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Abstract. In this paper, we investigate the order of growth of solutions of
the higher order non-homogeneous linear differential equation

f (k)+

k−1∑
j=0

hje
Pj(z)f (j)= F,

where Pj(z) (j = 0, 1, · · · , k − 1) are polynomials with degPj = nj > 1 and
hj(z) (j = 0, 1, · · · , k− 1 ) not all vanishing identically, F are meromorphic
functions of finite order having only finitely many poles. Under some condi-

tions, we prove that every meromorphic solution f ̸≡ 0 of the above equation
is of infinite order. We give also some estimates of their hyper-order, exponent
of convergence of the zeros and the hyper-exponent of convergence of zeros.

Furthermore, we give an estimation for the exponent of convergence of fixed
points of solutions and their 1st, 2nd derivatives.

1. Introduction and statement of results

In this paper, we use the standard notations of Nevanlinna’s value distribution

theory (see, [11], [13], [18]). In addition, we use the notations λ (f) and λ
(

1
f

)
to

denote respectively the exponent of convergence of the zeros and the poles of a
meromorphic function f, ρ (f) to denote the order of growth of f . To express the
rate of growth of meromorphic solutions of infinite order, we recall the following
definition.
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78 ANDASMAS AND BELAÏDI

Definition 1.1. ([12], [18]) Let f be a meromorphic function. Then the
hyper-order ρ2 (f) of f (z) is defined by

ρ2 (f) = lim sup
r−→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f .

To give estimates of fixed points, we define:

Definition 1.2. ([7], [16]) Let f be a meromorphic function and let z1, z2, · · ·
(|zj | = rj , 0 < r1 6 r2 6 · · · ) be the sequence of the distinct fixed points of f . The
exponent of convergence of the sequence of distinct fixed points of f (z) is defined
by

τ (f) = inf

τ > 0 :
+∞∑
j=1

|zj |−τ
< +∞

 .

Clearly,

τ (f) = λ (f − z) = lim sup
r−→+∞

logN
(
r, 1

f−z

)
log r

,

where N
(
r, 1

f−z

)
is the integrated counting function of distinct fixed points of

f (z) in {z : |z| 6 r} .
Definition 1.3. ([6]) Let f be a meromorphic function. The hyper-exponent

λ2 (f) of convergence of zeros and the hyper-exponent λ2 (f) of convergence of
distinct zeros of f are defined respectively by

λ2 (f) = lim sup
r−→+∞

log logN
(
r, 1f

)
log r

, λ2 (f) = lim sup
r−→+∞

log logN
(
r, 1f

)
log r

.

Several authors, such as Kwon [12], Chen [8], Gundersen [10] have investigated
the second order linear differential equation

(1.1) f ′′ +A1 (z) e
P (z)f ′ +A0 (z) e

Q(z)f = 0,

where P (z) , Q (z) are nonconstant polynomials, A1 (z) , A0 (z) ̸≡ 0 are entire
functions such that ρ (A1) < degP (z) , ρ (A0) < degQ (z) . Gundersen showed in
([10], p. 419) that if degP (z) ̸= degQ (z), then every nonconstant solution of
(1.1) is of infinite order. If degP (z) = degQ (z) , then (1.1) may have nonconstant
solutions of finite order. For instanse f(z) = ez+ 1

2 satisfies f ′′+2ezf ′−2ezf = 0.
In [17], Wang and Laine have investigated the growth of higher order non-

homogeneous linear differential equations and obtained the following result.

Theorem 1.1. ([17]) Suppose that Aj (z) = hj (z) e
Pj(z)(j = 0, · · · , k − 1),

where Pj(z) = aj,nz
n+· · ·+aj,0 (j = 0, 1, · · · , k−1) are polynomials with degree n >

1, hj(z) ( ̸≡ 0) (j = 0, 1, · · · , k− 1) are entire functions with order less than n, and
that H(z) ̸≡ 0 is an entire function of order less than n. If aj,n (j = 0, 1, · · · , k−1)
are distinct complex numbers, then every solution f of the differential equation

f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = H (z)
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is of infinite order.

In this paper, we consider the higher order nonhomogeneous linear differential
equation

(1.2) f (k) +hk−1 (z) e
Pk−1(z)f (k−1) + · · ·+h1 (z) e

P1(z)f
′
+h0 (z) e

P0(z)f = F (z) ,

where Pj (z) are polynomials with degree nj > 1 (j = 0, 1, · · · , k − 1) and hj
(j = 0, 1, · · · , k − 1) not all vanishing identically, F are meromorphic functions
having only finitely many poles. We obtain the following results.

Theorem 1.2. Let nj > 1 (j = 0, 1, · · · , k − 1) be integers and Pj (z) (j =
0, 1, · · · , k − 1) be polynomials with degree nj , and let hj (z) (j = 0, 1, · · · , k − 1)
not all vanishing identically, F be meromorphic functions of finite order having
only finitely many poles such that ρ (F ) < max{nj : j = 0, 1, · · · , k − 1} = n
and ρ (hj) < nj (j = 0, 1, · · · , k− 1). Suppose that nj are distinct integer numbers.
Then every meromorphic solution f ̸≡ 0 of equation (1.2) is of infinite order and the
hyper-order of f satisfies ρ2 (f) 6 n. Furthermore if F ̸≡ 0, then every meromorphic
solution f of equation (1.2) satisfies

λ (f) = λ (f) = ρ (f) = ∞, λ2 (f) = λ2 (f) = ρ2 (f) 6 n.

Theorem 1.3. Let nj > 1 (j = 0, 1, · · · , k − 1) be integers and Pj (z) (j =
0, 1, · · · , k − 1) be polynomials with degree nj , and let hj (z) (j = 0, 1, · · · , k − 1)
(h0 ̸≡ 0), F be meromorphic functions of finite order having only finitely many poles
such that max{ρ (hj) (j = 0, 1, · · · , k − 1) , ρ (F )} < degPj (z) (j = 0, 1, · · · , k −
1), with Pj (z) ≡ 0 if hj ≡ 0. If nj (j = 0, 1, · · · , k − 1) are distinct integer numbers,
then for any meromorphic solution f ̸≡ 0 of equation (1.2), we have f, f ′, f ′′ all
have infinitely many fixed points and satisfy

τ (f) = τ (f ′) = τ (f ′′) = ∞.

