Hyper-order and Fixed Points of Meromorphic Solutions of Higher Order Non-homogeneous Linear Differential Equations

Maamar Andasmas and Benharrat Belaïdi

Abstract. In this paper, we investigate the order of growth of solutions of the higher order non-homogeneous linear differential equation

$$
f^{(k)}+\sum_{j=0}^{k-1} h_{j} e^{P_{j}(z)} f^{(j)}=F
$$

where $P_{j}(z)(j=0,1, \cdots, k-1)$ are polynomials with $\operatorname{deg} P_{j}=n_{j} \geqslant 1$ and $h_{j}(z)(j=0,1, \cdots, k-1)$ not all vanishing identically, F are meromorphic functions of finite order having only finitely many poles. Under some conditions, we prove that every meromorphic solution $f \not \equiv 0$ of the above equation is of infinite order. We give also some estimates of their hyper-order, exponent of convergence of the zeros and the hyper-exponent of convergence of zeros. Furthermore, we give an estimation for the exponent of convergence of fixed points of solutions and their 1st, 2nd derivatives.

1. Introduction and statement of results

In this paper, we use the standard notations of Nevanlinna's value distribution theory (see, $[\mathbf{1 1}],[\mathbf{1 3}],[\mathbf{1 8}])$. In addition, we use the notations $\lambda(f)$ and $\lambda\left(\frac{1}{f}\right)$ to denote respectively the exponent of convergence of the zeros and the poles of a meromorphic function $f, \rho(f)$ to denote the order of growth of f. To express the rate of growth of meromorphic solutions of infinite order, we recall the following definition.

[^0]Definition 1.1. ([12], [18]) Let f be a meromorphic function. Then the hyper-order $\rho_{2}(f)$ of $f(z)$ is defined by

$$
\rho_{2}(f)=\limsup _{r \longrightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f.
To give estimates of fixed points, we define:
Definition 1.2. ([7], [16]) Let f be a meromorphic function and let z_{1}, z_{2}, \ldots $\left(\left|z_{j}\right|=r_{j}, 0<r_{1} \leqslant r_{2} \leqslant \cdots\right)$ be the sequence of the distinct fixed points of f. The exponent of convergence of the sequence of distinct fixed points of $f(z)$ is defined by

$$
\bar{\tau}(f)=\inf \left\{\tau>0: \sum_{j=1}^{+\infty}\left|z_{j}\right|^{-\tau}<+\infty\right\}
$$

Clearly,

$$
\bar{\tau}(f)=\bar{\lambda}(f-z)=\limsup _{r \longrightarrow+\infty} \frac{\log \bar{N}\left(r, \frac{1}{f-z}\right)}{\log r}
$$

where $\bar{N}\left(r, \frac{1}{f-z}\right)$ is the integrated counting function of distinct fixed points of $f(z)$ in $\{z:|z| \leqslant r\}$.

Definition 1.3. ([6]) Let f be a meromorphic function. The hyper-exponent $\lambda_{2}(f)$ of convergence of zeros and the hyper-exponent $\bar{\lambda}_{2}(f)$ of convergence of distinct zeros of f are defined respectively by

$$
\lambda_{2}(f)=\limsup _{r \longrightarrow+\infty} \frac{\log \log N\left(r, \frac{1}{f}\right)}{\log r}, \quad \bar{\lambda}_{2}(f)=\limsup _{r \longrightarrow+\infty} \frac{\log \log \bar{N}\left(r, \frac{1}{f}\right)}{\log r} .
$$

Several authors, such as Kwon [12], Chen [8], Gundersen [10] have investigated the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=0 \tag{1.1}
\end{equation*}
$$

where $P(z), Q(z)$ are nonconstant polynomials, $A_{1}(z), A_{0}(z) \not \equiv 0$ are entire functions such that $\rho\left(A_{1}\right)<\operatorname{deg} P(z), \rho\left(A_{0}\right)<\operatorname{deg} Q(z)$. Gundersen showed in ([10], p. 419) that if $\operatorname{deg} P(z) \neq \operatorname{deg} Q(z)$, then every nonconstant solution of (1.1) is of infinite order. If $\operatorname{deg} P(z)=\operatorname{deg} Q(z)$, then (1.1) may have nonconstant solutions of finite order. For instanse $f(z)=e^{z}+\frac{1}{2}$ satisfies $f^{\prime \prime}+2 e^{z} f^{\prime}-2 e^{z} f=0$.

In [17], Wang and Laine have investigated the growth of higher order nonhomogeneous linear differential equations and obtained the following result.

Theorem 1.1. ([17]) Suppose that $A_{j}(z)=h_{j}(z) e^{P_{j}(z)}(j=0, \cdots, k-1)$, where $P_{j}(z)=a_{j, n} z^{n}+\cdots+a_{j, 0}(j=0,1, \cdots, k-1)$ are polynomials with degree $n \geqslant$ $1, h_{j}(z)(\not \equiv 0)(j=0,1, \cdots, k-1)$ are entire functions with order less than n, and that $H(z) \not \equiv 0$ is an entire function of order less than n. If $a_{j, n}(j=0,1, \cdots, k-1)$ are distinct complex numbers, then every solution f of the differential equation

$$
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=H(z)
$$

is of infinite order.
In this paper, we consider the higher order nonhomogeneous linear differential equation
(1.2) $f^{(k)}+h_{k-1}(z) e^{P_{k-1}(z)} f^{(k-1)}+\cdots+h_{1}(z) e^{P_{1}(z)} f^{\prime}+h_{0}(z) e^{P_{0}(z)} f=F(z)$,
where $P_{j}(z)$ are polynomials with degree $n_{j} \geqslant 1(j=0,1, \cdots, k-1)$ and h_{j} ($j=0,1, \cdots, k-1$) not all vanishing identically, F are meromorphic functions having only finitely many poles. We obtain the following results.

Theorem 1.2. Let $n_{j} \geqslant 1(j=0,1, \cdots, k-1)$ be integers and $P_{j}(z)(j=$ $0,1, \cdots, k-1)$ be polynomials with degree n_{j}, and let $h_{j}(z)(j=0,1, \cdots, k-1)$ not all vanishing identically, F be meromorphic functions of finite order having only finitely many poles such that $\rho(F)<\max \left\{n_{j}: j=0,1, \cdots, k-1\right\}=n$ and $\rho\left(h_{j}\right)<n_{j}(j=0,1, \cdots, k-1)$. Suppose that n_{j} are distinct integer numbers. Then every meromorphic solution $f \not \equiv 0$ of equation (1.2) is of infinite order and the hyper-order of f satisfies $\rho_{2}(f) \leqslant n$. Furthermore if $F \not \equiv 0$, then every meromorphic solution f of equation (1.2) satisfies

$$
\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty, \quad \bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f) \leqslant n .
$$

ThEOREM 1.3. Let $n_{j} \geqslant 1(j=0,1, \cdots, k-1)$ be integers and $P_{j}(z)(j=$ $0,1, \cdots, k-1)$ be polynomials with degree n_{j}, and let $h_{j}(z)(j=0,1, \cdots, k-1)$ $\left(h_{0} \not \equiv 0\right), F$ be meromorphic functions of finite order having only finitely many poles such that $\max \left\{\rho\left(h_{j}\right)(j=0,1, \cdots, k-1), \rho(F)\right\}<\operatorname{deg} P_{j}(z)(j=0,1, \cdots, k-$ 1), with $P_{j}(z) \equiv 0$ if $h_{j} \equiv 0$. If $n_{j}(j=0,1, \cdots, k-1)$ are distinct integer numbers, then for any meromorphic solution $f \not \equiv 0$ of equation (1.2), we have $f, f^{\prime}, f^{\prime \prime}$ all have infinitely many fixed points and satisfy

$$
\bar{\tau}(f)=\bar{\tau}\left(f^{\prime}\right)=\bar{\tau}\left(f^{\prime \prime}\right)=\infty
$$

Remark 1.1. For some papers related to second order nonhomogeneous linear differential equations see ([1], [2]).

2. Lemmas for the proofs of theorems

First, we recall the following definitions. The linear measure of a set $E \subset$ $(0,+\infty)$ is defined as $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$, and the logarithmic measure of a set $F \subset(1,+\infty)$ is defined by $\operatorname{lm}(F)=\int_{1}^{+\infty} \frac{\chi_{F}(t)}{t} d t$, where $\chi_{H}(t)$ is the characteristic function of a set H.

