent :

(1) F is cocyclic , (2) F (x, 0) = F (0 , y ) for all x, y ∈ X.

In this respect, it is also worth mentioning [77, Theorem 16.6] of Stetkaer,
whose origin goes back to the calculations of Aczél presented in [38] , and also
those of Hosszú [54] and Davison and Ebanks [13, p. 146] . Our subsequent
proof is much longer, but more straightforward than those of the above mentioned
authors.

Theorem 3.3. If F is both cocyclic and skew-symmetric, then the function
G = 2F is biadditive.

Proof. If x, y ∈ X, then by (1) in Definition 2.2, we have

G(x, y ) = 2F (x, y ) = F (x, y ) + F (x, y ) = F (x, y )− F (y , x ) .

Hence, by putting x+ y in place of x , and z in place of y , we can see that, for
any x y, z ∈ X, we have

G(x+ y , z ) = F (x+ y , z )− F (z , x+ y ) .

Moreover, by (2) in Definition 2.2, we have

F (x, y ) + F (x+ y , z ) = F (x, y + z ) + F (y , z ) .
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Hence, by putting z in place of x , x in place of y , and y in place of z , we can
see that

F (z , x) + F (z + x, y ) = F (z , x+ y ) + F (x, y ) .

Therefore, after some simplifications and rearrangements, we have

G(x+ y , z ) = F (x+ y , z )− F (z , x+ y )

= F (x, y + z ) + F (y , z )− F (x, y )− F (z , x)− F (z + x, y ) + F (x, y )

= F (x, z ) + F (y , z )−
(
F (x+ z , y )− F (x, z + y )

)
.

Moreover, again from (2) in Definition 2.2, by putting z in place of y and y in
place of z , we can see that

F (x, z ) + F (x+ z , y ) = F (x, z + y ) + F (z , y ) .

Therefore, again by (1) in Definition 2.2 and the definition of G , we have

G(x+ y , z ) = F (x, z ) + F (y , z )−
(
F (x+ z , y )− F (x, z + y )

)
= F (x, z ) + F (y , z )− F (z , y ) + F (x, z )

= 2F (x, z ) + 2F (y , z ) = G(x, z ) + G(y , z ) .

This shows that G is additive in its first variable.

Moreover, we can easily see that now G is also skew-symmetric. Therefore, by
Theorem 2.4, we can also state that G is biadditive. �

From this theorem, we can immediately derive

Corollary 3.3. If Y is 2–cancelable and F is cocyclic and skew-symmetric,
then F is biadditive.

Proof. Now, by Theorem 3.3, for any x, y , z ∈ X we have

2F (x+ y , z ) = 2F (x, z ) + 2F (y , z ) = 2
(
F (x, z ) + F (y , z )

)
.

Hence, by using that Y is 2–cancelable, we can already infer that

F (x+ y , z ) = F (x, z ) + F (y , z ) .

This shows that F is additive in its first variable. Hence, by Theorem 2.4, we can
see that F is biadditive. �

Now, as an immediate of this corollary and Theorem 2.2, we can also state

Theorem 3.4. If Y is 2–cancelable and F is skew-symmetric, then the
following assertions are equivalent :

(1) F is cocyclic , (2) F is biadditive.

However, the importance of Corollary 3.3 lies mainly in the following observa-
tion of Hosszú [54] inspired by a calculation of Aczél presented in [38] .
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Theorem 3.5. If Y is uniquely 2–divisible and F is cocyclic, and moreover

A(x, y ) = 2−1
(
F (x, y ) + F (y , x)

)
and B(x, y ) = 2−1

(
F (x, y )− F (y , x)

)
for all x, y ∈ X, then A is a quasi-Cauchy and B is a skew-symmetric biadditive
function of X 2 to Y such that F = A+B .

