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RIEMANN-STIELTJES OPERATORS

ON SOME WEIGHTED FUNCTION SPACES

A. El-Sayed Ahmed and Alaa Kamal

Abstract. In this paper, Riemann-Stieltjes-type integral operators between
weighted logarithmic Bloch spaces are considered. Moreover, we give some
criteria for lacunary series of new spaces Bα

ω and Bα
ω,0 which have the weight

terms in their definitions. Finally, we prove global Besov-type characteriza-
tions for the weighted Bloch space and the little weighted Bloch space.

1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C. Recall
that the well known Bloch space (cf. [15]) is defined as follows:

B = {f : f analytic in D and sup
z∈D

(1− |z|2)|f ′(z)| < ∞}

and the little Bloch space B0 (cf. [15]) is given as follows

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

Recently, for given a reasonable function ω : [0, 1] → [0,∞), the weighted Bloch
space Bω is defined in [17] (see also [9,10,33,34]) as the set of all analytic functions
f on D satisfying

(1− |z|)|f ′(z)| 6 Cω(1− |z|), z ∈ D,(1.1)

for some fixed C = Cf > 0. In the special case where ω ≡ 1,Bω reduces to the
classical Bloch space B.
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82 A. EL-SAYED AHMED AND A.KAMAL

Also, the little weighted α-Bloch space Bα
ω,0, is a subspace of Bα

ω consisting of all
f ∈ Bα

ω such that

lim
|z|→1−

(1− |z|)α
∣∣f ′(z)

∣∣
ω(1− |z|)

= 0.(1.2)

The Dirichlet space is defined by

D = {f : f analytic in D and

∫
D

∣∣f ′(z)
∣∣2dA(z) < ∞},

where dA(z) is the Euclidean area element dxdy.
Let 0 < q < ∞. Then the Besov-type spaces consist of analytic functions on D
such that

Bq =

{
f : f analytic in D and sup

a∈D

∫
D

∣∣f ′(z)
∣∣q(1− |z|2

)q−2
(1− |φa(z)|2)2 dA(z) < ∞

}
,

these classes are introduced and studied intensively Stroethoff (cf. [39]). Here, φa

stands for the Möbius transformation, where φa(z) =
a−z
1−āz . In 1994, Aulaskari and

Lappan [15] introduced a class of holomorphic functions, the so called Qp-spaces
as follows:

Qp =

{
f : f analytic in D and sup

a∈D

∫
D

∣∣f ′(z)
∣∣2gp(z, a) dA(z) < ∞

}
,

where the weight function

g(z, a) = log

∣∣∣∣1− āz

a− z

∣∣∣∣
is defined as the composition of the Möbius transformation φa and the fundamental
solution of the two-dimensional real Laplacian. Now, we give the following defini-
tions:
Miao [31] studied a gap series with Hadamard condition as in the following theorem:

Theorem 1.1. Let 0 < p < ∞. If f(z) =
∞∑
k=1

akz
nk is analytic on D and has

Hadamard gaps, that is, if

nk+1

nk
> λ > 1, (k = 1, 2, ...),

then the following statements are equivalent:

(I) f ∈ Bp; (II) f ∈ Bp
0; (III)

∞∑
k=1

|ak|p < ∞.

Remark 1.1. The expression ∥f∥Bα
ω
defines a seminorm while the natural norm

is given by

∥f∥ω,α = |f(0)|+ ∥f∥Bα
ω
.

With this norm the space Bα
ω is a Banach space.
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Definition 1.1. Let 0 < α < ∞ and w : [0, 1] → (0,∞). For an analytic
function f in D, we define the weighted logarithmic α-Bloch space Bα

ω,log as follows:

Bω,log :

=

{
f : f analytic in D and ∥f∥Bω,log

= sup
z∈D

(1− |z|)α
∣∣f ′(z)

∣∣
ω(1− |z|)

log
1

1− |z|
< ∞

}
.(1.3)

Moreover, the little weighted logarithmic α-Bloch space Bω,log,0 is a subspace
of Bω,log consisting of all f ∈ Bω,log such that

lim
|z|→1−

(1− |z|)α
∣∣f ′(z)

∣∣
ω(1− |z|)

log
1

1− |z|
= 0.(1.4)

Remark 1.2. The expression ∥f∥Bα
ω,log

defines a seminorm while the natural

norm is given by

∥f∥ω,log,α = |f(0)|+ ∥f∥Bα
ω,log

.

