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THE NEUBERGER SPECTRA OF

NONLINEAR SUPERPOSITION OPERATORS

IN THE SPACES OF SEQUENCES

Sanela Halilović and Ramiz Vugdalić

Abstract. In this paper we consider the nonlinear superposition operator F
in lp spaces of sequences, generated by the function

f (s, u) = a (s) + un or f (s, u) = a (s) · un

First we show that these operators are Fréchet differentiable. Then we find out

the Neuberger spectra σN (F ) of these operators. We compare it with some
other nonlinear spectra and indicate some possible applications.

1. Introduction and Preliminaries

In the last 50 years there have been presented several ways of defining and
studying spectra for nonlinear operators ([2], [8], [9]). One of them was introduced
by J.W.Neuberger in 1969.([4]) for the class of continuously Fréchet differentiable
operators. The Neuberger spectrum of nonlinear operators shares some properties
with the usual spectrum of bounded linear operators, such as: it is always nonempty
if the underlying space is complex and it always contains the eigenvalues of an op-
erator which keeps zero fixed. In this paper we are finding out the Neuberger
spectrum of some nonlinear superposition operators in lp spaces of sequences. The
superposition operator plays an important role in numerous mathematical investi-
gations. The Neuberger spectrum may be useful in solvability of certain operator
equations and eigenvalue problems ([4]). First, let us introduce some preliminary
definitions and facts for nonlinear superposition operators in Banach spaces lp.

Let f = f (s, u) be a function defined on N× R (or N× C) with the values in
R (or respectively C). Given a function x = x (s), by applying f , we get another
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98 HALILOVIĆ AND VUGDALIĆ

function y = y (s) on N by:
y (s) = f (s, x (s)) .

In this way, the function f generates an operator F :

(1.1) Fx (s) = f(s, x(s)),

which is usually called superposition operator, Nemytskij operator or composition
operator ([3] , [1]).

We are going to observe the operator of superposition, defined in the spaces of
sequences lp (1 6 p 6 ∞).

Theorem 1.1. (see [1]) Let 1 6 p, q < ∞. Then the following properties are
equivalent:

• the operator F acts from lp to lq;
• there are functions a (s) ∈ lq and constants δ > 0, n ∈ N, b > 0, for which

|f (s, u)| 6 a (s) + b |u|
p
q (s > n, |u| < δ) ;

• for any ε > 0 there exists a function aε ∈ lq and constants δε > 0, nε ∈
N, bε > 0, for which ∥aε (s)∥q < ε and

|f (s, u)| 6 aε (s) + bε |u|
p
q (s > nε, |u| 6 δε) .

Theorem 1.2. ([1] , [7]) Let 1 6 p, q < ∞ and let the superposition operator
(1.1), generated by the function f (s, u), act from lp to lq. Then this operator is
continuous if and only if each of the functions is continuous for every s ∈ N.

In the sequence, X and Y denote Banach spaces and K is a field of real or
complex numbers.

Definition 1.1. ([2] , [3])An operator F : X → Y is called Fréchet differen-

tiable at x0 ∈ X if there is an linear bounded operator L : X → Y such that

(1.2) lim
∥h∥→0

1

∥h∥
∥F (x0 + h)− F (x0)− Lh∥ = 0 (h ∈ X) .

In this case this linear operator L is called Fréchet derivative of F at x0 and
denoted by F ′ (x0). The value F ′ (x0)x ∈ Y for arbitrary x ∈ X, is called Fréchet
derivative of operator F at x0 along x.

If F is differentiable at each point x ∈ X and the map x 7→ F ′ (x) is continuous,
we write F ∈ C1 (X,Y ) and call F continuously differentiable.

Theorem 1.3. ([6] , [7]) Let 1 6 p, q < ∞ and the operator F generated by the
function f (s, u) acts from lp into lq. The operator F is differentiable at x0 ∈ lp if
and only if f ′

u (s, ·) is continuous at x0 for almost all s ∈ N.

More informations on Fréchet differentiable operators may be found in [10].
For the continuously differentiable operators F ∈ C1 (X), Neuberger introduced
the Neuberger resolvent set and spectrum.
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Definition 1.2. ([2] , [4]) Let an operator F : X → X admit at each point
x ∈ X a Fréchet derivative F ′ (x) which depends continuously (in the operator
norm) on x. The set

ρN (F ) =
{
λ ∈ K : λI − F is bijective and (λI − F )−1 ∈ C1 (X)

}
is called Neuberger resolvent set, and the set

σN (F ) = K�ρN (F )

is called Neuberger spectrum of F.

Remark 1.1. A point λ ∈ K belongs to ρR (F ) if and only if λI − F is a
diffeomorphism on X.

2. Fréchet differentiability

As the Neuberger spectrum deals with Fréchet differentiable operators, in this
section we will first investigate differentiability of some superposition operators,
according to the Definition 1.1.

I) Find out if operator F : lp → lq, generated by the function f (s, u) = u2,
is differentiable. For arbitrary x0 = (x1, x2, ...) ∈ lp and h = (h1, h2, ...) ∈ lp we
have:

I = lim
∥h∥p→0

1

∥h∥p
∥F (x0 + h)− F (x0)− Lh∥q =

= lim
∥h∥p→0

1

∥h∥p

∥∥∥((x1 + h1)
2 − x2

1, (x2 + h2)
2 − x2

2, ...
)
− Lh

∥∥∥
q
=

lim
∥h∥→0

1

∥h∥p

∥∥(2x1h1 + h2
1, 2x2h2 + h2

2, ...
)
− Lh

∥∥
q
.

If we take linear bounded operator L : lp → lq to be a multiplication operator

Lh (s) = a (s)h (s) = 2xshs, i.e. Lh = (2x1h1, 2x2h2, ...) ,

then

I = lim
∥h∥p→0

1

∥h∥p

∥∥(2x1h1 + h2
1, 2x2h2 + h2

2, ...
)
− (2x1h1, 2x2h2, ...)

∥∥
q

= lim
∥h∥p→0

1

∥h∥p

∥∥(h2
1, h

2
2, ...

)∥∥
q

(2.1)

a) In case that operator F acts from l2 to l1, then

I = lim
∥h∥2→0

1

(
∞∑
i=1

|hi|2)
1
2

·
∞∑
i=1

∣∣h2
i

∣∣ = lim
∥h∥2→0

( ∞∑
i=1

∣∣h2
i

∣∣) 1
2

= lim
∥h∥2→0

∥h∥2 = 0.
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b) In case that operator F acts from l1 to l1, from (2.1) it follows:

I = lim
∥h∥p→0

1

∥h∥p

∥∥(h2
1, h

2
2, ...

)∥∥
q
= lim

∥h∥1→0

1

∥h∥1

∥∥(h2
1, h

2
2, ...

)∥∥
1

= lim
∥h∥1→0

1
∞∑
i=1

|hi|
·

∞∑
i=1

∣∣h2
i

∣∣ 6 lim
∥h∥1→0

1
∞∑
i=1

|hi|
·

∞∑
i=1

|hi| ·
∞∑
i=1

|hi|

= lim
∥h∥1→0

∞∑
i=1

|hi| = lim
∥h∥1→0

∥h∥1 = 0.

c) In case that operator F acts from l∞ to l∞, from (2.1) it follows:

I = lim
∥h∥p→0

1

∥h∥p

∥∥(h2
1, h

2
2, ...

