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Abstract. The corona G◦H of two graphs G and H is the graph obtained by
taking one copy of G and |V (G)| copies of H and joining each i-th vertex of G to
every vertex in the i-th copy of H. The neighborhood coronaG⋆H of two graphs

G and H is the graph obtained by taking one copy of G and |V (G)| copies of
H and joining the neighbors of the i-th vertex of G to every vertex in the i-th
copy of H. In this paper we compute the adjacency spectrum (respectively,
Laplacian spectrum, signless Laplacian) of four types of graph operations on

G and H, called as N- vertex corona, C-vertex neighborhood corona, C-edge
corona and N-edge corona, based on the corona and neighborhood corona of G
and K1. As an application, our results enable us to construct infinitely many
pairs of cospectral graphs and also integral graphs.

1. Introduction

All graphs considered in this paper are simple graphs. Let G be a graph with
vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G). The adjacency matrix of G,
denoted by A(G), is the n× n matrix [aij ], where aij = 1, if the vertices vi and vj
are adjacent in G, otherwise aij = 0. If all the eigenvalues of A(G) are integers then
the graph G is said to be an integral graph [10]. The Laplacian matrix of the graph
G, denoted by L(G), is defined as D(G) - A(G), where D(G) is the diagonal degree
matrix of G. The signless Laplacian matrix of the graph G, denoted by Q(G) is
defined as D(G)+A(G). The adjacency spectrum σ(G), Laplacian spectrum µ(G),
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and signless Laplacian spectrum γ(G) are defined as follows:

σ(G) = (λ1(G), λ2(G), · · · , λn(G)),

µ(G) = (µ1(G), µ2(G), · · · , µn(G)),

γ(G) = (γ1(G), γ2(G), · · · , γn(G)),

where λi(G), µi(G) and γi(G) are the eigenvalues of A(G), L(G) and Q(G), re-
spectively. Also

λ1(G) > λ2(G) > · · · > λn(G),

µ1(G) = 0 6 µ2(G) 6 · · · 6 µn(G),

and

γ1(G) > γ2(G) > · · · > γn(G).

Studies on different spectra of graphs can be found in [1, 5, 6, 7, 8, 15, 19]
and therein references. Two graphs are said to be adjacency cospectral (Laplacian
cospectral, signless Laplacian cospectral, respectively) if they have the same adja-
cency spectrum (Laplacian spectrum, signless Laplacian spectrum, respectively).

The corona G ◦H of two graphs G and H is the graph obtained by taking one
copy of G and |V (G)| copies of H and joining each i-th vertex of G to every vertex
in the i-th copy of H. The corona of two graphs was first introduced by Frucht
and Harary in [9]. The neighborhood corona G ⋆ H of two graphs G and H is
the graph obtained by taking one copy of G and |V (G)| copies of H and joining
the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The
neighborhood corona of two graphs was introduced by Indulal [12]. More informa-
tion about the corona and neighborhood corona can be found in [3, 4, 12, 17].
Several graph operations such as disjoint union, NEPS, corona, edge corona, neigh-
borhood corona, subdivision vertex corona, subdivision edge corona, subdivision
neighborhood corona, etc., have been introduced and their spectrum were studied
by various Mathematicians. Details about the spectra of some new graph opera-
tions can be found in [3, 11, 12, 16, 17, 18]. Recently, Lan and Zhou [14] have
introduced four new graph operations called as R-vertex corona, R-edge corona,
R-vertex neighborhood corona and R-edge neighborhood corona and provided a
complete information about the spectra of these four graph operations.

Motivated by the above works, we define four new graph operations called as N-
vertex corona, C-vertex neighborhood corona, C-edge corona and N-edge corona,
based on the corona and neighborhood corona of a graph G and K1. Further we
compute their spectrum in some cases. The paper is organized as follows: In Section
3, we give the adjacency spectra (respectively, Laplacian spectra, signless Laplacian
spectra) of N- vertex corona and C-vertex neighborhood corona of two graphs G
and H. In Section 4, we give the adjacency spectra (respectively, Laplacian spectra,
signless Laplacian spectra) of C-edge corona and N-edge corona of two graphs G
and H. In Section 5, using the results obtained in Sections 3 and 5 we give methods
to construct infinitely many pairs of cospectral graphs and also integral graphs.
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2. Preliminaries

In this section, we give some definitions and lemmas which are useful to prove
our main results.