Proof. By the above definitions, we evidently have F (x, y ) = A(x, y ) +
B(x, y ) for all x, y ∈ X. Moreover, it is clear that A is symmetric and B is skew-
symmetric. Furthermore, it can be easily seen that both A and B are also cocyclic.
Thus, A is quasi-Cauchy. Moreover, by Corollary 3.3, B is biadditive. �

Now, as a close analogue of Theorem 3.3, we can also prove the following
striking theorem which shows that a non-zero additive function of X 2 to Y cannot,
in general, be biadditive.

Theorem 3.6. If F is both additive and biadditive, then 2F (x, y ) = 0 for
all x, y ∈ X.

Proof. By the corresponding definitions, we have

F (x, y ) + F (u, v ) = F
(
(x, y ) + (u, v )

)
= F (x+ u, y + v )

= F (x, y + v ) + F (u, y + v ) = F (x, y ) + F (x, v ) + F (u, y ) + F (u, v ) ,

and thus F (x, v ) + F (u, y ) = 0 for all x, y , u, v ∈ X.

Hence, by taking u = x and v = y , we can already infer that 2F (x, y ) =
F (x, y ) + F (x, y ) = 0 for all x, y ∈ X. �

From this theorem, it is clear that in particular we also have

Corollary 3.4. If Y is 2–cancelable and F is both additive and biadditive,
then F (x, y ) = 0 for all x, y ∈ X.

Now, by using Theorems 3.2, 3.3 and 3.6, we can also easily prove

Theorem 3.7. If F is both additive and skew-symmetric, and F (x, 0) =
F (0 , y ) for all x, y ∈ X, then 4F (x, y ) = 0 for all x, y ∈ X.

Proof. From Theorem 3.2, we can see that F is cocyclic. Thus, by Theorem
3.3, the function G = 2F is biadditive. Moreover, from the additivity of F , it is
clear that G is also additive. Therefore, by Theorem 3.6, we have 2G(x, y ) = 0
for all x, y ∈ X. Hence, we can already infer that 4F (x, y ) = 2

(
2F (x, y )

)
=

2G(x, y ) = 0 for all x, y ∈ X. �

From this theorem, it is clear that in particular we also have

Corollary 3.5. If in addition to the conditions of Theorem 3.7, Y is
2–cancelable, then F (x, y ) = 0 for all x, y ∈ X.

Remark 3.1. Note that Y is 4–cancellable if and only if it is 2–cancellable.
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4. Two particular methods of constructing Cauchy and quasi-Cauchy
functions

The following method for constructing Cauchy functions has been suggested
by Shapiro [76] . ( See also Shahoo and Riedel [72, pp. 3–4] .)

Theorem 4.1. If φ is a locally integrable, additive function of R to itself and

f(x) =

∫ x

0

φ(s) d s and F (x, y ) = φ(x) y

for all x, y ∈ R, then F is a Cauchy function with generator function f .

Proof. By some basic properties of the integral, for any x, y ∈ R , we have

f(x+ y ) =

∫ x+y

0

φ(s) d s =

∫ x

0

φ(s) d s +

∫ x+y

x

φ(s) d s = f(x) +

∫ y

0

φ(x+ t) d t

= f(x) +

∫ y

0

(
φ(x) + φ(t)

)
d t = f(x) +

∫ y

0

φ(x) d t +

∫ y

0

φ(t) d t

= f(x) + φ(x) y + f(y) = f(x) + F (x, y ) + f(y) ,

and thus F (x, y ) = f(x+ y )− f(x)− f(y) . �

Remark 4.1. Therefore, F (x, y ) = F (y , x) , and thus φ(x) y = φ(y)x for
all x, y ∈ R . Hence, by taking y = 1 , we can get φ(x) = φ(1)x for all x ∈ R .

The above particular theorem can certainly be generalized by using the Kurz-
weil integral, or an invariant mean, instead of the Riemann or Lebesgue one.