Remark 1.1. For some papers related to second order nonhomogeneous linear
differential equations see ([1], [2]).

2. Lemmas for the proofs of theorems

First, we recall the following definitions. The linear measure of a set E ⊂
(0,+∞) is defined as m (E) =

∫ +∞
0

χE (t) dt, and the logarithmic measure of a set

F ⊂ (1,+∞) is defined by lm (F ) =
∫ +∞
1

χF (t)
t dt, where χH (t) is the characteristic

function of a set H.

Lemma 2.1. ([3], [15]) Let P (z) = anz
n + · · · + a0 (an = α+ iβ ̸= 0) be a

polynomial with degree n > 1 and A (z) ̸≡ 0 be a meromorphic function with ρ (A) <
n. Set f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cosnθ − β sinnθ. Then for any
given ε > 0, there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if
θ ∈ [0, 2π) \ (E1 ∪ E2) , where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set, then
for sufficiently large |z| = r, we have
(i) if δ (P, θ) > 0, then

(2.1) exp {(1− ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1 + ε) δ (P, θ) rn} ,
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(ii) if δ (P, θ) < 0, then

(2.2) exp {(1 + ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1− ε) δ (P, θ) rn} .

Lemma 2.2. ([9], p. 89 ) Let f (z) be a transcendental meromorphic function
of finite order ρ. Let Γ = {(k1, j1) , (k2, j2) , · · · , (km, jm)} denote a set of distinct
pairs of integers satisfying ki > ji > 0 (i = 1, 2, · · · ,m) and let ε > 0 be a given
constant. Then, there exists a set E3 ⊂ [0, 2π) that has linear measure zero such
that if ψ0 ∈ [0, 2π) \E3, then there is a constant R0 = R0 (ψ0) > 1 such that for all
z satisfying arg z = ψ0 and |z| > R0 and for all (k, j) ∈ Γ, we have∣∣∣∣f (k) (z)f (j) (z)

∣∣∣∣ 6 |z|(k−j)(ρ−1+ε)
.

Lemma 2.3. ([1]) Let f (z) be a meromorphic function having only finitely
many poles, and suppose that

G (z) :=
log+

∣∣f (s) (z)∣∣
|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then, there exists an
infinite sequence of points zn = rne

iθ (n = 1, 2, · · · ) tending to infinity such that
G (zn) → ∞ and∣∣∣∣f (j) (zn)f (s) (zn)

∣∣∣∣ 6 1

(s− j)!
(1 + o (1)) |zn|s−j

(j = 0, · · · , s− 1) as n→ ∞.

Remark 2.1. Lemma 2.3 was obtained by Wang and Laine in [17] when f (z)
is entire function.

Lemma 2.4. ([17]) Let f (z) be an entire function with ρ (f) < ∞. Sup-
pose that there exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that
log+ |f

(
reiθ

)
| 6 Mrσ for any ray arg (z) = θ ∈ [0, 2π) \E4, where M is a positive

constant depending on θ, while σ is a positive constant independent of θ. Then
ρ (f) 6 σ.

Lemma 2.5. ([5]) Let f (z) be a meromorphic function of order ρ (f) = ρ <
+∞. Then for any given ε > 0, there exists a set E5 ⊂ (1,+∞) that has finite linear
measure and finite logarithmic measure such that when |z| = r /∈ [0, 1] ∪ E5, r −→
+∞ , we have

|f (z)| 6 exp
{
rρ+ε

}
.

Let g (z) =
∞∑

n=0
anz

n be an entire function. We define by

µ (r) = max {|an| rn;n = 0, 1, 2, · · · } ,
the maximum term of g, and define by νg (r) = max {m;µ (r) = |am| rm} the central
index of g.

Lemma 2.6. ([19]) Let f (z) = g (z) /d (z) be a transcendental meromorphic
function, where g (z) is a transcendental entire function and d (z) is a polynomial.
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Then there exists a set E6 ⊂ (1,+∞) that has finite logarithmic measure such that
for all z satisfying |z| = r /∈ [0, 1] ∪ E6, r −→ +∞ and |g (z) | =M (r, g) , we have

f (n) (z)

f (z)
=

(
νg (r)

z

)n

(1 + o (1)) ,

where n > 1 is positive integer.

Lemma 2.7. ([6]) Let f (z) =
∞∑

n=0
anz

n be an entire function of infinite order

with the hyper-order σ2 (f) = σ. Then

lim sup
r−→+∞

log log νf (r)

log r
= σ.

Lemma 2.8. ([14]) Let g (z) be an entire function of infinite order. Denote
M (r, g) = max{|g (z) | : |z| = r}, then for any sufficiently large number λ > 0, and
any r ∈ E7 ⊂ (1,∞)

M (r, g) > c1 exp{c2rλ},
where lm (E7) = ∞ and c1, c2 are positive constants.

Lemma 2.9. Suppose that k > 2 and A0, A1, · · · , Ak−1, F are meromor-
phic functions not all vanishing identically having only finitely many poles. Let
ρ = max{ρ (Aj) (j = 0, 1, · · · , k − 1) , ρ (F )} < ∞ and let f (z) be a meromorphic
solution of infinite order of the differential equation

(2.3) f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F.

Then ρ2 (f) 6 ρ. Furthermore if F ̸≡ 0, then we have

λ2 (f) = λ2 (f) = ρ2 (f) 6 ρ.

Proof. We assume that f is a meromorphic solution of equation (2.3) of
infinite order ρ (f) = ∞. By (2.3), we have

(2.4)

∣∣∣∣f (k)f
∣∣∣∣ 6 |Ak−1|

∣∣∣∣f (k−1)

f

∣∣∣∣+ |Ak−2|
∣∣∣∣f (k−2)

f

∣∣∣∣+ ···+ |A1|
∣∣∣∣f ′f

∣∣∣∣+ ∣∣∣∣Ff
∣∣∣∣+ |A0| .

