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Boundary Value Problems
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Abstract. We determine eigenvalue intervals of λ1 and λ2 for the existence

of at least one positive solution for a coupled system of Riemann–Liouville
type multi-point fractional order boundary value problems by utilizing a fixed
point theorem on a cone under suitable conditions.

1. Introduction

Differential equations with fractional order have recently proved to be strong
tools in modeling of many physical phenomena [16, 12, 8]. It owes to the intensive
development of the theory of fractional calculus as well as its applications in various
fields of science and technology such as aerodynamics, biology, Bode’s analysis of
feedback amplifiers, capacitor theory, chemistry, control theory, physics, polymer
rheology, electrical circuits. In consequence, the study of fractional order differential
equations is attained much importance and attention due to their wide applicability.

Much interest has been created in establishing positive solutions and multiple
positive solutions for two-point, multi-point boundary value problems associated
with odinary and fractional order differential equations. To mention the related
papers along these lines, we refer to Bai and Fang [1], Gupta, Ntouyas and Tsam-
atos [6, 7], Ma [11, 10] for ordinary differential equations and Bai and Lü [2],
Benchohra, Henderson, Ntoyuas and Ouahab [3], Su and Zhang [17], Prasad and
Krushna [13, 15] for fractional order differential equations.
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Gupta [5] proved the existence of positive solutions for more general multi-point
boundary value problems

x′′(t) = g
(
t, x(t), x′(t)

)
+ e(t), a. e. t ∈ (0, 1),

x(0) =
m−2∑
i=1

hix
(
τi
)
, x′(1) =

m−2∑
i=1

kix
′(ξi).

In 2007, Yao [19] obtained the existence of n solutions and/or positive solutions
to the following semipositone elastic beam equation boundary value problem

u(4)(t) = f
(
t, u(t), u′(t), u′′(t)

)
, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = u′′(1) = 0.

In 2008, Sun and Zhang [18] considered the third orderm-point boundary value
problem

u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′′(1) =

m−2∑
i=1

kiu
′′(ξi),

where f : [0, 1] × R3 → R is Lp−Caratheodory, 1 < p < ∞, 0 = ξ0 < ξ2 < · · · <

ξm−1 = 1, ki ∈ R(i = 1, 2, · · ·,m−2) and
m−2∑
i=1

ki ̸= 1. Some criteria for the existence

of at least one solution are established by using the well-known Leray–Schauder
continuation principle.

Recently Prasad and Krushna [14] determined the eigenvalue intervals for
which there exist at least one positive solution to the fractional order boundary
value problem

Dq1
a+yi(t) + λipi(t)fi(yi+1(t)) = 0, 1 6 i 6 n, t ∈ [a, b],

yn+1(t) = y1(t),

αyi(a)− βDq2
a+yi(a) = 0, γyi(b) + δDq3

a+yi(b) = 0,

where Dqi
a+ , i = 1, 2, 3 are the standard Riemann–Liouville fractional order deriva-

tives, 1 < q1 6 2, 0 < q2, q3 6 1, by an application of standard fixed point theorem.
Inspired by the papers mentioned above, in this paper, we determine eigenvalue

intervals of λ1 and λ2 for which there exist positive solutions to a coupled system
of fractional order differential equations

(1.1) Dα1

0+y1(t) + λ1p(t)f
(
y1(t), y2(t)

)
= 0, t ∈ (0, 1),

(1.2) Dα2

0+y2(t) + λ2q(t)g
(
y1(t), y2(t)

)
= 0, t ∈ (0, 1),

satisfying the multi-point boundary conditions

(1.3) y1(0) = y′1(0) = y′′1 (0) = 0, y′′1 (1) =
m−1∑
k=2

ϑky
′′
1

(
ξk
)
, m > 3,
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(1.4) y2(0) = y′2(0) = y′′2 (0) = 0, y′′2 (1) =

n−1∑
k=2

ζky
′′
2

(
ηk
)
, n > 3,

where 0 < ξ2 < · · · < ξm−1 < 1, 0 < η2 < · · · < ηn−1 < 1, λ1, λ2 > 0, αi ∈ (3, 4]
and Dαi

0+ , for i = 1, 2 are the standard Riemann–Liouville fractional order deriva-
tives. We shall give sufficient conditions on λi for i = 1, 2 and f, g such that the
fractional order boundary value problem (1.1)-(1.4) has positive solutions. By a
positive solution of the system of fractional order boundary value problem (1.1)-

(1.4), we mean
(
y1(t), y2(t)

)
∈

(
Cα1 [0, 1] × Cα2 [0, 1]

)
satisfying (1.1)-(1.4) with

y1(t) > 0, y2(t) > 0, for all t ∈ [0, 1] and (y1, y2) ̸= (0, 0).

