
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4866, ISSN (o) 2303-4947
www.imvibl.org /JOURNALS / JOURNAL
Vol. 5(2015), 1-17

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

Some properties of Hermite matrix polynomials

Ayman Shehata and Ravi Bhukya

Abstract. The main aim in this paper, we use the differential operators and

matrix polynomial sets, generating matrix functions, integrals representation
to derive the properties of Hermite matrix polynomials. Finally, we obtain
an expansion of Hermite matrix polynomials in a series of Laguerre matrix
polynomials and the Christoffel’s formula of summation is established.

1. Introduction

Theory of special functions plays an important role in the formalism of math-
ematical physics. Hermite and Chebyshev polynomials in [19] are among the most
important special functions, with very diverse applications to physics, engineer-
ing and mathematical physics ranging from abstract number theory to problems of
physics and engineering. Recently, the Hermite matrix polynomials have been intro-
duced and studied in a number of papers [1, 12, 13, 20, 15, 16, 17, 36]. This ap-
proach has indeed allowed the derivation of the Hermite matrix polynomials of vari-
ables and its extension to the Hermite, Gegenbauer, Bessel and pseudo Chebyshev
matrix polynomials in [14, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35].

Our primary purpose in this paper deals with the introduction and study of
Hermite matrix polynomials taking advantage of those recently treated in [1, 2].
The organization of the paper is as follows: In Section 2, differential operators and
matrix polynomial sets are proved for Hermite matrix polynomials. Section 3, gen-
erating matrix functions for Hermite matrix polynomials are established. Integrals
of representation for Hermite matrix polynomials are shown in Section 4. Finally,
we obtain an expansion of Hermite matrix polynomials in a series of Laguerre
matrix polynomials and the Christoffel’s formula of summation is established in
Section 5.
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ferential operators; matrix polynomial sets; generating matrix functions; integrals; Christoffel’s
formula.

1



2 AYMAN SHEHATA AND RAVI BHUKYA

If D0 is the complex plane cut along the negative real axis and log(z) denotes

the principle logarithm of z [5], then z
1
2 represents exp( 12 log(z)). Its spectrum σ(A)

denotes the set of all eigenvalues of A. If A is a matrix in CN×N with σ(A) ⊂ D0,

then A
1
2 =

√
A = exp( 12 log(A)) denotes the image by z

1
2 of the matrix functional

calculus acting on the matrix A. The two-norm of A is denoted by ||A||2 and it is
defined by

||A||2 = sup
x̸=0

||Ax||2
||x||2

where for a vector y in CN , ||y||2 = (yT y)
1
2 is the Euclidean norm of y.

If f(z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set Ω of the complex plane and if A is a matrix in CN×N with
σ(A) ⊂ Ω, then from the properties of the matrix functional calculus [5], it follows
that

f(A)g(A) = g(A)f(A).(1.1)

Hence, if B in CN×N is a matrix for which σ(B) ⊂ Ω and also if AB = BA, then

f(A)g(B) = g(B)f(A).(1.2)

Let A be a positive stable matrix in CN×N satisfying the condition [12, 13]

Re(z) > 0, for all z ∈ σ(A).(1.3)

It has been seen by Defez and Jódar [2] that if A(k, n) and B(k, n) are matrices in
CN×N for n > 0, k > 0, it follows (in an analogous way to the proof of Lemma 11
of [19]) that

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k),

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

[ 12n]∑
k=0

A(k, n− 2k).

(1.4)

Similarly to (1.4), we can write

∞∑
n=0

n∑
k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n+ k),

∞∑
n=0

[ 12n]∑
k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n+ 2k).

(1.5)

In the following, we will apply the above results to Hermite matrix polynomials
and we will see that the results, summarized in this section, can be exploited to
state quite general results.
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1.1. Hermite matrix polynomials. One of the most direct ways of explor-
ing generalized classes of Hermite matrix polynomials is to start from modified
forms of the ordinary Hermite matrix polynomials and generating matrix function.

The Hermite matrix polynomials Hn(x,A) of single variable was defined by
using the generating matrix function [1, 6, 12, 13, 20] in the following form

∞∑
n=0

tn

n!
Hn(x,A) = exp

(
xt
√
2A− t2I

)
(1.6)

where A is a positive stable matrix in CN×N and I is the identity matrix in CN×N .
The Hermite matrix polynomials are explicitly expressed as follows

Hn(x,A) = n!