From equation (2.3), we know that the poles of f can only occur at the poles of
Aj (j = 0, 1, · · · , k − 1) and F. Since Aj (j = 0, 1, · · · , k − 1) and F are meromor-
phic functions having only finitely many poles, then f (z) must have only finitely
many poles. Therefore, by Hadamard factorization theorem, we can write f as

f (z) = g(z)
d(z) , where d (z) is a polynomial and g (z) is a transcendental entire func-

tion with ρ (g) = ρ (f) = ∞ and ρ2 (f) = ρ2 (g). By Lemma 2.5, Lemma 2.6 and
Lemma 2.8, for any small ε > 0 and any sufficiently large number λ > ρ+ ε, there
exist a set E = E5 ∪ E6 ⊂ (1,+∞) that has finite logarithmic measure and a set
E7 ⊂ (1,+∞) with lm (E7) = ∞ and positive constants c1, c2, such that for all z
satisfying |z| = r ∈ E7� [0, 1] ∪ E, r −→ +∞ with |g (z)| =M (r, g), we have

(2.5)
f (j) (z)

f (z)
=

(
νg (r)

z

)j

(1 + o (1)) (j = 1, · · · , k),
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(2.6) |Aj (z) | 6 exp
{
rρ+ε

}
, j = 0, 1, · · · , k − 1 and |F (z) | 6 exp

{
rρ+ε

}
,

(2.7)

∣∣∣∣F (z)

f (z)

∣∣∣∣ = ∣∣∣∣F (z)

g (z)

∣∣∣∣ |d (z)| < Arm
1

c1
exp

{
rρ+ε − c2r

λ
}
−→ 0,

where A > 0 is a constant and m = deg d > 1 is an integer. Substituting (2.5),
(2.6), (2.7) into (2.4), we obtain∣∣∣∣νg (r)z

∣∣∣∣k |1 + o (1)| 6
k−1∑
j=1

er
ρ+ε

∣∣∣∣νg (r)z

∣∣∣∣j |1 + o (1)|+ o (1) + er
ρ+ε

,

it follow that

(νg (r))
k |1 + o (1)| 6 (k + 1) er

ρ+ε

rk (νg (r))
k−1 |1 + o (1)| ,

so,

(2.8) νg (r) |1 + o (1)| 6 (k + 1) er
ρ+ε

rk |1 + o (1)|

holds for all z satisfying |z| = r ∈ E7� [0, 1]∪E, r −→ +∞ with |g (z)| =M (r, g).
Hence, by (2.8) and Lemma 2.7, we obtain that

ρ2 (f) = ρ2 (g) = lim sup
r−→+∞

log log νg (r)

log r
6 ρ+ ε.

Since ε > 0 being arbitrary, then we get

(2.9) ρ2 (f) 6 ρ.

We know that if f has a zero at z0 of order m, m > k and Aj (j = 0, 1, · · · , k−
1) are analytic at z0, then F (z) must have a zero at z0 of order m− k. Therefore,
we get by F ̸≡ 0 that

(2.10) N

(
r,

1

f

)
6 kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k−1∑
j=0

N (r,Aj) .

On the other hand, (2.3) can be rewritten as follows

1

f
=

1

F

[
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

]
.

So

(2.11) m

(
r,

1

f

)
6 m

(
r,

1

F

)
+

k−1∑
j=0

m (r,Aj) +
k∑

j=1

m

(
r,
f (j)

f

)
+O (1) .

Hence, by the lemma of logarithmic derivative [11], there exists a set E ⊂ [0,+∞)
having finite linear measure such that for all r /∈ E, we have

(2.12) m

(
r,
f (j)

f

)
= O (log T (r, f) + log r) (j = 1, 2, · · · , k) .
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By (2.10), (2.11) and (2.12), we have

T (r, f) = T

(
r,

1

f

)
+O (1) 6 kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k−1∑
j=0

N (r,Aj) +m

(
r,

1

F

)

+
k−1∑
j=0

m (r,Aj) +
k∑

j=1

m

(
r,
f (j)

f

)
+O (1)

(2.13) = kN

(
r,

1

f

)
+ T (r, F ) +

k−1∑
j=0

T (r,Aj) + C log (rT (r, f)) , r /∈ E,

where C is a positive constant. For sufficiently large r, we have

(2.14) C log (rT (r, f)) 6 1

2
T (r, f) ,

(2.15) T (r, F ) 6 rρ+ε, T (r,Aj) 6 rρ+ε (j = 0, 1, · · · , k − 1) .

Then for r /∈ E sufficiently large, by using (2.14), (2.15) we conclude from (2.13)
that

T (r, f) 6 kN

(
r,

1

f

)
+ (k + 1) rρ+ε +

1

2
T (r, f) ,

it follows that

(2.16) T (r, f) 6 2kN

(
r,

1

f

)
+ 2 (k + 1) rρ+ε, r /∈ E.

Hence, by (2.16) we get

ρ2 (f) 6 λ2 (f) ,

then

λ2 (f) > λ2 (f) > ρ2 (f) .

Since by definition, we have λ2 (f) 6 λ2 (f) 6 ρ2 (f) , then

λ2 (f) = λ2 (f) = ρ2 (f) .

By (2.9) we obtain

λ2 (f) = λ2 (f) = ρ2 (f) 6 ρ.

�

Lemma 2.10. ([1]) Let Pj(z) (j = 0, 1, · · · , k) be polynomials with degP0(z) =
n (n > 1) and degPj(z) 6 n (j = 1, 2, · · · , k). Let Aj (z) (j = 0, 1, · · · , k) be
meromorphic functions with finite order and max {ρ(Aj) : j = 0, 1, · · · , k} < n such
that A0 (z) ̸≡ 0. We denote

F (z) = Ake
Pk(z) +Ak−1e

Pk−1(z) + · · ·+A1e
P1(z) +A0e

P0(z).

If deg(P0(z)−Pj(z)) = n for all j = 1, · · · , k, then F is a nontrivial meromorphic
function with finite order and satisfies ρ(F ) = n.
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Lemma 2.11. ([4]) Let Aj (j = 0, 1, · · · , k − 1) , F ̸≡ 0 be finite order mero-
morphic functions. If f (z) is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then f satisfies

λ (f) = λ (f) = ρ (f) = ∞.