With this norm the space Bα
ω,log is a Banach space.

Note that, If α = 1 and ω ≡ 1, then logarithmic α-Bloch space Bα
ω,log reduces

to the logarithmic Bloch space Blog see [16]. The logarithmic Bloch space Blog first
appeared in the study of boundedness of the Hankle operators on the Bergman and
Hardy spaces followed by many authors. For more details of the logarithmic Bloch
space we refer to [16,18,38,45] and others.

Let g : D → C be a holomorphic map. Denote by H(D) the space of holomorphic
functions on D. For f ∈ H(D) a class of integral operator introduced by Pom-
merenke (see [32]) as follows:

T (f)(z) = Tg f(z) =
1

z

∫ z

0

f(ξ)g′(ξ)dξ.(1.5)

The operator Tg can be viewed as a generalization of Cesàro operator which was
called the Riemann-Stieltjes operator (see [26,42,43]).
It has been shown by Pommerenke [32] that Tg is a bounded operator on the
Hardy space H2 if and only if g ∈ BMOA, where BMOA is the space of all analytic
functions of bounded mean oscillations. Aleman and Siskakis showed that Tg is
bounded (compact) on the Hardy space Hp , 1 6 p < ∞, if and only if g ∈ BMOA
(g ∈ VMOA); where VMOA is the space of all analytic functions of vanishing mean
oscillations, also that Tg is bounded (compact) on the Bergman space if and only
if g ∈ B (g ∈ B0) (see [12, 13]). Recently, the Riemann-Stieltjes-type integral
operator Tg acting on various function spaces, including the Bloch space, the α-
Bloch space, the weighted Bergman space, the BMOA and VMOA spaces as well
as in mixed norm spaces have been studied (see [11–14,19,21,25,28,29,36,37,
41,42,44] and others). It should be mentioned here also that several authors (see
e.g. [20, 22, 23, 26, 27, 35, 40, 43] and others) tried to generalize the idea of this
operator on some classes of holomorphic function spaces to higher dimensions in
the unit ball of Cn.
The purpose of this paper is to investigate the behavior of Tg on the weighted Bloch
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spaces Bα
ω and Bα

ω,log. We show that Tg is a bounded operator from Bω to Bα
ω if

and only if g ∈ Bα
ω,log, and Tg is a compact operator from Bω to Bα

ω,0 if and only
if g ∈ Bα

ω,log,0. The rest part of the paper is devoted to study integral criteria for
logarithmic α-Bloch space Bα

ω,log and the little logarithmic α-Bloch space Bα
ω,log,0.

For a point a ∈ D and 0 < r < 1, the pseudo-hyperbolic disk D(a, r) with
pseudo-hyperbolic center a and pseudo-hyperbolic radius r is defined by D(a, r) =
φa(rD).
The pseudo-hyperbolic disk D(a, r) is also an Euclidean disk: its Euclidean center

and Euclidean radius are (1−r2)a
1−r2|a|2 and (1−|a|2)r

1−r2|a|2 , respectively (see [39]). Let A

denote the normalized Lebesgue area measure on D, and for a Lebesgue measur-
able set K1 ⊂ D, denote by |K1| the measure of K1 with respect to A. It follows
immediately that:

|D(a, r)| = (1− |a|2)2

(1− r2|a|2)2
r2.

Now, we give a few facts about the Möbius function φa, which will be used in Section
3. First, the function φa is easily seen to be its own inverse under composition:

(φa ◦ φa)(z) = z for all a, z ∈ D .

The following identity can be obtained by straight forward computation (see [39]):

1− |φa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2
, ∀z ∈ D.

A slightly different form in which we will apply the above identity is (see [39]):

1− |φa(z)|2

1− |z|2
= |φ′

a(z).

For a ∈ D, the substitution z = φa(w) results in the Jacobian change in measure
given by

dA(w) = |φ′
a(z)|2dA(z).