[ 12n]∑
k=0

(−1)k

k!(n− 2k)!
(x
√
2A)n−2k, n > 0.(1.7)

It is clear that

H−1(x,A) = 0, H0(x,A) = I, H1(x,A) = x
√
2A

and Hn(−x,A) = (−1)nHn(x,A).

where 0 is the null matrix in CN×N .
From (1.6) and (1.7). It is easy to prove that

d

dz
Hn(x,A) = n

√
2AHn−1(x,A),

Hn+1(x,A) =

[
z
√
2A− 2√

2A

d

dz

]
Hn(x,A).

(1.8)

The matrix differential equations satisfied by Hn(x,A) can be straightforwardly
deduced by introducing the shift operators

P̂ =
1√
2A

d

dx
,

M̂ = x
√
2A− 2√

2A

d

dx

(1.9)

which act on Hn(x,A) according to the rules

P̂Hn(x,A) = nHn−1(x,A),

M̂Hn(x,A) = Hn+1(x,A).
(1.10)

Using the identity

M̂P̂Hn(x,A) = nHn(x,A)(1.11)

from (1.11), we find thatHn(x,A) satisfy the following matrix differential equations
of second order [6, 20, 21][

d2

dx2
I − z

2

d

dx
(
√
2A)2 +

n

2
(
√
2A)2

]
Hn(x,A) = 0.(1.12)
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The Hermite matrix polynomials are defined through the operational rule [1] in the
form

Hn(x,A) = exp
(
− 1

(
√
2A)2

d2

dx2
)(
x
√
2A

)n
.(1.13)

In addition, the inverse of (1.13) allows concluding that

(x
√
2A)n = exp

(
1

(
√
2A)2

d2

dx2

)
Hn(x,A).(1.14)

For the sake of clarity, we recall that an expansion of zn I in a series of Hermite
matrix polynomials was in [2, 6]

(x
√
2A)n =

[ 12n]∑
k=0

n!

k!(n− 2k)!
Hn−2k(x,A).(1.15)

Furthermore, the nth Laguerre matrix polynomials L
(A,λ)
n (x) is defined by [7, 12]

L(A,λ)
n (x) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]
−1λkxk

k!(n− k)!
;n > 0(1.16)

where A is a matrix in CN×N such that −k is not an eigenvalue of A, for every
integer k > 0 and λ is a complex number such that Re(λ) > 0. In (1.16), putting
λ = 1 gives

L(A)
n (x) =

n∑
k=0

(−1)k(A+ I)n[(A+ I)k]
−1xk

k!(n− k)!
.(1.17)

So, we derive an expansion of xnI in a series of Laguerre matrix polynomials in the
form

xnI = n!
n∑

k=0

(−1)k(A+ I)n[(A+ I)k]
−1

(n− k)!
L
(A)
k (x).(1.18)

The next section is devoted to the differential operators and matrix polynomial sets
of Hermite matrix polynomials, treated within the context of the point of view so
far developed.

2. Differential operators and matrix polynomial sets

Let φn(x,A); n = 0, 1, 2, ..., be any simple set of matrix polynomials. Let us
define the set of matrix polynomials Tn(x,A), n > 0, by

T0(x,A)Dφ1(x,A) = φ0(x,A);D =
d

dx
(2.1)

and

Tn(x,A)D
n+1φn+1(x,A) = φn(x,A)−

n−1∑
k=0

Tk(x,A)D
k+1φn+1(x);n > 1.(2.2)

Because φn(x,A) is of degree precisely n for each n, it follows that Tn(x,A) is
uniquely defined and is of degree 5 n. Note that Dφ1(x,A) is constant, as is
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φ0(x,A), so T0(x,A) is constant. For n = 1 each Tn(x) is defined by (2.2) in
terms of pervious elements of the set, Tk(x,A) for 0 5 k 5 (n − 1). Because
Dn+1φn+1(x,A) is constant and the degree of Tk(x,A)D

k+1φk+1(x,A) exceeds the
degree of Tk(x,A) by exactly (n− k), each member of (2.2) has degree at most n.

