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Abstract. In this paper, we study modified multi-step iteration scheme with
errors for a finite family of uniformly equi-continuous and asymptotically quasi-

nonexpansive mappings in the framework of uniformly convex Banach spaces.
By employing the above said scheme we establish some strong convergence
theorems to converge to common fixed point for a finite family of uniformly
equi-continuous and asymptotically quasi-nonexpansive mappings. The results

presented in this paper extend and improve the corresponding results of Khan
and Fukhar-ud-din [6], Khan and Takahashi [7], Qin et al. [12], Shahzad and
Udomene [17], Xu and Noor [20] and some others.

1. Introduction and Preliminaries

Let E be a real Banach space, K be a nonempty subset of E. Throughout the
paper, N denotes the set of positive integers and F (T ) = {x : Tx = x} the set of
fixed points of a mapping T . A mapping T : K → K is said to be asymptotically
nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such
that

∥Tnx− Tny∥ 6 kn ∥x− y∥ ,
for all x, y ∈ K and n ∈ N.
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This class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [4] in 1972. They proved that, if K is a nonempty bounded closed convex
subset of a uniformly convex Banach space E, then every asymptotically nonex-
pansive self-mapping of K has a fixed point. Moreover, the set F (T ) of fixed points
of T is closed and convex. Since 1972, many authors have studied weak and strong
convergence problem of the iterative sequences (with errors) for asymptotically
nonexpansive mappings in Hilbert spaces and Banach spaces (see [4,7,13,14,20]
and references therein).

The mapping T : K → K is said to be asymptotically quasi-nonexpansive if
F (T ) ̸= ∅ and there exists a sequence {kn} in [1,∞) with limn→∞ kn = 1 such that

∥Tnx− p∥ 6 kn ∥x− p∥

for all x ∈ K, p ∈ F (T ) and n > 1.

The mapping T : K → K is said to be uniformly L-Lipschitzian if there exists
a positive constant L such that

∥Tnx− Tny∥ 6 L ∥x− y∥

for all x, y ∈ K and n > 1.

The mapping T : K → K is said to be uniformly Holder continuous [12] if there
exist positive constants L and α such that

∥Tnx− Tny∥ 6 L ∥x− y∥α

for all x, y ∈ K and n > 1.

The mapping T : K → K is said to be uniformly equi-continuous [12] if, for
any ϵ > 0, there exists δ > 0 such that

∥Tnx− Tny∥ 6 ϵ

whenever ∥x− y∥ < δ for all x, y ∈ K and n > 1 or, equivalently, T is uniformly
equi-continuous if and only if ∥Tnxn − Tnyn∥ → 0 whenever ∥xn − yn∥ → 0 as
n → ∞.

Remark 1.1. (1) It is easy to see that, if T is asymptotically nonexpansive,
then it is uniformly L-Lipschitzian.

(2) If T is uniformly L-Lipschitzian, then it is uniformly Holder continuous.

(3) If T is uniformly Holder continuous, then it is uniformly equi-continuous.

In recent years, Mann iterative scheme [10], Ishikawa iterative scheme [5] and
Noor iterative scheme [20] have been studied extensively by many authors. In 1995,
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Liu [8] introduced iterative schemes with errors as follows:

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTxn + un,(1.1)

where {αn} is a sequence in [0, 1] and {un} a sequence in E satisfying
∑∞

n=1 ∥un∥ <
∞ is known as Mann iterative scheme with errors.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = (1− αn)xn + αnTyn + un,

yn = (1− βn)xn + βnTxn + vn,(1.2)

where {αn} and {βn} are sequences in [0, 1], {un} and {vn} are sequences in E
satisfying

∑∞
n=1 ∥un∥ < ∞ and

∑∞
n=1 ∥vn∥ < ∞ is known as Ishikawa iterative

scheme with errors.