Let G1 and G2 be two graphs on n and m vertices respectively. Let N(G1) =
G1 ⋆K1, C(G1) = G1 ◦K1. We define four new graph operations on G1 and G2 as
follows:

Definition 2.1. The N -vertex corona G1 ~ G2 of two graphs G1 and G2 is
the graph obtained by taking one copy of N(G1), |V (G1)| copies of G2 and joining
each i-th vertex of G1 to every vertex of the i-th copy of G2.

Definition 2.2. The C-vertex neighborhood corona G1 ⊙ G2 of two graphs
G1 and G2 is the graph obtained by taking one copy of C(G1), |V (G1)| copies of
G2 and joining each neighbors of the i-th vertex of G1 to every vertex of i-th copy
of G2.

Definition 2.3. The N -edge corona G1 �G2 of two graphs G1 and G2 is the
graph obtained by taking one copy of N(G1), |E(G1)| copies of G2 and joining each
terminal vertex of i-th edge of G1 to every vertex of the i-th copy of G2.

Definition 2.4. The C-edge corona G1 �G2 of two graphs G1 and G2 is the
graph obtained by taking one copy of C(G1), |E(G1)| copies of G2 and joining each
terminal vertex of i-th edge of G1 to every vertex of i-th copy of G2.

Let A = (aij) be a n ×m matrix, B = (bij) be a p × q matrix then the Kro-
necker product [7] A⊗B of A and B is the np by mq matrix obtained by replacing
each entry aij of A by aijB. It is well-known that (A ⊗ B)(C ⊗D) = AC ⊗ BD,
whenever the products AC and BD exist.

The M-coronal Γ
M
(x) of a square matrix M of order n [4, 18] is defined as

follows:

Γ
M
(x) = eT (xIn −M)−1e,

where e is the column vector of size n with all its entries are 1. If M is a square ma-
trix of order n such that sum of entries in each row a constant ’r’ then it is easy to
see that Γ

M
(x) = n/(x−r). Further for a complete bipartite graph Kp,q we have [4]

ΓA(Kp,q)(x) =
(p+ q)x+ 2pq

x2 − pq
.

Lemma 2.1. [7] If M, N, P, Q are matrices with M being a non-singular matrix,
then ∣∣∣∣ M N

P Q

∣∣∣∣ = |M ||Q− PM−1N |.
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3. Spectra of N-vertex corona and C-vertex neighborhood corona

In this section, we determine the characteristic polynomial of N- vertex corona
and C-vertex neighborhood corona of two graphs G1 and G2 in terms of coronal
of a matrix. Also we compute the adjacency spectrum (respectively, Laplacian
spectrum, signless Laplacian spectrum) of C- edge corona and N-edge corona of
two graphs G1 and G2 in some cases.

Theorem 3.1. Let G1 and G2 be two graphs on n and m vertices respectively.
Then

f(A(G1 ~G2), x) =
m∏
i=1

(x− λi(G2))
n

n∏
i=1

(x− Γ
A(G2)

(x)− λi(G1))x− λ2
i (G1).

Proof. With suitable labelling of the vertices of G, the adjacency matrix
A(G1 ~G2) can be formulated as follows:

A(G1 ~G2) =


In ⊗A(G2) 0 In ⊗ e

0 0 A(G1)

In ⊗ eT A(G1) A(G1)

 ,

where e is the column vector of size m, with all its entries are 1, In is the identity
matrix of order n. Now,

f(A(G1 ~G2), x) = det


In ⊗ (xIm −A(G2)) 0 −In ⊗ e

0 xIn −A(G1)

−In ⊗ eT −A(G1) xIn −A(G1)

 .

By Lemma 2.1, we have

(3.1) f(A(G1 ~G2), x) =

m∏
i=1

(x− λi(G2))
n detS,

where

S =

 xIn −A(G1)

−A(G1) (x− Γ
A(G2)

(x))In −A(G1)

 .