We assume the following conditions hold throughout the paper:

(A1) the functions f, g : R+ × R+ → R+ are continuous,

(A2) the functions p, q : [0, 1] → R+ are continuous and p, q do not vanish
identically on any closed subinterval of [0, 1],

(A3) ϑ1, ϑ2, ϑ3, · · ·, ϑm−1 and ζ1, ζ2, ζ3, · · ·, ζn−1 are positive constants such that

m−1∑
k=2

ϑkξ
α1−3
k < 1 and

n−1∑
k=2

ζkη
α2−3
k < 1,

(A4) each of fs
0 , f

i
0, f

s
∞, f i

∞, gs0, g
i
0, g

s
∞ and gi∞, by

fs
0 = lim

(y1, y2) → (0+, 0+)
sup

f(y1, y2)
2∑

i=1

yi

, f i
0 = lim

(y1, y2) → (0+, 0+)
inf

f(y1, y2)
2∑

i=1

yi

,

fs
∞ = lim

(y1, y2) → (∞,∞)
sup

f(y1, y2)
2∑

i=1

yi

, f i
∞ = lim

(y1, y2) → (∞,∞)
inf

f(y1, y2)
2∑

i=1

yi

,

gs0 = lim
(y1, y2) → (0+, 0+)

sup
g(y1, y2)

2∑
i=1

yi

, gi0 = lim
(y1, y2) → (0+, 0+)

inf
g(y1, y2)

2∑
i=1

yi

,

gs∞ = lim
(y1, y2) → (∞,∞)

sup
g(y1, y2)

2∑
i=1

yi

, gi∞ = lim
(y1, y2) → (∞,∞)

inf
g(y1, y2)

2∑
i=1

yi

,

exist as positive real numbers.

The organization of this paper is as follows: In §2, we compute the Green
functions for the fractional order boundary value problems and estimate the bounds
for these Green functions. In §3, we establish criteria for the existence of positive
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solutions to fractional order boundary value problem (1.1)-(1.4) by utilizing Guo–
Krasnosel’skii fixed point theorem. In §4, as an application, we demonstrate our
results with an example.

2. Green functions and bounds

In this section the Green functions for the fractional order boundary value
problems are constructed and the bounds for these Green functions are estimated,
which are essential to establish the main results.

Lemma 2.1. Let d1 = 1 − ϑkξ
α1−3
k ̸= 0. If h1(t) ∈ C[0, 1], then the fractional

order differential equations

(2.1) Dα1

0+y1(t) + h1(t) = 0, t ∈ (0, 1),

satisfying (1.3) has a unique solution

y1(t) =

∫ 1

0

G1(t, s)h1(s)ds,

where

(2.2) G1(t, s) = G∗
1(t, s) +

tα1−1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
ξk, s

)
,

G∗
1(t, s) =


tα1−1(1− s)α1−3

Γ(α1)
, 0 6 t 6 s 6 1,

tα1−1(1− s)α1−3 − (t− s)α1−1

Γ(α1)
, 0 6 s 6 t 6 1,

G∗∗
1

(
ξk, s

)
=


[
ξk(1− s)

]α1−3

Γ(α1)
, 0 6 ξk 6 s 6 1,[

ξk(1− s)
]α1−3 − (ξk − s)α1−3

Γ(α1)
, 0 6 s 6 ξk 6 1.

Proof. Let y1 ∈ Cα1 [0, 1] be the solution of fractional order boundary value
problem given by (2.1) and (1.3). An equivalent integral equation for (2.1) is given
by

y1(t) =
−1

Γ(α1)

∫ t

0

(t− s)α1−1h1(s)ds+ c1t
α1−1 + c2t

α1−2 + c3t
α1−3 + c4t

α1−4.

Using the boundary conditions (1.3), one can determine c4 = c3 = c2 = 0 and

c1 =
1

d1

[∫ 1

0

(1− s)α1−3

Γ(α1)
h1(s)ds−

m−1∑
k=2

∫ ξk

0

ϑk(ξk − s)α1−3

Γ(α1)
h1(s)ds

]
.
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Hence the unique solution of the fractional order boundary value problem given by
(2.1) and (1.3) is

y1(t) =
tα1−1

d1

[∫ 1

0

(1− s)α1−3

Γ(α1)
h1(s)ds−

m−1∑
k=2

∫ ξk

0

ϑk(ξk − s)α1−3

Γ(α1)
h1(s)ds

]