)∥∥
q
= lim

∥h∥∞→0

1

∥h∥∞

∥∥(h2
1, h

2
2, ...

)∥∥
∞

= lim
∥h∥∞→0

1

sup |hi|
· sup

∣∣h2
i

∣∣ = lim
∥h∥∞→0

1

sup |hi|
· (sup |hi|)2

= lim
∥h∥∞→0

sup |hi| = lim
∥h∥∞→0

∥h∥∞ = 0.

Anyway, operator F is differentiable (at every point x0) and Fréchet derivative
of operator F at x0 = (x1, x2, ...) along h = (h1, h2, ...), is given with:

F ′ (x0)h = (2x1h1, 2x2h2, ..., 2xnhn, ...) .

II) Let us see if operator F : lp → lq, generated by the function f (s, u) = u3,
is differentiable. For arbitrary x0 = (x1, x2, ...) ∈ lp and h = (h1, h2, ...) ∈ lp
consider:

I = lim
∥h∥p→0

1

∥h∥p
∥F (x0 + h)− F (x0)− Lh∥q =

= lim
∥h∥p→0

1

∥h∥p

∥∥∥((x1 + h1)
3 − x3

1, (x2 + h2)
3 − x3

2, ...
)
− Lh

∥∥∥
q

= lim
∥h∥p→0

1

∥h∥p

∥∥(3x2
1h1 + 3x1h

2
1 + h3

1, 3x
2
2h2 + 3x2h

2
2 + h3

2, ...
)
− Lh

∥∥
q
.

If we assume that operator L : lp → lq is a linear bounded multiplication operator
Lh = L (h1, h2, ...) =

(
3x2

1h1, 3x
2
2h2, ...

)
, then we get

I = lim
∥h∥p→0

1

∥h∥p

∥∥(3x2
1h1 + 3x1h

2
1 + h3

1, 3x
2
2h2 + 3x2h

2
2 + h3

2, ...
)

−
(
3x2

1h1, 3x
2
2h2, ...

)∥∥
q

= lim
∥h∥p→0

1

∥h∥p

∥∥(3x1h
2
1 + h3

1, 3x2h
2
2 + h3

2, ...
)∥∥

q

(2.2)
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If operator F acts from l3 to l1, then from (2.2) further we get:

I = lim
∥h∥3→0

1

∥h∥3

∥∥(3x1h
2
1 + h3

1, 3x2h
2
2 + h3

2, ...
)∥∥

1
= lim

∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

·
∞∑
i=1

∣∣3xih
2
i + h3

i

∣∣
6 lim

∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

·

{ ∞∑
i=1

∣∣3xih
2
i

∣∣+ ∞∑
i=1

∣∣h3
i

∣∣}

= lim
∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

·

{ ∞∑
i=1

∣∣3xih
2
i

∣∣}+

{ ∞∑
i=1

∣∣h3
i

∣∣} 2
3

= lim
∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

· (
∞∑
i=1

∣∣3xih
2
i

∣∣).
Here, by applying Hölder inequality ([11]), we get:

I = 3 · lim
∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

· (
∞∑
i=1

∣∣xih
2
i

∣∣) 6

6 3 · lim
∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

·

{ ∞∑
i=1

∣∣x3
i

∣∣} 1
3

·

{ ∞∑
i=1

∣∣h2
i

∣∣ 32} 2
3

=

= 3

{ ∞∑
i=1

∣∣x3
i

∣∣} 1
3

· lim
∥h∥3→0

1

(
∞∑
i=1

|hi|3)
1
3

·

{ ∞∑
i=1

|hi|3
} 2

3

=

= 3 ∥x0∥ · lim
∥h∥3→0

{ ∞∑
i=1

|hi|3
} 1

3

= 0.

Hence, operator F is differentiable (at every point x0) and its Fréchet derivative
of operator F at x0 = (x1, x2, ...) along h = (h1, h2, ...), is:

F ′ (x0) (h1, h2, ...) = (3x2
1h1, 3x

2
2h2, ..., 3x

2
nhn, ...).

Generally,

Proposition 2.1. Let a superposition operator F : lp → lq be generated by
the function f (s, u) = un, n ∈ N, 1 6 p 6 nq 6 ∞. It is a continuously Fréchet
differentiable operator and its Fréchet derivative at x0 ∈ lp along h is given by:

F ′ (x0) (h1, h2,, ...) = (nxn−1
1 h1, nx

n−1
2 h2, ..., ...).
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III) If we have a superposition operator F generated by the function
f (s, u) = n

√
u then it is not differentiable at x0 = 0. Indeed, the function

f ′
u (s, u) =

1

n· n√
un−1

is not continuous in u = 0, so from the Theorem 1.3 it follows

that this operator F is not (continuously) differentiable.
IV) Let us see if a superposition operator F : l1 → l1, generated by f (s, u) =

1
s(s+1) + u2, is differentiable

For arbitrary x0 = (x1, x2, ...) ∈ l1, we have:

I = lim
∥h∥1→0

1

∥h∥1
∥F (x0 + h)− F (x0)− Lh∥1 =

= lim
∥h∥1→0

1

∥h∥1
∥F (x1 + h1, x2 + h2, ...)− F (x1, x2, ...)− Lh∥1 =

lim
∥h∥1→0

1

∥h∥1

∥∥∥∥((1

2
+ (x1 + h1)

2
,
1

6
+ (x2 + h2)

2
, ...

)
−
(
1

2
+ x2

1,
1

6
+ x2

2, ..

))
− Lh

∥∥∥∥
1

= lim
∥h∥1→0

1

∥h∥1

∥∥(2x1h1 + h2
1, 2x2h2 + h2

2, ...
)
− Lh

∥∥
1
.

If we take the operator L as

Lh = L (h1, h2, ..) = (2x1h1, 2x2h2, ...) ,

then I becomes:

I = lim
∥h∥1→0

1

∥h∥1

∥∥(2x1h1 + h2
1, 2x2h2 + h2

2, ...
)
− (2x1h1, 2x2h2, ...)

∥∥
1
=

= lim
∥h∥1→0

1

∥h∥1

∥∥(h2
1, h

2
2, ...

)∥∥
1
= lim

∥h∥1→0

∞∑
i=1

|hi|2

∥h∥1
6

6 lim
∥h∥1→0

∞∑
i=1

|hi| ·
∞∑
i=1

|hi|

∥h∥1
= lim

∥h∥1→0
∥h∥1 = 0.

This means that F is differentiable at every x0 = (x1, x2, ...) ∈ l1 and its derivative
is given with: F ′ (x0) (h1, h2, ..) = (2x1h1, 2x2h2, ...) .

We can see that Fréchet derivative of this operator is the same one as Fréchet
derivative of an operator F generated by the function f (s, u) = u2.

