SPECTRA OF GRAPH OPERATIONS BASED ON CORONA AND NEIGHBORHOOD CORONA OF GRAPH G AND K_{1}

Chandrashekar Adiga and Rakshith B. R.

Abstract

The corona $G \circ H$ of two graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining each i-th vertex of G to every vertex in the i-th copy of H . The neighborhood corona $G \star H$ of two graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H . In this paper we compute the adjacency spectrum (respectively, Laplacian spectrum, signless Laplacian) of four types of graph operations on G and H , called as N - vertex corona, C-vertex neighborhood corona, C-edge corona and N-edge corona, based on the corona and neighborhood corona of G and K_{1}. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.

1. Introduction

All graphs considered in this paper are simple graphs. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $\mathrm{E}(\mathrm{G})$. The adjacency matrix of G , denoted by $\mathrm{A}(\mathrm{G})$, is the $n \times n$ matrix $\left[a_{i j}\right]$, where $a_{i j}=1$, if the vertices v_{i} and v_{j} are adjacent in G , otherwise $a_{i j}=0$. If all the eigenvalues of $\mathrm{A}(\mathrm{G})$ are integers then the graph G is said to be an integral graph [10]. The Laplacian matrix of the graph G, denoted by $L(G)$, is defined as $D(G)-A(G)$, where $D(G)$ is the diagonal degree matrix of G. The signless Laplacian matrix of the graph G, denoted by $Q(G)$ is defined as $\mathrm{D}(\mathrm{G})+\mathrm{A}(\mathrm{G})$. The adjacency spectrum $\sigma(G)$, Laplacian spectrum $\mu(G)$,

[^0]and signless Laplacian spectrum $\gamma(G)$ are defined as follows:
\[

$$
\begin{aligned}
\sigma(G) & =\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right) \\
\mu(G) & =\left(\mu_{1}(G), \mu_{2}(G), \cdots, \mu_{n}(G)\right) \\
\gamma(G) & =\left(\gamma_{1}(G), \gamma_{2}(G), \cdots, \gamma_{n}(G)\right)
\end{aligned}
$$
\]

where $\lambda_{i}(G), \mu_{i}(G)$ and $\gamma_{i}(G)$ are the eigenvalues of $\mathrm{A}(\mathrm{G}), \mathrm{L}(\mathrm{G})$ and $\mathrm{Q}(\mathrm{G})$, respectively. Also

$$
\begin{aligned}
& \lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \cdots \geqslant \lambda_{n}(G), \\
& \mu_{1}(G)=0 \leqslant \mu_{2}(G) \leqslant \cdots \leqslant \mu_{n}(G),
\end{aligned}
$$

and

$$
\gamma_{1}(G) \geqslant \gamma_{2}(G) \geqslant \cdots \geqslant \gamma_{n}(G)
$$

Studies on different spectra of graphs can be found in $[\mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 5}, \mathbf{1 9}]$ and therein references. Two graphs are said to be adjacency cospectral (Laplacian cospectral, signless Laplacian cospectral, respectively) if they have the same adjacency spectrum (Laplacian spectrum, signless Laplacian spectrum, respectively).

The corona $G \circ H$ of two graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining each i-th vertex of G to every vertex in the i-th copy of H . The corona of two graphs was first introduced by Frucht and Harary in [9]. The neighborhood corona $G \star H$ of two graphs G and H is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H . The neighborhood corona of two graphs was introduced by Indulal [12]. More information about the corona and neighborhood corona can be found in $[\mathbf{3}, \mathbf{4}, \mathbf{1 2}, \mathbf{1 7}]$. Several graph operations such as disjoint union, NEPS, corona, edge corona, neighborhood corona, subdivision vertex corona, subdivision edge corona, subdivision neighborhood corona, etc., have been introduced and their spectrum were studied by various Mathematicians. Details about the spectra of some new graph operations can be found in $[\mathbf{3}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}]$. Recently, Lan and Zhou [14] have introduced four new graph operations called as R-vertex corona, R-edge corona, R-vertex neighborhood corona and R-edge neighborhood corona and provided a complete information about the spectra of these four graph operations.

Motivated by the above works, we define four new graph operations called as N vertex corona, C-vertex neighborhood corona, C-edge corona and N-edge corona, based on the corona and neighborhood corona of a graph G and K_{1}. Further we compute their spectrum in some cases. The paper is organized as follows: In Section 3, we give the adjacency spectra (respectively, Laplacian spectra, signless Laplacian spectra) of N - vertex corona and C-vertex neighborhood corona of two graphs G and H. In Section 4, we give the adjacency spectra (respectively, Laplacian spectra, signless Laplacian spectra) of C-edge corona and N-edge corona of two graphs G and H. In Section 5, using the results obtained in Sections 3 and 5 we give methods to construct infinitely many pairs of cospectral graphs and also integral graphs.

2. Preliminaries

In this section, we give some definitions and lemmas which are useful to prove our main results.

Let G_{1} and G_{2} be two graphs on n and m vertices respectively. Let $N\left(G_{1}\right)=$ $G_{1} \star K_{1}, C\left(G_{1}\right)=G_{1} \circ K_{1}$. We define four new graph operations on G_{1} and G_{2} as follows:

Definition 2.1. The N-vertex corona $G_{1} \circledast G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained by taking one copy of $N\left(G_{1}\right),\left|V\left(G_{1}\right)\right|$ copies of G_{2} and joining each i-th vertex of G_{1} to every vertex of the i-th copy of G_{2}.

Definition 2.2. The C-vertex neighborhood corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained by taking one copy of $C\left(G_{1}\right),\left|V\left(G_{1}\right)\right|$ copies of G_{2} and joining each neighbors of the i-th vertex of G_{1} to every vertex of i-th copy of G_{2}.

Definition 2.3. The N-edge corona $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained by taking one copy of $N\left(G_{1}\right),\left|E\left(G_{1}\right)\right|$ copies of G_{2} and joining each terminal vertex of i-th edge of G_{1} to every vertex of the i-th copy of G_{2}.

Definition 2.4. The C-edge corona $G_{1} \backsim G_{2}$ of two graphs G_{1} and G_{2} is the graph obtained by taking one copy of $C\left(G_{1}\right),\left|E\left(G_{1}\right)\right|$ copies of G_{2} and joining each terminal vertex of i-th edge of G_{1} to every vertex of i-th copy of G_{2}.