Theorem 2.1. For the simple set of matrix polynomials φn(x,A) there exists
a unique differential operator of the form

J(x,D,A) =

∞∑
k=0

Tk(x,A)D
k+1(2.3)

in which Tk(x,A) is a matrix polynomials of degree 5 k, for which

J(x,D,A)φn(x,A) = φn−1(x,A); n = 1.(2.4)

It is important that J be independent of n.

Proof. The requirement (2.4) demands that, for n = 1

n−1∑
k=0

Tk(x,A)D
k+1φn(x,A) = φn−1(x,A)

this is merely a restatement of (2.1) and (2.2). Equations (2.1) and (2.2) as we saw,
determine Tk(x,A) uniquely. �

We say that the matrix polynomials set φn(x,A) belongs to the operator J
and that J is operator associated with the set φn(x,A). There is only one such
operator associated with a given φn(x,A), but there are infinitely many sets of
matrix polynomials belonging to the same operator.

Theorem 2.2. A necessary and sufficient condition that two simple sets of
matrix polynomials φn(x,A) and ψn(x,A) belonging to the same operator J is that
there exists a sequence of numbers bk independent of n, such that

ψn(x,A) =
n∑

k=0

bkφn−k(x,A).(2.5)

Assume (2.5) to hold. There exists an operator J to which φn(x,A) belongs.
That ψn(x,A) belongs to the same operator follows from

Jψn(x,A) =
n∑

k=0

bkJφn−k(x,A) =
n∑

k=0

bkφn−k−1(x,A) = ψn−1(x,A).

Next assume that φn(x,A) and ψn(x,A) belong to the same operator J . We need
to show that the bk of (2.5) exists. We know, because φn(x,A) and ψn(x,A) are
simple sets of matrix polynomials, that there exist the relations

ψn(x,A) =
n−1∑
k=0

A(k, n)φn−k(x,A),(2.6)
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in general, the coefficients A(k, n) depend upon n as well as on k. Since φn(x,A)
and ψn(x,A) belong to J , we may apply J to each member of (2.6) and obtain

ψn−1(x,A) =
n−1∑
k=0

A(k, n)φn−k−1(x,A); n = 1.(2.7)

Recall that Jφ0(x,A) = 0, which is the reason that the term A(k, n) dropped out
when the operator J was applied to (2.6). We may shift index from n to (n+1) in
(2.7) to get

ψn(x,A) =

n∑
k=0

A(k, n+ 1)φn−k(x,A); n = 0.(2.8)

Comparing (2.6) and (2.8), we see that

A(k, n) = A(k, n+ 1)

for all k, n. Then A(k, n) = bk, independent of n.
Not every operator of the form (2.3) is associated with some matrix polynomial

set in the sense we have defined. For the operator J of the form (2.3) to be
associated with some simple set, it is necessary and sufficient that J transform
every matrix polynomial of degree precisely n into a matrix polynomial of degree
precisely (n− 1).

Example 2.1. Determine the operator associated with the set φn(x,A) =
Hn(x,A)
(n!)2 , in which Hn(x,A) is the Hermite matrix polynomials.

Here, we have

φ0(x,A) = H0(x,A) = I,

φ1(x,A) = H1(x,A) = x
√
2A,

φ2(x,A) =
1

4
H2(x,A) =

1

4
(x
√
2A)2 − 1

2
I,

φ3(x,A) =
1

36
H3(x,A) =

1

36
(x
√
2A)3 − 1

6
x
√
2A,

φ4(x,A) =
1

(4!)2
H4(x,A) =

1

(4!)2
(x
√
2A)4 − 12

(4!)2
(x
√
2A)2 +

12

(4!)2
I

and

φ5(x,A) =
1

(5!)2
H5(x,A) =

1

(5!)2
(x
√
2A)5 − 20

(5!)2
(x
√
2A)3 +

60

(5!)2
(x
√
2A), etc.