3. Proof of the Theorems

Proof of Theorem 1.2. First, we prove that every meromorphic solution
f (z) ̸≡ 0 of (1.2) is transcendental of order ρ (f) > n. We assume that f (z) ̸≡
0 is a meromorphic solution of equation (1.2) with ρ (f) < n. Since degPj ̸=
degPi (0 6 i < j 6 k − 1) , then there exists exactly one s ∈ {0, 1, · · · , k − 1} such
that hs ̸≡ 0 and degPs (z) = n = max {degPj (z) (j = 0, 1, · · · , k − 1)} . We can
rewrite equation (1.2) in the form

hk−1 (z) f
(k−1)ePk−1(z) + · · ·+ hs (z) f

(s)ePs(z)

(3.1) + · · ·+ h1 (z) f
′
eP1(z) + h0 (z) fe

P0(z) = B (z) ,

where

B (z) = −f (k) + F (z) .

Since σ = max{ρ (hj) (j = 0, 1, · · · , k − 1), ρ (F )} < n and ρ (f) < n, then

hj (z) f
(j) (z) (j = 0, 1, · · · , k − 1) and B (z) are meromorphic functions of finite

order with ρ(hjf
(j)) < n (j = 0, 1, · · · , k−1) and ρ (B) < n.We have degPj (z) < n

(j = 0, 1, · · · , k−1; j ̸= s) and deg(Ps (z)−Pj (z)) = n (j = 0, 1, · · · , k − 1; j ̸= s) .
By Lemma 2.10, we find that the order of growth of the left side of the equation
(3.1) is n, this contradicts the fact ρ (B) < n. Consequently, any meromorphic
solution f ̸≡ 0 of equation (1.2) is transcendental with order ρ (f) > n.

Now, we prove that ρ (f) = +∞. Suppose, contrary to the assertion, that f ̸≡ 0
is a meromorphic solution of (1.2) with ρ (f) = ρ < ∞. Then, by the assertion
above we have n 6 ρ (f). Rewrite equation (1.2) in the form

(3.2) f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = F,

where Aj (z) = hj (z) e
Pj(z) (j = 0, 1, · · · , k − 1). By Lemma 2.2, there exists a

set E3 ⊂ [0, 2π) of linear measure zero, such that if θ ∈ [0, 2π) \E3, then there is a
constant R0 = R0 (θ) > 1, such that for all z satisfying arg (z) = θ and |z| = r > R0,
we have

(3.3)

∣∣∣∣f (j) (z)f (i) (z)

∣∣∣∣ 6 |z|2ρ , 0 6 i < j 6 k.

By Lemma 2.1, there is a set E1 ⊂ [0, 2π) that has linear measure zero, such that if
θ ∈ [0, 2π) \ (E1 ∪ E2) , where E2 = {θ ∈ [0, 2π) : δ (Pj , θ) = 0 (j = 0, 1, · · · , k−1)}
is a finite set. Then for sufficiently large |z| = r, we have δ (Pj , θ) ̸= 0 (j =
0, 1, · · · , k − 1) and Aj (z) (j = 0, 1, · · · , k − 1) satisfy either inequality (2.1) or
(2.2). For any fixed θ ∈ [0, 2π) \ (E1 ∪ E2 ∪ E3) , we have two cases: At least one of
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δ (Pj , θ) (j = 0, 1, · · · , k − 1) is strictly positive or all δ (Pj , θ) (j = 0, 1, · · · , k − 1)
satisfy δ (Pj , θ) < 0. We now discuss these two cases separately.

Case 1. Set δ (Pji , θ) = δji > 0 for ji ∈ {j1, j2, · · · , jm} ⊂ {0, 1, · · · , k − 1} and
δ (Pl, θ) = δl < 0 (hl ̸≡ 0) for l ∈ {0, 1, · · · , k − 1} \ {j1, j2, · · · , jm}. Then there
exists one js ∈ {j1, j2, · · · , jm} such that

degPjs = djs = max {degPji : ji = j1, j2, · · · , jm} .

By Lemma 2.1, for any given ε (0 < ε < 1), we have for sufficiently large r

(3.4) exp
{
(1− ε) δjsr

djs
}
6 |Ajs (z)| ,

|Aji (z)| 6 exp
{
(1 + ε) δjir

dji

}
for ji = j1, j2, · · · , jm and ji ̸= js,

|Al (z)| 6 exp
{
(1− ε) δlr

dl
}

for l ∈ {0, 1, · · · , k − 1}r {j1, j2, · · · , jm} .
Denoting djt = max {degPji : ji = j1, j2, · · · , jm; ji ̸= js}. Then for sufficiently
large r, we have

(3.5) |Aj (z)| 6 exp
{
(1 + ε) δjtr

djt

}
for j ∈ {0, 1, · · · , k − 1} and j ̸= js.

We now proceed to show that

(3.6) G (z) =
log+

∣∣f (js) (z)∣∣
|z|σ+ε

is bounded on the ray arg z = θ. Supposing that this is not the case. Then by
Lemma 2.3, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, · · · )
tending to infinity such that

(3.7)
log+

∣∣f (js) (zm)
∣∣

|zm|σ+ε → ∞

and

(3.8)

∣∣∣∣ f (j) (zm)

f (js) (zm)

∣∣∣∣ 6 1

(js − j)!
(1 + o (1)) |zm|js−j

(j = 0, · · · , js) as m→ ∞.

From (3.7) for any sufficiently large number M1 > 0 we have

(3.9)
log+

∣∣f (js) (zm)
∣∣

|zm|σ+ε > M1, then
∣∣∣f (js) (zm)

∣∣∣ > eM1|zm|σ+ε

as m→ +∞.