For a Lebesgue integrable or a non-negative Lebesgue measurable function h on D
we thus have the following change-of-variable formula:∫

D(0,r)

h(φa(w))d(z) =

∫
D(a,r)

h(z)

(
1− |φa(z)|2

1− |z|2

)2

dA(z) .

Two quantities Af and Bf , both depending on an analytic function f on D, are
said to be equivalent, written as Af ≈ Bf , if there exists a finite positive constant
C not depending on f such that for every analytic function f on D we have:

1

C
Bf 6 Af 6 CBf .

If the quantities Af and Bf , are equivalent, then in particular we have Af < ∞ if
and only if Bf < ∞.

Recall that a linear operator T : X → Y is said to be compact if it takes
bounded sets in X to sets in Y which have compact closure. For Banach spaces X
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and Y of the space of all analytic functions H(D), we say that T is compact from X
to Y if and only if for each bounded sequence {xn} in X, the sequence {Txn} ∈ Y
contains a subsequence converging to some limit in Y.

2. Boundedness and compactness of Tg

It will be more convenient to work here with the operator Pg = MzTg, where
Mzf(z) = zf(z).
The following Lemma says that Pg and Tg are at the same time bounded or compact
from Bω to Bα

ω .

Lemma 2.1. Let Bα
ω , ω : (0, 1] → [0,∞), and let f be an analytic function on

∆. Then f ∈ Bα
ω if and only if Mzf ∈ Bα

ω .

Proof. It is easy to see that if a function h ∈ Bα
ω , then

sup
z∈∆

|h(z)| (1− |z|)α

ω(1− |z|)
6 k < ∞.(2.1)

Let f ∈ Bα
ω . Then

∥f∥Bα
ω
= sup

z∈∆
|f ′(z)| (1− |z|)α

ω(1− |z|)
< ∞.

So

∥Mzf∥Bα
ω

= sup
z∈∆

|zf ′(z) + f(z)| (1− |z|)α

ω(1− |z|)

6 sup
z∈∆

|zf ′(z)| (1− |z|)α

ω(1− |z|)
+ sup

z∈∆
|f(z)| (1− |z|)α

ω(1− |z|)
6 ∥f∥Bα

ω
+ k < ∞.

Thus Mzf ∈ Bα
ω . On the other hand, if Mzf ∈ Bα

ω , then

∥Mzf∥Bα
ω
= sup

z∈∆
|(Mzf)

′(z)| (1− |z|)α

ω(1− |z|)
< ∞.

Because f(z) = Mzf(z)
z is an analytic function on ∆, we have that

sup
z∈∆ 1

2

∣∣f ′(z)
∣∣ (1− |z|)α

ω(1− |z|)
6 k1 < ∞,
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where ∆ 1
2
= {z : |z| < 1

2} and k1 is a positive constant. Thus by Mzf ∈ Bα
ω and

then,

∥f∥Bα
ω

= sup
z∈∆

∣∣f ′(z)
∣∣ (1− |z|)α

ω(1− |z|)
< ∞.

6 k1 + sup
z∈∆r∆ 1

2

∣∣f ′(z)
∣∣ (1− |z|)α

ω(1− |z|)

= k1 + sup
z∈∆r∆ 1

2

∣∣∣∣z(Mzf)
′(z)− (Mzf)(z)

z2

∣∣∣∣ (1− |z|)α

ω(1− |z|)

6 k1 + 2 sup
z∈∆r∆ 1

2

∣∣(Mzf)
′(z)

∣∣ (1− |z|)α

ω(1− |z|)
+ 4 sup

z∈∆r∆ 1
2

∣∣(Mzf)(z)
∣∣ (1− |z|)α

ω(1− |z|)

6 k1 + 2∥Mzf∥Bα
ω
+ 4k < ∞,

where k and k1 are positive constants. Therefore, f ∈ Bα
ω .

Lemma 2.2. Let 0 < α < ∞ and ω : (0, 1] → [0,∞). Then Bα
ω,log ⊂ Bα

ω,0.