Generally,

Proposition 2.2. Let a superposition operator G : lp → lq (1 6 p, q 6 ∞)
be generated by the function g (u) and a superposition operator F : lp → lq be
generated by the function f (s, u) = φ (s) + g (u), (φ ∈ lt, 1 6 t 6 q). If opera-
tor G is differentiable at x0 ∈ lp then operator F is also differentiable at x0 and
F ′ (x0)h = G′ (x0)h.
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According to the Theorem 1.1, since operator G acts from lp to lq, there are
a ∈ lq and constants δ > 0, n0 ∈ N, b > 0 such that:

|g (u)| 6 a (s) + b · |u|
p
q , (∀s > n0, |u| < δ) . (∗)

Now we have

|f (s, u)| = |φ (s) + g (u)| 6 |φ (s)|+ |g (u)|
(∗)
6

|φ (s)|+ a (s) + b · |u|
p
q = r (s) + b · |u|

p
q ,

where r (s) = |φ (s)| + a (s). As 1 6 t 6 q, it holds lt ⊆ lq, so φ ∈ lq ( and also
|φ| ∈ lq). The sequence r is also from the space lq since it is a sum of two sequences
from lq. We have shown that there are r ∈ lq and constants δ > 0, n0 ∈ N, b > 0
such that:

|f (s, u)| 6 r (s) + b · |u|
p
q ,

and from the Theorem 1.1, it means that operator F acts from lp to lq, indeed.

Example 2.1. Consider the superposition operator F generated by f (s, u) =
1
2s · u2,

Fx (s) =
1

2s
· x2 (s) .

If x = (x1, x2, ...) ∈ l2 then Fx = F (x1, x2, ...) =
(

1
21 · x2

1,
1
22 · x2

2, ...
)
∈ l1.

Really,

∞∑
s=1

∣∣∣∣ 12s · x2
s

∣∣∣∣ < ∞∑
s=1

∣∣x2
s

∣∣ = ∥x∥22 < ∞,

so operator F acts from l2 to l1 (also it can be shown, by Theorem 1.1, that
F : l1 → l1). We are interested in differentiability of this operator. If we take
arbitrary x0 = (x1, x2, ...) from l2, then

I = lim
∥h∥2→0

1

∥h∥2
∥F (x0 + h)− F (x0)− Lh∥1 =

= lim
∥h∥2→0

1

∥h∥2
∥F (x1 + h1, x2 + h2, ...)− F (x1, x2, ...)− Lh∥1 =

= lim
∥h∥2→0

1

∥h∥2

∥∥∥∥( 1

21
(x1 + h1)

2
,
1

22
(x2 + h2)

2
, ...

)
−
(

1

21
x2
1,

1

22
x2
2, ...

)
− Lh

∥∥∥∥
1

= lim
∥h∥2→0

1

∥h∥2

∥∥∥∥( 1

21
(
2x1h1 + h2

1

)
,
1

22
(
2x2h2 + h2

2

)
, ...

)
− Lh

∥∥∥∥
1

.
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Now, if we take L (h1, h2, ...) =
(
2x1

21 h1,
2x2

22 h2, ...
)
=
(
x1

20 h1,
x2

21 h2, ...
)
we get

I = lim
∥h∥2→0

1

∥h∥2

∥∥∥∥( 1

21
(
2x1h1 + h2

1

)
,
1

22
(
2x2h2 + h2

2

)
, ...

)
−
(x1

20
h1,

x2

21
h2, ...

)∥∥∥∥
1

=

= lim
∥h∥2→0

1

∥h∥2

∥∥∥∥(h2
1

21
,
h2
2

22
,
h2
3

23
, ...

)∥∥∥∥
1

= lim
∥h∥2→0

∞∑
i=1

∣∣ 1
2i · h

2
i

∣∣
( ∞∑

i=1

|hi|2
) 1

2

6

6 lim
∥h∥2→0

1
2 ·

∞∑
i=1

∣∣h2
i

∣∣
( ∞∑

i=1

|hi|2
) 1

2

=
1

2
· lim
∥h∥2→0

( ∞∑
i=1

|hi|2
) 1

2

=
1

2
· lim
∥h∥2→0

∥h∥2 = 0.

It means this operator is Fréchet differentiable and its derivative at x0 = (x1, x2, ...)
along h is:

F ′ (x0) (h1, h2, ...) =
(x1

20
h1,

x2

21
h2, ...

)
=

(
1

21
· 2x1h1,

1

22
· 2x2h2, ...

)
.

Proposition 2.3. Let a superposition operator G : lp → lq (1 6 p, q 6 ∞) be
generated by the function g (u). If operator G is a Fréchet differentiable operator
at point x0 ∈ lp, then operator F : lp → lq, generated by the function f (s, u) =
φ (s) · g (u), (φ ∈ l∞), is also Fréchet differentiable operator at the same point x0.

Again, according to the Theorem 1.1, there are a ∈ lq and constants δ > 0, n0 ∈
N, b > 0 such that (∗) holds. Now we have

|f (s, u)| = |φ (s) · g (u)| 6 |φ (s)| · |g (u)|
(∗)
6

|φ (s)| ·
(
a (s) + b · |u|

p
q

)
6 |φ (s)| · a (s) + |φ (s)| · b · |u|

p
q (∗∗)

Since φ is bounded sequence there exists sup
s∈N

|φ (s)| = C < ∞. From (∗∗) by

denoting d (s) = C · a (s) and k = C · b, we get

|f (s, u)| 6 d (s) + k · |u|
p
q , (∀s > n0, |u| < δ) ,

with d ∈ lq, k > 0. This means that really operator F acts from lp to lq.
We have:

f ′
u (s, u) = φ (s) · g′u (u) = φ (s) · p (u) ,

which gives us a generator for linear bounded multiplication operator-Fréchet de-
rivative at x0 = (x1, x2, ...):

F ′ (x0) (h1, h2, ...) = (φ (1) · p (x1)h1, φ (2) · p (x2)h2, ...) .

It is also known the following Theorem which gives us the necessary and suffi-
cient conditions for the superposition operator (1.1) to be a Fréchet differentiable
operator (see [1] , [6] , [7]):
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Theorem 2.1. Let f (s, u) be a Carathéodory function and operator F gener-
ated by the function f (s, u) acts from lp to lq. If operator F is differentiable in
x0 ∈ lp, then its (Fréchet) derivative in x0 has the form

(2.3) F ′ (x0)h (s) = a (s)h (s)

where a ∈ lq/lp is given by

(2.4) a (s) = lim
u→0

f (s, x0 (s) + u)− f (s, x0 (s))

u

If superposition operator G, generated by the function

g (s, u) =

{
1
u [f (s, x (s) + u)− f (s, x (s))] ; u ̸= 0

a (s) ; u = 0,

acts from lp to lq/lp, and it is continuous in 0, then F is differentiable in x0 and
formula (2.3) holds.

Here space lq/lp is the set of all multipliers (a (s)) from lp to lq. It is a Banach
space of sequences, defined by

(2.5) lq/lp =

{
lpq(p−q)−1 for p > q

l∞ for p 6 q.

3. The Neuberger spectrum

In this section we are going to find out the Neuberger spectrum of some non-
linear superposition operators.

First we will consider the superposition operator F generated by the function
f (s, u) = a (s) + un, n ∈ N, where (a (s))s∈N is a sequence from the space lp
(1 6 p 6 ∞). Since a ∈ lp ⊂ l∞, we can see that operator F can act from l∞ to
l∞ or according to the Theorem 1.1, F can act from lp to lp.

a) Case 1 6 p < ∞
|f (s, u)| = |a (s) + un| 6 |a (s)|+ |un| .