While it is clear that consideration of errors terms in iterative scheme is an
important part of the theory, it is also clear that the iterative scheme with errors
introduced by Liu [8], as in ( 1.1), ( 1.2) above, are not satisfactory. The errors can
occur in a random way. The conditions imposed on the error terms in ( 1.1), ( 1.2)
which say that they tend to zero as n tends to infinity are, therefore, unreasonable.
Xu [21] introduced a more satisfactory error term in the following iterative schemes.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = αnTxn + βnxn + γnun,(1.3)

where {αn}, {βn} and {γn} are sequences in [0, 1] such that αn + βn + γn = 1 and
{un} is a bounded sequence in K, is known as Mann iterative scheme with errors.
This scheme reduces to Mann iterative scheme if γn = 0.

The sequence {xn} defined by

x1 = x ∈ K,

xn+1 = αnTyn + βnxn + γnun,

yn = α′
nTxn + β′

nxn + γ′
nvn,(1.4)

where {αn}, {βn}, {γn}, {α′
n}, {β′

n} and {γ′
n} are sequences in [0, 1] such that

αn + βn + γn = α′
n + β′

n + γ′
n = 1, {un} and {vn} are bounded sequences in K,

is known as Ishikawa iterative scheme with errors. This scheme becomes Ishikawa
iterative scheme if γn = γ′

n = 0. Chidume and Moore [2] and Takahashi and
Tamura [19] studied the above schemes, respectively.
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The sequence {xn} defined by

zn = α′′
nTxn + β′′

nxn + γ′′
nwn,

yn = α′
nTzn + β′

nxn + γ′
nvn,

xn+1 = αnTyn + βnxn + γnun,(1.5)

where {αn}, {βn}, {γn}, {α′
n}, {β′

n}, {γ′
n}, {α′′

n}, {β′′
n} and {γ′′

n} are sequences in
[0, 1] such that αn + βn + γn = α′

n + β′
n + γ′

n = α′′
n + β′′

n + γ′′
n = 1, {un}, {vn} and

{wn} are bounded sequences in K, is known as Noor iterative scheme with errors.
This scheme reduces to Noor iterative schemes if γn = γ′

n = γ′′
n = 0.

Many authors starting from Das and Debata [3] and including Takahashi and
Tamura [19], Khan and Takahashi [7] and Shahzad and Udomene [17] have studied
the two mappings case of iterative schemes for different types of mappings. We now
give and study an iterative scheme with errors for a finite family of equi-continuous
and asymptotically quasi-nonexpansive mappings. It worth mentioning that our
scheme can be viewed as an extension of all above schemes.

In this paper, we generalize scheme (1.5) to a finite family of mappings with
errors as follows:

xn+1 = x(N)
n = α(N)

n Tn
Nx(N−1)

n + β(N)
n xn + γ(N)

n u(N)
n

x(N−1)
n = α(N−1)

n Tn
N−1x

(N−2)
n + β(N−1)

n xn + γ(N−1)
n u(N−1)

n

. . . = . . .

. . . = . . .(1.6)

x(3)
n = α(3)

n Tn
3 x

(2)
n + β(3)

n xn + γ(3)
n u(3)

n

x(2)
n = α(2)

n Tn
2 x

(1)
n + β(2)

n xn + γ(2)
n u(2)

n

x(1)
n = α(1)

n Tn
1 xn + β(1)

n xn + γ(1)
n u(1)

n

where {u(1)
n }, {u(2)

n }, . . . , {u(N)
n } are bounded sequences in K and {α(i)

n }, {β(i)
n },

{γ(i)
n } are appropriate sequences in [0, 1] such that α

(i)
n + β

(i)
n + γ

(i)
n = 1 for each

i ∈ {1, 2, . . . , N}.

The purpose of this paper is to establish some strong convergence theorems
of the above said iteration scheme to converge to common fixed point for a finite
family of equi-continuous and asymptotically quasi-nonexpansive mappings in the
setting of uniformly convex Banach spaces. Our results improve and extend the
corresponding results of Khan and Fukhar-ud-din [6], Khan and Takahashi [7], Qin
et al. [12], Rhoades [13], Schu [14], Shahzad and Udomene [17], Xu and Noor [20]
and some others.