Lemma 2.1. ([3], [15]) Let $P(z)=a_{n} z^{n}+\cdots+a_{0}\left(a_{n}=\alpha+i \beta \neq 0\right)$ be a polynomial with degree $n \geqslant 1$ and $A(z) \not \equiv 0$ be a meromorphic function with $\rho(A)<$ n. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2}\right)$, where $E_{2}=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set, then for sufficiently large $|z|=r$, we have (i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant|f(z)| \leqslant \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.1}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant|f(z)| \leqslant \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. ([9], p. 89) Let $f(z)$ be a transcendental meromorphic function of finite order ρ. Let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \cdots,\left(k_{m}, j_{m}\right)\right\}$ denote a set of distinct pairs of integers satisfying $k_{i}>j_{i} \geqslant 0(i=1,2, \cdots, m)$ and let $\varepsilon>0$ be a given constant. Then, there exists a set $E_{3} \subset[0,2 \pi)$ that has linear measure zero such that if $\psi_{0} \in[0,2 \pi) \backslash E_{3}$, then there is a constant $R_{0}=R_{0}\left(\psi_{0}\right)>1$ such that for all z satisfying $\arg z=\psi_{0}$ and $|z| \geqslant R_{0}$ and for all $(k, j) \in \Gamma$, we have

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\rho-1+\varepsilon)} .
$$

Lemma 2.3. ([1]) Let $f(z)$ be a meromorphic function having only finitely many poles, and suppose that

$$
G(z):=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho}}
$$

is unbounded on some ray $\arg z=\theta$ with constant $\rho>0$. Then, there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta} \quad(n=1,2, \cdots)$ tending to infinity such that $G\left(z_{n}\right) \rightarrow \infty$ and

$$
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right| \leqslant \frac{1}{(s-j)!}(1+o(1))\left|z_{n}\right|^{s-j} \quad(j=0, \cdots, s-1) \quad \text { as } n \rightarrow \infty .
$$

Remark 2.1. Lemma 2.3 was obtained by Wang and Laine in $[\mathbf{1 7}]$ when $f(z)$ is entire function.

Lemma 2.4. ([17]) Let $f(z)$ be an entire function with $\rho(f)<\infty$. Suppose that there exists a set $E_{4} \subset[0,2 \pi)$ which has linear measure zero, such that $\log ^{+}\left|f\left(r e^{i \theta}\right)\right| \leqslant M r^{\sigma}$ for any ray $\arg (z)=\theta \in[0,2 \pi) \backslash E_{4}$, where M is a positive constant depending on θ, while σ is a positive constant independent of θ. Then $\rho(f) \leqslant \sigma$.

Lemma 2.5. ([5]) Let $f(z)$ be a meromorphic function of order $\rho(f)=\rho<$ $+\infty$. Then for any given $\varepsilon>0$, there exists a set $E_{5} \subset(1,+\infty)$ that has finite linear measure and finite logarithmic measure such that when $|z|=r \notin[0,1] \cup E_{5}, r \longrightarrow$ $+\infty$, we have

$$
|f(z)| \leqslant \exp \left\{r^{\rho+\varepsilon}\right\}
$$

Let $g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function. We define by

$$
\mu(r)=\max \left\{\left|a_{n}\right| r^{n} ; n=0,1,2, \cdots\right\}
$$

the maximum term of g, and define by $\nu_{g}(r)=\max \left\{m ; \mu(r)=\left|a_{m}\right| r^{m}\right\}$ the central index of g.

Lemma 2.6. ([19]) Let $f(z)=g(z) / d(z)$ be a transcendental meromorphic function, where $g(z)$ is a transcendental entire function and $d(z)$ is a polynomial.

Then there exists a set $E_{6} \subset(1,+\infty)$ that has finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{6}, r \longrightarrow+\infty$ and $|g(z)|=M(r, g)$, we have

$$
\frac{f^{(n)}(z)}{f(z)}=\left(\frac{\nu_{g}(r)}{z}\right)^{n}(1+o(1)),
$$

where $n \geqslant 1$ is positive integer.
Lemma 2.7. ([6]) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of infinite order with the hyper-order $\sigma_{2}(f)=\sigma$. Then

$$
\limsup _{r \longrightarrow+\infty} \frac{\log \log \nu_{f}(r)}{\log r}=\sigma
$$

Lemma 2.8. ([14]) Let $g(z)$ be an entire function of infinite order. Denote $M(r, g)=\max \{|g(z)|:|z|=r\}$, then for any sufficiently large number $\lambda>0$, and any $r \in E_{7} \subset(1, \infty)$

$$
M(r, g)>c_{1} \exp \left\{c_{2} r^{\lambda}\right\}
$$

where $\operatorname{lm}\left(E_{7}\right)=\infty$ and c_{1}, c_{2} are positive constants.
Lemma 2.9. Suppose that $k \geqslant 2$ and $A_{0}, A_{1}, \cdots, A_{k-1}, F$ are meromorphic functions not all vanishing identically having only finitely many poles. Let $\rho=\max \left\{\rho\left(A_{j}\right)(j=0,1, \cdots, k-1), \rho(F)\right\}<\infty$ and let $f(z)$ be a meromorphic solution of infinite order of the differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=F \tag{2.3}
\end{equation*}
$$

Then $\rho_{2}(f) \leqslant \rho$. Furthermore if $F \not \equiv 0$, then we have

$$
\bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f) \leqslant \rho
$$

Proof. We assume that f is a meromorphic solution of equation (2.3) of infinite order $\rho(f)=\infty$. By (2.3), we have

$$
\begin{equation*}
\left|\frac{f^{(k)}}{f}\right| \leqslant\left|A_{k-1}\right|\left|\frac{f^{(k-1)}}{f}\right|+\left|A_{k-2}\right|\left|\frac{f^{(k-2)}}{f}\right|+\cdots+\left|A_{1}\right|\left|\frac{f^{\prime}}{f}\right|+\left|\frac{F}{f}\right|+\left|A_{0}\right| . \tag{2.4}
\end{equation*}
$$

From equation (2.3), we know that the poles of f can only occur at the poles of $A_{j}(j=0,1, \cdots, k-1)$ and F. Since $A_{j}(j=0,1, \cdots, k-1)$ and F are meromorphic functions having only finitely many poles, then $f(z)$ must have only finitely many poles. Therefore, by Hadamard factorization theorem, we can write f as $f(z)=\frac{g(z)}{d(z)}$, where $d(z)$ is a polynomial and $g(z)$ is a transcendental entire function with $\rho(g)=\rho(f)=\infty$ and $\rho_{2}(f)=\rho_{2}(g)$. By Lemma 2.5, Lemma 2.6 and Lemma 2.8 , for any small $\varepsilon>0$ and any sufficiently large number $\lambda>\rho+\varepsilon$, there exist a set $E=E_{5} \cup E_{6} \subset(1,+\infty)$ that has finite logarithmic measure and a set $E_{7} \subset(1,+\infty)$ with $\operatorname{lm}\left(E_{7}\right)=\infty$ and positive constants c_{1}, c_{2}, such that for all z satisfying $|z|=r \in E_{7} \backslash[0,1] \cup E, r \longrightarrow+\infty$ with $|g(z)|=M(r, g)$, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{\nu_{g}(r)}{z}\right)^{j}(1+o(1)) \quad(j=1, \cdots, k) \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
& \left|A_{j}(z)\right| \leqslant \exp \left\{r^{\rho+\varepsilon}\right\}, j=0,1, \cdots, k-1 \text { and }|F(z)| \leqslant \exp \left\{r^{\rho+\varepsilon}\right\}, \tag{2.6}\\
& \left|\frac{F(z)}{f(z)}\right|=\left|\frac{F(z)}{g(z)}\right||d(z)|<A r^{m} \frac{1}{c_{1}} \exp \left\{r^{\rho+\varepsilon}-c_{2} r^{\lambda}\right\} \longrightarrow 0 \tag{2.7}
\end{align*}
$$

where $A>0$ is a constant and $m=\operatorname{deg} d \geqslant 1$ is an integer. Substituting (2.5), (2.6), (2.7) into (2.4), we obtain

$$
\left|\frac{\nu_{g}(r)}{z}\right|^{k}|1+o(1)| \leqslant \sum_{j=1}^{k-1} e^{r^{\rho+\varepsilon}}\left|\frac{\nu_{g}(r)}{z}\right|^{j}|1+o(1)|+o(1)+e^{r^{\rho+\varepsilon}}
$$

it follow that

$$
\left(\nu_{g}(r)\right)^{k}|1+o(1)| \leqslant(k+1) e^{r^{\rho+\varepsilon}} r^{k}\left(\nu_{g}(r)\right)^{k-1}|1+o(1)|,
$$

so,

$$
\begin{equation*}
\nu_{g}(r)|1+o(1)| \leqslant(k+1) e^{r^{\rho+\varepsilon}} r^{k}|1+o(1)| \tag{2.8}
\end{equation*}
$$

holds for all z satisfying $|z|=r \in E_{7} \backslash[0,1] \cup E, r \longrightarrow+\infty$ with $|g(z)|=M(r, g)$. Hence, by (2.8) and Lemma 2.7, we obtain that

$$
\rho_{2}(f)=\rho_{2}(g)=\limsup _{r \longrightarrow+\infty} \frac{\log \log \nu_{g}(r)}{\log r} \leqslant \rho+\varepsilon .
$$