Since F (z) is a meromorphic function with only finitely many poles, then by

Hadamard factorization theorem, we can write F (z) = H(z)
π(z) , where π (z) is a

polynomial and H (z) is an entire function with ρ (H) = ρ (F ). From (3.9) for m
sufficiently large (rm → +∞), we have∣∣∣∣ F (zm)

f (js) (zm)

∣∣∣∣ = ∣∣∣∣ H (zm)

π (zm) f (js) (zm)

∣∣∣∣ 6 |H (zm)|
crdme

M1|zm|σ+ε 6 |H (zm)|
eM1|zm|σ+ε ,
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where c > 0 is a constant and d = deg π > 1 is an integer. Since ρ (H) = ρ (F ) 6
σ, then we have

(3.10)

∣∣∣∣ F (zm)

f (js) (zm)

∣∣∣∣ 6 |H (zm)|
eM1|zm|σ+ε → 0 as m→ +∞.

From equation (3.2), we obtain

|Ajs (zm)| 6
∣∣∣∣ f (k) (zm)

f (js) (zm)

∣∣∣∣+ |Ak−1 (zm)|
∣∣∣∣f (k−1) (zm)

f (js) (zm)

∣∣∣∣
+ · · ·+ |Ajs+1 (zm)|

∣∣∣∣f (js+1) (zm)

f (js) (zm)

∣∣∣∣+ |Ajs−1 (zm)|
∣∣∣∣f (js−1) (zm)

f (js) (zm)

∣∣∣∣
(3.11) + · · ·+ |A1 (zm)|

∣∣∣∣∣ f
′
(zm)

f (js) (zm)

∣∣∣∣∣+ |A0 (zm)|
∣∣∣∣ f (zm)

f (js) (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f (js) (zm)

∣∣∣∣ .
Using inequalities (3.3), (3.4), (3.5), (3.8) and the limit (3.10), we conclude from
the inequality (3.11) that

exp
{
(1− ε) δjsr

djs
m

}
6 rαm + (k − 1) rαm exp

{
(1 + ε) δjtr

djt
m

}
+ o (1) ,

where α is a bounded constant satisfying α > max{2ρ, (js − j) (j = 0, · · · , js)}.
Hence

exp
{
(1− ε) δjsr

djs
m

}
6 (k + 1) rαm exp

{
(1 + ε) δjtr

djt
m

}
,

it follows that

exp
{
(1− ε) δjsr

djs
m − (1 + ε) δjtr

djt
m

}
6 (k + 1) rαm.

Since 0 < ε < 1 and djs > djt , this is a contradiction, provided that rm is sufficiently

large enough. Therefore,
log+|f(js)(z)|

|z|σ+ε is bounded on the ray arg (z) = θ. Then there

exists a bounded constant M2 > 0 such that∣∣∣f (js) (z)∣∣∣ 6 eM2|z|σ+ε

on the ray arg (z) = θ. Hence, by (js)-fold iterated integration (see, [1]), we conclude
that

|f (z)| 6 1

js!
(1 + o (1)) rjs

∣∣∣f (js) (z)∣∣∣ 6 1

js!
(1 + o (1)) rjseM2|z|σ+ε 6 eM2|z|σ+2ε

on the ray arg (z) = θ.

Case 2. δ (Pj , θ) = δj < 0 (j = 0, 1, · · · , k − 1). From (3.2), we get

1 6 |Ak−1 (z)|
∣∣∣∣f (k−1) (z)

f (k) (z)

∣∣∣∣+ |Ak−2 (z)|
∣∣∣∣f (k−2) (z)

f (k) (z)

∣∣∣∣
(3.12) + · · ·+ |A0 (z)|

∣∣∣∣ f (z)

f (k) (z)

∣∣∣∣+ ∣∣∣∣ F (z)

f (k) (z)

∣∣∣∣ .
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By Lemma 2.1, for any given ε (0 < ε < 1) we have

|Aj (z)| 6 exp
{
(1− ε) δjr

dj
}
, (j = 0, 1, · · · , k − 1) .

Then

(3.13) |Aj (z)| 6 exp
{
(1− ε) δrdjt

}
, (j = 0, 1, · · · , k − 1) ,

where δ = max{δj : j = 0, 1, · · · , k−1} and djt = min{degPj : j = 0, 1, · · · , k−1}.
We prove that

(3.14) G (z) =
log+

∣∣f (k) (z)∣∣
|z|σ+ε

is bounded on the ray arg z = θ. Supposing that this is not the case. Then by
Lemma 2.3, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, · · · )
tending to infinity such that

(3.15)
log+

∣∣f (k) (zm)
∣∣

|zm|σ+ε → ∞ as m→ ∞

and

(3.16)

∣∣∣∣ f (j) (zm)

f (k) (zm)

∣∣∣∣ 6 1

(k − j)!
(1 + o (1)) |zm|k−j

, (j = 0, 1, · · · , k − 1) .

From (3.15) for any sufficiently large number M3 > 0 we have

(3.17)
∣∣∣f (k) (zm)

∣∣∣ > eM3|zm|σ+ε

as m→ +∞.

By using the same reasoning as above we get from (3.17) that for m sufficiently
large (rm → +∞)∣∣∣∣ F (zm)

f (k) (zm)

∣∣∣∣ = ∣∣∣∣ H (zm)

π (zm) f (k) (zm)

∣∣∣∣ 6 |H (zm)|
crdme

M3|zm|σ+ε 6 |H (zm)|
eM3|zm|σ+ε ,

where c > 0 and d = deg π > 1. Since ρ (H) = ρ (F ) 6 σ, then we have

(3.18)

∣∣∣∣ F (zm)

f (k) (zm)

∣∣∣∣ 6 |H (zm)|
eM3|zm|σ+ε → 0 as m→ ∞.

Using inequalities (3.13), (3.16) and the limit (3.18), we conclude from the inequal-
ity (3.12) that

1 6 k exp
{
(1− ε) δr

djt
m

}
rkm(1 + o (1)) + o (1) .

By 0 < ε < 1, this is a contradiction, provided that rm is sufficiently large enough.