Proof. Let f ∈ Bα
ω,log. Then

∥f∥Bα
ω
= sup

z∈∆
|f ′(z)| (1− |z|)α

ω(1− |z|)
< ∞.

Hence,

lim
|z|→1−

|f ′(z)| (1− |z|)α

ω(1− |z|)
= lim

|z|→1−
|f ′(z)| (1− |z|)α

ω(1− |z|)

(
log 1

1−|z|
)(

log 1
1−|z|

)
6 ∥f∥Bα

ω,log
lim

|z|→1−

(
log

1

1− |z|
)−1

= 0

Thus f ∈ Bα
ω,0.

Theorem 2.1. Let 0 < α < ∞, ω : (0, 1] → [0,∞), and let g be an analytic
function on ∆. Then the following statements are equivalent.

(i) Tg : Bω → Bα
ω is bounded.

(ii) Tg : Bω,0 → Bα
ω,0 is bounded.

(iii) Tg : Bω,0 → Bα
ω is bounded.

(iv) g ∈ Bα
ω,log.

Proof. Since Bω,0 ⊂ Bω and Bα
ω,0 ⊂ Bα

ω , it is clear that (i) ⇒ (iii) and (ii) ⇒
(iii). Thus we need only to prove that (iv) ⇒ (i) , (iv) ⇒ (ii) and (iii) ⇒ (iv).
From Lemma 2.1, we need only to work with operator Pg = MzTg. Let g ∈ Bα

ω,log.
Then

∥g∥Bα
ω,log

= sup
z∈∆

|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

1− |z|
< ∞.
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Because for each function f ∈ Bω, we have

(2.2) |f(z)| 6 |f(0)|+ ∥f∥Bω log
1

1− |z|
.

Now, we note that

Pgf(z) =

∫ z

0

f(ξ)g′(ξ)dξ,

then we have

∥Pgf∥Bα
ω

= sup
z∈∆

|f(z)||g′(z)| (1− |z|)α

ω(1− |z|)

6 |f(0)| sup
z∈∆

|g′(z)| (1− |z|)α

ω(1− |z|)
+ ∥f∥Bω sup

z∈∆
|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

1− |z|
6 |f(0)|∥g∥Bα

ω
+ ∥f∥Bω∥g∥Bα

ω,log

By Lemma 2.2, g ∈ Bα
ω,log, so ∥g∥Bα

ω
< ∞. Therefore ∥Pgf∥Bα

ω
< ∞. From the

closed Graph theorem we know that Pg : Bω → Bα
ω is bounded. Thus (iv) ⇒ (i).

Now suppose f ∈ Bα
ω,0. It is easy to see that, for every ϵ > 0, there is an r ∈ (0, 1)

such that for r < |z| < 1,

|f(z)| 6 ϵ log
1

1− |z|
.

Thus, for r < |z| < 1, we have∣∣(Pgf)
′(z)

∣∣ (1−|z|)α
ω(1−|z|) =

∣∣f(z)∣∣ ∣∣g′(z)∣∣ (1− |z|)α

ω(1− |z|)

6 ϵ
∣∣g′(z)∣∣ (1− |z|)α

ω(1− |z|)
log

1

1− |z|
6 ϵ

∥∥g∥∥Bα
ω,log

Thus Pgf ∈ Bα
ω,0, and we have proved (iv) ⇒ (ii).

Finally, suppose that Pg : Bω,0 → Bα
ω is bounded. Let z0 ∈ ∆ r {0} be arbitrary,

and let f(z) = log 1
1−z . It is easy to check that f ∈ Bα

ω,0. So

∞ > ∥Pgf∥Bα
ω
= sup

z∈∆

∣∣f(z)∣∣ ∣∣g′(z)∣∣ (1− |z|)α

ω(1− |z|)
= sup

z∈∆
|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

|1− z|
let z = z0, we get∣∣g′(z0)∣∣ (1− |z0|)α

ω(1− |z0|)
log

1

1− |z0|
6 ∥Pgf∥Bα

ω
< ∞.

Because z0 is arbitrary on ∆r {0}, we know

∥g∥Bα
ω,log

6 ∥Pgf∥Bα
ω
< ∞.

Hence g ∈ Bα
ω,log. Thus (iii) ⇒ (iv) and the proof is complete.