Let $A=\left(a_{i j}\right)$ be a $n \times m$ matrix, $B=\left(b_{i j}\right)$ be a $p \times q$ matrix then the Kronecker product $[\mathbf{7}] A \otimes B$ of A and B is the $n p$ by $m q$ matrix obtained by replacing each entry $a_{i j}$ of A by $a_{i j} B$. It is well-known that $(A \otimes B)(C \otimes D)=A C \otimes B D$, whenever the products AC and BD exist.

The M-coronal $\Gamma_{M}(x)$ of a square matrix M of order $\mathrm{n}[\mathbf{4}, \mathbf{1 8}]$ is defined as follows:

$$
\Gamma_{M}(x)=e^{T}\left(x I_{n}-M\right)^{-1} e
$$

where e is the column vector of size n with all its entries are 1 . If M is a square matrix of order n such that sum of entries in each row a constant ' r ' then it is easy to see that $\Gamma_{M}(x)=n /(x-r)$. Further for a complete bipartite graph $K_{p, q}$ we have [4]

$$
\Gamma_{A\left(K_{p, q}\right)}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q}
$$

Lemma 2.1. [7] If M, N, P, Q are matrices with M being a non-singular matrix, then

$$
\left|\begin{array}{cc}
M & N \\
P & Q
\end{array}\right|=|M|\left|Q-P M^{-1} N\right| .
$$

3. Spectra of N -vertex corona and C-vertex neighborhood corona

In this section, we determine the characteristic polynomial of N- vertex corona and C-vertex neighborhood corona of two graphs G_{1} and G_{2} in terms of coronal of a matrix. Also we compute the adjacency spectrum (respectively, Laplacian spectrum, signless Laplacian spectrum) of C- edge corona and N-edge corona of two graphs G_{1} and G_{2} in some cases.

Theorem 3.1. Let G_{1} and G_{2} be two graphs on n and m vertices respectively. Then

$$
f\left(A\left(G_{1} \circledast G_{2}\right), x\right)=\prod_{i=1}^{m}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{n} \prod_{i=1}^{n}\left(x-\Gamma_{A\left(G_{2}\right)}(x)-\lambda_{i}\left(G_{1}\right)\right) x-\lambda_{i}^{2}\left(G_{1}\right)
$$

Proof. With suitable labelling of the vertices of G, the adjacency matrix $A\left(G_{1} \circledast G_{2}\right)$ can be formulated as follows:

$$
A\left(G_{1} \circledast G_{2}\right)=\left(\begin{array}{ccc}
I_{n} \otimes A\left(G_{2}\right) & 0 & I_{n} \otimes e \\
0 & 0 & A\left(G_{1}\right) \\
I_{n} \otimes e^{T} & A\left(G_{1}\right) & A\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size m , with all its entries are $1, I_{n}$ is the identity matrix of order n. Now,

$$
f\left(A\left(G_{1} \circledast G_{2}\right), x\right)=\operatorname{det}\left(\begin{array}{ccc}
I_{n} \otimes\left(x I_{m}-A\left(G_{2}\right)\right) & 0 & -I_{n} \otimes e \\
0 & x I_{n} & -A\left(G_{1}\right) \\
-I_{n} \otimes e^{T} & -A\left(G_{1}\right) & x I_{n}-A\left(G_{1}\right)
\end{array}\right)
$$

By Lemma 2.1, we have

$$
\begin{equation*}
f\left(A\left(G_{1} \circledast G_{2}\right), x\right)=\prod_{i=1}^{m}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{n} \operatorname{det} S, \tag{3.1}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
x I_{n} & -A\left(G_{1}\right) \\
-A\left(G_{1}\right) & \left(x-\Gamma_{A\left(G_{2}\right)}(x)\right) I_{n}-A\left(G_{1}\right)
\end{array}\right)
$$

Again using Lemma 2.1, we see that

$$
\begin{align*}
\operatorname{det} S & =x^{n} \operatorname{det}\left(\left(x-\Gamma_{A\left(G_{2}\right)}(x)\right) I_{n}-A\left(G_{1}\right)-A^{2}\left(G_{1}\right) / x\right) \\
& =\prod_{i=1}^{n}\left(x-\Gamma_{A\left(G_{2}\right)}(x)-\lambda_{i}\left(G_{1}\right)\right) x-\lambda_{i}^{2}\left(G_{1}\right) . \tag{3.2}
\end{align*}
$$

So by (3.1) and (3.2) the result follows.

As $\Gamma_{M}(x)=\frac{n}{(x-r)}$, where M is the square matrix of order n with each of its row sum a constant 'r' and $\Gamma_{K_{p, q}}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q}$, proofs of the following two corollaries follows immediately by the above theorem.

Corollary 3.1. Let G_{1} be an arbitrary graph and G_{2} be a r-regular graph on n and m vertices respectively. Then the adjacency spectrum of $G=\left(G_{1} \circledast G_{2}\right)$ is given by:
a. $\lambda_{i}\left(G_{2}\right)$, with multiplicity n for $i=2, \cdots, m$.
b. three roots of the polynomial

$$
x^{3}-\left(r+\lambda_{i}\left(G_{1}\right)\right) x^{2}+\left(r \lambda_{i}\left(G_{1}\right)-m-\lambda_{i}^{2}\left(G_{1}\right)\right) x+r \lambda_{i}^{2}\left(G_{1}\right), \text { for } i=1, \cdots, n
$$

Corollary 3.2. Let G_{1} be an arbitrary graph on n vertices. Then the adjacency spectrum of $G_{1} \circledast K_{p, q}$ is given by:
(a) 0 with multiplicity $n(p+q-2)$.
(b) four roots of the polynomial

$$
x^{4}-\lambda_{i}\left(G_{1}\right) x^{3}-\left(\lambda_{i}^{2}\left(G_{1}\right)+p q+p+q\right) x^{2}+\left(\lambda_{i}\left(G_{1}\right)-2\right) p q x+\lambda_{i}^{2}\left(G_{1}\right) p q,
$$

for $i=1, \cdots, n$.
THEOREM 3.2. Let G_{1} be r_{1}-regular on n vertices and G_{2} be an arbitrary graph on m vertices. Then the Laplacian spectrum of $G_{1} \circledast G_{2}$ is given by:
a. $\mu_{i}\left(G_{2}\right)+1$ with multiplicity n, for $i=2, \cdots, m$.
b. three roots of the polynomial

$$
\begin{aligned}
& x^{3}-\left(\mu_{i}\left(G_{1}\right)+m+2 r_{1}+1\right) x^{2}-\left(\mu_{i}\left(G_{1}\right)^{2}-3 \mu_{i}\left(G_{1}\right) r_{1}-m r_{1}-\mu_{i}\left(G_{1}\right)-2 r_{1}\right) x \\
& +\mu_{i}\left(G_{1}\right)^{2}-3 \mu_{i}\left(G_{1}\right) r_{1}, \text { for } i=1, \cdots, n
\end{aligned}
$$