−
∫ t

0

(t− s)α1−1

Γ(α1)
h1(s)ds

=

∫ t

0

tα1−1(1− s)α1−3

Γ(α1)
h1(s)ds−

∫ t

0

(t− s)α1−1

Γ(α1)
h1(s)ds+

tα1−1

d1
×[∫ 1

0

ϑkξ
α1−3
k (1− s)α1−3

Γ(α1)
h1(s)ds−

m−1∑
k=2

∫ ξk

0

ϑk(ξk − s)α1−3

Γ(α1)
h1(s)ds

]

=

∫ 1

0

{
G∗

1(t, s) +
tα1−1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
ξk, s

)}
h1(s)ds

=

∫ 1

0

G1(t, s)h1(s)ds.

�

Lemma 2.2. Assume that the condition (A3) is satisfied. Then the Green’s
function G1(t, s) given in (2.2) is nonnegative, for all t, s ∈ [0, 1].

Proof. Consider the Green’s function G1(t, s) given by (2.2). Let 0 6 t 6
s 6 1. Then, we have

G∗
1(t, s) =

tα1−1(1− s)α1−3

Γ(α1)
> 0.

Let 0 6 s 6 t 6 1. Then, we have

G∗
1(t, s) =

tα1−1(1− s)α1−3 − (t− s)α1−1

Γ(α1)

>
tα1−1

[
(1− s)α1−3 − (1− s)α1−1

]
Γ(α1)

> 0.

Let 0 6 ξk 6 s 6 1. Then

G∗∗
1

(
ξk, s

)
=

[
ξk(1− s)

]α1−3

Γ(α1)
> 0.

Let 0 6 s 6 ξk 6 1. Then

G∗∗
1

(
ξk, s

)
=

[
ξk(1− s)

]α1−3 − (ξk − s)α1−3

Γ(α1)

>
[
ξk(1− s)

]α1−3 −
[
ξk(1− s)

]α1−3

Γ(α1)
= 0.
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�

Lemma 2.3. Assume that the condition (A3) is satisfied. Then the Green’s
function G1(t, s) given in (2.2) satisfies the following inequality:

(2.3) m1(t)G1(1, s) 6 G1(t, s) 6 G1(1, s), for all t, s ∈ [0, 1],

where m1(t) = tα1−1.

Proof. Consider the Green’s function G1(t, s) given by (2.2). Let 0 6 t 6
s 6 1 and 0 6 ξk 6 s 6 1. Then, we have

G1(t, s) =G∗
1(t, s) +

tα1−1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
ξk, s

)
6G∗

1(1, s) +
1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
1, s

)
6G1(1, s).

Similarly G1(t, s) 6 G1(1, s) for 0 6 s 6 t 6 1 and 0 6 s 6 ξk 6 1.
Let 0 6 t 6 s 6 1 and 0 6 ξk 6 s 6 1. Then, we have

G1(t, s) =
tα1−1(1− s)α1−3

Γ(α1)
+

tα1−1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
ξk, s

)
>tα1−1

[
G∗

1(1, s) +
1

d1

m−1∑
k=2

ϑkG
∗∗
1

(
1, s

)]
>tα1−1G1(1, s).

Similarly G1(t, s) > tα1−1G1(1, s) for 0 6 s 6 t 6 1 and 0 6 s 6 ξk 6 1. �

Lemma 2.4. Assume that the condition (A3) is satisfied and s ∈ [0, 1]. Then
the Green’s function G1(t, s) given in (2.2) satisfies

(2.4) min
t∈[ϑm−1,1]

G1(t, s) > k1G1(1, s),

where k1 = ϑkξ
α1−3
k < 1.

Proof. By Lemma 2.3, we can easily establish the result. �

Lemma 2.5. Let d2 = 1 − ζkη
α2−3
k ̸= 0. If h2(t) ∈ C[0, 1], then the fractional

order differential equations

(2.5) Dα2

0+y2(t) + h2(t) = 0, t ∈ (0, 1),

satisfying (1.3) has a unique solution,

y2(t) =

∫ 1

0

G2(t, s)h2(s)ds,
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where

(2.6) G2(t, s) = G∗
2(t, s) +

tα2−1

d2

n−1∑
k=2

ζkG
∗∗
2

(
ηk, s

)
,

G∗
2(t, s) =


tα2−1(1− s)α2−3

Γ(α2)
, 0 6 t 6 s 6 1,

tα2−1(1− s)α2−3 − (t− s)α2−1

Γ(α2)
, 0 6 s 6 t 6 1,

G∗∗
2

(
ηk, s

)
=


[
ηk(1− s)

]α2−3

Γ(α2)
, 0 6 ηk 6 s 6 1,[

ηk(1− s)
]α2−3 − (ηk − s)α2−3

Γ(α2)
, 0 6 s 6 ηk 6 1.