The subsequent method for constructing quasi-Cauchy functions is taken from
the book of Aczél and Daróczy [2, p. 94] . It already indicates that cocycles on
commutative semigroups have to be also considered. ( For such investigations, see
[56, 18, 13, 14, 27] .)

Definition 4.1. A function φ of [ 0 , 1 ] to R is called an information function
if

(1) φ(0) = φ(1) ,

(2) for any u, v ∈ [ 0 , 1 [ with u+ v 6 1 , we have

φ(u) + (1− u) φ
( v

1− u

)
= φ(v) + (1− v ) φ

( u

1− v

)
.

Remark 4.2. Note that the above restrictions on u and v are necessary and
sufficient in order that the values v/(1 − u) and u/(1 − v ) could have meanings
and belong to the domain of φ

For the origins of the above fundamental equation (2) of information, see [2,
pp. 71–74] where in addition to (1) and (2) it is assumed that φ(1/2) = 1 .

Moreover, the reader can get a rapid overview on the subject by consulting the
recent works [47] and [48] of Gselmann and Maksa which contain several further
references.
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The following theorem is only a simplification of [2, Proposition (3.1.24)] . The
proof is included here for the reader’s convenience.

Theorem 4.2. If φ is an information function, then

(1) φ(0) = 0 and φ(1) = 0 ,

(2) φ(u) = φ(1− u) for all u ∈ [ 0 , 1 ] .

Proof. From (2) in Definition 4.1, by taking v = 0 , we can see that

φ(u) + (1− u)φ(0) = φ(0) + φ(u) ,

and thus uφ(0) = 0 for all u ∈ [ 0 , 1 [ . Hence, it is clear that φ(0) = 0 , and thus
by (1) in Definition 4.1 the equality φ(1) = 0 also holds.

Moreover, if u ∈ ] 0 , 1 [ , then from (2) in Definition 4.1, by taking v = 1 − u
we can also see that

φ(u) + (1− u)φ(1) = φ(1− u) + uφ(1) .

Hence, by using that φ(1) = 0 , we can already infer that φ(u) = φ(1− u) .

Now, to complete the proof it remains only to note that, by (1) in Definition
4.1, the latter equality is also true for u = 0 and u = 1 . �

From this theorem, we can immediately derive the following

Corollary 4.1. If φ is an information function, then for any x > 0 , y > 0
and z > 0 we have

(1) φ
( x

x+ y

)
= φ

( y

x+ y

)
, (2) φ

( x

x+ y + z

)
= φ

( y + z

x+ y + z

)
.

The following theorem is only a simplified reformulation of [2, Lemma (3.5.2)] .
However, the proof given here is much more readable than the one given by the
above mentioned authors.

Theorem 4.3. If φ is an information function and

F (x, y ) = (x+ y ) φ
( x

x+ y

)
for all x > 0 and y > 0 , then F is a positively homogeneous, quasi-Cauchy
function of R2

+ to R .

Proof. From the definition of F , by Corollary 4.1, it is clear that F is
symmetric. Moreover, we can also at once see that

F (λx, λ y ) = λF (x, y )

for all λ > 0 , x > 0 and y > 0 , and thus F is positively homogeneous.

Therefore, we need actually prove that F is also cocyclic. For this, note that
if x > 0 , y > 0 and z > 0 , then by the symmetry and the definition of F we
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have

F (x, y ) + F (x+ y , z ) = F (x, y ) + F (z , x+ y )

= (x+ y ) φ
( x

x+ y

)
+ (x+ y + z ) φ

( z

x+ y + z

)
= (x+ y + z )

(
φ
( z

x+ y + z

)
+

x+ y

x+ y + z
φ
( x

x+ y

))
.