We will need the following lemma for the next theorem.
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Lemma 2.3. A closed set K in Bα
ω,0 is compact if and only if it is bounded and

satisfies

lim
|z|→1−

sup
f∈K

|f ′(z)| (1− |z|)α

ω(1− |z|)
= 0.

Proof. The proof of this Lemma is similar to the proof of lemma 1 in [30],
so we will omit it here.

Theorem 2.2. Let 0 < α < ∞, ω : (0, 1] → [0,∞), and let g be an analytic
function on ∆. Then the following statements are equivalent.

(a) Tg : Bω → Bα
ω,0 is compact

(b) Tg : Bω,0 → Bα
ω,0 is compact;

(c) g ∈ Bα
ω,log,0.

Proof. Since Bα
ω,0 ⊂ Bα

ω , it is clear that (i) ⇒ (ii). Thus we need only to
prove that (iii) ⇒ (i) and (ii) ⇒ (iii).
From Lemma 2.1, we need only to work with the operator Pg = MzTg. Let g ∈
Bα
ω,log,0.

Then, by Lemma 2.2, g ∈ Bα
ω,0. Thus

lim
|z|→1−

|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

|1− z|
= 0 and lim

|z|→1−
|g′(z)| (1− |z|)α

ω(1− |z|)
= 0.

Therefore, by (2.2), for every f ∈ Bω,

lim
|z|→1−

|(Pgf)
′(z)| (1− |z|)α

ω(1− |z|)
= lim

|z|→1−
|f(z)||g′(z)| (1− |z|)α

ω(1− |z|)

6 |f(0)| lim
|z|→1−

|g′(z)| (1− |z|)α

ω(1− |z|)
+ ∥f∥Bα

ω
lim

|z|→1−
|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

|1− z|
= 0.

Thus Pg : Bω → Bα
ω,0 is bounded. To see that this operator is moreover compact, let

{fn} ⊂ Bω be such that ∥fn∥Bω 6 1. We must show that {Pgfn} has a subsequence
that converges in Bα

ω,0. By (2.2), there is a subsequence of {fn} that converges
uniformly on compact subsets of ∆ to an analytic function f. By passing to this
subsequence, we may assume that the sequence {fn} itself converges to f. Also, for
any fixed z ∈ ∆,

∣∣f ′(z)
∣∣ (1− |z|)α

ω(1− |z|)
= lim

n→∞

∣∣f ′
n(z)

∣∣ (1− |z|)α

ω(1− |z|)
6 1,

and so f ∈ Bα
ω with ∥f∥Bα

ω
6 1. Thus Pgf ∈ Bα

ω,0 and it suffices to show that

lim
n→∞

∥Pgfn − Pgf∥Bα
ω
= 0.
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Since g ∈ Bα
ω,log, we get that for every ϵ > 0, there is an r ∈ (0, 1) such that for

every n > 1,

sup
z∈∆r∆r

|fn(z)− f(z)||g′(z)| (1− |z|)α

ω(1− |z|)

6 |fn(0)− f(0)| sup
z∈∆r∆r

|g′(z)| (1− |z|)α

ω(1− |z|)

+(∥fn(z)∥Bα
ω
+ ∥f(z)∥Bα

ω
) sup
z∈∆r∆r

|g′(z)| (1− |z|)α

ω(1− |z|)
log

1

|1− z|
< ϵ.(2.3)

Since {fn} converges to f uniformly on each compact subset of ∆, we get that there
in N > 0 such that for every n > N and every z ∈ ∆, |fn(z)− f(z)| < ϵ. Thus, for
n > N,

sup
z∈∆r

|fn(z)− f(z)||g′(z)| (1−|z|)α
ω(1−|z|) 6 ϵ sup

z∈∆

|g′(z)| (1− |z|)α

ω(1− |z|)
6 ϵ∥g∥Bα

ω
.(2.4)

Combining (2.3) and (2.4) we get

lim
n→∞

sup
z∈∆r

∣∣fn(z)− f(z)
∣∣ ∣∣g′(z)∣∣ (1− |z|)α

ω(1− |z|)
= 0.