Again using Lemma 2.1, we see that

detS = xndet((x− Γ
A(G2)

(x))In −A(G1)−A2(G1)/x)

=
n∏

i=1

(x− Γ
A(G2)

(x)− λi(G1))x− λ2
i (G1).(3.2)

So by (3.1) and (3.2) the result follows. �
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As ΓM (x) =
n

(x− r)
, where M is the square matrix of order n with each of its

row sum a constant ’r’ and ΓKp,q (x) =
(p+ q)x+ 2pq

x2 − pq
, proofs of the following two

corollaries follows immediately by the above theorem.

Corollary 3.1. Let G1 be an arbitrary graph and G2 be a r-regular graph on
n and m vertices respectively. Then the adjacency spectrum of G = (G1 ~ G2) is
given by:

a. λi(G2), with multiplicity n for i = 2, · · · ,m.
b. three roots of the polynomial

x3 − (r + λi(G1))x
2 + (rλi(G1)−m− λ2

i (G1))x+ rλ2
i (G1), for i = 1, · · · , n.

Corollary 3.2. Let G1 be an arbitrary graph on n vertices. Then the adja-
cency spectrum of G1 ~Kp,q is given by:

(a) 0 with multiplicity n(p+ q − 2).
(b) four roots of the polynomial

x4 − λi(G1)x
3 −

(
λ2
i (G1) + pq + p+ q

)
x2 + (λi(G1)− 2) pqx+ λ2

i (G1)pq,

for i = 1, · · · , n.

Theorem 3.2. Let G1 be r1-regular on n vertices and G2 be an arbitrary graph
on m vertices. Then the Laplacian spectrum of G1 ~G2 is given by:

a. µi(G2) + 1 with multiplicity n, for i = 2, · · · ,m.
b. three roots of the polynomial

x3 − (µi(G1) +m+ 2 r1 + 1)x2 −
(
µi(G1)

2 − 3µi(G1)r1 −mr1 − µi(G1)− 2 r1
)
x

+ µi(G1)
2 − 3µi(G1)r1 , for i = 1, · · · , n.

Proof. With suitable labelling of the vertices of G, the adjacency matrix
L(G1 ~G2) can be formulated as follows:

L(G1 ~G2) =


In ⊗ (Im + L(G2)) 0 −In ⊗ e

0 r1In −A(G1)

−In ⊗ eT −A(G1) (r1 +m)In + L(G1)

 ,

where e is the column vector of size m with all its entries are 1, In is the identity
matrix of order n. Now,

f(L(G1 ~ G2)) = det


In ⊗ ((x − 1)Im − L(G2)) 0 In ⊗ e

0 (x − r1)In A(G1)

In ⊗ eT A(G1) (x − r1 − m)In − L(G1)

 .

By Lemma 2.1, it follows that

(3.3) f(L(G1 ~G2)) =

m∏
i=1

(x− µi(G2)− 1)n detS,
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where

S =

 (x− r1)In A(G1)

A(G1) (x− Γ
L(G2)

(x− 1)− r1 −m)In − L(G1)

 .

Again using Lemma 2.1, we see that

detS = (x− r1)
ndet((x− Γ

L(G2)
(x− 1)− r1 −m)In − L(G1)−A2(G1)/(x− r1))

=
n∏

i=1

(x−m/(x− 1)− r1 −m− µi(G1))(x− r1)− (µi(G1)− r1)
2.(3.4)

So, by (3.3) and (3.4) the desired result follows. �

Let t(G) denote the number of spanning trees of G. It is well known [7] that
for a connected graph G on n vertices, t(G) is given by

(3.5) t(G) =
µ2(G) · · ·µn(G)

n
.

Corollary 3.3. Let G1 be r1-regular graph on n vertices and G2 be an arbi-
trary graph on m vertices. Then the number of spanning trees of G1~G2 is given by

t(G1 ~G2) = r1t(G1)
n∏

i=2

(3r1 − µi(G1))
m∏
i=2

(µi(G2) + 1)n.