In the sequel we need the following lemmas and definitions to prove our main
results:
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Lemma 1.1. (See [14]) Let E be a uniformly convex Banach space and 0 <
α 6 tn 6 β < 1 for all n ∈ N. Suppose further that {xn} and {yn} are sequences
of E such that

lim supn→∞ ∥xn∥ 6 a, lim supn→∞ ∥yn∥ 6 a

and limn→∞ ∥tnxn + (1− tn)yn∥ = a hold for some a > 0, then

lim
n→∞

∥xn − yn∥ = 0

.

Lemma 1.2. (See [18]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of
nonnegative numbers satisfying the inequality

αn+1 6 (1 + βn)αn + rn, ∀n > 1.

If
∑∞

n=1 βn < ∞ and
∑∞

n=1 rn < ∞, then limn→∞ αn exists. In particular,
{αn}∞n=1 has a subsequence which converges to zero, then limn→∞ αn = 0.

Recall that a mapping T : K → K where K is a subset of E, is said to satisfy
Condition (A) [16] if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that ∥x− Tx∥ > f(d(x, F (T ))) for all
x ∈ K where d(x, F (T )) = inf{∥x− p∥ : p ∈ F (T )}.

Senter and Dotson [16] approximated fixed points of a nonexpansive mapping
T by Mann iterates. Later on, Maiti and Ghosh [9] and Tan and Xu [18] studied
the approximation of fixed points of a nonexpansive mapping T by Ishikawa iter-
ates under the same Condition (A) which is weaker than the requirement that T is
demicompact. We modify this condition for N mappings T1, T2, . . . , TN : K → K
as follows.

A finite family {T1, T2, . . . , TN} of N self mappings of K where K is a sub-
set of E, is said to satisfy Condition (B) if there exists a nondecreasing func-
tion f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that
a1 ∥x− T1x∥ + a2 ∥x− T2x∥ + · · · + aN ∥x− TNx∥ > f(d(x, F )) for all x ∈ K,
where d(x, F ) = inf{∥x− p∥ : p ∈ F = ∩N

i=1F (Ti)} and a1, a2, . . . , aN are N non-
negative real numbers such that a1 + a2 + · · ·+ aN = 1.

Remark 1.2. Condition (B) reduces to condition (A) when T1 = T2 = · · · =
TN = T .

2. Main Results

In this section, we shall prove the strong convergence theorems of the itera-
tion scheme ( 1.6) to converge to common fixed point for a finite family of equi-
continuous and asymptotically quasi-nonexpansive mappings in the framework of
uniformly convex Banach spaces. We first prove the following lemmas.
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Lemma 2.1. Let E be a normed space and K be a nonempty convex subset of E.
Let T1, T2, . . . , TN : K → K be N asymptotically quasi-nonexpansive mappings with

sequence {k(i)n } for 1 6 i 6 N such that
∑∞

n=1(kn − 1) < ∞ where kn = max{k(i)n :
i = 1, 2, . . . , N}. Let {xn} be the sequence as defined in (1.6) with the restriction∑∞

n=1 γ
(i)
n < ∞, 1 6 i 6 N . If F = ∩N

i=1F (Ti) ̸= ∅, then limn→∞ ∥xn − p∥ exists
for all p ∈ F .

Proof. Let p ∈ F . Since {u(1)
n }, {u(2)

n }, . . . , {u(N)
n } are bounded sequences in

K. So we can set

M = max{sup
n>1

∥∥∥u(i)
n − p

∥∥∥ : i = 1, 2, . . . , N}.