Proof. With suitable labelling of the vertices of G, the adjacency matrix $L\left(G_{1} \circledast G_{2}\right)$ can be formulated as follows:

$$
L\left(G_{1} \circledast G_{2}\right)=\left(\begin{array}{ccc}
I_{n} \otimes\left(I_{m}+L\left(G_{2}\right)\right) & 0 & -I_{n} \otimes e \\
0 & r_{1} I_{n} & -A\left(G_{1}\right) \\
-I_{n} \otimes e^{T} & -A\left(G_{1}\right) & \left(r_{1}+m\right) I_{n}+L\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size m with all its entries are $1, I_{n}$ is the identity matrix of order n. Now,

$$
f\left(L\left(G_{1} \circledast G_{2}\right)\right)=\operatorname{det}\left(\begin{array}{ccc}
I_{n} \otimes\left((x-1) I_{m}-L\left(G_{2}\right)\right) & 0 & I_{n} \otimes e \\
0 & \left(x-r_{1}\right) I_{n} & A\left(G_{1}\right) \\
I_{n} \otimes e^{T} & A\left(G_{1}\right) & \left(x-r_{1}-m\right) I_{n}-L\left(G_{1}\right)
\end{array}\right) .
$$

By Lemma 2.1, it follows that

$$
\begin{equation*}
f\left(L\left(G_{1} \circledast G_{2}\right)\right)=\prod_{i=1}^{m}\left(x-\mu_{i}\left(G_{2}\right)-1\right)^{n} \operatorname{det} S \tag{3.3}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
\left(x-r_{1}\right) I_{n} & A\left(G_{1}\right) \\
A\left(G_{1}\right) & \left(x-\Gamma_{L\left(G_{2}\right)}(x-1)-r_{1}-m\right) I_{n}-L\left(G_{1}\right)
\end{array}\right) .
$$

Again using Lemma 2.1, we see that

$$
\begin{align*}
\operatorname{det} S & =\left(x-r_{1}\right)^{n} \operatorname{det}\left(\left(x-\Gamma_{L\left(G_{2}\right)}(x-1)-r_{1}-m\right) I_{n}-L\left(G_{1}\right)-A^{2}\left(G_{1}\right) /\left(x-r_{1}\right)\right) \\
& =\prod_{i=1}^{n}\left(x-m /(x-1)-r_{1}-m-\mu_{i}\left(G_{1}\right)\right)\left(x-r_{1}\right)-\left(\mu_{i}\left(G_{1}\right)-r_{1}\right)^{2} \tag{3.4}
\end{align*}
$$

So, by (3.3) and (3.4) the desired result follows.
Let $\mathrm{t}(\mathrm{G})$ denote the number of spanning trees of G . It is well known $[\mathbf{7}]$ that for a connected graph G on n vertices, $t(G)$ is given by

$$
\begin{equation*}
t(G)=\frac{\mu_{2}(G) \cdots \mu_{n}(G)}{n} \tag{3.5}
\end{equation*}
$$

Corollary 3.3. Let G_{1} be r_{1}-regular graph on n vertices and G_{2} be an arbitrary graph on m vertices. Then the number of spanning trees of $G_{1} \circledast G_{2}$ is given by

$$
t\left(G_{1} \circledast G_{2}\right)=r_{1} t\left(G_{1}\right) \prod_{i=2}^{n}\left(3 r_{1}-\mu_{i}\left(G_{1}\right)\right) \prod_{i=2}^{m}\left(\mu_{i}\left(G_{2}\right)+1\right)^{n} .
$$

Proof. Proof follows directly from the above theorem and (3.5).
Theorem 3.3. Let G_{1} be r_{1}-regular on n vertices and G_{2} be r_{2}-regular graph on m vertices. Then the signless Laplacian spectrum of $G_{1} \circledast G_{2}$ is given by: a. $\gamma_{i}\left(G_{2}\right)+1$ with multiplicity n, for $i=2, \cdots, m$.
b. three roots of the polynomial

$$
\begin{aligned}
& \left(x-2 r_{2}-1\right)\left(x-r_{1}\right)\left(x-r_{1}-m-\gamma_{i}\left(G_{1}\right)\right)-m\left(x-r_{1}\right)-\left(\gamma_{i}\left(G_{1}\right)-r_{1}\right)^{2}\left(x-2 r_{2}-1\right), \\
& \quad \text { for } i=1, \cdots, n .
\end{aligned}
$$

Proof. With suitable labelling of the vertices of G, the adjacency matrix $Q\left(G_{1} \circledast G_{2}\right)$ can be formulated as follows:

$$
Q\left(G_{1} \circledast G_{2}\right)=\left(\begin{array}{ccc}
I_{n} \otimes\left(I_{m}+Q\left(G_{2}\right)\right) & 0 & I_{n} \otimes e \\
0 & r_{1} I_{n} & A\left(G_{1}\right) \\
I_{n} \otimes e^{T} & A\left(G_{1}\right) & \left(r_{1}+m\right) I_{n}+Q\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size m with all its entries are $1, I_{n}$ is the identity matrix of order n. Rest of the proof is similar to the proof of Theorem 3.2.

As the proofs of the following theorems are similar to that of Theorem 3.1, we omit the details.

Theorem 3.4. Let G_{1} and G_{2} be two graphs on n and m vertices. Then

$$
f\left(A\left(G_{1} \odot G_{2}\right), x\right)=\prod_{i=1}^{m}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{n} \prod_{i=1}^{n}\left(x^{2}-\left(\lambda_{i}\left(G_{1}\right)+\lambda_{i}^{2}\left(G_{1}\right) \Gamma_{A\left(G_{2}\right)}(x)\right) x-1\right)
$$

Using the fact that $\Gamma_{M}(x)=\frac{n}{(x-r)}$, where M is the square matrix of order n with each of its row sum a constant ' r ' and $\Gamma_{K_{p, q}}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q}$, in the above theorem we have the following two corollaries.