Proof. Proof follows directly from the above theorem and (3.5). �

Theorem 3.3. Let G1 be r1-regular on n vertices and G2 be r2-regular graph
on m vertices. Then the signless Laplacian spectrum of G1 ~G2 is given by:

a. γi(G2) + 1 with multiplicity n, for i = 2, · · · ,m.
b. three roots of the polynomial

(x−2r2−1)(x− r1)(x− r1−m−γi(G1))−m(x− r1)− (γi(G1)− r1)
2(x−2r2−1),

for i = 1, · · · , n.

Proof. With suitable labelling of the vertices of G, the adjacency matrix
Q(G1 ~G2) can be formulated as follows:

Q(G1 ~G2) =


In ⊗ (Im +Q(G2)) 0 In ⊗ e

0 r1In A(G1)

In ⊗ eT A(G1) (r1 +m)In +Q(G1)

 ,

where e is the column vector of size m with all its entries are 1, In is the identity
matrix of order n. Rest of the proof is similar to the proof of Theorem 3.2. �

As the proofs of the following theorems are similar to that of Theorem 3.1, we
omit the details.
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Theorem 3.4. Let G1 and G2 be two graphs on n and m vertices. Then

f(A(G1 ⊙G2), x) =
m∏
i=1

(x− λi(G2))
n

n∏
i=1

(x2 − (λi(G1) + λ2
i (G1)ΓA(G2)

(x))x− 1).

Using the fact that ΓM (x) =
n

(x− r)
, where M is the square matrix of order

n with each of its row sum a constant ’r’ and ΓKp,q (x) =
(p+ q)x+ 2pq

x2 − pq
, in the

above theorem we have the following two corollaries.

Corollary 3.4. Let G1 be an arbitrary graph and G2 be a r-regular graph, on
n and m vertices, respectively. Then the adjacency spectrum of G1 ⊙ G2 is given
by:

(a) λi(G2) with multiplicity n, for i = 2, · · · ,m.
(b) three roots of the polynomial

x3 − (λi(G1) + r)x2 − (λ2
i (G1)m− λi(G1)r + 1))x+ r, for i = 1, · · · , n.

Corollary 3.5. Let G1 be an arbitrary graph on n vertices. Then the adja-
cency spectrum of G1 ⊙Kp,q is given by:

(a) 0 with multiplicity n(p+ q − 2).
(b) four roots of the polynomial

x4−λi(G1)x
3−

(
λi(G1)

2p+ λi(G1)
2q + pq + 1

)
x2+

(
−2λi(G1)

2 + λi(G1)
)
pqx+pq,

for i = 1, · · · , n.

Theorem 3.5. Let G1 be r1-regular and G2 be an arbitrary graph on n and m
vertices respectively. Then the Laplacian spectrum of G1 ⊙G2 is given by:

a. µi(G2) + r1 with multiplicity n, for i = 2, · · · ,m.
b. three roots of the polynomial

x3−(mr1 + λi(G1) + r1 + 2)x2+((−λi(G1)m+ 2mr1 + r1 + 1)λi(G1) +mr1 + 2 r1)x

+ (λi(G1)m− 2mr1 − r1)λi(G1) , for i = 1, · · · , n.

By the above theorem and (3.5), we have the following corollary:

Corollary 3.6. Let G1 be a r1-regular graph and G2 be an arbitrary graph
on n and m vertices, respectively. Then the number of spanning trees of G1 ⊙ G2

is given by:

t(G1 ⊙G2) = r1t(G1)
n∏

i=2

(2mr1 − µi(G1) + r1)
m∏
i=2

(µi(G2) + r1)
n.

Theorem 3.6. Let G1 be r1-regular and G2 be r2-regular graph on n and m
vertices, respectively. Then the signless Laplacian spectrum of G1⊙G2 is given by:

a. γi(G2) + r1 with multiplicity n, for i = 2, · · · ,m.
b. three roots of the polynomial

x3 − (mr1 + γi(G1) + 2 r2 + r1 + 2)x2 + ((−γi(G1)m+ 2mr1 + 2 r2 + r1 + 1)γi(G1)

+mr1 + 4 r2 + 2 r1 + 2 r1mr2)x + γi(G1)
2m − 2 γi(G1)mr1 − 2 r1mr2 − 2 γi(G1)r2 −

γi(G1)r1 , for i = 1, · · · , n.
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4. Spectra of C-edge corona and N-edge corona

In this section, we determine the characteristic polynomial of C- edge corona
and N-edge corona of two graphs G1 and G2 in terms of coronal of a matrix. Also
we compute the adjacency spectrum (respectively, Laplacian spectrum, signless
Laplacian spectrum) of C- edge corona and N-edge corona of two graphs G1 and
G2 in some cases.