We seek an operator J of the form

J =
∞∑
k=0

Tk(x,A)D
k+1

such that Jφn = φn−1 for n = 1. Then

T0(x,A)Dφ1 = φ0 or T0(x,A)
√
2A = I
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so that T0(x,A) = (
√
2A)−1. Next we have

1∑
k=0

Tk(x,A)D
k+1φ2(x,A) = φ1(x,A),

[T0(x,A)D + T1(x,A)D
2]φ2(x,A) = φ1(x,A)

or

[(
√
2A)−1D + T1(x,A)D

2][
1

4
(x
√
2A)2 − 1

2
I] = x

√
2A.

Then, we get

x
√
2A

2
+ T1(x,A)

(
√
2A)2

2
= x

√
2A.

So that T1(x,A) = x(
√
2A)−1. In turn

[T0(x,A)D + T1(x,A)D
2 + T2(x,A)D

3]φ3(x,A) = φ2(x,A)

or

[(
√
2A)−1D + x(

√
2A)−1D2 + T2(x,A)D

3][
1

36
(x
√
2A)3 − 1

6
x
√
2A] =

1

4
(x
√
2A)2 − 1

2
I,

we obtain

(
√
2A)−1[

x2

12
(
√
2A)3 − 1

6

√
2A] + x(

√
2A)−1[

x

6
(
√
2A)3] + T2(x,A)[

1

6
(
√
2A)3] =

1

4
(x
√
2A)2 − 1

2
I(2.9)

from which T2(x,A) = −2(
√
2A)−3.

If we continue the above procedure, we find that T3(x,A) = 0, T4(x,A) = 0,
and we begin to suspect that J may terminate. Let us therefore define

J1 = (
√
2A)−1D + x(

√
2A)−1D2 − 2(

√
2A)−2D3

operate on φn(x,A) with J1 and see whether the result is φn−1(x,A).
Now, we have

J1φn(x,A) = J1
Hn(x,A)

(n!)2
=

1

(n!)2

[
(
√
2A)−1D + x(

√
2A)−1D2 − 2(

√
2A)−2D3

]
Hn(x,A)

=
1

(n!)2

[
(
√
2A)−1H ′

n(x,A) + x(
√
2A)−1H ′′

n(x,A)− 2(
√
2A)−3H ′′′

n (x,A)

]
= − 1

(n!)2
(
√
2A)−3

[
2H ′′′

n (x,A)− x(
√
2A)2H ′′

n(x,A)− (
√
2A)2H ′

n(x,A)

]
.

From Hermite’s matrix differential equation[
d2

dx2
I − x

2
(
√
2A)2

d

dx
+
n

2
(
√
2A)2

]
Hn(x,A) = 0,

2H ′′
n(x,A)− x(

√
2A)2H ′

n(x,A) + n(
√
2A)2Hn(x,A) = 0

we obtain

2H ′′′
n (x,A)− x(

√
2A)2H ′′

n(x,A)− (
√
2A)2H ′

n(x,A) + n(
√
2A)2H ′

n(x,A) = 0.
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So that we have

J1φn(x,A) = − (
√
2A)−3

(n!)2

[
− n(

√
2A)2H ′

n(x,A)

]
=

(
√
2A)−1H ′

n(x,A)

(n!)(n− 1)!
.

But we also know that H ′
n(x,A) = n

√
2AHn−1(x,A). Hence, we have

J1φn(x,A) =
nHn−1(x,A)

(n!)(n− 1)!
=
Hn−1(x,A)

((n− 1)!)2
= φn−1(x,A)

as desired. Therefore φn(x,A) =
Hn(x,A)
(n!)2 belongs to operator J1 of (2.9).

3. Generating matrix functions for Hermite matrix polynomials

Now, we can see state that the generating matrix functions for Hermite matrix
polynomials with on their properties and prove the following.

Theorem 3.1. Let A be a matrix in CN×N satisfying the condition (1.3), then
∞∑

n=0

(−1)n

(2n)!
H2n(x,A)t

n = et cos(x
√
2tA)(3.1)

and
∞∑

n=0

(−1)n

(2n+ 1)!
H2n+1(x,A)t

n =
et sin(x

√
2tA)√

t
.(3.2)

Proof. By using (1.7), consider the series in the form
∞∑

n=0

(−1)n

(2n)!
H2n(x,A)t

n =
∞∑

n=0

n∑
k=0

(−1)n+k(x
√
2A)2n−2k

k!(2n− 2k)!
tn

=

∞∑
n=0

∞∑
k=0

(−1)n+2k(x
√
2A)2n

k!(2n)!
tn+k

= et cos(x
√
2tA).