Corollary 3.4. Let G_{1} be an arbitrary graph and G_{2} be a r-regular graph, on n and m vertices, respectively. Then the adjacency spectrum of $G_{1} \odot G_{2}$ is given by:
(a) $\lambda_{i}\left(G_{2}\right)$ with multiplicity n, for $i=2, \cdots, m$.
(b) three roots of the polynomial
$\left.x^{3}-\left(\lambda_{i}\left(G_{1}\right)+r\right) x^{2}-\left(\lambda_{i}^{2}\left(G_{1}\right) m-\lambda_{i}\left(G_{1}\right) r+1\right)\right) x+r$, for $i=1, \cdots, n$.
Corollary 3.5. Let G_{1} be an arbitrary graph on n vertices. Then the adjacency spectrum of $G_{1} \odot K_{p, q}$ is given by:
(a) 0 with multiplicity $n(p+q-2)$.
(b) four roots of the polynomial
$x^{4}-\lambda_{i}\left(G_{1}\right) x^{3}-\left(\lambda_{i}\left(G_{1}\right)^{2} p+\lambda_{i}\left(G_{1}\right)^{2} q+p q+1\right) x^{2}+\left(-2 \lambda_{i}\left(G_{1}\right)^{2}+\lambda_{i}\left(G_{1}\right)\right) p q x+p q$,
for $i=1, \cdots, n$.
THEOREM 3.5. Let G_{1} be r_{1}-regular and G_{2} be an arbitrary graph on n and m vertices respectively. Then the Laplacian spectrum of $G_{1} \odot G_{2}$ is given by:
a. $\mu_{i}\left(G_{2}\right)+r_{1}$ with multiplicity n, for $i=2, \cdots, m$.
b. three roots of the polynomial
$x^{3}-\left(m r_{1}+\lambda_{i}\left(G_{1}\right)+r_{1}+2\right) x^{2}+\left(\left(-\lambda_{i}\left(G_{1}\right) m+2 m r_{1}+r_{1}+1\right) \lambda_{i}\left(G_{1}\right)+m r_{1}+2 r_{1}\right) x$ $+\left(\lambda_{i}\left(G_{1}\right) m-2 m r_{1}-r_{1}\right) \lambda_{i}\left(G_{1}\right)$, for $i=1, \cdots, n$.
By the above theorem and (3.5), we have the following corollary:
Corollary 3.6. Let G_{1} be a r_{1}-regular graph and G_{2} be an arbitrary graph on n and m vertices, respectively. Then the number of spanning trees of $G_{1} \odot G_{2}$ is given by:

$$
t\left(G_{1} \odot G_{2}\right)=r_{1} t\left(G_{1}\right) \prod_{i=2}^{n}\left(2 m r_{1}-\mu_{i}\left(G_{1}\right)+r_{1}\right) \prod_{i=2}^{m}\left(\mu_{i}\left(G_{2}\right)+r_{1}\right)^{n}
$$

THEOREM 3.6. Let G_{1} be r_{1}-regular and G_{2} be r_{2}-regular graph on n and m vertices, respectively. Then the signless Laplacian spectrum of $G_{1} \odot G_{2}$ is given by: a. $\gamma_{i}\left(G_{2}\right)+r_{1}$ with multiplicity n, for $i=2, \cdots, m$.
b. three roots of the polynomial
$x^{3}-\left(m r_{1}+\gamma_{i}\left(G_{1}\right)+2 r_{2}+r_{1}+2\right) x^{2}+\left(\left(-\gamma_{i}\left(G_{1}\right) m+2 m r_{1}+2 r_{2}+r_{1}+1\right) \gamma_{i}\left(G_{1}\right)\right.$
$\left.+m r_{1}+4 r_{2}+2 r_{1}+2 r_{1} m r_{2}\right) x+\gamma_{i}\left(G_{1}\right)^{2} m-2 \gamma_{i}\left(G_{1}\right) m r_{1}-2 r_{1} m r_{2}-2 \gamma_{i}\left(G_{1}\right) r_{2}-$
$\gamma_{i}\left(G_{1}\right) r_{1}$, for $i=1, \cdots, n$.

4. Spectra of C-edge corona and N-edge corona

In this section, we determine the characteristic polynomial of C- edge corona and N-edge corona of two graphs G_{1} and G_{2} in terms of coronal of a matrix. Also we compute the adjacency spectrum (respectively, Laplacian spectrum, signless Laplacian spectrum) of C- edge corona and N-edge corona of two graphs G_{1} and G_{2} in some cases.

Theorem 4.1. Let $G_{i}(i=1,2)$ be r_{i} - regular graphs with n_{i} vertices and m_{i} edges, respectively. Then
$f\left(A\left(G_{1} \boxminus G_{2}\right), x\right)=\prod_{i=1}^{n_{2}}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{m_{1}} \prod_{i=1}^{n_{1}}\left(x^{2}-\left(\lambda_{i}\left(G_{1}\right)+\left(\lambda_{i}\left(G_{1}\right)+r_{1}\right) \Gamma_{A\left(G_{2}\right)}(x)\right) x-1\right)$.
Proof. With suitable labelling of the vertices of $G_{1} \backsim G_{2}$, the adjacency matrix $A\left(G_{1} \boxtimes G_{2}\right)$ can be formulated as follows:

$$
A\left(G_{1} \boxtimes G_{2}\right)=\left(\begin{array}{ccc}
I_{m_{1}} \otimes A\left(G_{2}\right) & 0 & B \otimes e \\
0 & 0 & I_{n_{1}} \\
B^{T} \otimes e^{T} & I_{n_{1}} & A\left(G_{1}\right)
\end{array}\right),
$$

where e is the column vector of size n_{2} with all its entries are $1, I_{n_{1}}$ is the identity matrix of order n_{1} and B is the incidence matrix of G_{1}. Now,

$$
f\left(A\left(G_{1} \boxminus G_{2}\right)\right)=\operatorname{det}\left(\begin{array}{ccc}
I_{m_{1}} \otimes\left(x I_{n_{2}}-A\left(G_{2}\right)\right) & 0 & -B \otimes e \\
0 & x I_{n_{1}} & -I_{n_{1}} \\
-B^{T} \otimes e^{T} & -I_{n_{1}} & x I_{n_{1}}-A\left(G_{1}\right)
\end{array}\right)
$$