Theorem 4.1. Let Gi (i = 1, 2) be ri- regular graphs with ni vertices and mi

edges, respectively. Then

f(A(G1 �G2), x) =

n2∏
i=1

(x− λi(G2))
m1

n1∏
i=1

(x2 − (λi(G1) + (λi(G1) + r1)ΓA(G2)
(x))x− 1).

Proof. With suitable labelling of the vertices of G1�G2, the adjacency matrix
A(G1 �G2) can be formulated as follows:

A(G1 �G2) =


Im1 ⊗A(G2) 0 B ⊗ e

0 0 In1

BT ⊗ eT In1 A(G1)

 ,

where e is the column vector of size n2 with all its entries are 1, In1 is the identity
matrix of order n1 and B is the incidence matrix of G1. Now,

f(A(G1 �G2)) = det


Im1 ⊗ (xIn2 −A(G2)) 0 −B ⊗ e

0 xIn1 −In1

−BT ⊗ eT −In1 xIn1 −A(G1)

 .

By Lemma 2.1, we have

(4.1) f(A(G1 �G2)) =

n2∏
i=1

(x− λi(G2))
m1 detS,

where

S =

 xIn1 −In1

−In1 xIn1 −A(G1)− (A(G1) + r1In1)ΓA(G2)
(x)

 .

Again employing Lemma 2.1 to detS, we see that

detS = xn1det(xIn1 −A(G1)− (A(G1) + r1In1)ΓA(G2)
(x)− In1/x)

=

n1∏
i=1

(x2 − (λi(G1) + (λi(G1) + r1)ΓA(G2)
(x))x− 1).(4.2)

So by (4.1) and (4.2) the result follows. �
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Using the fact that ΓM (x) =
n

(x− r)
, where M is the square matrix of order

n with each of its row sum a constant ’r’ and ΓKp,q (x) =
(p+ q)x+ 2pq

x2 − pq
, in the

above theorem we have the following two corollaries.

Corollary 4.1. Let Gi (i = 1, 2) be ri-regular graphs with ni vertices and mi

edges, respectively. Then the adjacency spectrum of G1 �G2 is given by:

(a) λi(G2) with multiplicity m1, for i = 2, · · · , n2.
(b) r2 with multiplicity m1 − n1.
(c) three roots of the polynomial

x3 − (λi(G1) + r2)x
2 + (λi(G1)r2 − n2λi(G1)− r1n2 − 1)x+ r2,

for i = 1, · · · , n1.

Corollary 4.2. Let G1 be r1-regular graph (r1 > 2) with n1 vertices and m1

edges. Then the adjacency spectrum of G1 �Kp,q is given by:

(a) 0 with multiplicity m1(p+ q − 2).
(b) ±√

pq with multiplicity m1 − n1.
(c) four roots of the polynomial

x4−λi(G1)x
3−(λi(G1)p+ λi(G1)q + pq + pr1 + qr1 + 1)x2−pq (λi(G1) + 2 r1)x+pq,

for i = 1, · · · , n1.

Theorem 4.2. Let G1 be r1- regular graph (r1 > 2) and G2 be an arbitrary
graph with n1, n2 vertices and m1, m2 edges, respectively. Then the Laplacian
spectrum of G1 �G2 is given by:

a. µi(G2) + 2 with multiplicity m1, for i = 2, · · · , n2.
b. 2 with multiplicity m1 − n1.
c. three roots of the polynomial

(x− 1)((x− 2)(x− n2r1 − µi(G1)− 1) + (µi(G1)− 2r1)n2)− (x− 2),
for i = 1, · · · , n1.