Therefore,
log+|f(k)(z)|

|z|σ+ε is bounded on the ray arg (z) = θ, then there exists a

bounded constant M4 > 0 such that

(3.19)
∣∣∣f (k) (z)∣∣∣ 6 eM4|z|ρ+ε

on the ray arg (z) = θ. Hence, by (k)-fold iterated integration (see, [1]), we conclude
that

|f (z)| 6 1

k!
(1 + o (1)) rk

∣∣∣f (k) (z)∣∣∣
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on the ray arg (z) = θ. Then by using (3.19), we obtain

|f (z)| 6 1

k!
(1 + o (1)) rkeM4|z|σ+ε 6 eM4r

σ+2ε

on the ray arg (z) = θ. In both cases, there exists a bounded positive constant
M > 0 such that

(3.20) |f (z)| 6 eMrσ+2ε

on the ray arg (z) = θ. From equation (3.2), we know that the poles of f can only
occur at the poles of Aj (j = 0, 1, · · · , k − 1) and F. Since Aj (j = 0, 1, · · · , k − 1)
and F are meromorphic functions having only finitely many poles, then f (z) must
have only finitely many poles. Therefore, by Hadamard factorization theorem, we

can write f as f (z) = g(z)
d(z) , where d (z) is a polynomial and g (z) is an entire

function with ρ (g) = ρ (f). By the first assertion in the proof of Theorem 1.2 we
get ρ (g) > n. From (3.20), we have∣∣∣∣g (z)d (z)

∣∣∣∣ 6 eMrσ+2ε

on the ray arg (z) = θ. Then

|g (z)| 6 |d (z)| eMrσ+2ε 6 ArβeMrσ+2ε

on the ray arg (z) = θ, where A > 0 is a constant and β = deg d > 1 is an integer.
Hence

(3.21) |g (z)| 6 eMrσ+3ε

on the ray arg (z) = θ. Therefore, for any given θ ∈ [0, 2π) \ (E1 ∪ E2 ∪ E3) , where
(E1 ∪ E2 ∪ E3) ⊂ [0, 2π) is a set of linear measure zero, we have (3.21), for suffi-
ciently large |z| = r. Then, by Lemma 2.4 we have ρ (g) 6 ρ + 3ε < n for a small
positive ε, a contradiction with ρ (g) > n. Hence, every meromorphic solution f ̸≡ 0
of (1.2) must be of infinite order.

Now, by using Lemma 2.9, we obtain

ρ2 (f) 6 max {ρ (Aj) (j = 0, 1, · · · , k − 1) , ρ (F )} = n.

Suppose that F ̸≡ 0. Then, by Lemma 2.9 and Lemma 2.11, we obtain

λ (f) = λ (f) = ρ (f) = ∞ and λ2 (f) = λ2 (f) = ρ2 (f) 6 n.

�
Proof of Theorem 1.3. Let f be a nontrivial meromorphic solution of equa-

tion (1.2). Then, by Theorem 1.2, we have ρ (f) = ∞.

Step 1. We consider the fixed points of f (z). Set g0 (z) = f (z) − z. Then z is
a fixed point of f (z) if and only if g0 (z) = 0. We have g0 (z) is a meromorphic
function and ρ (g0) = ρ (f) = ∞. Substituting f (z) = g0 (z) + z into equation
(1.2), we obtain

g
(k)
0 + hk−1e

Pk−1(z)g
(k−1)
0 + · · ·+ hse

P (z)g
(s)
0 + · · ·+ h1e

P1(z)g′0
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(3.22) +h0e
P0(z)g0 = F − h1e

P1(z) − zh0e
P0(z).

We can rewrite (3.22) in the form

(3.23) g
(k)
0 +A0,k−1g

(k−1)
0 + · · ·+A0,1g

′
0 +A0,0g0 = F −A0,1 − zA0,0 = A0.

For the equation (3.23), we consider just meromorphic solutions of infinite order
satisfying g0 (z) = f (z)− z. We have

A0 = F −A0,1 − z A0,0 = −zh0eP0(z) − h1e
P1(z) + F.

Since degPj (j = 0, 1) are distinct integer numbers and

σ = max{ρ (zh0) , ρ (h1) , ρ (F )} < degPj (z) (j = 0, 1),

then zh0e
P0(z), h1e

P1(z), F are linearly independent terms with h0 ̸≡ 0. Hence
A0 ̸≡ 0. By applying Lemma 2.11 to equation (3.23) above, we obtain

λ (g0) = τ (f) = ρ (g0) = ∞.

Step 2. We consider the fixed points of f ′ (z). Set g1 (z) = f ′ (z)− z. Then z is
a fixed point of f ′ (z) if and only if g1 (z) = 0. We have g1 (z) is a meromorphic
function with ρ (g1) = ρ (f ′) = ρ (f) = ∞. By differentiating the both sides of
equation (1.2), we obtain

f (k+1) + hk−1e
Pk−1(z)f (k) +

[(
hk−1e

Pk−1(z)
)′

+ hk−2e
Pk−2(z)

]
f (k−1)

+ · · ·+
[(
hse

Ps(z)
)′

+ hs−1e
Ps−1(z)

]
f (s)

+ · · ·+
[(
h2e

P2(z)
)′

+ h1e
P1(z)

]
f ′′

(3.24) +

[(
h1e

P1(z)
)′

+ h0e
P0(z)

]
f ′ +

(
h0e

P0(z)
)′
f = F ′.

By equation (1.2), we have

f = − 1

h0eP0(z)

[
f (k) + hk−1e

Pk−1(z)f (k−1) + · · ·+ hse
Ps(z)f (s)

(3.25) + · · ·+ h1e
P1(z)f ′ − F

]
.

Substituting (3.25) into (3.24), we obtain

f (k+1) +

[
hk−1e

Pk−1(z) −
(
h0e

P0(z)
)′

h0eP0(z)

]
f (k)

+

[(
hk−1e

Pk−1(z)
)′

+ hk−2e
Pk−2(z) −

(
h0e

P0(z)
)′

h0eP0(z)
hk−1e

Pk−1(z)

]
f (k−1)
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+ · · ·+

[(
hse

Ps(z)
)′

+ hs−1e
Ps−1(z) −

(
h0e

P0(z)
)′

h0eP0(z)
hse

Ps(z)

]
f (s)

+ · · ·+

[(
h2e

P2(z)
)′

+ h1e
P1(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h2e

P2(z)

]
f ′′

(3.26) +

[(
h1e

P1(z)
)′

+ h0e
P0(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h1e

P1(z)

]
f ′ +

(
h0e

P0(z)
)′

h0eP0(z)
F = F ′.