By Lemma 2.1, we have

$$
\begin{equation*}
f\left(A\left(G_{1} \boxtimes G_{2}\right)\right)=\prod_{i=1}^{n_{2}}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{m_{1}} \operatorname{det} S \tag{4.1}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
x I_{n_{1}} & -I_{n_{1}} \\
-I_{n_{1}} & x I_{n_{1}}-A\left(G_{1}\right)-\left(A\left(G_{1}\right)+r_{1} I_{n_{1}}\right) \Gamma_{A\left(G_{2}\right)}(x)
\end{array}\right)
$$

Again employing Lemma 2.1 to detS, we see that

$$
\begin{align*}
\operatorname{det} S & =x^{n_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\left(A\left(G_{1}\right)+r_{1} I_{n_{1}}\right) \Gamma_{A\left(G_{2}\right)}(x)-I_{n_{1}} / x\right) \\
& =\prod_{i=1}^{n_{1}}\left(x^{2}-\left(\lambda_{i}\left(G_{1}\right)+\left(\lambda_{i}\left(G_{1}\right)+r_{1}\right) \Gamma_{A\left(G_{2}\right)}(x)\right) x-1\right) \tag{4.2}
\end{align*}
$$

So by (4.1) and (4.2) the result follows.

Using the fact that $\Gamma_{M}(x)=\frac{n}{(x-r)}$, where M is the square matrix of order n with each of its row sum a constant ' r ' and $\Gamma_{K_{p, q}}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q}$, in the above theorem we have the following two corollaries.

Corollary 4.1. Let $G_{i}(i=1,2)$ be r_{i}-regular graphs with n_{i} vertices and m_{i} edges, respectively. Then the adjacency spectrum of $G_{1} \boxtimes G_{2}$ is given by:
(a) $\lambda_{i}\left(G_{2}\right)$ with multiplicity m_{1}, for $i=2, \cdots, n_{2}$.
(b) r_{2} with multiplicity $m_{1}-n_{1}$.
(c) three roots of the polynomial
$x^{3}-\left(\lambda_{i}\left(G_{1}\right)+r_{2}\right) x^{2}+\left(\lambda_{i}\left(G_{1}\right) r_{2}-n_{2} \lambda_{i}\left(G_{1}\right)-r_{1} n_{2}-1\right) x+r_{2}$,
for $i=1, \cdots, n_{1}$.
Corollary 4.2. Let G_{1} be r_{1}-regular graph $\left(r_{1} \geqslant 2\right)$ with n_{1} vertices and m_{1} edges. Then the adjacency spectrum of $G_{1} \boxtimes K_{p, q}$ is given by:
(a) 0 with multiplicity $m_{1}(p+q-2)$.
(b) $\pm \sqrt{p q}$ with multiplicity $m_{1}-n_{1}$.
(c) four roots of the polynomial
$x^{4}-\lambda_{i}\left(G_{1}\right) x^{3}-\left(\lambda_{i}\left(G_{1}\right) p+\lambda_{i}\left(G_{1}\right) q+p q+p r_{1}+q r_{1}+1\right) x^{2}-p q\left(\lambda_{i}\left(G_{1}\right)+2 r_{1}\right) x+p q$,
for $i=1, \cdots, n_{1}$.
THEOREM 4.2. Let G_{1} be r_{1} - regular graph $\left(r_{1} \geqslant 2\right)$ and G_{2} be an arbitrary graph with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively. Then the Laplacian spectrum of $G_{1} \boxtimes G_{2}$ is given by:
a. $\mu_{i}\left(G_{2}\right)+2$ with multiplicity m_{1}, for $i=2, \cdots, n_{2}$.
b. 2 with multiplicity $m_{1}-n_{1}$.
c. three roots of the polynomial

$$
\begin{aligned}
& (x-1)\left((x-2)\left(x-n_{2} r_{1}-\mu_{i}\left(G_{1}\right)-1\right)+\left(\mu_{i}\left(G_{1}\right)-2 r_{1}\right) n_{2}\right)-(x-2) \\
& \text { for } i=1, \cdots, n_{1}
\end{aligned}
$$

Proof. With suitable labelling of the vertices of $G_{1} \square G_{2}$, the adjacency matrix $L\left(G_{1} \boxtimes G_{2}\right)$ can be formulated as follows:

$$
L\left(G_{1} \boxtimes G_{2}\right)=\left(\begin{array}{ccc}
I_{m_{1}} \otimes\left(2 I_{n_{2}}+L\left(G_{2}\right)\right) & 0 & -B \otimes e \\
0 & I_{n_{1}} & -I_{n_{1}} \\
-B^{T} \otimes e^{T} & -I_{n_{1}} & \left(m r_{1}+1\right) I_{n_{1}}+L\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size n_{2} with all its entries are $1, I_{n_{1}}$ is the identity matrix of order n_{1} and B is the incidence matrix of G_{1}. Now,
$f\left(L\left(G_{1} \boxtimes G_{2}\right)\right)=\operatorname{det}\left(\begin{array}{ccc}I_{m_{1}} \otimes\left((x-2) I_{n_{2}}-L\left(G_{2}\right)\right) & 0 & B \otimes e \\ 0 & (x-1) I_{n_{1}} & I_{n_{1}} \\ B^{T} \otimes e^{T} & I_{n_{1}} & \left(x-m r_{1}-1\right) I_{n_{1}}-L\left(G_{1}\right)\end{array}\right)$.
By Lemma 2.1, we have

$$
\begin{equation*}
f\left(L\left(G_{1} \boxminus G_{2}\right)\right)=\prod_{i=1}^{n_{2}}\left(x-\mu_{i}\left(G_{2}\right)-2\right)^{m_{1}} \operatorname{det} S, \tag{4.3}
\end{equation*}
$$

where
$S=\left(\begin{array}{cc}(x-1) I_{n_{1}} & I_{n_{1}} \\ I_{n_{1}} & \left(x-m r_{1}-1\right) I_{n_{1}}-L\left(G_{1}\right)-\left(A\left(G_{1}\right)+r_{1} I_{n_{1}}\right) \Gamma_{L\left(G_{2}\right)}(x-2)\end{array}\right)$.
Again employing Lemma 2.1 to detS, we see that

$$
\begin{aligned}
\operatorname{det} S & =(x-1)^{n_{1}} \operatorname{det}\left(\left(x-n_{2} r_{1}-1\right) I_{n_{1}}-L\left(G_{1}\right)-\left(A\left(G_{1}\right)+r_{1} I_{n_{1}}\right) \Gamma_{L\left(G_{2}\right)}(x-2)-I_{n_{1}} /(x-1)\right) \\
(4.4) & =\prod_{i=1}^{n_{1}}(x-1)\left(x-n_{2} r_{1}-\mu_{i}\left(G_{1}\right)-1+\left(\mu_{i}\left(G_{1}\right)-2 r_{1}\right) n_{2} /(x-2)\right)-1
\end{aligned}
$$