Proof. With suitable labelling of the vertices of G1�G2, the adjacency matrix
L(G1 �G2) can be formulated as follows:

L(G1 �G2) =


Im1 ⊗ (2In2 + L(G2)) 0 −B ⊗ e

0 In1 −In1

−BT ⊗ eT −In1 (mr1 + 1)In1 + L(G1)

 ,

where e is the column vector of size n2 with all its entries are 1, In1 is the identity
matrix of order n1 and B is the incidence matrix of G1. Now,

f(L(G1 � G2)) = det


Im1 ⊗ ((x − 2)In2 − L(G2)) 0 B ⊗ e

0 (x − 1)In1 In1

BT ⊗ eT In1 (x − mr1 − 1)In1 − L(G1)

 .

By Lemma 2.1, we have
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(4.3) f(L(G1 �G2)) =

n2∏
i=1

(x− µi(G2)− 2)m1 detS,

where

S =

 (x− 1)In1 In1

In1 (x−mr1 − 1)In1 − L(G1)− (A(G1) + r1In1)ΓL(G2)
(x− 2)

 .

Again employing Lemma 2.1 to detS, we see that

detS = (x − 1)
n1det((x − n2r1 − 1)In1 − L(G1) − (A(G1) + r1In1 )ΓL(G2)

(x − 2) − In1/(x − 1))

=

n1∏
i=1

(x − 1)(x − n2r1 − µi(G1) − 1 + (µi(G1) − 2r1)n2/(x − 2)) − 1.(4.4)

So by (4.3) and (4.4) the result follows. �

Corollary 4.3. Let G1 be r1- regular graph (r1 > 2) and G2 be an arbitrary
graph with n1, n2 vertices and m1, m2 edges, respectively. Then the number of
spanning trees of G1 �G2 is given by:

t(G1 �G2) = t(G1)2
m1−n1+1(n2 + 2)n1

n2∏
i=2

(µi(G2) + 2)m1 .

Proof. By (3.5) and above theorem, we obtain the desired result. �

Theorem 4.3. Let G1 be r1- regular graph (r1 > 2) and G2 be an r1 graph
with n1, n2 vertices and m1, m2 edges. Then the signless Laplacian spectrum of
G1 �G2 is given by:

a. γi(G2) + 2 with multiplicity m1, for i = 2, · · · , n2.
b. 2(r2 + 1) with multiplicity m1 − n1.
c. three roots of the polynomial

x3 − (r1n2 + γi(G1) + 2 r2 + 4)x2 + (2 r1n2r2 + 2 γi(G1)r2 − γi(G1)n2 + 3 r1n2

+3 γi(G1) + 4 r2 + 4)x− 2 r1n2r2 − 2 γi(G1)r2 + γi(G1)n2 − 2 r1n2 − 2 γi(G1),
for i = 1, · · · , n1.

Proof. With suitable labelling of the vertices of G1�G2, the adjacency matrix
Q(G1 �G2) can be formulated as follows:

Q(G1 �G2) =


Im1

⊗ (2In2
+Q(G2)) 0 B ⊗ e

0 In1
In1

BT ⊗ eT In1 (mr1 + 1)In1 +Q(G1)

 ,

where e is the column vector of size n2 with all its entries are 1, In1 is the identity
matrix of order n1 and B is the incidence matrix of G1. Rest of the proof is similar
to the proof of Theorem 4.2. �
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As the proofs of the following theorems are similar to that of Theorem 4.1 we
omit the details.

Theorem 4.4. Let Gi (i=1,2) be ri- regular graphs with ni vertices and mi

edges, respectively. Then

f(A(G1�G2), x) =

n2∏
i=1

(x−λi(G2))
m1

n∏
i=1

(x−(λi(G1)+r1)ΓA(G2)
(x)−λi(G1))x−λ2

i (G1).

As ΓM (x) =
n

(x− r)
, where M is the square matrix of order n with each of its

row sum a constant ’r’ and ΓKp,q (x) =
(p+ q)x+ 2pq

x2 − pq
, proofs of the following two

corollaries follows immediately by the above theorem.

Corollary 4.4. Let Gi (i = 1, 2) be ri-regular graphs with r1 > 2, ni vertices
and mi edges. Then the adjacency spectrum of G = (G1 �G2) is given by:

a. λi(G2), with multiplicity m1 for i = 2, · · · , n2.
b. r2 with multiplicity m1 − n1.
c. three roots of the polynomial

x3 − (r2 + λi(G1))x
2 − (λ2

i (G1) + λi(G1)(n2 − r2) + n2r1)x + r2λ
2
i (G1), for

i = 1, · · · , n1.