Since $\varepsilon>0$ being arbitrary, then we get

$$
\begin{equation*}
\rho_{2}(f) \leqslant \rho . \tag{2.9}
\end{equation*}
$$

We know that if f has a zero at z_{0} of order $m, m>k$ and $A_{j}(j=0,1, \cdots, k-$ 1) are analytic at z_{0}, then $F(z)$ must have a zero at z_{0} of order $m-k$. Therefore, we get by $F \not \equiv 0$ that

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right) \leqslant k \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{F}\right)+\sum_{j=0}^{k-1} N\left(r, A_{j}\right) . \tag{2.10}
\end{equation*}
$$

On the other hand, (2.3) can be rewritten as follows

$$
\frac{1}{f}=\frac{1}{F}\left[\frac{f^{(k)}}{f}+A_{k-1} \frac{f^{(k-1)}}{f}+\cdots+A_{1} \frac{f^{\prime}}{f}+A_{0}\right]
$$

So

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right) \leqslant m\left(r, \frac{1}{F}\right)+\sum_{j=0}^{k-1} m\left(r, A_{j}\right)+\sum_{j=1}^{k} m\left(r, \frac{f^{(j)}}{f}\right)+O(1) \tag{2.11}
\end{equation*}
$$

Hence, by the lemma of logarithmic derivative [11], there exists a set $E \subset[0,+\infty)$ having finite linear measure such that for all $r \notin E$, we have

$$
\begin{equation*}
m\left(r, \frac{f^{(j)}}{f}\right)=O(\log T(r, f)+\log r)(j=1,2, \cdots, k) \tag{2.12}
\end{equation*}
$$

By (2.10), (2.11) and (2.12), we have
$T(r, f)=T\left(r, \frac{1}{f}\right)+O(1) \leqslant k \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{F}\right)+\sum_{j=0}^{k-1} N\left(r, A_{j}\right)+m\left(r, \frac{1}{F}\right)$

$$
\begin{equation*}
=k \bar{N}\left(r, \frac{1}{f}\right)+T(r, F)+\sum_{j=0}^{k-1} T\left(r, A_{j}\right)+C \log (r T(r, f)), r \notin E, \tag{2.13}
\end{equation*}
$$

where C is a positive constant. For sufficiently large r, we have

$$
\begin{gather*}
C \log (r T(r, f)) \leqslant \frac{1}{2} T(r, f), \tag{2.14}\\
T(r, F) \leqslant r^{\rho+\varepsilon}, T\left(r, A_{j}\right) \leqslant r^{\rho+\varepsilon}(j=0,1, \cdots, k-1) . \tag{2.15}
\end{gather*}
$$

Then for $r \notin E$ sufficiently large, by using (2.14), (2.15) we conclude from (2.13) that

$$
T(r, f) \leqslant k \bar{N}\left(r, \frac{1}{f}\right)+(k+1) r^{\rho+\varepsilon}+\frac{1}{2} T(r, f),
$$

it follows that

$$
\begin{equation*}
T(r, f) \leqslant 2 k \bar{N}\left(r, \frac{1}{f}\right)+2(k+1) r^{\rho+\varepsilon}, \quad r \notin E . \tag{2.16}
\end{equation*}
$$

Hence, by (2.16) we get

$$
\rho_{2}(f) \leqslant \bar{\lambda}_{2}(f),
$$

then

$$
\lambda_{2}(f) \geqslant \bar{\lambda}_{2}(f) \geqslant \rho_{2}(f)
$$

Since by definition, we have $\bar{\lambda}_{2}(f) \leqslant \lambda_{2}(f) \leqslant \rho_{2}(f)$, then

$$
\bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f) .
$$

By (2.9) we obtain

$$
\bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f) \leqslant \rho .
$$

Lemma 2.10. ([1]) Let $P_{j}(z)(j=0,1, \cdots, k)$ be polynomials with $\operatorname{deg} P_{0}(z)=$ $n(n \geqslant 1)$ and $\operatorname{deg} P_{j}(z) \leqslant n(j=1,2, \cdots, k)$. Let $A_{j}(z)(j=0,1, \cdots, k)$ be meromorphic functions with finite order and $\max \left\{\rho\left(A_{j}\right): j=0,1, \cdots, k\right\}<n$ such that $A_{0}(z) \not \equiv 0$. We denote

$$
F(z)=A_{k} e^{P_{k}(z)}+A_{k-1} e^{P_{k-1}(z)}+\cdots+A_{1} e^{P_{1}(z)}+A_{0} e^{P_{0}(z)} .
$$

If $\operatorname{deg}\left(P_{0}(z)-P_{j}(z)\right)=n$ for all $j=1, \cdots, k$, then F is a nontrivial meromorphic function with finite order and satisfies $\rho(F)=n$.

Lemma 2.11. ([4]) Let $A_{j}(j=0,1, \cdots, k-1), F \not \equiv 0$ be finite order meromorphic functions. If $f(z)$ is an infinite order meromorphic solution of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=F
$$

then f satisfies

$$
\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty
$$

3. Proof of the Theorems

Proof of Theorem 1.2. First, we prove that every meromorphic solution $f(z) \not \equiv 0$ of (1.2) is transcendental of order $\rho(f) \geqslant n$. We assume that $f(z) \not \equiv$ 0 is a meromorphic solution of equation (1.2) with $\rho(f)<n$. Since $\operatorname{deg} P_{j} \neq$ $\operatorname{deg} P_{i}(0 \leqslant i<j \leqslant k-1)$, then there exists exactly one $s \in\{0,1, \cdots, k-1\}$ such that $h_{s} \not \equiv 0$ and $\operatorname{deg} P_{s}(z)=n=\max \left\{\operatorname{deg} P_{j}(z)(j=0,1, \cdots, k-1)\right\}$. We can rewrite equation (1.2) in the form

$$
\begin{align*}
& h_{k-1}(z) f^{(k-1)} e^{P_{k-1}(z)}+\cdots+h_{s}(z) f^{(s)} e^{P_{s}(z)} \\
& +\cdots+h_{1}(z) f^{\prime} e^{P_{1}(z)}+h_{0}(z) f e^{P_{0}(z)}=B(z) \tag{3.1}
\end{align*}
$$

where

$$
B(z)=-f^{(k)}+F(z)
$$

Since $\sigma=\max \left\{\rho\left(h_{j}\right)(j=0,1, \cdots, k-1), \rho(F)\right\}<n$ and $\rho(f)<n$, then $h_{j}(z) f^{(j)}(z)(j=0,1, \cdots, k-1)$ and $B(z)$ are meromorphic functions of finite order with $\rho\left(h_{j} f^{(j)}\right)<n(j=0,1, \cdots, k-1)$ and $\rho(B)<n$. We have $\operatorname{deg} P_{j}(z)<n$ $(j=0,1, \cdots, k-1 ; j \neq s)$ and $\operatorname{deg}\left(P_{s}(z)-P_{j}(z)\right)=n(j=0,1, \cdots, k-1 ; j \neq s)$. By Lemma 2.10, we find that the order of growth of the left side of the equation (3.1) is n, this contradicts the fact $\rho(B)<n$. Consequently, any meromorphic solution $f \not \equiv 0$ of equation (1.2) is transcendental with order $\rho(f) \geqslant n$.

Now, we prove that $\rho(f)=+\infty$. Suppose, contrary to the assertion, that $f \not \equiv 0$ is a meromorphic solution of (1.2) with $\rho(f)=\rho<\infty$. Then, by the assertion above we have $n \leqslant \rho(f)$. Rewrite equation (1.2) in the form

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F \tag{3.2}
\end{equation*}
$$

where $A_{j}(z)=h_{j}(z) e^{P_{j}(z)}(j=0,1, \cdots, k-1)$. By Lemma 2.2, there exists a set $E_{3} \subset[0,2 \pi)$ of linear measure zero, such that if $\theta \in[0,2 \pi) \backslash E_{3}$, then there is a constant $R_{0}=R_{0}(\theta)>1$, such that for all z satisfying $\arg (z)=\theta$ and $|z|=r \geqslant R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leqslant|z|^{2 \rho}, \quad 0 \leqslant i<j \leqslant k \tag{3.3}
\end{equation*}
$$

By Lemma 2.1, there is a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2}\right)$, where $E_{2}=\left\{\theta \in[0,2 \pi): \delta\left(P_{j}, \theta\right)=0(j=0,1, \cdots, k-1)\right\}$ is a finite set. Then for sufficiently large $|z|=r$, we have $\delta\left(P_{j}, \theta\right) \neq 0(j=$ $0,1, \cdots, k-1)$ and $A_{j}(z)(j=0,1, \cdots, k-1)$ satisfy either inequality (2.1) or (2.2). For any fixed $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$, we have two cases: At least one of
$\delta\left(P_{j}, \theta\right)(j=0,1, \cdots, k-1)$ is strictly positive or all $\delta\left(P_{j}, \theta\right)(j=0,1, \cdots, k-1)$ satisfy $\delta\left(P_{j}, \theta\right)<0$. We now discuss these two cases separately.