For |u| < 1 we have |un| < |u|, so we get

|f (s, u)| 6 |a (s)|+ |un| < d (s) + |u| , (△)

where d (s) = |a (s)|. So, there exists d ∈ lp and constants δ = 1, n0 = 1, b = 1 such
that ∀s > n0, |u| < δ inequality (△) holds. From the Theorem 1.1 it follows that
F : lp → lp.

b) Case p = l∞

For arbitrary x = (x1, x2, ...) ∈ l∞ =⇒ ∃sup
s∈N

xs = B < ∞; also a ∈ l∞ =⇒

∃sup
s∈N

a (s) = A < ∞.

Fx = (a (1) + xn
1 , a (2) + xn

2 , ...)

sup
s∈N

|Fx (s)| = sup
s∈N

|a (s) + xn
s | 6 sup

s∈N
|a (s)|+ sup

s∈N
|xn

s | = A+Bn < ∞.
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We see that Fx ∈ l∞, so indeed F acts from l∞ to l∞.
From the Proposition 2.1 and the Proposition 2.2, we see it is continuously

differentiable operator
(
F ∈ C1 (lp)

)
with

F ′ (x0) (h1, h2, ..) =
(
nxn−1

1 h1, nx
n−1
2 h2, ...

)
.

We can also write
F ′ (x0)h (s) = b (s)h (s) ,

where b (s) = n · (x0 (s))
n−1

is a multiplier from lp to lp. Since x0 ∈ lp ⊂ l∞, it is
clear that b ∈ l∞. Compare with Theorem 2.1, (2.3) and (2.5).

Lemma 3.1. Let the superposition operator F : lp → lp be generated by the
function f (s, u) = a (s)+un, where n is an even number and (a (s))s is a sequence
from the space lt (1 6 t 6 p 6 ∞).Then the Neuberger spectrum of F is σN (F ) = R
(or σN (F ) = C).

Proof. Denote a = (a1, a2, ...) ∈ lp. For x = (x1, x2, ...) we have

Fx = F (x1, x2, ...) = (a1 + xn
1 , a2 + xn

2 , ...) .

Find out if λI − F is an injective operator, for any real λ. Suppose that

(λI − F )x = (λI − F )y,

for some x, y ∈ lp. Then

(3.1) (λx1 − a1 − xn
1 , λx2 − a2 − xn

2 , ...) = (λy1 − a1 − yn1 , λy2 − a2 − yn2 , ...)

For λ = 0 we get

(−a1 − xn
1 ,−a2 − xn

2 , ...) = (−a1 − yn1 ,−a2 − yn2 , ...) =⇒
(∀i ∈ N)− ai − xn

i = −ai − yni =⇒
(∀i ∈ N) xn

i = yni .

Number n is an even number, so it does not have to follow xi = yi, (∀i ∈ N). This
is not injective (nor bijective) mapping so 0 ∈ σN (F ). If λ ̸= 0 then from equality
(3.1) we get (∀i ∈ N) :

λxi − ai − xn
i = λyi − ai − yni

λxi − xn
i = λyi − yni ⇐⇒ λ (xi − yi) = xn

i − yni

λ (xi − yi) = (xi − yi)
(
xn−1
i + xn−2

i yi + ...+ xiy
n−2
i + yn−1

i

)
=⇒

(xi = yi) ∨(3.2) (
xn−1
i + xn−2

i yi + ...+ xiy
n−2
i + yn−1

i − λ = 0
)
.(3.3)

Hence (3.3) is an odd-degree polynomial equation, there is always at least one real
(nontrivial) solution and λI −F is not injective mapping. We proved that λI −F
is not bijective mapping for any real λ. Operator F is a continuously differentiable
operator (as we see from the Proposition 2.1 and the Proposition 2.2) and λI−F is
not bijective for any real λ. Thus, according to the Definition 1.2, the Neuberger
spectrum of this operator F is σN (F ) = R. In case that sequences were defined
in C we would get the Neuberger spectrum σN (F ) = C. �
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Lemma 3.2. Let the superposition operator F : lp → lp be generated by the
function f (s, u) = a (s) + un, where n is an odd number (n > 3) and (a (s))s is a
sequence from the space lt (1 6 t 6 p 6 ∞).Then the Neuberger spectrum of F is
σN (F ) = [0,∞) (or σN (F ) = C).

Proof. Consider a continuous superposition operator F defined in spaces of
sequences lp, by the function f (s, u) = a (s) + un, where a ∈ lp and n is an odd
number.

Fx = F (x1, x2, ...) = (a1 + xn
1 , a2 + xn

2 , ...) .

Consider now the operator

(λI − F ) (x1, x2, ...) = (λx1 − a1 − xn
1 , λx2 − a2 − xn

2 , ...) .

For λ = 0 , the operator −F is injective, because from −Fx = −Fy ⇐⇒
(−a1 − xn

1 ,−a2 − xn
2 , ...) = (−a1 − yn1 ,−a2 − yn2 , ...), we get

−ai − xn
i = −ai − yni , ∀i ∈ N =⇒ xn

i = yni , ∀i ∈ N =⇒ x = y.

The operator −F is surjective because for arbitrary y ∈ lq there are some x ∈ lp
such that −Fx = y. Really:

−Fx = (−a1 − xn
1 ,−a2 − xn

2 , ...) = (y1, y2, ...) ⇐⇒
x = ( n

√
−a1 − y1,

n
√
−a2 − y2, ...).

Let now λ ̸= 0 :

(3.4a) (λI − F ) (x1, x2, ...) = (λI − F ) (y1, y2, ...)

(λx1 − a1 − xn
1 , λx2 − a2 − xn

2 , ...) = (λy1 − a1 − yn1 , λy2 − a2 − yn2 , ...)

λxi − ai − xn
i = λyi − ai − yni , ∀i ∈ N

(3.4b) xn
i − λxi = yni − λyi, ∀i ∈ N.

(3.4c) (xn
i − yni ) = λ (xi − yi) , ∀i ∈ N.

From (3.4c) we get (xi = yi) or

(3.5) xn−1
i + xn−2

i yi + ...+ xi yn−2
i + yn−1

i − λ = 0.

If λ < 0 then for (xi > 0 ∧ yi > 0), or (xi 6 0 ∧ yi 6 0), we have that

xn−1
i + xn−2

i yi + ...+ xi yn−1
i + yn−1

i > 0 and

xn−1
i + xn−2

i yi + ...+ xi yn−1
i + yn−1

i − λ > 0.
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If λ < 0 and (xi > 0 ∧ yi 6 0) then: a) for xi > −yi we have

xn−1
i > xn−2

i (−yi)

xn−3
i y2i > xn−4

i (−yi)
3

...

x2
i y

n−3
i > xi (−yi)

n−2

From these inequalities by summing we get

xn−1
i + xn−3

i y2i + ...+ x2
i y

n−3
i > −xn−2

i yi − xn−4
i y3i − ...− xiy

n−2
i =⇒

xn−1
i + xn−2

i yi + xn−3
i y2i + xn−4

i y3i + ...x2
i y

n−3
i + xiy

n−2
i > 0

By adding two members yn−1
i > 0 and −λ > 0, to the left side, we get

xn−1
i + xn−2

i yi + ...+ xi yn−2
i + yn−1

i − λ > 0.

b) for xi 6 −yi, we have

yn−1
i > xi (−yi)

n−2

x2
i y

n−3
i > x3

i (−yi)
n−4

...

xn−3
i y2i > xn−2

i (−yi)

From these inequalities by summing we get

yn−1
i + x2

i y
n−3
i + ...+ xn−3

i y2i > −xiy
n−2
i − x3

i y
n−4 − ...− xn−2

i yi =⇒
yn−1
i + xiy

n−2
i + x2

i y
n−3
i + x3

i y
n−4 + ...+ xn−3

i y2i + xn−2
i yi > 0.