So by (4.3) and (4.4) the result follows.
Corollary 4.3. Let G_{1} be r_{1} - regular graph $\left(r_{1} \geqslant 2\right)$ and G_{2} be an arbitrary graph with n_{1}, n_{2} vertices and m_{1}, m_{2} edges, respectively. Then the number of spanning trees of $G_{1} \boxtimes G_{2}$ is given by:

$$
t\left(G_{1} \boxminus G_{2}\right)=t\left(G_{1}\right) 2^{m_{1}-n_{1}+1}\left(n_{2}+2\right)^{n_{1}} \prod_{i=2}^{n_{2}}\left(\mu_{i}\left(G_{2}\right)+2\right)^{m_{1}}
$$

Proof. By (3.5) and above theorem, we obtain the desired result.
THEOREM 4.3. Let G_{1} be r_{1} - regular graph $\left(r_{1} \geqslant 2\right)$ and G_{2} be an r_{1} graph with n_{1}, n_{2} vertices and m_{1}, m_{2} edges. Then the signless Laplacian spectrum of $G_{1} \boxtimes G_{2}$ is given by:
a. $\gamma_{i}\left(G_{2}\right)+2$ with multiplicity m_{1}, for $i=2, \cdots, n_{2}$.
b. $2\left(r_{2}+1\right)$ with multiplicity $m_{1}-n_{1}$.
c. three roots of the polynomial

$$
x^{3}-\left(r_{1} n_{2}+\gamma_{i}\left(G_{1}\right)+2 r_{2}+4\right) x^{2}+\left(2 r_{1} n_{2} r_{2}+2 \gamma_{i}\left(G_{1}\right) r_{2}-\gamma_{i}\left(G_{1}\right) n_{2}+3 r_{1} n_{2}\right.
$$

$$
\left.+3 \gamma_{i}\left(G_{1}\right)+4 r_{2}+4\right) x-2 r_{1} n_{2} r_{2}-2 \gamma_{i}\left(G_{1}\right) r_{2}+\gamma_{i}\left(G_{1}\right) n_{2}-2 r_{1} n_{2}-2 \gamma_{i}\left(G_{1}\right)
$$

$$
\text { for } i=1, \cdots, n_{1}
$$

Proof. With suitable labelling of the vertices of $G_{1} \backsim G_{2}$, the adjacency matrix $Q\left(G_{1} \boxtimes G_{2}\right)$ can be formulated as follows:

$$
Q\left(G_{1} \triangleright G_{2}\right)=\left(\begin{array}{ccc}
I_{m_{1}} \otimes\left(2 I_{n_{2}}+Q\left(G_{2}\right)\right) & 0 & B \otimes e \\
0 & I_{n_{1}} & I_{n_{1}} \\
B^{T} \otimes e^{T} & I_{n_{1}} & \left(m r_{1}+1\right) I_{n_{1}}+Q\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size n_{2} with all its entries are $1, I_{n_{1}}$ is the identity matrix of order n_{1} and B is the incidence matrix of G_{1}. Rest of the proof is similar to the proof of Theorem 4.2.

As the proofs of the following theorems are similar to that of Theorem 4.1 we omit the details.

ThEOREM 4.4. Let $G_{i}(i=1, \mathcal{Q})$ be r_{i} - regular graphs with n_{i} vertices and m_{i} edges, respectively. Then
$f\left(A\left(G_{1} \boxtimes G_{2}\right), x\right)=\prod_{i=1}^{n_{2}}\left(x-\lambda_{i}\left(G_{2}\right)\right)^{m_{1}} \prod_{i=1}^{n}\left(x-\left(\lambda_{i}\left(G_{1}\right)+r_{1}\right) \Gamma_{A\left(G_{2}\right)}(x)-\lambda_{i}\left(G_{1}\right)\right) x-\lambda_{i}^{2}\left(G_{1}\right)$.
As $\Gamma_{M}(x)=\frac{n}{(x-r)}$, where M is the square matrix of order n with each of its row sum a constant 'r' and $\Gamma_{K_{p, q}}(x)=\frac{(p+q) x+2 p q}{x^{2}-p q}$, proofs of the following two corollaries follows immediately by the above theorem.

Corollary 4.4. Let $G_{i}(i=1,2)$ be r_{i}-regular graphs with $r_{1} \geqslant 2$, n_{i} vertices and m_{i} edges. Then the adjacency spectrum of $G=\left(G_{1} \boxtimes G_{2}\right)$ is given by:
a. $\lambda_{i}\left(G_{2}\right)$, with multiplicity m_{1} for $i=2, \cdots, n_{2}$.
b. r_{2} with multiplicity $m_{1}-n_{1}$.
c. three roots of the polynomial

$$
\begin{aligned}
& x^{3}-\left(r_{2}+\lambda_{i}\left(G_{1}\right)\right) x^{2}-\left(\lambda_{i}^{2}\left(G_{1}\right)+\lambda_{i}\left(G_{1}\right)\left(n_{2}-r_{2}\right)+n_{2} r_{1}\right) x+r_{2} \lambda_{i}^{2}\left(G_{1}\right), \text { for } \\
& i=1, \cdots, n_{1}
\end{aligned}
$$

Corollary 4.5. Let G_{1} be r_{1}-regular graphs with n_{1} vertices and m_{1} edges. Then the adjacency spectrum of $G=\left(G_{1} \boxtimes K_{p, q}\right)$ is given by:
a. 0 , with multiplicity $m_{1}(p+q-2)$.
b. $\pm \sqrt{p q}$ with multiplicity $m_{1}-n_{1}$.
c. four roots of the polynomial

$$
\begin{aligned}
& x^{4}-\lambda_{i}\left(G_{1}\right) x^{3}+\left(-\lambda_{i}\left(G_{1}\right)^{2}+(-p-q) \lambda_{i}\left(G_{1}\right)+\left(-q-r_{1}\right) p-q r_{1}\right) x^{2} \\
& -p q\left(\lambda_{i}\left(G_{1}\right)+2 r_{1}\right) x+\lambda_{i}\left(G_{1}\right)^{2} p q, \text { for } i=1, \cdots, n_{1} .
\end{aligned}
$$