Case 1. Set $\delta\left(P_{j_{i}}, \theta\right)=\delta_{j_{i}}>0$ for $j_{i} \in\left\{j_{1}, j_{2}, \cdots, j_{m}\right\} \subset\{0,1, \cdots, k-1\}$ and $\delta\left(P_{l}, \theta\right)=\delta_{l}<0\left(h_{l} \not \equiv 0\right)$ for $l \in\{0,1, \cdots, k-1\} \backslash\left\{j_{1}, j_{2}, \cdots, j_{m}\right\}$. Then there exists one $j_{s} \in\left\{j_{1}, j_{2}, \cdots, j_{m}\right\}$ such that

$$
\operatorname{deg} P_{j_{s}}=d_{j_{s}}=\max \left\{\operatorname{deg} P_{j_{i}}: j_{i}=j_{1}, j_{2}, \cdots, j_{m}\right\}
$$

By Lemma 2.1, for any given $\varepsilon(0<\varepsilon<1)$, we have for sufficiently large r

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{j_{s}} r^{d_{j_{s}}}\right\} \leqslant\left|A_{j_{s}}(z)\right| \tag{3.4}
\end{equation*}
$$

$$
\begin{gathered}
\left|A_{j_{i}}(z)\right| \leqslant \exp \left\{(1+\varepsilon) \delta_{j_{i}} r^{d_{j_{i}}}\right\} \text { for } j_{i}=j_{1}, j_{2}, \cdots, j_{m} \text { and } j_{i} \neq j_{s} \\
\left|A_{l}(z)\right| \leqslant \exp \left\{(1-\varepsilon) \delta_{l} r^{d_{l}}\right\} \text { for } l \in\{0,1, \cdots, k-1\} \backslash\left\{j_{1}, j_{2}, \cdots, j_{m}\right\}
\end{gathered}
$$

Denoting $d_{j_{t}}=\max \left\{\operatorname{deg} P_{j_{i}}: j_{i}=j_{1}, j_{2}, \cdots, j_{m} ; j_{i} \neq j_{s}\right\}$. Then for sufficiently large r, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leqslant \exp \left\{(1+\varepsilon) \delta_{j_{t}} r^{d_{j_{t}}}\right\} \text { for } j \in\{0,1, \cdots, k-1\} \text { and } j \neq j_{s} \tag{3.5}
\end{equation*}
$$

We now proceed to show that

$$
\begin{equation*}
G(z)=\frac{\log ^{+}\left|f^{\left(j_{s}\right)}(z)\right|}{|z|^{\sigma+\varepsilon}} \tag{3.6}
\end{equation*}
$$

is bounded on the ray $\arg z=\theta$. Supposing that this is not the case. Then by Lemma 2.3, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \cdots)$ tending to infinity such that

$$
\begin{equation*}
\frac{\log ^{+}\left|f^{\left(j_{s}\right)}\left(z_{m}\right)\right|}{\left|z_{m}\right|^{\sigma+\varepsilon}} \rightarrow \infty \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \leqslant \frac{1}{\left(j_{s}-j\right)!}(1+o(1))\left|z_{m}\right|^{j_{s}-j} \quad\left(j=0, \cdots, j_{s}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.8}
\end{equation*}
$$

From (3.7) for any sufficiently large number $M_{1}>0$ we have

$$
\begin{equation*}
\frac{\log ^{+}\left|f^{\left(j_{s}\right)}\left(z_{m}\right)\right|}{\left|z_{m}\right|^{\sigma+\varepsilon}}>M_{1}, \text { then }\left|f^{\left(j_{s}\right)}\left(z_{m}\right)\right|>e^{M_{1}\left|z_{m}\right|^{\sigma+\varepsilon}} \text { as } \quad m \rightarrow+\infty \tag{3.9}
\end{equation*}
$$

Since $F(z)$ is a meromorphic function with only finitely many poles, then by Hadamard factorization theorem, we can write $F(z)=\frac{H(z)}{\pi(z)}$, where $\pi(z)$ is a polynomial and $H(z)$ is an entire function with $\rho(H)=\rho(F)$. From (3.9) for m sufficiently large ($r_{m} \rightarrow+\infty$), we have

$$
\left|\frac{F\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right|=\left|\frac{H\left(z_{m}\right)}{\pi\left(z_{m}\right) f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \leqslant \frac{\left|H\left(z_{m}\right)\right|}{c r_{m}^{d} e^{M_{1}\left|z_{m}\right|^{\sigma+\varepsilon}}} \leqslant \frac{\left|H\left(z_{m}\right)\right|}{e^{M_{1}\left|z_{m}\right|^{\sigma+\varepsilon}}},
$$

where $c>0$ is a constant and $d=\operatorname{deg} \pi \geqslant 1$ is an integer. Since $\rho(H)=\rho(F) \leqslant$ σ, then we have

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \leqslant \frac{\left|H\left(z_{m}\right)\right|}{e^{M_{1}\left|z_{m}\right|^{\sigma+\varepsilon}} \rightarrow 0 \quad \text { as } m \rightarrow+\infty . . ~ . ~ . ~} \tag{3.10}
\end{equation*}
$$

From equation (3.2), we obtain

$$
\begin{align*}
& \quad\left|A_{j_{s}}\left(z_{m}\right)\right| \leqslant\left|\frac{f^{(k)}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right|+\left|A_{k-1}\left(z_{m}\right)\right|\left|\frac{f^{(k-1)}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \\
& +\cdots+\left|A_{j_{s}+1}\left(z_{m}\right)\right|\left|\frac{f^{\left(j_{s}+1\right)}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right|+\left|A_{j_{s}-1}\left(z_{m}\right)\right|\left|\frac{f^{\left(j_{s}-1\right)}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \\
& +\cdots+\left|A_{1}\left(z_{m}\right)\right|\left|\frac{f^{\prime}\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right|+\left|A_{0}\left(z_{m}\right)\right|\left|\frac{f\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right|+\left|\frac{F\left(z_{m}\right)}{f^{\left(j_{s}\right)}\left(z_{m}\right)}\right| \tag{3.11}
\end{align*}
$$

Using inequalities $(3.3),(3.4),(3.5),(3.8)$ and the limit (3.10), we conclude from the inequality (3.11) that

$$
\exp \left\{(1-\varepsilon) \delta_{j_{s}} r_{m}^{d_{j_{s}}}\right\} \leqslant r_{m}^{\alpha}+(k-1) r_{m}^{\alpha} \exp \left\{(1+\varepsilon) \delta_{j_{t}} r_{m}^{d_{j_{t}}}\right\}+o(1)
$$

where α is a bounded constant satisfying $\alpha>\max \left\{2 \rho,\left(j_{s}-j\right)\left(j=0, \cdots, j_{s}\right)\right\}$. Hence

$$
\exp \left\{(1-\varepsilon) \delta_{j_{s}} r_{m}^{d_{j_{s}}}\right\} \leqslant(k+1) r_{m}^{\alpha} \exp \left\{(1+\varepsilon) \delta_{j_{t}} r_{m}^{d_{j_{t}}}\right\}
$$

it follows that

$$
\exp \left\{(1-\varepsilon) \delta_{j_{s}} r_{m}^{d_{j_{s}}}-(1+\varepsilon) \delta_{j_{t}} r_{m}^{d_{j_{t}}}\right\} \leqslant(k+1) r_{m}^{\alpha}
$$

Since $0<\varepsilon<1$ and $d_{j_{s}}>d_{j_{t}}$, this is a contradiction, provided that r_{m} is sufficiently large enough. Therefore, $\frac{\log ^{+}\left|f^{\left(j_{s}\right)}(z)\right|}{|z|^{\sigma+\varepsilon}}$ is bounded on the ray $\arg (z)=\theta$. Then there exists a bounded constant $M_{2}>0$ such that

$$
\left|f^{\left(j_{s}\right)}(z)\right| \leqslant e^{M_{2}|z|^{\sigma+\varepsilon}}
$$

on the ray $\arg (z)=\theta$. Hence, by $\left(j_{s}\right)$-fold iterated integration (see, $\left.[\mathbf{1}]\right)$, we conclude that

$$
|f(z)| \leqslant \frac{1}{j_{s}!}(1+o(1)) r^{j_{s}}\left|f^{\left(j_{s}\right)}(z)\right| \leqslant \frac{1}{j_{s}!}(1+o(1)) r^{j_{s}} e^{M_{2}|z|^{\sigma+\varepsilon}} \leqslant e^{M_{2}|z|^{\sigma+2 \varepsilon}}
$$

on the ray $\arg (z)=\theta$.
Case 2. $\delta\left(P_{j}, \theta\right)=\delta_{j}<0(j=0,1, \cdots, k-1)$. From (3.2), we get

$$
\begin{gathered}
1 \leqslant\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}(z)}{f^{(k)}(z)}\right|+\left|A_{k-2}(z)\right|\left|\frac{f^{(k-2)}(z)}{f^{(k)}(z)}\right| \\
+\cdots+\left|A_{0}(z)\right|\left|\frac{f(z)}{f^{(k)}(z)}\right|+\left|\frac{F(z)}{f^{(k)}(z)}\right| .
\end{gathered}
$$