By adding two members xn−1
i > 0 and −λ > 0, to the left side, we get

xn−1
i + xn−2

i yi + ...+ xi yn−2
i + yn−1

i − λ > 0.

If λ < 0 and (xi 6 0 ∧ yi > 0) we can analogously get the same inequality. So
any way, from (3.4a) it follows that x = y and λI − F is an injective operator (for
λ < 0). We can see from the equations (3.4b) that this operator λI −F is injective
if the operator λI−G (where G is operator generated by the function g (s, u) = un,
(n is odd number)) is injective. Let us find out if the equation (λI −G)x = 0 has
any nontrivial solutions for λ > 0.

(3.6) (λI −G) (x1, x2, ...) = (0, 0, ...)

(λx1 − xn
1 , λx2 − xn

2 , ...) = (0, 0, ...)

λxi − xn
i = 0,∀i ∈ N

xi

(
λ− xn−1

i

)
= 0,∀i ∈ N(

xi = 0 ∨ xn−1
i = λ

)
,∀i ∈ N.

If λ < 0 then there is only trivial solution x = (0, 0, ...). If λ > 0, then it

is possible that xi = ± n−1
√
λ for some i ∈ N, so the equation (3.6) has nontrivial
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solutions also, such as
(

n−1
√
λ, 0, 0, ...

)
. This implies (since G0 = 0) for λ > 0,

that operator λI −G is not injective and also λI −F is not injective. So operator
λI − F is not bijective mapping for λ > 0, hence

(3.7) (0,∞) ⊆ σN (F )

Let us see for λ ̸= 0 and arbitrary y ∈ lq , whether exists x ∈ lp such that
(λI − F )x = y.

(λx1 − a1 − xn
1 , λx2 − a2 − xn

2 , ...) = (y1, y2, ...) =⇒
λxi − ai − xn

i = yi, ∀i ∈ N
xn
i − λxi + ai + yi = 0, ∀i ∈ N.

These odd-degree polynomial equations have at least one real solutions xi for every
yi ∈ R and it means that operator λI − F is onto for λ ̸= 0. For λ 6 0 operator
λI−F is bijective and now we research if (λI − F )

−1
is a continuous operator. For

λ = 0 we have

(−F )
−1

(x1, x2, ...) = ( n
√
−a1 − x1,

n
√
−a2 − x2, · · · )

and this is continuous mapping. It follows from the Theorem 1.2., because f (i, u) =
n
√
−ai − u are continuous functions ∀i ∈ N. For λ < 0:

(λI − F ) (x1, x2, ...) = (y1, y2, · · · )

(λx1 − a1 − xn
1 , λx2 − a2 − yn2 , ...)= (y1, y2, · · · )

The function f (i, u) = λu − ai − un is bijective and decreasing (for λ < 0) and
continuous, ∀i ∈ N, so there exists its inverse f−1 (i, u) (which is also bijective,
decreasing and continuous function) ∀i ∈ N ([5]). Now from the Theorem 1.2 fol-

lows that operator (λI − F )
−1

, generated by f−1 (i, u), is continuous operator. We

proved that for λ 6 0 the operator (λI − F ) is bijective and (λI − F )
−1

is contin-
uous operator. For λ = 0 a superposition operator G = (−F )−1 is generated by

the function g (s, u) = − n
√
a (s) + u. The function g′u (s, u) = − 1

n · (a (s) + u)
−n−1

n

is not continuous in u = −a (s) (∀s ∈ N), so from the Theorem 1.3 it follows that
operator G can not be continuously differentiable at x0 = (−a1,−a2,−a3, ...) ∈ lp.
Hence, 0 /∈ ρN (F ) =⇒

(3.8) 0 ∈ σN (F ) .

If λ < 0 then λI−F is bijective mapping and then we have to find out if (λI − F )
−1

is a continuously differentiable operator.
a) Case that n = 3. We have (λI − F )

−1
(x1, x2, ...) =(

3

√
−(a1+x1)

2 +
√
△1 − 3

√
a1+x1

2 +
√
△1,

3

√
−(a2+x2)

2 +
√
△2 − 3

√
a2+x2

2 +
√
△2, · · ·

)
,



110 HALILOVIĆ AND VUGDALIĆ

where △i =
(
ai+xi

2

)2
+
(−λ

3

)3
. We have a superposition operator G = (λI −

F )−1 which is generated by the function:

g (s, u) =
3

√
−a (s) + u

2
+
√
△− 3

√
a (s) + u

2
+
√
△,

with △ =
(

a(s)+u
2

)2
+
(−λ

3

)3
. Since λ < 0, we have △ > 0 and the expressions

under the cubic root are positive
(
±a(s)+u

2 +
√
△ > 0

)
. Then for g′u (s, u) we get

(∀u ∈ R,∀s ∈ N):

g′u (s, u) = − 3

2λ2

[
A

(
1− a (s) + u

2
√
△

)
+B

(
1 +

a (s) + u

2
√
△

)]
,

where

A =

(
a (s) + u

2
+
√
△
) 2

3

; B =

(
−a (s) + u

2
+
√

△
) 2

3

; △ > 0.

Consequently, this function g′u (s, u) is continuous ∀u ∈ R,∀s ∈ N and according to
the Theorem 1.3 the operator G = (λI−F )−1 is continuously differentiable. So we
get for λ < 0 that λ ∈ ρN (F ), which together with (3.7) and (3.8) gives us that
Neuberger spectrum of F is a set σN (F ) = [0,∞).

b) Case that n is an odd number and n > 3. The superposition operator

(λI − F )x = (λx1 − a1 − xn
1 , λx2 − a2 − yn2 , ...)

is generated by the function

(3.9) f (i, u) = λu− ai − un.

For fixed i ∈ N we can consider the function (3.9) as the function of one variable
u, where ai is a real constant. For λ < 0 it is bijective, decreasing and continuous
function (for every i ∈ N), so there exists its inverse f−1 (i, u) which is also bijective,
decreasing and continuous function (for every i ∈ N). The function (3.9) is convex
for u < 0 and concave for u > 0 and it is a continuously differentiable function,
that is, the function f ′

u (i, ·) is continuous at every u ( f ′
u (i, 0) = λ < 0). Thus

f−1 (i, u) is concave for u < −ai and convex for u > −ai and it is also continuously
differentiable function for every i ∈ N ([5]). Indeed, it is clear that f−1 (i, u) is
differentiable for u < −ai or u > −ai and it is also differentiable in u = −ai with(
f−1

)′
u
(i,−ai) =

1
λ < 0. By the Theorem 1.3 it means that operator (λI − F )

−1

generated by the function f−1 (i, u), is a continuously differentiable operator (for
λ < 0). Again we get that

(3.10) (−∞, 0) ⊆ ρN (F ) .