TheOrem 4.5. Let G_{1} be r_{1}-regular graph $\left(r_{1} \geqslant 2\right)$ with n_{1} vertices and m_{1} edges. Then for an arbitrary graph G_{2} on n_{2} vertices, the Laplacian spectrum of $G_{1} \boxtimes G_{2}$ is given by:
a. $\mu_{i}\left(G_{2}\right)+2$ with multiplicity m_{1}, for $i=2, \cdots, n_{2}$.
b. 2 with multiplicity $m_{1}-n_{1}$.
c. three roots of the polynomial

$$
(x-2)\left(x-r_{1}\right)\left(x-\mu_{i}\left(G_{1}\right)-r_{1}-n_{2} r_{1}\right)+n_{2}\left(\mu_{i}\left(G_{1}\right)-2 r_{1}\right)\left(x-r_{1}\right)
$$

$$
-\left(\mu_{i}\left(G_{1}\right)-r_{1}\right)^{2}(x-2), \text { for } i=1, \cdots, n_{1}
$$

Applying (3.5) to the above theorem we have the following result:
Corollary 4.6. Let G_{1} be r_{1}-regular graph $\left(r_{1} \geqslant 2\right)$ with n_{1} vertices and m_{1} edges. Then for an arbitrary graph G_{2} on n_{2} vertices, the number of spanning trees of $G_{1} \boxtimes G_{2}$ is given by:

$$
t\left(G_{1} \boxtimes G_{2}\right)=r_{1} t\left(G_{1}\right) 2^{m_{1}-n_{1}+1} \prod_{i=2}^{n_{1}}\left(6 r_{1}+n_{2} r_{1}-2 \mu_{i}\left(G_{1}\right)\right) \prod_{i=2}^{n_{2}}\left(\mu_{i}\left(G_{2}\right)+2\right)^{m_{1}}
$$

THEOREM 4.6. Let $G_{i}(i=1,2)$ be r_{i}-regular graphs with n_{i} vertices, m_{i} edges and $r_{1} \geqslant 2$. Then the signless Laplacian spectrum of $G_{1} \boxtimes G_{2}$ is given by:
a. $\gamma_{i}\left(G_{2}\right)+2$ with multiplicity m_{1}, for $i=2, \cdots, n_{2}$.
b. $2\left(r_{2}+1\right)$ with multiplicity $m_{1}-n_{1}$.
c. three roots of the polynomial
$\left(x-2 r_{2}-2\right)\left(x-r_{1}\right)\left(x-\gamma_{i}\left(G_{1}\right)-r_{1}-n_{2} r_{1}\right)-n_{2} \gamma_{i}\left(G_{1}\right)\left(x-r_{1}\right)-\left(\gamma_{i}\left(G_{1}\right)-r_{1}\right)^{2}\left(x-2 r_{2}-2\right)$, for $i=1, \cdots, n_{1}$.

5. Applications

The notion of integral graph was first introduced by Harary and Schwenk in 1974 [10]. In general, the problem of characterizing integral graphs is a difficult task. In [2] constructions and properties of integral graphs are discussed in detail. The graphs $K_{n}, K_{m, n}$ ($m n$ a perfect square), C_{6}, the cocktail parity graph $C P(n)=n \bar{K}_{2}$, are all examples of integral graphs. Moreover, some graph operations such as cartesian product, direct product and strong product when applied on integral graphs produce again integral graphs. For other related works see $[\mathbf{1 3}, \mathbf{2 0}, \mathbf{2 1}]$ and therein references. In this section, we apply our graph operations based on corona and neighborhood corona on known integral graphs to produce class of new integral graphs. At the end of the section, as an application we give methods to construct infinitely many pairs of cospectral graphs.

From Corollaries 3.1 and 3.4 it follows that
a. If G is an integral graph of order n , then $G \circledast m K_{1}$ is integral if and only if $5 \lambda_{i}^{2}(G)+4 m$ is a perfect square, for $i=1,2, \cdots, n$.
b. If G is an integral graph of order n , then $G \odot m K_{1}$ is integral if and only if $\lambda_{i}^{2}(G)(4 m+1)+4$ is a perfect square, for all $i=1,2, \cdots, n$.
In particular, we have the following:
i. $K_{n} \circledast m K_{1}$ is integral if and only if $4 m+5$ and $5 n^{2}-10 n+4 m+5$ are perfect squares.
ii. $K_{p, q} \circledast m K_{1}$ is integral if and only if pq, m and $5 p q+4 m$ are perfect squares.
iii. If $G \circledast m K_{1}$ is an integral graph then $\left(K_{2} \otimes G\right) \circledast m K_{1}$ is integral, where \otimes denotes the direct product of two graphs.
iv. $K_{n} \odot m K_{1}$ is integral if and only if $4 m+5$ and $(n-1)^{2}(4 m+1)+4$ are perfect squares.
v. $K_{p, q} \odot m K_{1}$ is integral if and only if pq and $p q(4 m+1)+4$ are perfect squares.
vi. If $G \odot m K_{1}$ is an integral graph then $\left(K_{2} \otimes G\right) \odot m K_{1}$ is integral, where \otimes denotes the direct product of two graphs.
The above observations enable us to construct some class of new integral graphs.

Example 5.1. In the following table we give infinite ordered pairs (m,n) for which the graph $K_{n} \circledast m K_{1}$ is integral.

n	m
$6 k+3$	$\left(5 k^{2}+5 k+1\right)\left(45 k^{2}+15 k-1\right), k=1,2, \cdots$
$6 k-1$	$\left(5 k^{2}-5 k+1\right)\left(45 k^{2}-15 k-1\right), k=1,2, \cdots$
$2 k+1$	$k^{4}-3 k^{2}+1, k=2,3, \cdots$
2	$k^{2}+3 k+1, k=1,2, \cdots$

EXAMPLE 5.2. a. $K_{n, n} \circledast n^{2} K_{1}$ is integral graph for all n .
b. $K_{1, n^{2}} \circledast n^{2} K_{1}$ is integral graph for all n.

Example 5.3. a. If $n=2 k$ and $m=k^{2}-k-1$, then $K_{n} \odot m K_{1}$ is integral for $k=1,2, \cdots$.
b. If $n=2 k-1$ and $m=k^{2}-k-1$, then $K_{n, n} \odot m K_{1}$ and $K_{1, n^{2}} \odot m K_{1}$ is integral for $k=1,2, \cdots$.