By Lemma 2.1, for any given $\varepsilon(0<\varepsilon<1)$ we have

$$
\left|A_{j}(z)\right| \leqslant \exp \left\{(1-\varepsilon) \delta_{j} r^{d_{j}}\right\},(j=0,1, \cdots, k-1)
$$

Then

$$
\begin{equation*}
\left|A_{j}(z)\right| \leqslant \exp \left\{(1-\varepsilon) \delta r^{d_{j_{t}}}\right\},(j=0,1, \cdots, k-1) \tag{3.13}
\end{equation*}
$$

where $\delta=\max \left\{\delta_{j}: j=0,1, \cdots, k-1\right\}$ and $d_{j_{t}}=\min \left\{\operatorname{deg} P_{j}: j=0,1, \cdots, k-1\right\}$. We prove that

$$
\begin{equation*}
G(z)=\frac{\log ^{+}\left|f^{(k)}(z)\right|}{|z|^{\sigma+\varepsilon}} \tag{3.14}
\end{equation*}
$$

is bounded on the ray $\arg z=\theta$. Supposing that this is not the case. Then by Lemma 2.3, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \cdots)$ tending to infinity such that

$$
\begin{equation*}
\frac{\log ^{+}\left|f^{(k)}\left(z_{m}\right)\right|}{\left|z_{m}\right|^{\sigma+\varepsilon}} \rightarrow \infty \text { as } m \rightarrow \infty \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(k-j)!}(1+o(1))\left|z_{m}\right|^{k-j}, \quad(j=0,1, \cdots, k-1) . \tag{3.16}
\end{equation*}
$$

From (3.15) for any sufficiently large number $M_{3}>0$ we have

$$
\begin{equation*}
\left|f^{(k)}\left(z_{m}\right)\right|>e^{M_{3}\left|z_{m}\right|^{\sigma+\varepsilon}} \text { as } \quad m \rightarrow+\infty \tag{3.17}
\end{equation*}
$$

By using the same reasoning as above we get from (3.17) that for m sufficiently large $\left(r_{m} \rightarrow+\infty\right)$

$$
\left|\frac{F\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right|=\left|\frac{H\left(z_{m}\right)}{\pi\left(z_{m}\right) f^{(k)}\left(z_{m}\right)}\right| \leqslant \frac{\left|H\left(z_{m}\right)\right|}{c r_{m}^{d} e^{M_{3}\left|z_{m}\right|^{\sigma+\varepsilon}}} \leqslant \frac{\left|H\left(z_{m}\right)\right|}{e^{M_{3}\left|z_{m}\right|^{\sigma+\varepsilon}}},
$$

where $c>0$ and $d=\operatorname{deg} \pi \geqslant 1$. Since $\rho(H)=\rho(F) \leqslant \sigma$, then we have

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right| \leqslant \frac{\left|H\left(z_{m}\right)\right|}{e^{M_{3}\left|z_{m}\right|^{\sigma+\varepsilon}}} \rightarrow 0 \text { as } m \rightarrow \infty \tag{3.18}
\end{equation*}
$$

Using inequalities (3.13), (3.16) and the limit (3.18), we conclude from the inequality (3.12) that

$$
1 \leqslant k \exp \left\{(1-\varepsilon) \delta r_{m}^{d_{j_{t}}}\right\} r_{m}^{k}(1+o(1))+o(1)
$$

By $0<\varepsilon<1$, this is a contradiction, provided that r_{m} is sufficiently large enough. Therefore, $\frac{\log ^{+}\left|f^{(k)}(z)\right|}{|z|^{\sigma+\varepsilon}}$ is bounded on the ray $\arg (z)=\theta$, then there exists a bounded constant $M_{4}>0$ such that

$$
\begin{equation*}
\left|f^{(k)}(z)\right| \leqslant e^{M_{4}|z|^{\rho+\varepsilon}} \tag{3.19}
\end{equation*}
$$

on the ray $\arg (z)=\theta$. Hence, by (k)-fold iterated integration (see, $[\mathbf{1}])$, we conclude that

$$
|f(z)| \leqslant \frac{1}{k!}(1+o(1)) r^{k}\left|f^{(k)}(z)\right|
$$

on the ray $\arg (z)=\theta$. Then by using (3.19), we obtain

$$
|f(z)| \leqslant \frac{1}{k!}(1+o(1)) r^{k} e^{M_{4}|z|^{\sigma+\varepsilon}} \leqslant e^{M_{4} r^{\sigma+2 \varepsilon}}
$$

on the ray $\arg (z)=\theta$. In both cases, there exists a bounded positive constant $M>0$ such that

$$
\begin{equation*}
|f(z)| \leqslant e^{M r^{\sigma+2 \varepsilon}} \tag{3.20}
\end{equation*}
$$

on the ray $\arg (z)=\theta$. From equation (3.2), we know that the poles of f can only occur at the poles of $A_{j}(j=0,1, \cdots, k-1)$ and F. Since $A_{j}(j=0,1, \cdots, k-1)$ and F are meromorphic functions having only finitely many poles, then $f(z)$ must have only finitely many poles. Therefore, by Hadamard factorization theorem, we can write f as $f(z)=\frac{g(z)}{d(z)}$, where $d(z)$ is a polynomial and $g(z)$ is an entire function with $\rho(g)=\rho(f)$. By the first assertion in the proof of Theorem 1.2 we get $\rho(g) \geqslant n$. From (3.20), we have

$$
\left|\frac{g(z)}{d(z)}\right| \leqslant e^{M r^{\sigma+2 \varepsilon}}
$$

on the ray $\arg (z)=\theta$. Then

$$
|g(z)| \leqslant|d(z)| e^{M r^{\sigma+2 \varepsilon}} \leqslant A r^{\beta} e^{M r^{\sigma+2 \varepsilon}}
$$

on the ray $\arg (z)=\theta$, where $A>0$ is a constant and $\beta=\operatorname{deg} d \geqslant 1$ is an integer. Hence

$$
\begin{equation*}
|g(z)| \leqslant e^{M r^{\sigma+3 \varepsilon}} \tag{3.21}
\end{equation*}
$$

on the ray $\arg (z)=\theta$. Therefore, for any given $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$, where $\left(E_{1} \cup E_{2} \cup E_{3}\right) \subset[0,2 \pi)$ is a set of linear measure zero, we have (3.21), for sufficiently large $|z|=r$. Then, by Lemma 2.4 we have $\rho(g) \leqslant \rho+3 \varepsilon<n$ for a small positive ε, a contradiction with $\rho(g) \geqslant n$. Hence, every meromorphic solution $f \not \equiv 0$ of (1.2) must be of infinite order.

Now, by using Lemma 2.9, we obtain

$$
\rho_{2}(f) \leqslant \max \left\{\rho\left(A_{j}\right)(j=0,1, \cdots, k-1), \rho(F)\right\}=n .
$$

Suppose that $F \not \equiv 0$. Then, by Lemma 2.9 and Lemma 2.11, we obtain

$$
\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty \quad \text { and } \quad \bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f) \leqslant n
$$

Proof of Theorem 1.3. Let f be a nontrivial meromorphic solution of equation (1.2). Then, by Theorem 1.2, we have $\rho(f)=\infty$.