It follows from ( 1.6), that

∥∥∥x(1)
n − p

∥∥∥ =
∥∥∥α(1)

n Tn
1 xn + β(1)

n xn + γ(1)
n u(1)

n − p
∥∥∥

6 α(1)
n ∥Tn

1 xn − p∥+ β(1)
n ∥xn − p∥+ γ(1)

n

∥∥∥u(1)
n − p

∥∥∥
6 α(1)

n kn ∥xn − p∥+ β(1)
n ∥xn − p∥+ γ(1)

n

∥∥∥u(1)
n − p

∥∥∥
6 [α(1)

n + β(1)
n ]kn ∥xn − p∥+ γ(1)

n

∥∥∥u(1)
n − p

∥∥∥
= [1− γ(1)

n ]kn ∥xn − p∥+ γ(1)
n

∥∥∥u(1)
n − p

∥∥∥
6 kn ∥xn − p∥+ γ(1)

n M

6 kn ∥xn − p∥+ d(1)n ,(2.1)

where d
(1)
n = γ

(1)
n M . Since

∑∞
n=1 γ

(1)
n < ∞, we can see that

∑∞
n=1 d

(1)
n < ∞. It

follows from (2.1) that

∥∥∥x(2)
n − p

∥∥∥ 6 α(2)
n

∥∥∥Tn
2 x

(1)
n − p

∥∥∥+ β(2)
n ∥xn − p∥+ γ(2)

n

∥∥∥u(2)
n − p

∥∥∥
6 α(2)

n kn

∥∥∥x(1)
n − p

∥∥∥+ β(2)
n ∥xn − p∥+ γ(2)

n

∥∥∥u(2)
n − p

∥∥∥
6 α(2)

n kn[kn ∥xn − p∥+ d(1)n ] + β(2)
n ∥xn − p∥+ γ(2)

n

∥∥∥u(2)
n − p

∥∥∥
6 [α(2)

n + β(2)
n ]k2n ∥xn − p∥+ α(2)

n knd
(1)
n + γ(2)

n

∥∥∥u(2)
n − p

∥∥∥
= [1− γ(2)

n ]k2n ∥xn − p∥+ α(2)
n knd

(1)
n + γ(2)

n M

6 k2n ∥xn − p∥+ knd
(1)
n + γ(2)

n M

6 k2n ∥xn − p∥+ d(2)n ,(2.2)
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where d
(2)
n = knd

(1)
n + γ

(2)
n M . Since

∑∞
n=1 γ

(2)
n < ∞ and

∑∞
n=1 d

(1)
n < ∞, we can

see that
∑∞

n=1 d
(2)
n < ∞. It follows from (2.2), that∥∥∥x(3)

n − p
∥∥∥ 6 α(3)

n

∥∥∥Tn
3 x

(2)
n − p

∥∥∥+ β(3)
n ∥xn − p∥+ γ(3)

n

∥∥∥u(3)
n − p

∥∥∥
6 α(3)

n kn

∥∥∥x(2)
n − p

∥∥∥+ β(3)
n ∥xn − p∥+ γ(3)

n

∥∥∥u(3)
n − p

∥∥∥
6 α(3)

n kn[k
2
n ∥xn − p∥+ d(2)n ] + β(3)

n ∥xn − p∥+ γ(3)
n

∥∥∥u(3)
n − p

∥∥∥
6 [α(3)

n + β(3)
n ]k3n ∥xn − p∥+ α(3)

n knd
(2)
n + γ(3)

n

∥∥∥u(3)
n − p

∥∥∥
= [1− γ(3)

n ]k3n ∥xn − p∥+ α(3)
n knd

(2)
n + γ(3)

n M

6 k3n ∥xn − p∥+ knd
(2)
n + γ(3)

n M

6 k3n ∥xn − p∥+ d(3)n ,(2.3)

where d
(3)
n = knd

(2)
n + γ

(3)
n M . Since

∑∞
n=1 γ

(3)
n < ∞ and

∑∞
n=1 d

(2)
n < ∞, we can

see that
∑∞

n=1 d
(3)
n < ∞. Continuing the above process, we get that

∥xn+1 − p∥ =
∥∥∥x(N)

n − p
∥∥∥

6 kNn ∥xn − p∥+ d(N)
n

= [1 + (kNn − 1)] ∥xn − p∥+ d(N)
n ,(2.4)

since
∑∞

n=1(kn−1) < ∞ is equivalent to
∑∞

n=1(k
N
n −1) < ∞ and

∑∞
n=1 d

(N)
n < ∞.