Therefore, (3.1) follows. The series can be given

∞∑
n=0

(−1)n

(2n+ 1)!
H2n+1(x,A)t

n =
∞∑

n=0

[ 2n+1
2 ]∑

k=0

(−1)n+k(x
√
2A)2n+1−2k

k!(2n+ 1− 2k)!
tn

=
∞∑

n=0

∞∑
k=0

(−1)n+2k(x
√
2A)2n+1

k!(2n+ 1)!
tn+k

=

∞∑
n=0

∞∑
k=0

(−1)n+2k(x
√
2A)2n+1

k!(2n+ 1)!
tn+k

= t−
1
2 et sin(x

√
2tA).

The proof of Theorem 3.1 is completed. �
In the following theorem, we obtain another generating matrix function for

Hermite matrix polynomials as follows.
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Theorem 3.2. Let A be a matrix in CN×N satisfying the condition (1.3), then

∞∑
n=0

H2n(x,A)

(2n)!
t2n = e−t2 cosh(xt

√
2A)(3.3)

and

∞∑
n=0

H2n+1(x,A)

(2n+ 1)!
t2n+1 = e−t2 sinh(xt

√
2A).(3.4)

Proof. Using (1.7), we consider the series

∞∑
n=0

H2n(x,A)

(2n)!
t2n =

∞∑
n=0

n∑
k=0

(−1)k(x
√
2A)2n−2k

k!(2n− 2k)!
t2n

=

∞∑
n=0

∞∑
k=0

(−1)k(x
√
2A)2n

k!(2n)!
t2n+2k

= e−t2 cosh(xt
√
2A).

Therefore, (3.3) follows. The series can be given in the form

∞∑
n=0

H2n+1(x,A)

(2n+ 1)!
t2n+1 =

∞∑
n=0

[ 2n+1
2 ]∑

k=0

(−1)k(x
√
2A)2n+1−2k

k!(2n+ 1− 2k)!
t2n+1

=
∞∑

n=0

∞∑
k=0

(−1)k(x
√
2A)2n+1

k!(2n+ 1)!
t2n+2k+1

= e−t2 sinh(xt
√
2A).

Thus the proof of Theorem 3.2 is completed. �

The above relations will be used, along with the Hermite matrix polynomials
to derive the following theorem.

Theorem 3.3. Let A be a matrix in CN×N satisfying the condition (1.3). Then
the Hermite matrix polynomials have the following generating matrix function

∞∑
n=0

(α)nH2n(x,A)t
2n

(2n)!
= (1 + t2)−α

1F1

(
α;

1

2
;
x2t2(

√
2A)2

4(1 + t2)

)
(3.5)

where α is a positive integer and |t2| < 1.
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Proof. Let us consider the sum and using (1.7), yields

∞∑
n=0

(α)nH2n(x,A)t
2n

(2n)!
=

∞∑
n=0

n∑
k=0

(−1)k(α)n(x
√
2A)2n−2kt2n

k!(2n− 2k)!

=

∞∑
n=0

∞∑
k=0

(−1)k(α)n+k(x
√
2A)2nt2n+2k

k!(2n)!

=
∞∑

n=0

∞∑
k=0

(−1)k(α+ n)k(α)n(xt
√
2A)2nt2k

k!(2n)!

=
∞∑

n=0

∞∑
k=0

(α)n(xt
√
2A)2n

(2n)!

(−1)k(α+ n)kt
2k

k!

=

∞∑
n=0

(α)n(xt
√
2A)2n

(2n)!

1

(1 + t2)α+n

= (1 + t2)−α
∞∑

n=0

(α)n

n!22n( 12 )n

(xt
√
2A)2n

(1 + t2)n

= (1 + t2)−α
1F1

(
α;

1

2
;
x2t2(

√
2A)2

4(1 + t2)

)
.

The proof of Theorem 3.3 is completed. �

4. Integrals of Hermite matrix polynomials

Now, we can see state that the integrals of Hermite matrix polynomials with
on their properties and prove the following.