Step 1. We consider the fixed points of $f(z)$. Set $g_{0}(z)=f(z)-z$. Then z is a fixed point of $f(z)$ if and only if $g_{0}(z)=0$. We have $g_{0}(z)$ is a meromorphic function and $\rho\left(g_{0}\right)=\rho(f)=\infty$. Substituting $f(z)=g_{0}(z)+z$ into equation (1.2), we obtain

$$
g_{0}^{(k)}+h_{k-1} e^{P_{k-1}(z)} g_{0}^{(k-1)}+\cdots+h_{s} e^{P(z)} g_{0}^{(s)}+\cdots+h_{1} e^{P_{1}(z)} g_{0}^{\prime}
$$

$$
\begin{equation*}
+h_{0} e^{P_{0}(z)} g_{0}=F-h_{1} e^{P_{1}(z)}-z h_{0} e^{P_{0}(z)} . \tag{3.22}
\end{equation*}
$$

We can rewrite (3.22) in the form

$$
\begin{equation*}
g_{0}^{(k)}+A_{0, k-1} g_{0}^{(k-1)}+\cdots+A_{0,1} g_{0}^{\prime}+A_{0,0} g_{0}=F-A_{0,1}-z A_{0,0}=A_{0} \tag{3.23}
\end{equation*}
$$

For the equation (3.23), we consider just meromorphic solutions of infinite order satisfying $g_{0}(z)=f(z)-z$. We have

$$
A_{0}=F-A_{0,1}-z A_{0,0}=-z h_{0} e^{P_{0}(z)}-h_{1} e^{P_{1}(z)}+F .
$$

Since $\operatorname{deg} P_{j}(j=0,1)$ are distinct integer numbers and

$$
\sigma=\max \left\{\rho\left(z h_{0}\right), \rho\left(h_{1}\right), \rho(F)\right\}<\operatorname{deg} P_{j}(z)(j=0,1)
$$

then $z h_{0} e^{P_{0}(z)}, h_{1} e^{P_{1}(z)}, F$ are linearly independent terms with $h_{0} \not \equiv 0$. Hence $A_{0} \not \equiv 0$. By applying Lemma 2.11 to equation (3.23) above, we obtain

$$
\bar{\lambda}\left(g_{0}\right)=\bar{\tau}(f)=\rho\left(g_{0}\right)=\infty .
$$

Step 2. We consider the fixed points of $f^{\prime}(z)$. Set $g_{1}(z)=f^{\prime}(z)-z$. Then z is a fixed point of $f^{\prime}(z)$ if and only if $g_{1}(z)=0$. We have $g_{1}(z)$ is a meromorphic function with $\rho\left(g_{1}\right)=\rho\left(f^{\prime}\right)=\rho(f)=\infty$. By differentiating the both sides of equation (1.2), we obtain

$$
\begin{gather*}
f^{(k+1)}+h_{k-1} e^{P_{k-1}(z)} f^{(k)}+\left[\left(h_{k-1} e^{P_{k-1}(z)}\right)^{\prime}+h_{k-2} e^{P_{k-2}(z)}\right] f^{(k-1)} \\
+\cdots+\left[\left(h_{s} e^{P_{s}(z)}\right)^{\prime}+h_{s-1} e^{P_{s-1}(z)}\right] f^{(s)} \\
+\cdots+\left[\left(h_{2} e^{P_{2}(z)}\right)^{\prime}+h_{1} e^{P_{1}(z)}\right] f^{\prime \prime} \\
+\left[\left(h_{1} e^{P_{1}(z)}\right)^{\prime}+h_{0} e^{P_{0}(z)}\right] f^{\prime}+\left(h_{0} e^{P_{0}(z)}\right)^{\prime} f=F^{\prime} \tag{3.24}
\end{gather*}
$$

By equation (1.2), we have

$$
\begin{gather*}
f=-\frac{1}{h_{0} e^{P_{0}(z)}}\left[f^{(k)}+h_{k-1} e^{P_{k-1}(z)} f^{(k-1)}+\cdots+h_{s} e^{P_{s}(z)} f^{(s)}\right. \\
\left.+\cdots+h_{1} e^{P_{1}(z)} f^{\prime}-F\right] . \tag{3.25}
\end{gather*}
$$

Substituting (3.25) into (3.24), we obtain

$$
\begin{gathered}
f^{(k+1)}+\left[h_{k-1} e^{P_{k-1}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}}\right] f^{(k)} \\
+\left[\left(h_{k-1} e^{P_{k-1}(z)}\right)^{\prime}+h_{k-2} e^{P_{k-2}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{k-1} e^{P_{k-1}(z)}\right] f^{(k-1)}
\end{gathered}
$$

$$
\begin{align*}
& +\cdots+\left[\left(h_{s} e^{P_{s}(z)}\right)^{\prime}+h_{s-1} e^{P_{s-1}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{s} e^{P_{s}(z)}\right] f^{(s)} \\
& \quad+\cdots+\left[\left(h_{2} e^{P_{2}(z)}\right)^{\prime}+h_{1} e^{P_{1}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{2} e^{P_{2}(z)}\right] f^{\prime \prime} \\
& +\left[\left(h_{1} e^{P_{1}(z)}\right)^{\prime}+h_{0} e^{P_{0}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{1} e^{P_{1}(z)}\right] f^{\prime}+\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} F=F^{\prime} . \tag{3.26}
\end{align*}
$$

We can write equation (3.26) in the following form

$$
\begin{gather*}
f^{(k+1)}+A_{1, k-1} f^{(k)}+A_{1, k-2} f^{(k-1)}+\cdots+A_{1, s} f^{(s+1)}+A_{1, s-1} f^{(s)} \\
+\cdots+A_{1,1} f^{\prime \prime}+A_{1,0} f^{\prime}+\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} F=F^{\prime} \tag{3.27}
\end{gather*}
$$

where $A_{1, j}(j=0,1, \cdots, k-1)$ are meromorphic functions defined by the equation (3.26). Substituting $f^{\prime}(z)=g_{1}(z)+z, f^{\prime \prime}(z)=g_{1}^{\prime}+1, f^{(j+1)}=g_{1}^{(j)}(j=$ $2,3, \cdots, k$) into equation (3.27), we obtain

$$
\begin{align*}
& g_{1}^{(k)}+A_{1, k-1} g_{1}^{(k-1)}+A_{1, k-2} g_{1}^{(k-2)}+\cdots+A_{1, s+1} g_{1}^{(s+1)}+A_{1, s} g_{1}^{(s)} \\
& \quad+\cdots+A_{1,1} g_{1}^{\prime}+A_{1,0} g_{1}=-A_{1,1}-z A_{1,0}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} F+F^{\prime}=A_{1} \tag{3.28}
\end{align*}
$$

where

$$
\begin{gathered}
A_{1}=-\left[\left(h_{2} e^{P_{2}(z)}\right)^{\prime}+h_{1} e^{P_{1}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{2} e^{P_{2}(z)}\right] \\
-z\left[\left(h_{1} e^{P_{1}(z)}\right)^{\prime}+h_{0} e^{P_{0}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{1} e^{P_{1}(z)}\right]-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} F+F^{\prime} \\
=-\frac{1}{h_{0} e^{P_{0}(z)}}\left(z h_{0}^{2} e^{2 P_{0}(z)}+B_{1} e^{P_{0}}+B_{2} e^{P_{0}+P_{1}}+B_{3} e^{P_{0}+P_{2}}\right) \\
=-\frac{1}{h_{0}}\left(z h_{0}^{2} e^{P_{0}(z)}+B_{1}+B_{2} e^{P_{1}}+B_{3} e^{P_{2}}\right)
\end{gathered}
$$

where $B_{0}=z h_{0}^{2}$ and $B_{j}(j=1,2,3)$ are meromorphic functions of finite order which is less than n, written on the form of a sum of terms of kinds of multiplications of the functions $z, h_{i}, h_{i}^{\prime}, P_{i}^{\prime}, F, F^{\prime}$. Since $\operatorname{deg} P_{j}(j=0,1,2)$ are distinct integer numbers and $\sigma=\max \left\{\rho\left(B_{j}\right)(j=0,2,1,3)\right\}<\operatorname{deg} P_{j}(z)(j=0,1,2)$, then $z h_{0}^{2} e^{P_{0}(z)}, B_{1}, B_{2} e^{P_{1}}, B_{3} e^{P_{2}}$ are linearly independent terms with $h_{0} \not \equiv 0$. Hence $A_{1} \not \equiv 0$. By applying Lemma 2.11 to equation (3.28) above, we obtain

$$
\bar{\lambda}\left(g_{1}\right)=\bar{\lambda}\left(f^{\prime}-z\right)=\bar{\tau}\left(f^{\prime}\right)=\rho\left(g_{1}\right)=\rho(f)=\infty
$$

Step 3. We prove that $\bar{\tau}\left(f^{\prime \prime}\right)=\bar{\lambda}\left(f^{\prime \prime}-z\right)=\infty$. Set $g_{2}(z)=f^{\prime \prime}(z)-z$. Then z is a fixed point of $f^{\prime \prime}(z)$ if and only if $g_{2}(z)=0$. We have $g_{2}(z)$ is a meromorphic
function with $\rho\left(g_{2}\right)=\rho\left(f^{\prime \prime}\right)=\rho(f)=\infty$. We just prove that $\bar{\lambda}\left(g_{2}\right)=\infty$. By differentiating the both sides of equation (3.27), we obtain

$$
f^{(k+2)}+A_{1, k-1} f^{(k+1)}+\left(A_{1, k-1}^{\prime}+A_{1, k-2}\right) f^{(k)}+\cdots+\left(A_{1, s-1}^{\prime}+A_{1, s-2}\right) f^{(s)}
$$

$$
\begin{equation*}
+\cdots+\left(A_{1,1}^{\prime}+A_{1,0}\right) f^{\prime \prime}+A_{1,0}^{\prime} f^{\prime}=H^{\prime} \tag{3.29}
\end{equation*}
$$

where H is a meromorphic function with order $\rho(H)<n$ and

$$
H=-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} F+F^{\prime}
$$

By equation (3.27) we have

$$
\begin{align*}
f^{\prime}= & -\frac{1}{A_{1,0}}\left[f^{(k+1)}+A_{1, k-1} f^{(k)}+A_{1, k-2} f^{(k-1)}\right. \\
& \left.+\cdots+A_{1, s-1} f^{(s)}+\cdots+A_{1,1} f^{\prime \prime}-H\right] \tag{3.30}
\end{align*}
$$