Proof. Proof is similar to Lemma 2.1. �

Lemma 2.6. Assume that the condition (A3) is satisfied. Then the Green’s
function G2(t, s) given in (2.6) is nonnegative, for all t, s ∈ [0, 1].

Proof. Proof is similar to Lemma 2.2. �

Lemma 2.7. Assume that the condition (A3) is satisfied. Then the Green’s
function G2(t, s) given in (2.6) satisfies the following inequality:

(2.7) m2(t)G2(1, s) 6 G2(t, s) 6 G2(1, s), for all t, s ∈ [0, 1],

where m2(t) = tα2−1.

Proof. Proof is similar to Lemma 2.3. �

Lemma 2.8. Assume that the condition (A3) is satisfied and s ∈ [0, 1]. Then
the Green’s function G2(t, s) given in (2.6) satisfies

(2.8) min
t∈[ζn−1,1]

G2(t, s) > k2G2(1, s),

where k2 = ζkη
α2−3
k < 1.

Proof. By Lemma 2.7, we can easily establish the result. �

Theorem 2.1. [4, 9] Let X be a Banach Space, P ⊆ X be a cone and suppose
that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that
T : P ∩ (Ω2\Ω1) → P is completely continuous operator such that either

(i) ∥ Tu ∥6∥ u ∥, u ∈ P ∩ ∂Ω1 and ∥ Tu ∥>∥ u ∥, u ∈ P ∩ ∂Ω2, or

(ii) ∥ Tu ∥>∥ u ∥, u ∈ P ∩ ∂Ω1 and ∥ Tu ∥6∥ u ∥, u ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2\Ω1).
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3. Existence of at least one positive solution

In this section we establish the existence of at least one positive solution for a
coupled system of fractional order boundary value problem (1.1)-(1.4).

Consider the Banach space B = E × E , where E =
{
y1 : y1 ∈ C[0, 1]

}
equipped

with the norm ∥(y1, y2)∥ =

2∑
i=1

∥yi∥ for (y1, y2) ∈ B and the norm is defined as

∥y1∥ = max
t∈[0,1]

|y1(t)|.

Define a cone P ⊂ B by

P =
{
(y1, y2) ∈ B : y1(t), y2(t) > 0 on [0, 1] and min

t∈[r,1]

2∑
i=1

yi(t) > k∥(y1, y2)∥
}
,

where

(3.1) r = max
{
ϑm−1, ζn−1

}
and k = min

{
k1, k2

}
.

Let T1, T2 : P → E and T : P → B be the operators defined by

T1(y1, y2)(t) =λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds,

T2(y1, y2)(t) =λ2

∫ 1

0

G2(t, s)q(s)g
(
y1(s), y2(s)

)
ds

and

(3.2) T (y1, y2)(t) =
(
T1(y1, y2)(t), T2(y1, y2)(t)

)
, for (y1, y2) ∈ B.

Lemma 3.1. The operator T defined by (3.2) is a self map on P.

Proof. Let (y1, y2) ∈ P. Clearly T1(y1, y2)(t) and T2(y1, y2)(t) are nonnega-
tive for t ∈ [0, 1]. Also for (y1, y2) ∈ P,

∥T1(y1, y2)∥ 6λ1

∫ 1

0

G1(1, s)p(s)f
(
y1(s), y2(s)

)
ds,

∥T2(y1, y2)∥ 6λ2

∫ 1

0

G2(1, s)q(s)g
(
y1(s), y2(s)

)
ds,

and

min
t∈[r,1]

T1(y1, y2)(t) = min
t∈[r,1]

λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds

>k1λ1

∫ 1

0

G1(1, s)p(s)f
(
y1(s), y2(s)

)
ds

>k1∥T1(y1, y2)∥0.
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Similarly min
t∈[r,1]

T2(y1, y2)(t) > k2∥T2(y1, y2)∥0. Therefore,

min
t∈[r,1]

2∑
i=1

Ti(y1, y2)(t) > k1∥T1(y1, y2)∥0 + k2∥T2(y1, y2)∥0

> k

2∑
i=1

∥∥Ti(y1, y2)
∥∥
0

= k
∥∥(T1(y1, y2), T2(y1, y2)

)∥∥
= k

∥∥T (y1, y2)∥∥.
Hence T (y1, y2) ∈ P and so T : P → P. Standard arguments involving the Arzela–
Ascoli theorem shows that T is completely continuous. �

Let

Λ1 =γ1

[
kk1f

i
∞

∫ 1

r

G1(1, s)p(s)ds

]−1

,Λ2 = γ1

[
fs
0

∫ 1

0

G1(1, s)p(s)ds

]−1

,

Λ3 =γ2

[
kk2g

i
∞

∫ 1

r

G2(1, s)q(s)ds

]−1

,Λ4 = γ2

[
gs0

∫ 1

0

G2(1, s)q(s)ds

]−1

,

where γ1, γ2 are two positive real numbers such that γ1 + γ2 = 1.