Theorem 4.1. Let A be a matrix in CN×N satisfying the condition (1.3), then
we have

exp

(
− Ax2

2

)
=

2√
π

∫ ∞

0

exp

(
− t2

)
cos(xt

√
2A)dt.(4.1)

Proof. From Taylor’s expansion, we have

cos(x
√
2A) =

∞∑
n=0

(−1)n

(2n)!
(x
√
2A)2n.(4.2)

Since the summation in the right-hand side of the above equality is finite, then the
series and the integral can be permuted. From the definition of Gamma function,
we have ∫ ∞

0

e−t2t2ndt =
1

2
Γ(n+

1

2
)(4.3)

and from Legendre duplication formula, we have

Γ(n+
1

2
) =

(2n)!
√
π

22nn!
(4.4)
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then, we have used the Gamma function as well as Legendre duplication formula∫ ∞

0

exp

(
− t2

)
cos(xt

√
2A)dt =

∫ ∞

0

exp

(
− t2

) ∞∑
n=0

(−1)n

(2n)!
(xt

√
2A)2ndt

=
∞∑

n=0

(−1)n

(2n)!
(x
√
2A)2n

∫ ∞

0

exp

(
− t2

)
t2ndt =

∞∑
n=0

(−1)n

2(2n)!
(x
√
2A)2nΓ(n+

1

2
)

=
∞∑

n=0

(−1)n

2 (2n)!
(x
√
2A)2n

(2n)!
√
π

n!22n
=

∞∑
n=0

(−1)n
√
π

2 n!22n
(x
√
2A)2n =

∞∑
n=0

(−1)n
√
π

2 n!
(
x
√
2A

2
)2n

The proof of Theorem 4.1 is completed. �

Theorem 4.2. Let A be a matrix in CN×N satisfying the condition (1.3), then
we have

H2n(x,A) =
(−1)n22n+1

√
π

exp

(
Ax2

2

)∫ ∞

0

exp

(
− t2

)
t2n cos(xt

√
2A)dt(4.5)

and

H2n+1(x,A) =
(−1)n22n+2

√
π

exp

(
Ax2

2

)∫ ∞

0

exp

(
− t2

)
t2n+1 sin(xt

√
2A)dt.(4.6)

Proof. Differentiating (4.3) 2n times with respect to x, we get

d2n

dx2n
exp

(
− Ax2

2

)
=

2√
π

∫ ∞

0

exp

(
− t2

)
(−1)n(t

√
2A)2n cos(xt

√
2A)dt.(4.7)

But, from Rodrigues’s formula Hn(x,A) = (−1)n(A2 )
−n

2 exp

(
Ax2

2

)
dn

dxn exp

(
−

Ax2

2

)
, we have H2n(x,A) = (A2 )

−n exp

(
Ax2

2

)
d2n

dx2n exp

(
− Ax2

2

)
. Then, we have

H2n(x,A) =
(−1)n22n+1

√
π

exp

(
Ax2

2

)∫ ∞

0

exp

(
− t2

)
t2n cos(xt

√
2A)dt.

Differentiating (4.3) 2n+ 1 times with respect to x, we get

d2n+1

dx2n+1
exp

(
− Ax2

2

)
=

2√
π

∫ ∞

0

exp

(
− t2

)
(−1)n(t

√
2A)2n+1 sin(xt

√
2A)dt(4.8)

and H2n+1(x,A) = (−1)2n+1(A2 )
− 2n+1

2 exp

(
Ax2

2

)
d2n+1

dx2n+1 exp

(
− Ax2

2

)
. Then we

get

H2n+1(x,A) =
(−1)n22n+2

√
π

exp

(
Ax2

2

)∫ ∞

0

exp

(
− t2

)
t2n+1 sin(xt

√
2A)dt.