We remark that $A_{1,0} \not \equiv 0$, because $h_{0} \not \equiv 0$ (for the proof, we can apply Lemma 2.10). Substituting (3.30) into (3.29), we obtain

$$
\begin{align*}
& f^{(k+2)}+\left[A_{1, k-1}-\frac{A_{1,0}^{\prime}}{A_{1,0}}\right] f^{(k+1)}+\left[A_{1, k-1}^{\prime}+A_{1, k-2}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1, k-1}\right] f^{(k)}+\cdots \\
& +\left[A_{1, s-1}^{\prime}+A_{1, s-2}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1, s-1}\right] f^{(s)}+\cdots+\left[A_{1,2}^{\prime}+A_{1,1}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,2}\right] f^{(3)} \\
& 3.31) \quad+\left[A_{1,1}^{\prime}+A_{1,0}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,1}\right] f^{\prime \prime}+\frac{A_{1,0}^{\prime}}{A_{1,0}} H=H^{\prime} \tag{3.31}
\end{align*}
$$

We can write equation (3.31) in the form
(3.32) $f^{(k+2)}+A_{2, k-1} f^{(k+1)}+A_{2, k-2} f^{(k)}+\cdots+A_{2,1} f^{(3)}+A_{2,0} f^{\prime \prime}=-\frac{A_{1,0}^{\prime}}{A_{1,0}} H+H^{\prime}$,
where $A_{2, j}(j=0,1, \cdots, k-1)$ are meromorphic functions defined by equation (3.31) above. We have

$$
\begin{aligned}
& A_{2,0}=A_{1,1}^{\prime}+A_{1,0}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,1} \\
& A_{2,1}=A_{1,2}^{\prime}+A_{1,1}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,2}
\end{aligned}
$$

Substituting $f^{\prime \prime}(z)=g_{2}(z)+z, f^{(3)}(z)=g_{2}^{\prime}+1, f^{(j+2)}=g_{2}^{(j)}(j=2,3, \cdots, k)$ into equation (3.32), we obtain
(3.33) $g_{2}^{(k)}+A_{2, k-1} g_{2}^{(k-1)}+A_{2, k-2} g_{2}^{(k-2)}+\cdots+A_{2, s} g_{2}^{(s)}+\cdots+A_{2,1} g_{2}^{\prime}+A_{2,0} g_{2}=A_{2}$, where

$$
A_{2}=-A_{2,1}-z A_{2,0}-\frac{A_{1,0}^{\prime}}{A_{1,0}} H+H^{\prime}
$$

$$
\begin{gather*}
=-\left[A_{1,2}^{\prime}+A_{1,1}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,2}\right]-z\left[A_{1,1}^{\prime}+A_{1,0}-\frac{A_{1,0}^{\prime}}{A_{1,0}} A_{1,1}\right]-\frac{A_{1,0}^{\prime}}{A_{1,0}} H+H^{\prime} \\
=-\frac{1}{A_{1,0}}\left[A_{1,2}^{\prime} A_{1,0}+A_{1,1} A_{1,0}-A_{1,0}^{\prime} A_{1,2}+z A_{1,1}^{\prime} A_{1,0}\right. \\
34)
\end{gathered} \begin{gathered}
\left.+z A_{1,0}^{2}-z A_{1,0}^{\prime} A_{1,1}+A_{1,0}^{\prime} H-A_{1,0} H^{\prime}\right] . \tag{3.34}
\end{gather*}
$$

$$
\begin{aligned}
& A_{1,0}=\left(h_{1} e^{P_{1}(z)}\right)^{\prime}+h_{0} e^{P_{0}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{1} e^{P_{1}(z)}, \\
& A_{1,1}=\left(h_{2} e^{P_{2}(z)}\right)^{\prime}+h_{1} e^{P_{1}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{2} e^{P_{2}(z)}, \\
& A_{1,2}=\left(h_{3} e^{P_{3}(z)}\right)^{\prime}+h_{2} e^{P_{2}(z)}-\frac{\left(h_{0} e^{P_{0}(z)}\right)^{\prime}}{h_{0} e^{P_{0}(z)}} h_{3} e^{P_{3}(z)} .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
A_{1,0}=\frac{1}{h_{0} e^{P_{0}(z)}}\left(h_{0}^{2} e^{2 P_{0}}+\alpha_{1,0}^{(1)} e^{P_{0}+P_{1}}\right), \\
A_{1,1}=\frac{1}{h_{0} e^{P_{0}(z)}}\left(\alpha_{1,1}^{(0)} e^{P_{0}+P_{2}}+\alpha_{1,1}^{(1)} e^{P_{0}+P_{1}}\right), \\
A_{1,2}=\frac{1}{h_{0} e^{P_{0}(z)}}\left(\alpha_{1,2}^{(0)} e^{P_{0}+P_{2}}+\alpha_{1,2}^{(1)} e^{P_{0}+P_{3}}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& A_{1,0}^{\prime}=\frac{1}{\left(h_{0} e^{P_{0}(z)}\right)^{2}}\left(\beta_{1,0}^{(0)} e^{3 P_{0}}+\beta_{1,0}^{(1)} e^{2 P_{0}+P_{1}}\right), \\
& A_{1,1}^{\prime}=\frac{1}{\left(h_{0} e^{P_{0}(z)}\right)^{2}}\left(\beta_{1,1}^{(0)} e^{2 P_{0}+P_{2}}+\beta_{1,1}^{(1)} e^{2 P_{0}+P_{1}}\right), \\
& A_{1,2}^{\prime}=\frac{1}{\left(h_{0} e^{P_{0}(z)}\right)^{2}}\left(\beta_{1,2}^{(1)} e^{2 P_{0}+P_{2}}+\beta_{1,2}^{(2)} e^{2 P_{0}+P_{3}}\right),
\end{aligned}
$$

where $\alpha_{i, j}^{(l)}, \beta_{i, j}^{(l)}$ are meromorphic functions of finite order which is less than n, written on the form of a sum of terms of kinds of multiplications of the functions $h_{i}, h_{i}^{\prime}, P_{i}^{\prime},(i=0,1,2,3)$. From (3.34) we have

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0}\left(h_{0} e^{P_{0}(z)}\right)^{3}}\left[z h_{0}^{5} e^{5 P_{0}}+B_{1} e^{4 P_{0}}+B_{2} e^{4 P_{0}+P_{1}}+B_{3} e^{4 P_{0}+P_{2}}\right. \\
\left.+B_{4} e^{4 P_{0}+P_{3}}+B_{5} e^{3 P_{0}+P_{1}}+B_{6} e^{3 P_{0}+2 P_{1}}+B_{7} e^{3 P_{0}+P_{1}+P_{2}}+B_{8} e^{3 P_{0}+P_{1}+P_{3}}\right] \\
=-\frac{1}{A_{1,0} h_{0}^{3}}\left[z h_{0}^{5} e^{2 P_{0}}+B_{1} e^{P_{0}}+B_{2} e^{P_{0}+P_{1}}+B_{3} e^{P_{0}+P_{2}}+B_{4} e^{P_{0}+P_{3}}\right. \\
\left.+B_{5} e^{P_{1}}+B_{6} e^{2 P_{1}}+B_{7} e^{P_{1}+P_{2}}+B_{8} e^{P_{1}+P_{3}}\right]=-\frac{1}{A_{1,0} h_{0}^{3}}\left[\sum_{j=0}^{8} B_{j} e^{G_{j}}\right]
\end{gathered}
$$

where G_{j} are polynomials defined as above, $G_{0}=2 P_{0}, B_{0}=z h_{0}^{5}$ and $B_{j}(j=$ $1,2, \cdots, 8$) are meromorphic functions of finite order which is less than n, written
on the form of a sum of terms of kinds of multiplications of the functions z, h_{i}, h_{i}^{\prime}, $P_{i}^{\prime}, H, H^{\prime}$. We discuss four cases:

Case 1. If $\operatorname{deg} P_{0}>\operatorname{deg} P_{i}(i=1,2,3)$, then we have $\operatorname{deg}\left(G_{0}-G_{i}\right)=\operatorname{deg} P_{0}(i=$ $1,2, \cdots, 8)$. According to Lemma 2.10) and the fact $B_{0}=z h_{0}^{5} \not \equiv 0$ we have $A_{2} \not \equiv 0$.