From Corollaries 4.1 and 4.4 it follows that
a. If G is an integral r-regular graph $(r \geqslant 2)$ on n vertices, then $G \boxtimes m K_{1}$ is integral if and only if $\lambda_{i}(G)_{i}^{2}+4 m\left(\lambda_{i}(G)+r\right)+4$ is a perfect square, for $i=1,2, \cdots n$.
b. If G is an integral r-regular graph $(r \geqslant 2)$ on n vertices, then $G \boxtimes m K_{1}$ is integral if and only if $5 \lambda_{i}^{2}(G)+4 m\left(\lambda_{i}(G)+r\right)$ is a perfect square, for $i=1,2, \cdots, n$.
In particular, we have the following
i. $K_{n} \square m K_{1}(n \geqslant 2)$ is integral if and only if $4 m(n-2)+5$ and $(n-1)^{2}+8 m(n-$ 1) +4 are perfect squares.
ii. $K_{n, n} \boxtimes m K_{1}(n \geqslant 2)$ is integral if and only if $m n+1, n^{2}+8 m n+4, n^{2}+4$ are perfect squares.
iii. $K_{n} \boxtimes m K_{1}(n \geqslant 2)$ is integral if and only if $4 m(n-2)+5$ and $5(n-1)^{2}+8 m(n-1)$ are perfect squares.
iv. $K_{n, n} \boxtimes m K_{1}(n \geqslant 2)$ is never an integral graph for all n and m .

The above observations enables us to construct some new class of integral graphs.
Example 5.4. If $m=k^{2}-k-1$, then $K_{3} \boxtimes m K_{1}$ is integral for all $k=2,3, \cdots$.
Now, we give methods to construct infinite family of cospectral graphs.
From Theorem 3.1 and 3.4 one can easily notice that
a. If G_{1} and G_{2} are adjacency cospectral graphs and H is an arbitrary graph, then
i. $G_{1} \circledast H$ and $G_{2} \circledast H$ are adjacency cospectral.
ii. $G_{1} \odot H$ and $G_{2} \odot H$ are adjacency cospectral.
b. If G is an arbitrary graph and H_{1}, H_{2} are adjacency cospectral graphs with
$\Gamma_{A\left(H_{1}\right)}(x)=\Gamma_{A\left(H_{2}\right)}(x)$, then
i. $G \circledast H_{1}$ and $G \circledast H_{2}$ are adjacency cospectral.
ii. $G \odot H_{1}$ and $G \odot H_{2}$ are adjacency cospectral.

Similary using Theorem 3.2, 3.5 and 3.3, 3.6 one can construct Laplacian cospectral and signless Laplacian cospectral graphs.
Also from Theorem 4.1 and 4.4 we have the following results:
a. If G_{1} and G_{2} are adjacency regular cospectral graphs and H is an arbitrary graph, then
i. $G_{1} \boxtimes H$ and $G_{2} \boxtimes H$ are adjacency cospectral.
ii. $G_{1} \boxtimes H$ and $G_{2} \boxtimes H$ are adjacency cospectral.
b. If G is an arbitrary regular graph and H_{1}, H_{2} are adjacency cospectral graphs with $\Gamma_{A\left(H_{1}\right)}(x)=\Gamma_{A\left(H_{2}\right)}(x)$, then
i. $G \boxtimes H_{1}$ and $G \boxtimes H_{2}$ are adjacency cospectral.
ii. $G \boxtimes H_{1}$ and $G \boxtimes H_{2}$ are adjacency cospectral.

Similary using Theorem 4.2, 4.5 and 4.3, 4.6 one can construct Laplacian cospectral and signless Laplacian cospectral graphs.

References

[1] C. Adiga, R. Balakrishnan, W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (7)(2010), 1825-1835.
[2] K. Balinska, D. Cvetković, Z. Radosavljević, S. Simić and D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002), 42-65.
[3] S. Barik, S. Pati and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (1)(2007), 47-56.
[4] Cui S-Y, Tian G-X, The spectrum and the signless Laplacian spectrum of coronae. Linear. Algebra Appl., 437 (7) (2012), 1692-1703.
[5] D. Cvetković, New theorems for signless Laplacian eigenvalues, Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math. Natur., Sci. Math., 137 (33) (2008), 131-146.
[6] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl., 432 (9) (2010), 2257-2272.
[7] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, third ed., Johann Ambrosius Barth, Heidelberg, 1995.
[8] D.M. Cvetković, P. Rowlinson, H. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
[9] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4 (3)(1970), 322-325.
[10] F. Harary, A. J. Schwenk, Which Graphs have Integral Spectra?, Graphs and Combinatorics (R. Bari and F. Harary, eds.), Springer-Verlag, Berlin (1974), 45-51.
[11] Y. Hou, W-C.Shiu, The spectrum of the edge corona of two graphs, Electronic Journal of Linear Algebra, 20 (2010), Article 42, 586-594.
[12] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35 (3) (2011), 493-500.
[13] G. Indulal, A. Vijayakumar, Some New Integral Graphs, Applicable Analysis and Discrete Mathematics, 1 (2007), 420-426.
[14] J. Lan, B. Zhou, Spectra of graph operations based on R-graph, Linear and Multilinear Algebra, 63(7) (2015), 1401-1422.
[15] X.Li, Y.Shi, I.Gutman, Graph Energy, Springer, NewYork, 2012.
[16] X. Liu, P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra Appl., 438 (8)(2013), 3547-3559.
[17] X. Liu, S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear and Multilinear Algebra, 62 (9) (2014), 1205-1219.
[18] C. McLeman, E. EMcNicholas, Spectra of coronae, Linear Algebra Appl., 435 (5)(2011), 998-1007.
[19] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197/198 (1994), 143-176.
[20] L. G. Wang, A survey of results on integral trees and integral graphs, University of Twente, The Netherlands (2005).
[21] L. G. Wang, H.J. Broersma, C. Hoede, X.Li, G. Still, Some families of integral graphs, Discrete Math., 308 (24)(2008), 6383-6391.

Received by editors at 26.06.2015; Available online 18.01.2016.
Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysore - 570 006, INDIA

E-mail address: c_adiga@hotmail.com, ranmsc08@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 05C50.
 Key words and phrases. Spectrum, corona, neighbourhood corona, cospectral graphs, integral graphs.