Corollary 4.5. Let G1 be r1-regular graphs with n1 vertices and m1 edges.
Then the adjacency spectrum of G = (G1 �Kp,q) is given by:

a. 0, with multiplicity m1(p+ q − 2).
b. ±√

pq with multiplicity m1 − n1.
c. four roots of the polynomial

x4 − λi(G1)x
3 +

(
−λi(G1)

2
+ (−p− q)λi(G1) + (−q − r1) p− qr1

)
x2

− pq (λi(G1) + 2 r1)x+ λi(G1)
2
pq, for i = 1, · · · , n1.

Theorem 4.5. Let G1 be r1-regular graph (r1 > 2) with n1 vertices and m1

edges. Then for an arbitrary graph G2 on n2 vertices, the Laplacian spectrum of
G1 �G2 is given by:

a. µi(G2) + 2 with multiplicity m1, for i = 2, · · · , n2.
b. 2 with multiplicity m1 − n1.
c. three roots of the polynomial

(x− 2)(x− r1)(x− µi(G1)− r1 − n2r1) + n2(µi(G1)− 2r1)(x− r1)
− (µi(G1)− r1)

2(x− 2), for i = 1, · · · , n1.

Applying (3.5) to the above theorem we have the following result:

Corollary 4.6. Let G1 be r1-regular graph (r1 > 2) with n1 vertices and m1

edges. Then for an arbitrary graph G2 on n2 vertices, the number of spanning trees
of G1 �G2 is given by:

t(G1 �G2) = r1t(G1)2
m1−n1+1

n1∏
i=2

(6r1 + n2r1 − 2µi(G1))

n2∏
i=2

(µi(G2) + 2)m1 .
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Theorem 4.6. Let Gi (i = 1, 2) be ri-regular graphs with ni vertices, mi edges
and r1 > 2. Then the signless Laplacian spectrum of G1 �G2 is given by:

a. γi(G2) + 2 with multiplicity m1, for i = 2, · · · , n2.
b. 2(r2 + 1) with multiplicity m1 − n1.
c. three roots of the polynomial

(x−2r2−2)(x−r1)(x−γi(G1)−r1−n2r1)−n2γi(G1)(x−r1)−(γi(G1)−r1)
2(x−2r2−2),

for i = 1, · · · , n1.

5. Applications

The notion of integral graph was first introduced by Harary and Schwenk in
1974 [10]. In general, the problem of characterizing integral graphs is a difficult
task. In [2] constructions and properties of integral graphs are discussed in de-
tail. The graphs Kn, Km,n (mn a perfect square), C6, the cocktail parity graph
CP (n) = ¯nK2, are all examples of integral graphs. Moreover, some graph opera-
tions such as cartesian product, direct product and strong product when applied
on integral graphs produce again integral graphs. For other related works see
[13, 20, 21] and therein references. In this section, we apply our graph operations
based on corona and neighborhood corona on known integral graphs to produce
class of new integral graphs. At the end of the section, as an application we give
methods to construct infinitely many pairs of cospectral graphs.

From Corollaries 3.1 and 3.4 it follows that

a. If G is an integral graph of order n, then G ~ mK1 is integral if and only if
5λ2

i (G) + 4m is a perfect square, for i = 1, 2, · · · , n.

b. If G is an integral graph of order n, then G ⊙ mK1 is integral if and only if
λ2
i (G)(4m+ 1) + 4 is a perfect square, for all i = 1, 2, · · · , n.

In particular, we have the following:

i. Kn ~mK1 is integral if and only if 4m+5 and 5n2 − 10n+ 4m+ 5 are perfect
squares.

ii. Kp,q ~mK1 is integral if and only if pq, m and 5pq + 4m are perfect squares.
iii. If G ~ mK1 is an integral graph then (K2 ⊗ G) ~ mK1 is integral, where ⊗

denotes the direct product of two graphs.

iv. Kn ⊙mK1 is integral if and only if 4m+5 and (n− 1)2(4m+1)+4 are perfect
squares.

v. Kp,q ⊙mK1 is integral if and only if pq and pq(4m+1)+4 are perfect squares.

vi. If G ⊙ mK1 is an integral graph then (K2 ⊗ G) ⊙ mK1 is integral, where ⊗
denotes the direct product of two graphs.