The proof of Theorem 4.2 is completed. �
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5. Expansion of Hermite matrix polynomials in a series of Laguerre
matrix polynomials

In this section, the Hermite matrix polynomials can be expanded in a series
of Laguerre matrix polynomials. For the sake of clarity, we recall that if A is
a matrix in CN×N satisfies the condition (1.3), let us employ (1.5), (1.7) and
(1.18) in expanding the Hermite matrix polynomial in a series of Laguerre matrix
polynomials. We consider the series

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

[n2 ]∑
k=0

(−1)k(x
√
2A)n−2k

k!(n− 2k)!
tn

=
∞∑

n=0

∞∑
k=0

(−1)k(x
√
2A)n

k!n!
tn+2k

=

∞∑
n=0

∞∑
k=0

n∑
s=0

(−1)k+s(
√
2A)n

k!(n− s)!
(A+ I)n[(A+ I)s]

−1L(A)
s (x)tn+2k

(5.1)

by using (1.5), becomes

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

∞∑
k=0

∞∑
s=0

(−1)k+s(
√
2A)n+s

k!n!
(A+ I)n+s[(A+ I)s]

−1L(A)
s (x)tn+s+2k.

From (1.4), we have

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

∞∑
s=0

[n2 ]∑
k=0

(−1)k+s(
√
2A)n+s−2k

k!(n− 2k)!
(A+ I)n+s−2k[(A+ I)s]

−1L(A)
s (x)tn+s.

The reciprocal gamma function denoted by Γ−1(z) = 1
Γ(z) is an entire function

of the complex variable z. Then for any matrix A in CN×N , the image of Γ−1(z)
acting on A denoted by Γ−1(A) is a well-defined matrix. Then Γ(A) is an invertible
matrix, its inverse coincides with Γ−1(A) and one gets the formula [19]

(A)n = A(A+ I)...(A+ (n− 1)I)

= Γ(A+ nI)Γ−1(A); n > 1; (A)0 = I.
(5.2)

From (5.2), it is easy to find that

(A)n−k = (−1)k(A)n[(I −A− nI)k]
−1; 0 6 k 6 n.(5.3)

In accordance with (5.2) and (5.3), one gets

(A+ I)n+s−2k = 2−2k(A+ I)n+s[(−
1

2
(A+ (n+ s− 1)I))k]

−1[(−1

2
(A+ (n+ s)I))k]

−1.

Thus, we know that

1

(n− 2k)!
=

(−n)2k
n!

.
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Therefore, we have

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

∞∑
s=0

[n2 ]∑
k=0

(−1)k+s(
√
2A)n+s−2k(−n)2k
k!n!

2−2k(A+ I)n+s[(−
1

2
(A+ (n+ s− 1)I))k]

−1[(−1

2
(A+ (n+ s)I))k]

−1

[(A+ I)s]
−1L(A)

s (x)tn+s.

Also, we recall the following relation

(−n)2k = 22k(−n
2
)k(−

n− 1

2
)k

and

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

∞∑
s=0

[n2 ]∑
k=0

(−1)k+s(
√
2A)n+s−2k

k!n!
(−n

2
)k(−

n− 1

2
)k

(A+ I)n+s[(−
1

2
(A+ (n+ s− 1)I))k]

−1[(−1

2
(A+ (n+ s)I))k]

−1

[(A+ I)s]
−1L(A)

s (x)tn+s

=
∞∑

n=0

∞∑
s=0

(−1)s(
√
2A)n+s

n!
(A+ I)n+s[(A+ I)s]

−1

2F2

(
− 1

2
nI,−1

2
(n− 1)I;−1

2
(A+ (n+ s)I),−1

2
(A+ (n+ s− 1)I);− 1

(
√
2A)2

)
L(A)
s (x)tn+s

=
∞∑

n=0

n∑
s=0

(−1)s(
√
2A)n

(n− s)!
(A+ I)n[(A+ I)s]

−1

2F2

(
− 1

2
(n− s)I,−1

2
(n− s− 1)I;−1

2
(A+ nI),−1

2
(A+ (n− 1)I);− 1

(
√
2A)2

)
L(A)
s (x)tn.