Hence, by using the notations

u =
z

x+ y + z
and v =

x

x+ y
(1− u) =

x

x+ y + z
,

and Definition 4.1, Corollary 4.1 and the symmetry of F , we can already see that

F (x, y ) + F (x+ y , z ) = (x+ y + z )

(
φ(u) + (1− u) φ

( v

1− u

))
= (x+ y + z )

(
φ(v) + (1− v ) φ

( u

1− v

))
= (x+ y + z )

(
φ
( x

x+ y + z

)
+

y + z

x+ y + z
φ
( z

y + z

))
= (x+ y + z )φ

( x

x+ y + z

)
+ (y + z )φ

( z

y + z

)
= (x+ y + z )φ

( y + z

x+ y + z

)
+ (y + z )φ

( y

y + z

)
= F (y + z , x) + F (y , z ) = F (x, y + z ) + F (y , z ) .

�

Remark 4.3. By using the proof of [2, Lemma (3.5.7)] , it can be shown that
if F is a positively homogeneous, quasi-Cauchy function of R2

+ to R , and

φ(0) = φ(1) = 0 and φ(x) = F (x, 1− x) for x ∈ ] 0 , 1 [ ,

then φ is already an information function generating F in the former sense that
F (x, y ) = (x+ y ) φ

(
x / (x+ y )

)
for all x > 0 and y > 0 .

Remark 4.4. Moreover, it is also noteworthy that if F is only a positively
homogeneous cocyclic function of R2

+ to R , then by a results of Ebanks [17] ,
the function F is already a Cauchy-function with a generator function f having
the useful derivation property f(x y ) = f(x) y + x f(y) for all x > 0 and y > 0 .

5. Two natural generalizations of cocycles

The results collected in above three sections already give ample reasons for
teaching, investigating and generalizing cocyclic functions.

The Pexider type generalization (1.7) of equation (1.3), and its important
particular cases (1.8) and (1.9), have been studied by Ebanks and Ng [30] and
Davison [12] .
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However, our subsequent generalizations of equation (1.3) are more closely
related to equation (1.4) of Davison and Ebanks stated in [13, Lemma 2] .

Definition 5.1. In addition to (2) in Definition 2.2, we shall also say that :

(1) F is semi-cocyclic if, for any x, y , u, v ∈ X, we have

F (x, y ) + F (u, y + v ) + F (x+ y , u+ v )

= F (x, u) + F (y , u+ v ) + F (x+ u, y + v ) ,

(2) F is pseudo-cocyclic if, for any x, y , u, v ∈ X, we have

F (x, y ) + F (x− u, u) + F (y − v , u) + F (y − v, v )

= F (u, v ) + F (u, y − v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

Remark 5.1. Now, analogously to Definition 2.3, the function F may also be
naturally called semi-Cauchy (pseudo-Cauchy) if it is both symmetric and semi-
cocyclic (pseudo-cocyclic).

Moreover, because of the terms underlined in (2), we may also naturally intro-
duce the following

Definition 5.2. The function F will be called Cauchy-like if

F (x, y ) + F (x− u, u) + F (y − v, v )

= F (u, v ) + F (x− u, y − v ) + F (x+ y − u− v , u+ v ) .

for all x, y , u, v ∈ X.

Remark 5.2. Namely, thus we can at once state that a pseudo-Cauchy function
is Cauchy-like, and a symmetric Cauchy-like function is pseudo-Cauchy.

Moreover, by using the substitutions of Gyula Maksa mentioned in the Intro-
duction, we can easily prove the following two theorems.

Theorem 5.1. The following assertions are equivalent :

(1) F is Cauchy-like ,

(2) for any x, y , u, v ∈ X, we have

F (x, y ) + F (u, v ) + F (x+ y , u+ v )

= F (x, u) + F (y , v ) + F (x+ u, y + v ) .

Remark 5.3. Note that the latter equation, which is closely related to (1) in
Definition 5.1, is only a rearrangement of equation (1.4) of Davison and Ebanks.