Theorem 3.1. Assume that the conditions (A1)-(A4) hold.

(H1) If fs
0 , g

s
0, f

i
∞, gi∞ ∈ (0,∞),Λ1 < Λ2 and Λ3 < Λ4, then for each λ1 ∈

(Λ1,Λ2) and λ2 ∈ (Λ3,Λ4) there exists a positive solution (y1, y2) for the
problem (1.1)-(1.4).

(H2) If fs
0 = gs0 = 0, f i

∞, gi∞ ∈ (0,∞), then for each λ1 ∈ (Λ1,∞) and λ2 ∈
(Λ3,∞) there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).

(H3) If fs
0 , g

s
0 ∈ (0,∞), f i

∞ = gi∞ = ∞, then for each λ1 ∈ (0,Λ2) and λ2 ∈
(0,Λ4) there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).

(H4) If fs
0 = gs0 = 0, f i

∞ = gi∞ = ∞, then for each λ1 ∈ (0,∞) and λ2 ∈ (0,∞)
there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).
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Proof. Let λ1 ∈ (Λ1,Λ2), λ2 ∈ (Λ3,Λ4) and let ϵ > 0 be a real number such
that ϵ < f i

∞, ϵ < gi∞ and

γ1

[
kk1

(
f i
∞ − ϵ

) ∫ 1

r

G1(1, s)p(s)ds

]−1

6 λ1,

γ1

[(
fs
0 + ϵ

) ∫ 1

0

G1(1, s)p(s)ds

]−1

> λ1,

γ2

[
kk2

(
gi∞ − ϵ

) ∫ 1

r

G2(1, s)q(s)ds

]−1

6 λ2,

γ2

[(
gs0 + ϵ

) ∫ 1

0

G2(1, s)q(s)ds

]−1

> λ2.

From the definitions of fs
0 and gs0, there exists J1 > 0 such that

f(y1, y2) 6
(
fs
0 + ϵ

)
(y1 + y2) and g(y1, y2) 6

(
gs0 + ϵ

)
(y1 + y2), 0 <

2∑
i=1

yi 6 J1.

By (A1), the above inequalities are also valid for y1 = y2 = 0. Let (y1, y2) ∈ P with
∥(y1, y2)∥B = J1. i.e., ∥y1∥ + ∥y2∥ = J1. Then, from Lemma 2.3, for t ∈ [0, 1], we
have

T1

(
y1, y2

)
(t) =λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds

6λ1

∫ 1

0

G1(1, s)p(s)
(
fs
0 + ϵ

)(
y1(s) + y2(s)

)
ds

6λ1

(
fs
0 + ϵ

) ∫ 1

0

G1(1, s)p(s)
(
∥y1∥+ ∥y2∥

)
ds

6γ1
(
∥y1∥+ ∥y2∥

)
= γ1

∥∥(y1, y2)∥∥B.
Hence ∥T1

(
y1, y2

)
∥ 6 γ1

∥∥(y1, y2)∥∥B. In a similar manner we conclude that

∥T2

(
y1, y2

)
∥ 6 γ2

∥∥(y1, y2)∥∥B.
Therefore, ∥∥T1

(
y1, y2

)∥∥
B =

∥∥(T1(y1, y2), T2(y1, y2)
)∥∥

B

=
∥∥T1(y1, y2)

∥∥+
∥∥T2(y1, y2)

∥∥
=
(
γ1 + γ2

)∥∥(y1, y2)∥∥B
=
∥∥(y1, y2)∥∥B.

Hence
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B.
If we set Ω1 =

{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J1

}
, then

(3.3)
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω1.
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Next from the definitions of f i
∞ and gi∞, there exists J2 > 0 such that

f(y1, y2) > (f i
∞ − ϵ)(y1 + y2) and g(y1, y2) > (gi∞ − ϵ)(y1 + y2),

2∑
i=1

yi > J2.