We can write equation (3.26) in the following form

f (k+1) +A1,k−1f
(k) +A1,k−2f

(k−1) + · · ·+A1,sf
(s+1) +A1,s−1f

(s)

(3.27) + · · ·+A1,1f
′′ +A1,0f

′ +

(
h0e

P0(z)
)′

h0eP0(z)
F = F ′,

where A1,j (j = 0, 1, · · · , k − 1) are meromorphic functions defined by the equa-

tion (3.26). Substituting f ′ (z) = g1 (z) + z, f ′′ (z) = g′1 + 1, f (j+1) = g
(j)
1 (j =

2, 3, · · · , k) into equation (3.27), we obtain

g
(k)
1 +A1,k−1g

(k−1)
1 +A1,k−2g

(k−2)
1 + · · ·+A1,s+1g

(s+1)
1 +A1,sg

(s)
1

(3.28) + · · ·+A1,1g
′
1 +A1,0g1 = −A1,1 − z A1,0 −

(
h0e

P0(z)
)′

h0eP0(z)
F + F ′ = A1,

where

A1 = −

[(
h2e

P2(z)
)′

+ h1e
P1(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h2e

P2(z)

]

−z

[(
h1e

P1(z)
)′

+ h0e
P0(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h1e

P1(z)

]
−

(
h0e

P0(z)
)′

h0eP0(z)
F + F ′

= − 1

h0eP0(z)

(
zh20e

2P0(z) +B1e
P0 +B2e

P0+P1 +B3e
P0+P2

)
= − 1

h0

(
zh20e

P0(z) +B1 +B2e
P1 +B3e

P2

)
,

where B0 = zh20 and Bj (j = 1, 2, 3) are meromorphic functions of finite order which
is less than n, written on the form of a sum of terms of kinds of multiplications
of the functions z, hi, h

′
i, P

′
i , F, F

′. Since degPj (j = 0, 1, 2) are distinct inte-
ger numbers and σ = max {ρ (Bj) (j = 0, 2, 1, 3)} < degPj (z) (j = 0, 1, 2) , then

zh20e
P0(z), B1, B2e

P1 , B3e
P2 are linearly independent terms with h0 ̸≡ 0. Hence

A1 ̸≡ 0. By applying Lemma 2.11 to equation (3.28) above, we obtain

λ (g1) = λ (f ′ − z) = τ (f ′) = ρ (g1) = ρ (f) = ∞.

Step 3. We prove that τ (f ′′) = λ (f ′′ − z) = ∞. Set g2 (z) = f ′′ (z) − z. Then z
is a fixed point of f ′′ (z) if and only if g2 (z) = 0. We have g2 (z) is a meromorphic
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function with ρ (g2) = ρ (f ′′) = ρ (f) = ∞. We just prove that λ (g2) = ∞. By
differentiating the both sides of equation (3.27), we obtain

f (k+2) +A1,k−1f
(k+1) +

(
A′

1,k−1 +A1,k−2

)
f (k) + · · ·+

(
A′

1,s−1 +A1,s−2

)
f (s)

(3.29) + · · ·+
(
A′

1,1 +A1,0

)
f ′′ +A′

1,0f
′ = H ′,

where H is a meromorphic function with order ρ (H) < n and

H = −
(
h0e

P0(z)
)′

h0eP0(z)
F + F ′.

By equation (3.27) we have

f ′ = − 1

A1,0

[
f (k+1) +A1,k−1f

(k) +A1,k−2f
(k−1)

(3.30) + · · ·+A1,s−1f
(s) + · · ·+A1,1f

′′ −H
]
.

We remark that A1,0 ̸≡ 0, because h0 ̸≡ 0 (for the proof, we can apply Lemma
2.10). Substituting (3.30) into (3.29), we obtain

f (k+2) +

[
A1,k−1 −

A′
1,0

A1,0

]
f (k+1) +

[
A′

1,k−1 +A1,k−2 −
A′

1,0

A1,0
A1,k−1

]
f (k) + · · ·

+

[
A′

1,s−1 +A1,s−2 −
A′

1,0

A1,0
A1,s−1

]
f (s) + · · ·+

[
A′

1,2 +A1,1 −
A′

1,0

A1,0
A1,2

]
f (3)

(3.31) +

[
A′

1,1 +A1,0 −
A′

1,0

A1,0
A1,1

]
f ′′ +

A′
1,0

A1,0
H = H ′.

We can write equation (3.31) in the form

(3.32) f (k+2)+A2,k−1f
(k+1)+A2,k−2f

(k)+· · ·+A2,1f
(3)+A2,0f

′′ = −
A′

1,0

A1,0
H+H ′,

where A2,j (j = 0, 1, · · · , k − 1) are meromorphic functions defined by equation
(3.31) above. We have

A2,0 = A′
1,1 +A1,0 −

A′
1,0

A1,0
A1,1,

A2,1 = A′
1,2 +A1,1 −

A′
1,0

A1,0
A1,2.

Substituting f ′′ (z) = g2 (z) + z, f (3) (z) = g′2 + 1, f (j+2) = g
(j)
2 (j = 2, 3, · · · , k)

into equation (3.32), we obtain

(3.33) g
(k)
2 +A2,k−1g

(k−1)
2 +A2,k−2g

(k−2)
2 +· · ·+A2,sg

(s)
2 +· · ·+A2,1g

′
2+A2,0g2 = A2,

where

A2 = −A2,1 − zA2,0 −
A′

1,0

A1,0
H +H ′
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= −
[
A′

1,2 +A1,1 −
A′

1,0

A1,0
A1,2

]
− z

[
A′

1,1 +A1,0 −
A′

1,0

A1,0
A1,1

]
−
A′

1,0

A1,0
H +H ′

= − 1

A1,0

[
A′

1,2A1,0 +A1,1A1,0 −A′
1,0A1,2 + zA′

1,1A1,0

(3.34) +zA2
1,0 − zA′

1,0A1,1 +A′
1,0H −A1,0H

′] .
We have

A1,0 =
(
h1e

P1(z)
)′

+ h0e
P0(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h1e

P1(z),

A1,1 =
(
h2e

P2(z)
)′

+ h1e
P1(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h2e

P2(z),

A1,2 =
(
h3e

P3(z)
)′

+ h2e
P2(z) −

(
h0e

P0(z)
)′

h0eP0(z)
h3e

P3(z).