Finally, from (3.7), (3.8) and (3.10) we get the Neuberger spectrum of F is a
set σN (F ) = [0,∞). �

We can now summarize the Lemma 3.1 and the Lemma 3.2 in the following:
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Theorem 3.1. Let the superposition operator F : lp → lp be generated by
the function f (s, u) = a (s) + un, where (a (s))s is a sequence from the space lt
(1 6 t 6 p 6 ∞).Then the Neuberger spectrum of F is:

σN (F ) =

{
R, if n is even

[0,∞) , if n is odd and n > 3

In case that lp is a space of sequences over C then σN (F ) = C.

Now we will consider the superposition operator F generated by the function
f (s, u) = a (s) · un, n ∈ N, where (a (s))s is a bounded sequence (a ∈ l∞) and
(∃s ∈ N) a (s) ̸= 0. We can see that operator F can act from lp to lp (1 6 p 6 ∞)

a) Case 1 6 p < ∞. Since a is a bounded sequence of numbers, then there
exists a number

(3.11) b = sup
s∈N

|as| < ∞

such that ∀s ∈ N, |a (s)| 6 b. Now we have

|f (s, u)| = |a (s) · un| = |a (s)| · |un| 6 b · |u|n .

For |u| < 1 we have inequality |u|n < |u| and

(3.12) |f (s, u)| 6 b · |u|n < b · |u| = b · |u|
p
p .

Inequality (3.12) holds for |u| < 1 and ∀s ∈ N, so from the Theorem 1.1 follows
that operator F acts from lp to lp.

b) Case p = ∞.

Fx = F (x1, x2, ...) = (a1x
n
1 , a2x

n
2 , ...)

x = (x1, x2, ...) ∈ l∞ =⇒

(3.13a) ∃sup
s∈N

|xs| = M and sup
s∈N

|xs|n = Mn.

Now, from (3.11) and (3.13a) we get

sup
s∈N

|asxn
s | = sup

s∈N
|as| · sup

s∈N
|xs|n = b ·Mn < ∞,

which means that operator F acts from l∞ to l∞.
From the Propositions 2.1 and 2.3 we see that this operator F is a continuously

differentiable operator, F ∈ C1 (lp).

Lemma 3.3. Let the superposition operator F : lp → lp (1 6 p 6 ∞) be
generated by the function f (s, u) = a (s)·un, where n is an even number and (a (s))s
is a sequence from the space l∞.Then the Neuberger spectrum of F is σN (F ) = R
(or σN (F ) = C).
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Proof. Denote a (s) = as, s ∈ N. We have

Fx = F (x1, x2, ...) = (a1 · xn
1 , a2 · xn

2 , ...) and

F0 = F (0, 0, ...) = (0, 0, ...) .

First we have to find when the operator λI − F is bijective. For λ = 0 we get

−Fx = (−a1 · xn
1 ,−a2 · xn

2 , ...) .

It follows from −Fx = −Fy that

(−a1 · xn
1 ,−a2 · xn

2 , ...) = (−a1 · yn1 ,−a2 · yn2 , ...) ⇐⇒

(3.14a) −as · xn
s = −as · yns , ∀s ∈ N.

From (3.14a) it does not have to follow that xs = ys, so the operator −F is not
injective. Let us find out for λ ̸= 0 if the equation (λI − F )x = 0, has some
nontrivial solutions.

(λI − F )x = (λx1 − a1x
n
1 , λx2 − a2x

n
2 , ...) = (0, 0, ...)

λxs − asx
n
s = 0, ∀s ∈ N.

If as = 0 for some s, then follows xs = 0. If as ̸= 0 then we have

xs

(
λ− asx

n−1
s

)
= 0 =⇒ (xs = 0) ∨ (xn−1

s =
λ

as
).

Since n − 1 is an odd number there always exists a real number xs = n−1

√
λ
as

̸=
0. Hence, the operator λI − F is not injective for any real number λ. Thus, it
follows from the Definition 1.2, that the Neuberger resolvent set is empty and the
Neubereger spectrum of F is σN (F ) = R. �

Lemma 3.4. Let the superposition operator F : lp → lp (1 6 p 6 ∞) be
generated by the function f (s, u) = a (s) ·un, where n is an odd number and (a (s))s
is a sequence from the space l∞. Then the Neuberger spectrum of F is

(3.15) σN (F ) =

 [0,∞) , if a (s) > 0, ∀s ∈ N
(−∞, 0] , if a (s) 6 0, ∀s ∈ N
R, if (∃i, j) (ai > 0 ∧ aj < 0).

Proof. Denote a (s) = as, s ∈ N. We have

Fx = F (x1, x2, ...) = (a1 · xn
1 , a2 · xn

2 , ...)

(λI − F )x = (λx1 − a1x
n
1 , λx2 − a2x

n
2 , ...) .

I) Case that as > 0, ∀s ∈ N. For λ = 0 we get

−Fx = (−a1x
n
1 ,−a2x

n
2 , ...) .

From −Fx = −Fy follows

(−a1x
n
1 ,−a2x

n
2 , ...) = (−a1y

n
1 ,−a2y

n
2 , ...) ⇐⇒

(3.16a) −asx
n
s = −asy

n
s , ∀s ∈ N
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If ∃as = 0 then from (3.16a) it does not follow xs = ys and it means that
operator −F is not injective. If as > 0, ∀s ∈ N, then from (3.16a) (since n is an
odd number) it follows that xs = ys, ∀s ∈ N, i.e. x = y. It means that operator −F
is injective in case that as > 0, ∀s ∈ N. For λ ̸= 0 let us first consider the operator
equation (λI − F )x = 0.

(λx1 − a1x
n
1 , λx2 − a2x

n
2 , ...) = (0, 0, ...) ⇐⇒

λxs − asx
n
s = 0, ∀s ∈ N.

If as = 0 for some s ∈ N, then xs = 0 for those s; otherwise (for s ∈ N such that
as > 0) we can write

xs

(
λ− asx

n−1
s

)
= 0

From the last equation it follows that xs = 0 or

(3.17) asx
n−1
s = λ.

If λ > 0 and as > 0 then the equation (3.17) has solutions xs = ± n−1

√
λ
as
. If λ < 0

and as > 0 then the equation (3.17) has no real solutions (since n − 1 is even).
It means that the equation (λI − F )x = 0 has nontrivial solutions for λ > 0 and
as > 0 and since F0 = 0 it gives us the consequence that λI − F is not injective
(for λ > 0 and as > 0). So we get

(3.18) (0,∞) ⊆ σN (F ) .

If λ < 0 suppose that (λI − F )x = (λI − F ) y.

(λx1 − a1x
n
1 , λx2 − a2x

n
2 , ...) = (λy1 − a1y

n
1 , λy2 − a2y

n
2 , ...) ⇐⇒

λxs − asx
n
s = λys − asy

n
s , ∀s ∈ N ⇐⇒

(3.19a) λ (xs − ys) = as (x
n
s − yns ) , ∀s ∈ N

If as = 0 for some s ∈ N, then xs = ys for those s. Otherwise (for s ∈ N such
that as > 0) we get from (3.19a) that xs = ys or

(3.20) xn−1
s + xn−2

s ys + ...+ xs yn−2
s + yn−1

s − λ

as
= 0.