Let J2 = max

{
2J1,

J2

k

}
. Choose (y1, y2) ∈ P with

∥∥(y1, y2)∥∥B = H2. Then

min
t∈[r,1]

2∑
i=1

yi(t) > k
∥∥(y1, y2)∥∥B > J2.

From Lemma 2.4, we have

T1(y1, y2)(t) = λ1

∫ 1

0

G(t, s)p(s)f
(
y1(s), y2(s)

)
ds

> λ1k1

∫ 1

r

G(1, s)p(s)(f i
∞ − ϵ)

(
y1(s) + y2(s)

)
ds

> λ1k1(f
i
∞ − ϵ)

∫ 1

r

G(1, s)p(s)k
∥∥(y1(s), y2(s))∥∥Bds

> γ1
∥∥(y1(s), y2(s))∥∥B.

Hence
∥∥T1(y1, y2)

∥∥ > γ1
∥∥(y1, y2)∥∥B. In a similar manner we conclude that∥∥T2(y1, y2)

∥∥ > γ2
∥∥(y1, y2)∥∥B.

Therefore, ∥∥T1

(
y1, y2

)∥∥
B =

∥∥(T1(y1, y2), T2(y1, y2)
)∥∥

B

=
∥∥T1(y1, y2)

∥∥+
∥∥T2(y1, y2)

∥∥
=
(
γ1 + γ2

)∥∥(y1, y2)∥∥B
=
∥∥(y1, y2)∥∥B.

Hence
∥∥T (y1, y2)∥∥B >

∥∥(y1, y2)∥∥B.
If we set Ω2 =

{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J2

}
, then

(3.4)
∥∥T (y1, y2)∥∥B >

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω2.

Applying Theorem 2.1 to (3.3) and (3.4), we obtain that T has a fixed point
(y1, y2) ∈ P ∩ (Ω2\Ω1) and hence the boundary value problem (1.1)-(1.4) has a

positive solution such that J1 6
2∑

i=1

∥yi∥ 6 J2.

(H2) Let λ1 ∈ (Λ1,∞), λ2 ∈ (Λ3,∞) and let ϵ > 0 be a real number such that
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ϵ < f i
∞, ϵ < gi∞ and

γ1

[
kk1

(
f i
∞ − ϵ

) ∫ 1

r

G1(1, s)p(s)ds

]−1

6 λ1; ϵ 6 γ1
λ1

[∫ 1

0

G1(1, s)p(s)ds

]−1

,

γ2

[
kk2

(
gi∞ − ϵ

) ∫ 1

r

G2(1, s)q(s)ds

]−1

6 λ2; ϵ 6 γ2
λ2

[∫ 1

0

G2(1, s)q(s)ds

]−1

.

From the definitions of fs
0 = 0 and gs0 = 0, there exists J1 > 0 such that

f(y1, y2) 6 ϵ(y1 + y2) and g(y1, y2) 6 ϵ(y1 + y2), 0 6
2∑

i=1

yi 6 J1.

Let (y1, y2) ∈ P with ∥(y1, y2)∥B = J1. i.e., ∥y1∥ + ∥y2∥ = J1. Then, from Lemma
2.3, for t ∈ [0, 1], we have

T1

(
y1, y2

)
(t) =λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds

6λ1

∫ 1

0

G1(1, s)p(s)ϵ
(
y1(s) + y2(s)

)
ds

6λ1ϵ

∫ 1

0

G1(1, s)p(s)
(
∥y1∥+ ∥y2∥

)
ds

6γ1
(
∥y1∥+ ∥y2∥

)
= γ1

∥∥(y1, y2)∥∥B.
Hence ∥T1

(
y1, y2

)
∥ 6 γ1

∥∥(y1, y2)∥∥B. In a similar manner we conclude that

∥T2

(
y1, y2

)
∥ 6 γ2

∥∥(y1, y2)∥∥B.
Therefore, ∥∥T (y1, y2)∥∥B =

∥∥(T1(y1, y2), T2(y1, y2)
)∥∥

B

=
∥∥T1(y1, y2)

∥∥+
∥∥T2(y1, y2)

∥∥
6γ1

∥∥(y1, y2)∥∥B + γ2
∥∥(y1, y2)∥∥B

=
(
γ1 + γ2

)∥∥(y1, y2)∥∥B
=
∥∥(y1, y2)∥∥B.

Hence
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B.
Define the set Ω1 =

{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J1

}
then

(3.5)
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω1.

Define the set Ω2 =
{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J2

}
and proceeding in a

similar manner of proof (H1), we get

(3.6)
∥∥T (y1, y2)∥∥B >

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω2.