Case 2. If $\operatorname{deg} P_{1}>\operatorname{deg} P_{i}(i=0,2,3)$, then we rewrite A_{2} in the form

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{3} e^{P_{2}}+B_{4} e^{P_{3}}\right)\right. \\
\left.+e^{P_{1}}\left(B_{2} e^{P_{0}}+B_{5}+B_{6} e^{P_{1}}+B_{7} e^{P_{2}}+B_{8} e^{P_{3}}\right)\right] \\
=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{3} e^{P_{2}}+B_{4} e^{P_{3}}\right)+B e^{P_{1}}\right],
\end{gathered}
$$

where $B=B_{2} e^{P_{0}}+B_{5}+B_{6} e^{P_{1}}+B_{7} e^{P_{2}}+B_{8} e^{P_{3}}$. Since deg $P_{j}(j=0,1,2,3)$ are distinct integer numbers and $\sigma=\max \left\{\rho\left(B_{j}\right)(j=0,1, \cdots, 8)\right\}<\operatorname{deg} P_{j}(z)(j=$ $0,1,2,3)$, then $z h_{0}^{5} e^{P_{0}}, B_{1}, B_{3} e^{P_{2}}, B_{4} e^{P_{3}}$ are linearly independent terms with $h_{0} \not \equiv$ 0 . Hence $K_{1}=\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{3} e^{P_{2}}+B_{4} e^{P_{3}}\right) \not \equiv 0$. We have $e^{P_{0}} K_{1}=e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+\right.$ $\left.B_{1}+B_{3} e^{P_{2}}+B_{4} e^{P_{3}}\right) \not \equiv 0, K_{2}=B e^{P_{1}}\left(\rho\left(B e^{P_{1}}\right)=\operatorname{deg} P_{1}\right.$ or $\left.B \equiv 0\right)$ have not the same order of growth, then $e^{P_{0}} K_{1}, K_{2}$ are linearly independent functions, hence

$$
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}} K_{1}+K_{2}\right] \not \equiv 0
$$

Case 3. If $\operatorname{deg} P_{2}>\operatorname{deg} P_{i}(i=0,1,3)$, then we rewrite A_{2} in the form

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{2} e^{P_{1}}+B_{4} e^{P_{3}}\right)\right. \\
+\left(B_{5} e^{P_{1}}+B_{6} e^{2 P_{1}}+B_{8} e^{P_{1}+P_{3}}\right) \\
\left.+e^{P_{2}}\left(B_{3} e^{P_{0}}+B_{7} e^{P_{1}}\right)\right], \text { where } \operatorname{deg} P_{0}>\operatorname{deg} P_{i} \quad(i=1,3)
\end{gathered}
$$

or

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{4} e^{P_{3}}\right)\right. \\
+e^{P_{1}}\left(B_{2} e^{P_{0}}+B_{5}+B_{6} e^{P_{1}}+B_{8} e^{P_{3}}\right) \\
\left.+e^{P_{2}}\left(B_{3} e^{P_{0}}+B_{7} e^{P_{1}}\right)\right], \text { where } \operatorname{deg} P_{1}>\operatorname{deg} P_{0}>\operatorname{deg} P_{3}
\end{gathered}
$$

or

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}\right)+B_{4} e^{P_{3}+P_{0}}\right. \\
+e^{P_{1}}\left(B_{2} e^{P_{0}}+B_{5}+B_{6} e^{P_{1}}+B_{8} e^{P_{3}}\right) \\
\left.+e^{P_{2}}\left(B_{3} e^{P_{0}}+B_{7} e^{P_{1}}\right)\right], \text { where } \operatorname{deg} P_{1}>\operatorname{deg} P_{3}>\operatorname{deg} P_{0}
\end{gathered}
$$

or

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}+B_{2} e^{P_{1}}\right)\right. \\
+e^{P_{3}}\left(B_{4} e^{P_{0}}+B_{8} e^{P_{1}}\right)+\left(B_{5} e^{P_{1}}+B_{6} e^{2 P_{1}}\right) \\
\left.+e^{P_{2}}\left(B_{3} e^{P_{0}}+B_{7} e^{P_{1}}\right)\right], \text { where } \operatorname{deg} P_{3}>\operatorname{deg} P_{0}>\operatorname{deg} P_{1}
\end{gathered}
$$

or

$$
\begin{gathered}
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}}\left(z h_{0}^{5} e^{P_{0}}+B_{1}\right)+e^{P_{3}}\left(B_{4} e^{P_{0}}+B_{8} e^{P_{1}}\right)\right. \\
+e^{P_{1}}\left(B_{2} e^{P_{0}}+B_{5}+B_{6} e^{P_{1}}\right) \\
\left.+e^{P_{2}}\left(B_{3} e^{P_{0}}+B_{7} e^{P_{1}}\right)\right], \text { where } \operatorname{deg} P_{3}>\operatorname{deg} P_{1}>\operatorname{deg} P_{0} .
\end{gathered}
$$

Then we can write A_{2} in the form

$$
A_{2}=-\frac{1}{A_{1,0} h_{0}^{3}}\left[e^{P_{0}} K_{1}+K_{2}\right]
$$

By the same reasoning as in the proof of Case 2 above, we conclude that $e^{P_{0}} K_{1} \not \equiv 0$ and K_{2} are linearly independent functions. Hence $A_{2} \not \equiv 0$.

Case 4. If $\operatorname{deg} P_{3}>\operatorname{deg} P_{i}(i=0,1,2)$, then by the same reasoning as in the proof of Case 2 and Case 3 above, we conclude that $A_{2} \not \equiv 0$.

In all cases, we have $A_{2} \not \equiv 0$. By applying Lemma 2.11 to equation (3.33) above, we obtain

$$
\bar{\lambda}\left(g_{2}\right)=\bar{\lambda}\left(f^{\prime \prime}-z\right)=\bar{\tau}\left(f^{\prime \prime}\right)=\rho\left(g_{2}\right)=\rho(f)=\infty .
$$

References

[1] M. Andasmas and B. Belaïdi, On the growth and fixed points of meromorphic solutions of second order non-homogeneous linear differential equations, Int. J. Math. Comput. 18 (2013), no. 1, 28-45.
[2] M. Andasmas and B. Belaïdi, Properties of solutions of second order nonhomogeneous linear differential equations with meromorphic coefficients, Submitted.
[3] B. Belaïdi and A. El Farissi, Differential polynomials generated by some complex linear differential equations with meromorphic coefficients, Glas. Mat. Ser. III 43(63) (2008), no. 2, 363-373.
[4] Z. X. Chen, Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994), no. 4, 425-438.
[5] Z. X. Chen, The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients, Kodai Math. J. 19 (1996), no. 3, 341-354.
[6] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999), no. 2, 273-285.
[7] Z. X. Chen, The fixed points and hyper-order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), no. 3, 425-432 (in Chinesse).
[8] Z. X. Chen, On the hyper-order of solutions of some second order linear differential equations, Acta Math. Sinica Engl. Ser., 18 (1) (2002), 79-88.
[9] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc.(2) 37 (1988), no. 1, 88-104.
[10] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[11] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[12] K. H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996), no. 3, 378-387.
[13] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993.
[14] C. H. Li and Y. X. Gu, On the complex oscillation of differential equations $f^{\prime \prime}+e^{a z} f^{\prime}+$ $Q(z) f=F(z)$, Acta Math. Sci. 25A (2) (2005), 192-200.
[15] A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. II, translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
[16] J. Wang and H. X. Yi, Fixed points and hyper-order of differential polynomials generated by solutions of differential equations, Complex Var. Theory Appl. 48 (2003), no. 1, 83-94.
[17] J. Wang and I. Laine, Growth of solutions of nonhomogeneous linear differential equations, Abstr. Appl. Anal. 2009, Art. ID 363927, 1-11.
[18] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
[19] C. F. Yi and Z. X. Chen, The properties of solutions of homogeneous linear differential equations with meromorphic coefficients, (Chinese) Math. Appl. (Wuhan) 14(2001), no. 3, 101-107.

Received by editors 11.01.2014; Revised version 21.12.2014.
Available online 29.12.2014.
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB),, B. P. 227 Mostaganem, Algeria

E-mail address: maamaths73@yahoo.fr
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB),, B. P. 227 Mostaganem, Algeria

E-mail address: belaidi@univ-mosta.dz

[^0]: 2010 Mathematics Subject Classification. 34M10; 34M05; 30D35.
 Key words and phrases. Nonhomogeneous linear differential equations, Meromorphic solutions, Order of growth, Hyper-order, Exponent of convergence of zeros, Hyper-exponent of convergence of zeros, Exponent of convergence of fixed points.

 Partially supported by University of Mostaganem (UMAB) (CNEPRU Project Code B02220120024).