Thus lim
n→∞

∥Pgfn − Pgf∥Bα
ω
= 0, and then Pg : Bω → Bα

ω,0 is compact. So we have

proved (iii) ⇒ (i).
To prove (ii) ⇒ (iii), let Pg : Bω,0 → Bα

ω,0 be compact. Suppose g ̸∈ Bα
ω,log. Then

there is a sequence of points {zn} in ∆, |zn| → 1, such that

|g(zn)|
(1− |zn|)α

ω(1− |zn|)
log

1

|1− z|
−→ C > 0.(2.5)

Let fn(z) = log 1
1−z̄nz

. Then fn ∈ Bω,0 and ∥fn∥Bω
6 1. Since Pg is compact,

{Pgfn} is a compact subset of Bα
ω,0. Thus by Lemma 2.3 we have

lim
|z|→1−

sup
n

|(Pgfn)
′(z)| (1− |z|)α

ω(1− |z|)
= 0,

or

lim
|z|→1−

sup
n

|fn(z)||g′(z)|
(1− |z|)α

ω(1− |z|)
= 0.

Thus, for ϵ = C
2 , there is an r > 0 such that

sup
|z|>r

sup
n

|fn(z)||g′(z)|
(1− |z|)α

ω(1− |z|)
< ϵ =

C

2
.

Let N > 0 be such that for n > N, |zn| > r. Then for n > N,

|g′(zn)||fn(zn)|
(1− |z|)α

ω(1− |z|)
6 sup

|z|>r

sup
n

|g′(z)||fn(z)|
(1− |z|)α

ω(1− |z|)
<

C

2
,

which is contrary to (2.5). The proof is therefore established.
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3. Some integral criteria for Bα
ω functions

In this section we give some integral criteria for Bα
ω,log functions. Our results

generalize and extend the corresponding results for Bα functions which can be found
in [39].
Now, suppose that φa(z) =

a−z
1−az be a Möbius transformation of ∆, let ∆(a, r) =

{z ∈ ∆ : |φa(z)| < r}, and let g(z, a) = log 1
|φa(z)| be the Green’s function on ∆

with logarithmic singularity at a ∈ ∆. Then we will give the following theorem:

Theorem 3.1. Let 0 < α < ∞ , 0 < r < 1 , 0 < p < ∞, 1 < q < ∞ and
ω : (0, 1] → [0,∞). Also, let f be an analytic function on ∆. Then the following
quantities are equivalent:

(A) ∥f∥pBα
ω,log

.

(B) For 0 < α < ∞ and 0 < p < ∞,

sup
a∈∆

1∣∣∆(a, r)
∣∣1− pα

2

∫
∆(a,r)

|f ′(z)|p
( log 1

1−|z|

ω(1− |z|)

)p

dA(z).

(C) For 0 < α < ∞ and 0 < p < ∞,

sup
a∈∆

∫
∆(a,r)

|f ′(z)|p
(
1− |z|

)pα−2( log 1
1−|z|

ω(1− |z|)

)p

dA(z).

(D) For 0 < α < ∞ , 0 < p < ∞ and 1 < q < ∞,

sup
a∈∆

∫
∆

|f ′(z)|p
(
1− |z|

)pα−2
( log 1

1−|z|

ω(1− |z|)

)p

(1− |φa(z)|)q dA(z).

(E) For 0 < α < ∞ and 0 < p < ∞,

sup
a∈∆

∫
∆

|f ′(z)|p
(
log

1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z).

(F)

sup
a∈∆

∫
∆

|f ′(z)|p
(
g(z, a)

)p(
1− |z|

)pα−2
(

log 1
1−|z|

ω(1− |z|)

)p

dA(z) < ∞.

Proof. Let 0 < α < ∞, 0 < r < 1, 0 < p < ∞ and ω : (0, 1] → [0,∞).
Because for every analytic function g on ∆, |g|p is a subharmonic function we have∣∣g(0)∣∣p 6 1

πr2

∫
∆(0,r)

∣∣g(w)∣∣p dA(w).