Applying Theorem 2.1 to (3.5) and (3.6), we obtain that T has a fixed point
(y1, y2) ∈ P ∩ (Ω2\Ω1) and hence the boundary value problem (1.1)-(1.4) has a
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positive solution such that J1 6
2∑

i=1

∥yi∥ 6 J2. Similarly we can prove the remain-

ing. �

Prior to our next result, we define

Υ1 =γ3

[
kk1f

i
0

∫ 1

r

G1(1, s)p(s)ds

]−1

,Υ2 = γ3

[
fs
∞

∫ 1

0

G1(1, s)p(s)ds

]−1

,

Υ3 =γ4

[
kk2g

i
0

∫ 1

r

G2(1, s)q(s)ds

]−1

,Υ4 = γ4

[
gs∞

∫ 1

0

G2(1, s)q(s)ds

]−1

,

where γ3, γ4 are two positive real numbers such that γ3 + γ4 = 1.

Theorem 3.2. Assume that the conditions (A1)-(A4) hold.

(H5) If f i
0, g

i
0, f

s
∞, gs∞ ∈ (0,∞),Υ1 < Υ2 and Υ3 < Υ4, then for each λ1 ∈

(Υ1,Υ2) and λ2 ∈ (Υ3,Υ4) there exists a positive solution (y1, y2) for the
problem (1.1)-(1.4).

(H6) If fs
∞ = gs∞ = 0, f i

0, g
i
0 ∈ (0,∞), then for each λ1 ∈ (Υ1,∞) and λ2 ∈

(Υ3,∞) there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).

(H7) If fs
∞, gs∞ ∈ (0,∞), f i

0 = gi0 = ∞, then for each λ1 ∈ (0,Υ2) and λ2 ∈
(0,Υ4) there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).

(H8) If fs
∞ = gs∞ = 0, f i

0 = gi0 = ∞, then for each λ1 ∈ (0,∞) and λ2 ∈ (0,∞)
there exists a positive solution (y1, y2) for the problem (1.1)-(1.4).

Proof. (H5) Let λ1 ∈ (Υ1,Υ2), λ2 ∈ (Υ3,Υ4) and let ϵ > 0 be a real number
such that ϵ < f i

0, ϵ < gi0 and

γ3

[
kk1

(
f i
0 − ϵ

) ∫ 1

r

G1(1, s)p(s)ds

]−1

6 λ1,

γ3

[(
fs
∞ + ϵ

) ∫ 1

0

G1(1, s)p(s)ds

]−1

> λ1,

γ4

[
kk2

(
gi0 − ϵ

) ∫ 1

r

G2(1, s)q(s)ds

]−1

6 λ2,

γ4

[(
gs∞ + ϵ

) ∫ 1

0

G2(1, s)q(s)ds

]−1

> λ2.

From the definitions of f i
0, g

i
0 ∈ (0,∞) there exists J3 > 0 such that

f(y1, y2) 6
(
f i
0 − ϵ

)
(y1 + y2) and g(y1, y2) 6

(
gi0 − ϵ

)
(y1 + y2), 0 <

2∑
i=1

yi 6 J3.

By (A1), the above inequalities are also valid for y1 = y2 = 0. Let (y1, y2) ∈ P with
∥(y1, y2)∥B = J3. i.e., ∥y1∥ + ∥y2∥ = J3. Then, from Lemma 2.4, for t ∈ [0, 1], we
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have

T1

(
y1, y2

)
(t) =λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds

>λ1k1

∫ 1

r

G1(1, s)p(s)
(
f i
0 − ϵ

)(
y1(s) + y2(s)

)
ds

>λ1k1
(
f i
0 − ϵ

) ∫ 1

r

G1(1, s)p(s)k
(
∥y1∥+ ∥y2∥

)
ds

>γ3
(
∥y1∥+ ∥y2∥

)
= γ3

∥∥(y1, y2)∥∥B.
Hence ∥T1

(
y1, y2

)
∥ > γ3

∥∥(y1, y2)∥∥B. In a similar manner we conclude that

∥T2

(
y1, y2

)
∥ > γ4

∥∥(y1, y2)∥∥B.
Therefore,∥∥T (y1, y2)∥∥B =

∥∥(T1(y1, y2), T2(y1, y2)
)∥∥

B >
(
γ3 + γ4

)∥∥(y1, y2)∥∥B =
∥∥(y1, y2)∥∥B.

Hence
∥∥T (y1, y2)∥∥B >

∥∥(y1, y2)∥∥B.
If we set Ω3 =

{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J3

}
, then

(3.7)
∥∥T (y1, y2)∥∥B >

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω3.