Theorem 5.2. If F is additive in its second variable, then the following
assertions are equivalent :

(1) F is semi-cocyclic , (2) F is pseudo-cocyclic .
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Proof. If (2) holds, then from (2) in Definition 5.1 by putting x+u and y+v
in place of x and y , respectively, we can infer that

F (x+ u, y + v ) + F (x, u) + F (y , u) + F (y, v )

= F (u, v ) + F (u, y ) + F (x, y ) + F (x+ y , u+ v )

for all x, y , u, v ∈ X. Hence, by using that

F (y , u) + F (y, v ) = F (y, u+ v ) and F (u, v ) + F (u, y ) = F (u, v + y )

for all y , u, v ∈ X, we can infer that

F (x+ u, y + v ) + F (x, u) + F (y, u+ v )

= F (u, v + y ) + F (x, y ) + F (x+ y , u+ v )

for all x, y , u, v ∈ X. Therefore, (1) in Definition 5.1 is also satisfied, and thus
(1) also holds.

While, if (1) holds, then from (1) in Definition 5.1 by putting x− u and y− v
in place of x and y , respectively, we can infer that

F (x− u, y − v ) + F (u, y ) + F (x+ y − u− v , u+ v )

= F (x− u, u) + F (y − v , u+ v ) + F (x, y ) ,

for all x, y , u, v ∈ X. Hence, by using that

F (u, y ) = F (u, v )+F (u, y−v ) and F (y−v , u+v ) = F (y−v , u)+F (y−v , v )

for all y , u, v ∈ X, we can infer that

F (x− u, y − v ) + F (u, v ) + F (u, y − v ) + F (x+ y − u− v , u+ v )

= F (x− u, u) + F (y − v , u) + F (y − v , v ) + F (x, y ) ,

for all x, y , u, v ∈ X. Therefore, (2) in Definition 5.1 is also satisfied, and thus
(1) also holds. �

The appropriateness of terminology (1) in Definition 5.1 is also apparent from
the following theorem inspired by a less convenient calculation of Davison and
Ebanks [13, p. 139] .

Theorem 5.3. If F is cocyclic, then F is also semi-cocyclic.

Proof. From (2) in Definition 2.2, by taking first z = u+ v , and then y = u
and z = y + v , we can see that

F (x, y ) + F (x+ y , u+ v) = F (x, y + u+ v ) + F (y , u+ v ) ,

F (x, u) + F (x+ u, y + v ) = F (x, u+ y + v ) + F (u, y + v ) ,

and thus

F (x, y)+F (u, y+v )+F (x+y , u+v ) = F (x, u)+F (y , u+v )+F (x+u, y+v )

for all x, y , u, v ∈ X. Therefore, by (1) in Definition 5.1, F is semi-cocyclic. �

By this theorem, in particular, we can also state
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Corollary 5.1. If F is quasi-Cauchy, then it is also semi-Cauchy.

Moreover, from Theorem 5.3 we can more easily derive the following reformu-
lation of [13, Lemma 2] of Davison and Ebanks.

Theorem 5.4. If F is quasi-Cauchy, then F is also Cauchy-like.

Proof. Because of Theorem 5.3 and the symmetry of F , we now have

F (x, y ) + F (y + v , u) + F (x+ y , u+ v )

= F (x, u) + F (u+ v , y ) + F (x+ u, y + v )

for all x, y , u, v ∈ X.

Moreover, from (2) in Definition 2.2, by taking x = y , y = v and z = u , and
using the symmetry of F , we can see that

F (y , v ) + F (y + v, u) = F (y, v + u) + F (v , u) = F (u+ v , y ) + F (u, v )

for all x, y , u, v ∈ X. Therefore, (2) in Theorem 5.1 also holds. �

Now, by using an even more instructive proof, we can also prove a natural gene-
ralization of an observation of Bahyrycz, Páles and Piszczek on Cauchy differences
[4], which shows the appropriateness of terminology (2) in Definition 5.1.

Theorem 5.5. If F is cocyclic, then F is also pseudo-cocyclic.