Set g = f ′ ◦ φa, we obtain that∣∣f ′(a)
∣∣p 6 1

πr2

∫
∆(0,r)

∣∣f ′ ◦ φa(w)
∣∣pdA(w)

=
1

πr2

∫
∆(a,r)

∣∣f ′(z)
∣∣p (1− |φa(z)|2)2

(1− |z|2)2
dA(z).
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Since (see [39]),

1− |φa(z)|2

1− |z|2
= |φ′

a(z)| , where
1− |φa(z)|2

1− |z|2
6 4

1− |a|2
a, z ∈ ∆.

Then, we obtain that

∣∣f ′(a)
∣∣p 6 16

πr2(1− |a|2)2

∫
∆(a,r)

∣∣f ′(z)
∣∣pdA(z).

Therefore, by (1− |a|2)2 ∼ (1− |z|2)2 ∼ |∆(a, r)|, for z ∈ ∆(a, r), we deduce that

|f ′(a)|p (1−|a|)pα
ωp(1−|a|)

(
log 1

1−|a|
)p 6

16(1− |a|)pα
(
log 1

1−|a|
)p

πr2(1− |a|2)2ωp(1− |a|)

∫
∆(a,r)

|f ′(z)|pdA(z).

Since (1− |a|)2 ∼ (1− |a|2)2, then

|f ′(a)|p (1−|a|)pα
ωp(1−|a|)

(
log 1

1−|a|
)p 6

16
(
log 1

1−|a|
)p

πr2(1− |a|)2−pαωp(1− |a|)

∫
∆(a,r)

|f ′(z)|pdA(z)

6 16λ

πr2
∣∣∆(a, r)

∣∣1− pα
2

∫
∆

|f ′(z)|p
( log 1

1−|z|

ω(1− |z|)

)p

dA(z)

=
M(r)∣∣∆(a, r)

∣∣1− pα
2

∫
∆

|f ′(z)|p
(

log 1
1−|z|

ω(1− |z|)

)p

dA(z),

where λ is a positive constant and M(r) = 16λ
πr2 is a constant depending on r. Thus

the quantity (A) is less than or equal to a constant times the quantity (B).
From |∆(a, r)| ∼ (1 − |z|2)2 for all z ∈ ∆(a, r), it is obvious that (B) ∼ (C). By
1− |φa(z)|2 > 1− r2 and 1− |φa(z)| > 1− r for z ∈ ∆(a, r), we thus obtain

∫
∆(a,r)

|f ′(z)|p(1− |z|)pα−2

( log 1
1−|z|

ω(1− |z|)

)p

dA(z)

=

∫
∆(a,r)

|f ′(z)|p(1− |z|)pα−2

(
log 1

1−|z|

ω(1− |z|)

)p
(1− |φa(z)|2)q

(1− |φa(z)|2)q
dA(z)

6 1

(1− r2)q

∫
∆(a,r)

|f ′(z)|p(1− |z|)pα−2

( log 1
1−|z|

ω(1− |z|)

)p

(1− |φa(z)|2)qdA(z).

Hence, the quality (C) is less than or equal to a constant times (D). By 1−|φa(z)|2 6
2g(z, a) for all z, a ∈ ∆, we obtain that the quantity (D) is less than or equal to a
constant times (F).
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From the following inequality

∫
∆(a,r)

∣∣f ′(z)
∣∣p(1− |z|)pα−2

( log 1
1−|z|

ω(1− |z|)

)p(
g(z, a)

)p
dA(z)

=

∫
∆(a,r)

∣∣f ′(φa(w))
∣∣p(1− |φa(w)|)pα

(
log 1

1−|φa(w)|

ω(1− |φa(w)|)

)p(
log

1

|w|

)q
dA(w)

(1− |w|2)2

6 ∥f∥pBα
ω,log

∫
∆(a,r)

(
log

1

|w|

)q
dA(w)

(1− |w|2)2
,

where

C(q, 2) =

∫
∆(a,r)

(log
1

|w|
)q(1− |w|2)−2dσw < ∞,

then we deduce that the quantity (E) is less than or equal to a constant times (A).
Now, from the inequality 1− |z|2 6 2 log 1

|z| for every z ∈ ∆, putting q = 2 in (D),

we see the quantity (D) is less than or equal to (E). Finally, let

I(a) =

∫
∆(a,r)