Now we define the functions f∗, g∗ : R+ → R+ by
f∗(x) = max

y1+y2∈[0,x]
f(y1, y2)

g∗(x) = max
y1+y2∈[0,x]

g(y1, y2), for all x ∈ R+. Then

f(y1, y2) 6 f∗(x) and g(y1, y2) 6 g∗(x),

2∑
i=1

yi 6 x.

It follows that the functions f∗, g∗ are nondecreasing and satisfy the conditions
lim
x→∞

sup
f∗(x)

x
= fs

∞,

lim
x→∞

sup
g∗(x)

x
= gs∞.

Next from the definitions of fs
∞, gs∞ ∈ (0,∞), there exists J4 > 0 such that

f∗(x) 6 (fs
∞ + ϵ)x and g∗(x) 6 (gs∞ + ϵ)x, x > J4.

Let J4 = max
{
2J3, J4

}
. Choose (y1, y2) ∈ P with

∥∥(y1, y2)∥∥B = J4. Then by the

definitions of f∗ and g∗, we have{
f
(
y1(t), y2(t)

)
6 f∗(y1(t) + y2(t)

)
6 f∗(∥(y1∥+ ∥y2)∥

)
= f∗(∥(y1, y2)∥B),

g
(
y1(t), y2(t)

)
6 g∗

(
y1(t) + y2(t)

)
6 g∗

(
∥(y1∥+ ∥y2)∥

)
= g∗

(
∥(y1, y2)∥B

)
.
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From Lemma 2.3, we have

T1(y1, y2)(t) = λ1

∫ 1

0

G1(t, s)p(s)f
(
y1(s), y2(s)

)
ds

6 λ1

∫ 1

0

G1(1, s)p(s)f
∗(∥(y1, y2)∥B)ds

6 λ1

∫ 1

0

G1(1, s)p(s)(f
s
∞ + ϵ)

∥∥(y1, y2)∥∥Bds
6 γ3

∥∥(y1, y2)∥∥B.
Hence

∥∥T1(y1, y2)
∥∥ 6 γ3

∥∥(y1, y2)∥∥B. In a similar manner, we conclude that∥∥T2(y1, y2)
∥∥ 6 γ4

∥∥(y1, y2)∥∥B.
Therefore,∥∥T1

(
y1, y2

)∥∥
B =

∥∥(T1(y1, y2), T2(y1, y2)
)∥∥

B 6
(
γ3 + γ4

)∥∥(y1, y2)∥∥B =
∥∥(y1, y2)∥∥B.

Hence
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B. If we set

Ω4 =
{
(y1, y2) ∈ B :

∥∥(y1, y2)∥∥B < J4

}
,

then

(3.8)
∥∥T (y1, y2)∥∥B 6

∥∥(y1, y2)∥∥B, for (y1, y2) ∈ P ∩ ∂Ω4.

Applying Theorem 2.1 to (3.7) and (3.8), we obtain that T has a fixed point
(y1, y2) ∈ P ∩ (Ω4\Ω3) and hence the boundary value problem (1.1)-(1.4) has a

positive solution such that J3 6
2∑

i=1

∥yi∥ 6 J4.

The proofs of the remaining cases (H5)-(H8) are similar that of (H1) and we
shall omit them. �

4. Example

In this section we give an example to illustrate the utility of our main results.
Consider the fractional order three-point boundary value problem

(4.1) D3.6
0+ y1(t) + λ1f

(
y1, y2

)
= 0, t ∈ (0, 1),

(4.2) D3.7
0+ y2(t) + λ2g

(
y1, y2

)
= 0, t ∈ (0, 1),

(4.3) y1(0) = y′1(0) = y′′1 (0) = 0, y′′1 (1) =
3

2
y′′1

(1
2

)
,

(4.4) y2(0) = y′2(0) = y′′2 (0) = 0, y′′2 (1) = 2y′′2

(1
3

)
,
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where 
f(y1, y2) =

(Siny2 + 3)(y1 + y2)
[
1100(y1 + y2) + 1

]
y1 + y2 + 1

,

g(y1, y2) =

[
500(y1 + y2) + 1

]
(Cosy1 + 7)(y1 + y2)

y1 + y2 + 1
,

p(t) = q(t) = 1, fs
0 = 4, f i

∞ = 2200, gs0 = 8, gi∞ = 3000. Applying Theorem 3.1, we
get an eigenvalue interval λ1 ∈

(
0.00442, 0.10593

)
and λ2 ∈

(
0.00611, 0.07022

)
in

which the three-point fractional order boundary value problem (4.1)-(4.4) has at
least one positive solution.
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