Proof. By (2) in Definition 2.2, we have

F (s, t) = F (t, z ) + F (s, t+ z )− F (s+ t, z )

for all s, t, z ∈ X.

Now, by using this formula and the notation

∆(x, y ) = F (x, y ) + F (x− u, u) + F (y − v, v )

− F (u, v )− F (x− u, y − v )− F (x+ y − u− v , u+ v )

with x, y , u, v ∈ X, we can see that

∆(x, y ) = F (y , z1)
···············

+ F (x, y + z1)− F (x+ y , z1)
∼∼∼∼∼∼∼∼∼

+ F (u, z2) + F (x− u, u+ z2 )− F (x, z2)

+ F (v , z3) + F (y − v , v + z3)− F (y , z3)
···············

− F (v , z4)− F (u, v + z4) + F (u+ v , z4)
−−−−−−−−−

− F (y − v , z5)− F (x− u, y − v + z5) + F (x+ y − u− v , z5)

− F (u+ v , z6)
−−−−−−−−−

− F (x+ y − u− v , u+ v + z6) + F (x+ y , z6)
∼∼∼∼∼∼∼∼∼

for all x, y , u, v ∈ X and zi ∈ X with i = 1 , . . . , 6 .
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Hence, by taking z3 = z1 , z4 = z3 and z6 = z4 , we can see that

∆(x, y ) = F (x, y + z1)
−−−−−−−−−

+ F (u, z2) + F (x− u, u+ z2 )
∼∼∼∼∼∼∼∼∼∼∼∼

− F (x, z2)
−−−−−−

+ F (y − v , v + z1)

− F (u, v + z1)

− F (y − v , z5)− F (x− u, y − v + z5)
∼∼∼∼∼∼∼∼∼∼∼∼∼∼

+ F (x+ y − u− v , z5)

− F (x+ y − u− v , u+ v + z1)

for all x, y , u, v ∈ X and zi ∈ X with i = 1 , 2 , 5 .

Hence, by taking z2 = y + z1 and z5 = u+ v + z1 , we can see that

∆(x, y ) = F (u, y + z1) + F (y − v , v + z1)

− F (u, v + z1)− F (y − v , u+ v + z1)

for all x, y , u, v ∈ X and z1 ∈ X.

Hence, by taking z1 = −v and using Theorem 3.1, we can already infer that

∆(x, y ) = F (u, y − v ) + F (y − v , 0)− F (u, 0)− F (y − v , u)

= F (u, y− v )+ F (0 , 0)−F (0 , 0)−F (y− v , u) = F (u, y− v )−F (y− v , u)

for all x, y , u, v ∈ X. Therefore, (2) in Definition 5.1 also holds. �

By this theorem, in particular, we can also state

Corollary 5.2. If F is quasi-Cauchy, then it is also pseudo-Cauchy.

Remark 5.4. Because of Theorems 5.3 and 5.5, it seems to be a reasonable
research program to extend some of the basic theorems on cocycles to semi-cocycles
and pseudo-cocycles, and to establish some deeper relationships among the various
generalizations of cocycles.

However, a more important research program is suggested by the unifying the-
orems of Páles [70] . Namely, some further results on the cocycle equation (1.3)
should be extended to the equation (1.12) of Páles. Moreover, equations (1.5) and
(1.6) should also be generalized with the help of equation (1.12).
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[10] Z. Daróczy, Elementare Lösung einer mehrere unbekannte Funktionen enthaltenden Funk-
tionalgleichung, Publ. Math. Debrecen 8 (1961), 160–168.
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[56] M. Hosszú, On the functional equation F (x + y, z ) + F (x, y) = F (x, y + z ) + F (y , z),

Preriod. Math. Hungar. 1 (1971), 213–216.
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[64] K. Lajkó, Special multiplicative deviations, Publ. Math. Debrecen 21 (1974), 39–45.
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[79] L. Székelyhidi, 41. Problem (P238), Aequationes Math. 26 (1984), 284.
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