Again we collect power of t

∞∑
n=0

Hn(x,A)t
n

n!
=

∞∑
n=0

n∑
s=0

(−1)s(
√
2A)n

(n− s)!
(A+ I)n[(A+ I)s]

−1

2F2

(
− 1

2
(n− s)I,−1

2
(n− s− 1)I;−1

2
(A+ nI),−1

2
(A+ (n− 1)I);− 1

(
√
2A)2

)
L(A)
s (x)tn
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Therefore, we obtain an expansion of Hermite matrix polynomials as a series of
Laguerre matrix polynomials in the form

Hn(x,A) =n!

n∑
s=0

(−1)s(
√
2A)n

(n− s)!
(A+ I)n[(A+ I)s]

−1

2F2

(
− 1

2
(n− s)I,−1

2
(n− s− 1)I;−1

2
(A+ nI),−1

2
(A+ (n− 1)I);− 1

(
√
2A)2

)
L(A)
s (x)

From the above we may conclude that

Hn(x,A) =n!(A+ I)n(
√
2A)n

n∑
s=0

(−n)s[(A+ I)s]
−1

2F2

(
− 1

2
(n− s)I,−1

2
(n− s− 1)I;−1

2
(A+ nI),−1

2
(A+ (n− 1)I);− 1

(
√
2A)2

)
L(A)
s (x)

(5.4)

5.1. The Christoffel’s formula of summation. Here, we establish Christof-
fel’s formula of summation which will be required in the consideration of an ex-
pansion in a series of Hermite matrix polynomials Hn(x,A). Let A be a matrix in
CN×N satisfying the condition (1.3) and (1.8), then the Hermite matrix polynomi-
als becomes

Hn+1(x,A) = x
√
2AHn(x,A)− 2nHn−1(x,A), n > 1.(5.5)

We wish to prove the identity

n∑
i=0

Hi(x,A)Hi(y,A)

i!2i
=
Hn(x,A)Hn+1(y,A)−Hn+1(x,A)Hn(y,A)

n!2n
√
2A(y − x)

.(5.6)

Form (5.5), substituting i for n and multiplying (5.5) by Hi(y,A)
i!2i+1 , we get

1

i!2i+1
Hi+1(x,A)Hi(y,A)−

x
√
2A

i!2i+1
Hi(x,A)Hi(y,A) +

1

(i− 1)!2i
Hi−1(x,A)Hi(y,A) = 0.(5.7)

Interchanging x and y, we have

1

i!2i+1
Hi+1(y,A)Hi(x,A)−

y
√
2A

i!2i+1
Hi(y,A)Hi(x,A) +

1

(i− 1)!2i
Hi−1(y,A)Hi(x,A) = 0.(5.8)

Subtracting the result from (5.5) and (5.6), we have

(y − x)
√
2A

i!2i+1
Hi(y,A)Hi(x,A) =

1

i!2i+1

[
Hi+1(y,A)Hi(x,A)−Hi+1(x,A)Hi(y,A)

]
+

1

(i− 1)!2i

[
Hi−1(y,A)Hi(x,A)−Hi−1(x,A)Hi(y,A)

]
.

(5.9)
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Setting i = 0, 1, 2, ..., n, we obtain

i = 0;

√
2A(y − x)

2
H0(y,A)H0(x,A) =

1

2

[
H1(y,A)H0(x,A)−H1(x,A)H0(y,A)

]
,(5.10)

i = 1;
(y − x)

√
2A

22
H1(y,A)H1(x,A) =

1

22

[
H2(y,A)H1(x,A)−H2(x,A)H1(y,A)

]
+

1

2

[
H0(y,A)H1(x,A)−H0(x,A)H1(y,A)

]
.

(5.11)

i = 2;
(y − x)

√
2A

2!23
H2(y,A)H2(x,A) =

1

2!23

[
H3(y,A)H2(x,A)−H3(x,A)H2(y,A)

]
+

1

22

[
H1(y,A)H2(x,A)−H1(x,A)H2(y,A)

]
,

(5.12)

i = 3;
(y − x)

√
2A

3!24
H3(y,A)H3(x,A) =

1

3!24

[
H4(y,A)H3(x,A)−H4(x,A)H3(y,A)

]
+

1

2!23

[
H2(y,A)H3(x,A)−H2(x,A)H3(y,A)

](5.13)

and

i = n;
(y − x)

√
2A

n!2n+1
Hn(y,A)Hn(x,A) =

1

n!2n+1

[
Hn+1(y,A)Hn(x,A)−Hn+1(x,A)Hn(y,A)

]
+

1

(n− 1)!2n

[
Hn−1(y,A)Hn(x,A)−Hn−1(x,A)Hn(y,A)

](5.14)

whence (5.6) follows by addition. Hence the Christoffel formula of summation (5.6)
is established.
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