The equation (3.20) is similar to the equation (3.5). Since λ
as

< 0, we have already
shown in the proof of the Lemma 3.2 that it implies

xn−1
s + xn−2

s ys + ...+ xs yn−2
s + yn−1

s − λ

as
> 0,

so the equation (3.20) has no real solutions. It means that from (3.19a) follows
xs = ys, ∀s ∈ N. Hence, λI − F is injective operator for λ < 0 and as > 0.
Surjectivity of an operator λI − F for every real λ can be proved on the sim-
ilar way as in the proof of the Lemma 3.2. Thus, λI − F is bijective opera-
tor for (λ = 0 ∧ (as > 0, ∀s ∈ N)) and (λ < 0 ∧ (as > 0, ∀s ∈ N)). For these cases

we are going to investigate if (λI − F )
−1

is a continuously differentiable opera-
tor.
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a)λ = 0 ∧ (as > 0, ∀s ∈ N)

(−F )
−1

x =

(
n

√
−x1

a1
, n

√
−x2

a2
, ...

)
This operator (−F )

−1
is generated by the function f (s, u) = n

√
−u
as

. The function

f ′
u (s, u) = −

(
n n
√
asu

n−1
n

)−1

is not continuous in u = 0, so by the Theorem 1.3

we have that (−F )
−1

is not differentiable operator in zero, (−F )
−1

/∈ C (lp). Thus,
0 /∈ ρN (F ) =⇒

(3.21) 0 ∈ σN (F ) .

b) λ < 0 ∧ (as > 0, ∀s ∈ N)
Operator λI − F is generated by the function f (s, u) = λu − asu

n which
is continuous, bijective and decreasing function (for every fixed s). It is con-
vex for u < 0 and concave for u > 0 and it is a continuously differentiable
function, that is, the function f ′

u (s, u) = λ − asnu
n−1 is continuous at every u

(f ′
u (s, 0) = λ < 0). Thus there exists its inverse f−1 (s, u) which is continuous,

bijective and decreasing function (for every s) and it is concave for u < 0 and
convex for u > 0 and it is also continuously differentiable function for every s ∈ N((

f−1
)′
u
(s, 0) = 1

λ < 0
)
. By the Theorem 1.3 it means that operator (λI − F )

−1

generated by the function f−1 (s, u), is a continuously differentiable operator for
λ < 0. So we get

(3.22) (−∞, 0) ⊆ ρN (F ) .

Finally we get from (3.18), (3.21) and (3.22) that σN (F ) = [0,∞).
II) Case that as 6 0, ∀s ∈ N
Again from (3.16a) we conclude: operator −F is not injective if ∃as = 0 and it

is injective if as < 0,∀s ∈ N. For as < 0, ∀s ∈ N, the operator (−F )
−1

is generated

by the function f (s, u) = n

√
−u
as

. The function f ′
u (s, u) = −

(
n n
√
asu

n−1
n

)−1

is not continuous in u = 0, so by the Theorem 1.3 we have that (−F )
−1

is not
differentiable operator in zero. Thus, we get 0 ∈ σN (F ) (3.21). Analogously as
in the previous case I), from the equations (3.17) we conclude that the operator

equation (λI − F )x = 0 has nontrivial solutions if λ < 0 (with xs = ± n−1

√
λ
as

if

as < 0 and xs = 0 if as = 0). It means that λI − F is not injective operator
for λ < 0. For λ > 0 from the equation (λI − F )x = (λI − F ) y we again comes
up to the conclusion that xs = ys if as = 0 and if as < 0 then from the equation
(3.20) where λ

as
< 0, we see that again values xs = ys. Hence, λI−F is an injective

operator for λ > 0 and as 6 0. Naturally, operator λI − F is surjective for every
real λ. So,

(3.23) (−∞, 0) ⊆ σN (F ) .

Operator λI − F is bijective for λ > 0 and as 6 0 and it is generated by the
function f (s, u) = λu−asu

n which is continuous, bijective and increasing function
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(for every fixed s). It is concave for u < 0 and convex for u > 0 and it is a
continuously differentiable function, that is, the function f ′

u (s, u) = λ−asnu
n−1 is

continuous at every u ( f ′
u (s, 0) = λ > 0). Thus there exists its inverse f−1 (s, u)

which is continuous, bijective and increasing function (for every s) and it is convex
for u < 0 and concave for u > 0 and it is also continuously differentiable function for

every s ∈ N
((

f−1
)′
u
(s, 0) = 1

λ > 0
)
. By the Theorem 1.3 it means that operator

(λI − F )
−1

generated by the function f−1 (s, u), is a continuously differentiable
operator for λ > 0. So

(3.24) (0,∞) ⊆ ρN (F ) .

Now, from the (3.21), (3.23) and (3.24) we get σN (F ) = (−∞, 0].
III) Case that (∃i, j) (ai > 0 ∧aj < 0)
From the above observations in cases I) and II), we can conclude that the

Neuberger spectrum in this third case is σN (F ) = R. �

We can summarize the Lemma 3.3 and Lemma 3.4 in the following:

Theorem 3.2. Let the superposition operator F : lp → lp (1 6 p 6 ∞) be
generated by the function f (s, u) = a (s)·un, where n ∈ N and (a (s))s is a sequence
from the space l∞. Then the Neuberger spectrum of F is

σN (F ) =

 [0,∞) , if n is odd and a (s) > 0, ∀s ∈ N
(−∞, 0] , if n is odd and a (s) 6 0,∀s ∈ N

R, if n is even or n is odd and (∃i, j) (ai > 0 ∧ aj < 0).

4. Some other spectra and discussion

Wemay compare some other notions of spectrum for above mentioned nonlinear
operators. For the class of continuous operators F on a Banach space X Rhodius
introduced in 1984. the following notion of a spectrum. A point λ ∈ K belongs
to the Rhodius resolvent set ρR (F ) if λI − F is bijective and (λI − F )

−1
is a

continuous operator on X. The set σR (F ) = K\ρR (F ) is called the Rhodius
spectrum of F . The set of all eigenvalues of the operator F is the point spectrum
of F , i.e. σp (F ) = {λ ∈ K : Fx = λx for some x ̸= 0}. The point spectrum is an
important part of the spectrum of a linear operator and it is also important part
of the Rhodius and Neuberger spectrum of nonlinear operator. In case F0 = 0
we have that the point spectrum is a subset of the Rhodius, as well as, of the
Neuberger spectrum. It is not difficult to find out the Rhodius and point spectra
from the previous section in this paper (see also [15]).

1) If the superposition operator F : lp → lp is generated by the function
f (s, u) = a (s)+un, where n is an even number and (a (s))s is a sequence from the
space lt (1 6 t 6 p 6 ∞), then:
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σR (F ) = R;

σp (F ) =


R\ {0} , if a (s) = 0, ∀s ∈ N

R, if (a (s) 6 0) ∧ (∃a (s) < 0)(
−∞,−2

√
sup a (s)

]
∪
[
2
√
sup a (s),+∞

)
, if sup a (s) > 0, n = 2.

.

The Rhodius spectrum is the same as the Neuberger spectrum
σR (F ) = σN (F ) = R.
2) If the superposition operator F : lp → lp is generated by the function

f (s, u) = a (s) + un, where n is an odd number and (a (s))s is a sequence from the
space lt (1 6 t 6 p 6 ∞), then:

σR (F ) = (0,∞) ; σp (F ) =

{
(0,∞) , if a (s) = 0,∀s ∈ N.