Therefore

A1,0 =
1

h0eP0(z)

(
h20e

2P0 + α
(1)
1,0e

P0+P1

)
,

A1,1 =
1

h0eP0(z)

(
α
(0)
1,1e

P0+P2 + α
(1)
1,1e

P0+P1

)
,

A1,2 =
1

h0eP0(z)

(
α
(0)
1,2e

P0+P2 + α
(1)
1,2e

P0+P3

)
and

A′
1,0 =

1(
h0eP0(z)

)2 (
β
(0)
1,0e

3P0 + β
(1)
1,0e

2P0+P1

)
,

A′
1,1 =

1(
h0eP0(z)

)2 (
β
(0)
1,1e

2P0+P2 + β
(1)
1,1e

2P0+P1

)
,

A′
1,2 =

1(
h0eP0(z)

)2 (
β
(1)
1,2e

2P0+P2 + β
(2)
1,2e

2P0+P3

)
,

where α
(l)
i,j , β

(l)
i,j are meromorphic functions of finite order which is less than n,

written on the form of a sum of terms of kinds of multiplications of the functions
hi, h

′
i, P

′
i , (i = 0, 1, 2, 3) . From (3.34) we have

A2 = − 1

A1,0

(
h0eP0(z)

)3 [
zh50e

5P0 +B1e
4P0 +B2e

4P0+P1 +B3e
4P0+P2

+B4e
4P0+P3 +B5e

3P0+P1 +B6e
3P0+2P1 +B7e

3P0+P1+P2 +B8e
3P0+P1+P3

]
= − 1

A1,0h30

[
zh50e

2P0 +B1e
P0 +B2e

P0+P1 +B3e
P0+P2+ B4e

P0+P3

+B5e
P1 +B6e

2P1 +B7e
P1+P2 +B8e

P1+P3
]
= − 1

A1,0h30

 8∑
j=0

Bje
Gj

 ,
where Gj are polynomials defined as above, G0 = 2P0, B0 = zh50 and Bj (j =
1, 2, · · · , 8) are meromorphic functions of finite order which is less than n, written
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on the form of a sum of terms of kinds of multiplications of the functions z, hi, h
′
i,

P ′
i , H, H ′. We discuss four cases:

Case 1. If degP0 > degPi (i = 1, 2, 3), then we have deg (G0 −Gi) = degP0 (i =
1, 2, · · · , 8). According to Lemma 2.10) and the fact B0 = zh50 ̸≡ 0 we have A2 ̸≡ 0.

Case 2. If degP1 > degPi (i = 0, 2, 3) , then we rewrite A2 in the form

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1 +B3e
P2 +B4e

P3
)

+eP1
(
B2e

P0 +B5 +B6e
P1 +B7e

P2 +B8e
P3
)]

= − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1 +B3e
P2 +B4e

P3
)
+BeP1

]
,

where B = B2e
P0 + B5 + B6e

P1 + B7e
P2 + B8e

P3 . Since degPj (j = 0, 1, 2, 3) are
distinct integer numbers and σ = max{ρ (Bj) (j = 0, 1, · · · , 8)} < degPj (z) (j =
0, 1, 2, 3), then zh50e

P0 , B1, B3e
P2 , B4e

P3 are linearly independent terms with h0 ̸≡
0. Hence K1 = (zh50e

P0 +B1+B3e
P2 +B4e

P3) ̸≡ 0. We have eP0K1 = eP0(zh50e
P0 +

B1 + B3e
P2 + B4e

P3) ̸≡ 0, K2 = BeP1
(
ρ
(
BeP1

)
= degP1 or B ≡ 0

)
have not the

same order of growth, then eP0K1, K2 are linearly independent functions, hence

A2 = − 1

A1,0h30

[
eP0K1 +K2

]
̸≡ 0.

Case 3. If degP2 > degPi (i = 0, 1, 3) , then we rewrite A2 in the form

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1 +B2e
P1 +B4e

P3
)

+
(
B5e

P1 +B6e
2P1 +B8e

P1+P3
)

+ eP2
(
B3e

P0 +B7e
P1
)]
, where degP0 > degPi (i = 1, 3)

or

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1 +B4e
P3
)

+eP1
(
B2e

P0 +B5 +B6e
P1 +B8e

P3
)

+ eP2
(
B3e

P0 +B7e
P1
)]
, where degP1 > degP0 > degP3

or

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1

)
+B4e

P3+P0

+eP1
(
B2e

P0 +B5 +B6e
P1 +B8e

P3
)

+eP2
(
B3e

P0 +B7e
P1
)]
, where degP1 > degP3 > degP0

or

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1 +B2e
P1
)

+eP3
(
B4e

P0 +B8e
P1
)
+

(
B5e

P1 +B6e
2P1

)
+ eP2

(
B3e

P0 +B7e
P1
)]
, where degP3 > degP0 > degP1
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or

A2 = − 1

A1,0h30

[
eP0

(
zh50e

P0 +B1

)
+ eP3

(
B4e

P0 +B8e
P1
)

+eP1
(
B2e

P0 +B5 +B6e
P1
)

+eP2
(
B3e

P0 +B7e
P1
)]
, where degP3 > degP1 > degP0.

Then we can write A2 in the form

A2 = − 1

A1,0h30

[
eP0K1 +K2

]
.

By the same reasoning as in the proof of Case 2 above, we conclude that eP0K1 ̸≡ 0
and K2 are linearly independent functions. Hence A2 ̸≡ 0.

Case 4. If degP3 > degPi (i = 0, 1, 2) , then by the same reasoning as in the proof
of Case 2 and Case 3 above, we conclude that A2 ̸≡ 0.

In all cases, we have A2 ̸≡ 0. By applying Lemma 2.11 to equation (3.33) above,
we obtain

λ (g2) = λ (f ′′ − z) = τ (f ′′) = ρ (g2) = ρ (f) = ∞.

�
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