∣∣f ′(z)
∣∣p(log 1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z)

=

(∫
∆ 1

4

+

∫
∆\∆ 1

4

)∣∣f ′(z)
∣∣p(log 1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z)

= I1(a) + I2(a),

where for z ∈ ∆ 1
4
= {z : |z| < 1

4}, |φ′
a(z)|2 = (1−|a|2)

|1−āz|4 6 1
(1−|z|)4 6 ( 43 )

4, then we

obtain

I1(a) =

∫
∆ 1

4

∣∣f ′(z)
∣∣p(log 1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z)

6 ∥f∥pBα
ω,log

∫
∆ 1

4

( log 1
|z|

(1− |z|)

)pα

|φ′
a(z)|2 dA(z)

6 ∥f∥pBα
ω,log

(4
3

)pα+4
∫
∆ 1

4

(
log

1

|z|

)pα

dA(z)

=
(4
3

)pα+4
C(p, α)∥f∥pBα

ω,log
,

where

C(p, α) =

∫
1
4

(
log

1

|z|

)pα

dA(z) < ∞.
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Now, for z ∈ ∆\∆ 1
4
, we know that log 1

|z| 6 4(1− |z|2) 6 8(1− |z|), then

I2(a) 6 8

∫
∆\∆ 1

4

∣∣f ′(z)
∣∣p(log 1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z)

6 8pα∥f∥pBα
ω,log

∫
∆\∆ 1

4

|φ′
a(z)|2dA(z) 6 λ1∥f∥pBα

ω

where λ1 is a positive constant. Hence, the quantity (E) is less than or equal to a
constant times (A). The proof is complete.

For Bα
ω,log,0, we have the corresponding result with Theorem 3.1.

Theorem 3.2. Let 0 < α < ∞ , 0 < r < 1 , 0 < p < ∞, 1 < q < ∞ and
ω : (0, 1] → [0,∞). Also, let f be an analytic function on ∆. Then the following
quantities are equivalent:

(A) ∥f∥pBα
ω,log,0

.

(B) For 0 < α < ∞ and 0 < p < ∞, we have

lim
|a|→1−

1∣∣∆(a, r)
∣∣1− pα

2

∫
∆(a,r)

|f ′(z)|p
( log 1

1−|z|

ω(1− |z|)

)p

dA(z) = 0.

(C) For 0 < α < ∞ and 0 < p < ∞,

lim
|a|→1−

∫
∆(a,r)

|f ′(z)|p
(
1− |z|

)pα−2( log 1
1−|z|

ω(1− |z|)

)p

dA(z) = 0.

(D) For 0 < α < ∞ , 0 < p < ∞ and 1 < q < ∞,

lim
|a|→1−

∫
∆

|f ′(z)|p
(
1− |z|

)pα−2
(

log 1
1−|z|

ω(1− |z|)

)p

(1− |φa(z)|)q dA(z) = 0.

(E) For 0 < α < ∞ and 0 < p < ∞,

lim
|a|→1−

∫
∆

|f ′(z)|p
(
log

1

|z|

)pα( log 1
1−|z|

ω(1− |z|)

)p

|φ′
a(z)|2 dA(z) = 0.

(F)

lim
|a|→1−

∫
∆

|f ′(z)|p
(
g(z, a)

)p(
1− |z|

)pα−2
(

log 1
1−|z|

ω(1− |z|)

)p

dA(z) = 0.

Proof. The proof it is very similarly to the Theorem 3.1.

Remark 3.1. It should be remarked that it is still open problems to extend
Theorems 3.1 and 3.2 to Clifford analysis. For some characterizations connecting
Bloch type spaces and Beov spaces in Clifford analysis, we refer to [1–5,7,8,24].

Remark 3.2. It is still an open problem to study Riemann-Stieltjes-type inte-
gral operators on the defined spaces in [6].
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[20] Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of Cn, Acta Math. Sci.
Ser. B 23(4)(2003), 561-566.
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[27] S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cn, Bull.

Belg. Math. Soc.- Simon Stevin 14(4)(2007), 621-628.
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