R, if ∃a (s) ̸= 0.
.

The Rhodius spectrum is a strict subset of the Neuberger spectrum σR (F ) =
(0,∞) ⊂ [0,∞) = σN (F ). In case ∃a (s) ̸= 0 we do not have F0 = 0 and the point
spectrum σp (F ) = R is not a subset of the Rhodius spectrum σR (F ) = (0,∞) ,
nor of the Neuberger spectrum σN (F ) = [0,∞). In case a (s) = 0,∀s ∈ N, we have
that (0,∞) = σp (F ) = σR (F ) ⊂ σN (F ) = [0,∞).

3) If the superposition operator F : lp → lp is generated by the function
f (s, u) = a (s) · un, where n is an even number and (a (s))s is a sequence from the
space l∞, then:

σR (F ) = R ; σp (F ) =

{
R\ {0} , if a (s) ̸= 0,∀s ∈ N

R, if ∃a (s) = 0.
.

We have that σR (F ) = σN (F ) = R. If there is some a (s) = 0 then σp (F ) =
σR (F ) = σN (F ) = R; if a (s) ̸= 0,∀s ∈ N then R\ {0} = σp (F ) ⊂ σR (F ) =
σN (F ) = R.

4) If the superposition operator F : lp → lp is generated by the function
f (s, u) = a (s) · un, where n is an odd number and (a (s))s is a sequence from the
space l∞, then:

σR (F ) =



(0,∞) , if a (s) > 0, ∀s ∈ N
[0,∞) , if (a (s) > 0) ∧ (∃a (s) = 0)

(−∞, 0) , if a (s) < 0, ∀s ∈ N
(−∞, 0] , if (a (s) 6 0) ∧ (∃a (s) = 0)

R\ {0} , if (∃i, j ∈ N)(a (i) > 0 ∧ a (j) < 0) , a(s) ̸= 0, ∀s ∈ N
R, if (∃i, j, k ∈ N) (a (i) > 0, a (j) < 0, a (k) = 0) .

The point spectrum is the same as the Rhodius spectrum. The Rhodius and
the Neuberger spectrum are the same in the following cases:

a) (a (s) > 0) ∧ (∃a (s) = 0), σR (F ) = σN (F ) = [0,∞)
b) (a (s) 6 0) ∧ (∃a (s) = 0), σR (F ) = σN (F ) = (−∞, 0]
c) (∃i, j, k ∈ N) (a (i) > 0, a (j) < 0, a (k) = 0), σR (F ) = σN (F ) = R.
In other three cases we get σp (F ) = σR (F ) ⊂ σN (F ) = σR (F ) ∪ {0} .
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The asymptotic spectrum has been defined by Furi, Martelli and Vignoli [12]
in 1978. We call a continuous operator F : X → Y stably solvable if given any
compact operator G : X → Y with

[G]Q = lim sup
∥x∥→∞

∥G (x)∥
∥x∥

= 0,

the equation F (x) = G (x) has a solution x ∈ X. A stably solvable operator
F ∈ C (X,Y ) is said to be FMV-regular if both [F ]q > 0 and [F ]a > 0 ( [F ]q =

lim inf
∥x∥→∞

∥G(x)∥
∥x∥ ; [F ]a = inf

α(M)>0

α(F (M))
α(M) , M ⊆ X bounded, α (M) is the measure of

noncompactness), see [2]. Given F ∈ C (X), the set

ρFMV (F ) = {λ ∈ K : λI − F is FMV-regular}

is called the Furi-Martelli-Vignoli resolvent set and its complement σFMV (F ) =
K\ρFMV (F ) the Furi-Martelli-Vignoli spectrum of F , or FMV-spectrum, for short.
Intuitively speaking, if a point λ ∈ K belongs to σFMV (F ), then the operator
λI − F is characterized by some lack of surjectivity, properness or boundedness.
This spectrum is based on the notion of stable solvability of operators, a nonlinear
analogue of surjectivity and it takes into account the asymptotic properties of an
operator. For a bounded linear operator all these spectra (Rhodius, Neuberger and
FMV) gives precisely the familiar spectrum. In contrast to other two nonlinear
spectra, the FMV-spectrum, in general,does not contain the point spectrum. On
the other hand, the FMV-spectrum has a nice property which the Rhodius and
Neuberger do not have in general: the FMV-spectrum is always closed.

Let the superposition operator F : lp → lp be generated by the function
f (s, u) = a (s)·un, ((a (s))s ∈ l∞) or by the function f (s, u) = a (s)+un ((a (s))s ∈
l∞, 1 6 t 6 p 6 ∞). If n is even and K = R, then λI − F is not surjective for any
real λ, so λI − F is not stably solvable for any real λ. Hence the FMV-spectrum
of F is σFMV (F ) = R. If the superposition operator F : lp → lp is generated by
the function f (s, u) = un, where n is odd then σFMV (F ) = ∅.

We can conclude that for our superposition operators F : lp → lp, generated
by the functions f (s, u) = a (s) ·un or f (s, u) = a (s) ·un, (1 6 p 6 ∞, K = R), all
these nonlinear spectra of F (the Rhodius spectrum, the Neuberger spectrum and
FMV-spectrum) coincide if n is even. The FMV-spectrum has various applications
to integral equations, boundary value problems and bifurcation theory.Eigenvalues
plays an important role in classical linear spectral theory. In contrast to the other
two spectra, the FMV-spectrum in general does not contain the point spectrum.
The role of the point spectrum now may be substituted by the asymtotic approx-
imate point spectrum (see [2]). Many concepts in nonlinear analysis are in fact of
local nature (such as the derivative of a map at some point) and so recently a new
notion called spectrum of a nonlinear operator at some point, has been defined by
Calamai, Furi and Vignoli [14] , (CFV-spectrum σCFV (F ), or σ (f, p)).This spec-
trum is close in spirit to the FMV-spectrum. Nevertheless, while the asymptotic
spectrum is related to the asymptotic behaviour of a map, σ (f, p) depends only on
the germ of f at p. In [13] authors also introduced and study a spectrum called
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small Calamai-Furi-Vignoli spectrum and denoted by σcfv (F ). In view of the The-
orem 3.7. from[13], we may easily find out the small Calamai-Furi-Vignoli spectrum
σcfv (F ) for our superposition operators F (F : lp → lp, (1 6 p 6 ∞) generated by
the functions f (s, u) = a (s) + un or f (s, u) = a (s) · un; n ∈ N, n > 2). These
operators are Fréchet differentiable at 0 and F ′ (0) (x1, x2, x3, ...) = (0, 0, 0, ...), so
σcfv (F ) = σ (F ′ (0)) = {0}.

These results of the Fréchet differentiability and the Neuberger spectrum (and
other notions of spectra) for nonlinear superposition operators may be used in solv-
ing some nonlinear operator equations and eigenvalue problems. We are interested
in a solvability of nonlinear systems of equations (of Hammerstein type), i.e. op-
erator equations with a superposition operator F in a space of sequences lp and
lp,σ(see [16]). These systems often occur in a chaos theory and theory of stochastic
processes.
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