The above observations enable us to construct some class of new integral graphs.



SPECTRA OF GRAPH OPERATIONS BASED ON CORONA· · · 67

Example 5.1. In the following table we give infinite ordered pairs (m,n) for
which the graph Kn ~mK1 is integral.

n m
6k + 3 (5k2 + 5k + 1)(45k2 + 15k − 1), k = 1, 2, · · ·
6k − 1 (5k2 − 5k + 1)(45k2 − 15k − 1), k = 1, 2, · · ·
2k + 1 k4 − 3k2 + 1, k = 2, 3, · · ·

2 k2 + 3k + 1, k = 1, 2, · · ·

Example 5.2. a. Kn,n ~ n2K1 is integral graph for all n.
b. K1,n2 ~ n2K1 is integral graph for all n.

Example 5.3. a. If n = 2k and m = k2 − k − 1, then Kn ⊙ mK1 is integral
for k = 1, 2, · · · .

b. If n = 2k−1 and m = k2−k−1, then Kn,n⊙mK1 and K1,n2 ⊙mK1 is integral
for k = 1, 2, · · · .

From Corollaries 4.1 and 4.4 it follows that

a. If G is an integral r-regular graph (r > 2) on n vertices, then G�mK1 is inte-
gral if and only if λi(G)2i +4m(λi(G)+r)+4 is a perfect square, for i = 1, 2, · · ·n.

b. If G is an integral r-regular graph (r > 2) on n vertices, then G�mK1 is integral
if and only if 5λ2

i (G) + 4m(λi(G) + r) is a perfect square, for i = 1, 2, · · · , n.
In particular, we have the following

i. Kn�mK1 (n > 2) is integral if and only if 4m(n−2)+5 and (n−1)2+8m(n−
1) + 4 are perfect squares.

ii. Kn,n �mK1 (n > 2)is integral if and only if mn+ 1, n2 + 8mn+ 4, n2 + 4 are
perfect squares.

iii. Kn�mK1 (n > 2) is integral if and only if 4m(n−2)+5 and 5(n−1)2+8m(n−1)
are perfect squares.

iv. Kn,n �mK1 (n > 2) is never an integral graph for all n and m.

The above observations enables us to construct some new class of integral graphs.

Example 5.4. If m = k2−k−1, then K3�mK1 is integral for all k = 2, 3, · · · .

Now, we give methods to construct infinite family of cospectral graphs.
From Theorem 3.1 and 3.4 one can easily notice that

a. If G1 and G2 are adjacency cospectral graphs and H is an arbitrary graph, then
i. G1 ~H and G2 ~H are adjacency cospectral.

ii. G1 ⊙H and G2 ⊙H are adjacency cospectral.
b. If G is an arbitrary graph and H1, H2 are adjacency cospectral graphs with

ΓA(H1)(x) = ΓA(H2)(x), then
i. G~H1 and G~H2 are adjacency cospectral.
ii. G⊙H1 and G⊙H2 are adjacency cospectral.
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Similary using Theorem 3.2, 3.5 and 3.3, 3.6 one can construct Laplacian cospectral
and signless Laplacian cospectral graphs.
Also from Theorem 4.1 and 4.4 we have the following results:

a. If G1 and G2 are adjacency regular cospectral graphs and H is an arbitrary
graph, then
i. G1 �H and G2 �H are adjacency cospectral.

ii. G1 �H and G2 �H are adjacency cospectral.
b. If G is an arbitrary regular graph and H1, H2 are adjacency cospectral graphs

with ΓA(H1)(x) = ΓA(H2)(x), then
i. G�H1 and G�H2 are adjacency cospectral.
ii. G�H1 and G�H2 are adjacency cospectral.

Similary using Theorem 4.2, 4.5 and 4.3, 4.6 one can construct Laplacian cospectral
and signless Laplacian cospectral graphs.
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