Thus from Lemma 1.2, we know that limn→∞ ∥xn − p∥ exists. This completes the
proof. �

Lemma 2.2. Let E be a uniformly convex Banach space and K be a nonempty
convex subset of E. Let T1, T2, . . . , TN : K → K be N uniformly equi-continuous

and asymptotically quasi-nonexpansive mappings with sequence {k(i)n } for 1 6 i 6 N

such that
∑∞

n=1(kn − 1) < ∞ where kn = max{k(i)n : i = 1, 2, . . . , N}. Let {xn}
be the sequence as defined in (1.6) and for some δ1, δ2 ∈ (0, 1) with the following
restrictions:

(i) 0 < δ1 6 α
(i)
n 6 δ2 < 1, ∀n > n0 for some n0 ∈ N,

(ii)
∑∞

n=1 γ
(i)
n < ∞, 1 6 i 6 N .

If F = ∩N
i=1F (Ti) ̸= ∅, then limn→∞ ∥xn − Tixn∥ = 0.

Proof. For any p ∈ F , it follows from Lemma 2.1 that limn→∞ ∥xn − p∥
exists. Let limn→∞ ∥xn − p∥ = a for some a > 0. We note that∥∥∥x(N−1)

n − p
∥∥∥ 6 kN−1

n ∥xn − p∥+ d(N−1)
n , ∀n > 1,
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where d
(N−1)
n = knd

(N−2)
n + γ

(N−1)
n M such that

∑∞
n=1 d

(N−1)
n < ∞. It follows that

lim sup
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ 6 lim sup
n→∞

[kN−1
n ∥xn − p∥+ d(N−1)

n ] = lim
n→∞

∥xn − p∥ = a

and so

lim sup
n→∞

∥∥∥Tn
Nx(N−1)

n − p
∥∥∥ 6 lim sup

n→∞
kn

∥∥∥x(N−1)
n − p

∥∥∥ = lim sup
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ 6 a.

Next, consider∥∥∥Tn
Nx(N−1)

n − p+ γ(N)
n (u(N)

n − xn)
∥∥∥ 6

∥∥∥Tn
Nx(N−1)

n − p
∥∥∥+ γ(N)

n

∥∥∥u(N)
n − xn

∥∥∥ .
Thus

lim sup
n→∞

∥∥∥Tn
Nx(N−1)

n − p+ γ(N)
n (u(N)

n − xn)
∥∥∥ 6 a.(2.5)

Also ∥∥∥xn − p+ γ(N)
n (u(N)

n − xn)
∥∥∥ 6 ∥xn − p∥+ γ(N)

n

∥∥∥u(N)
n − xn

∥∥∥
gives that

lim sup
n→∞

∥∥∥xn − p+ γ(N)
n (u(N)

n − xn)
∥∥∥ 6 a,(2.6)

and we observe that

x(N)
n −p = α(N)

n (Tn
Nx(N−1)

n −p+γ(N)
n (u(N)

n −xn))+(1−α(N)
n )(xn−p+γ(N)

n (u(N)
n −xn)).

Therefore

a = lim
n→∞

∥x(N)
n − p∥

= lim
n→∞

∥α(N)
n (Tn

Nx(N−1)
n − p+ γ(N)

n (u(N)
n − xn))

+ (1− α(N)
n )(xn − p+ γ(N)

n (u(N)
n − xn))∥.

By (2.5), (2.6) and Lemma 1.1, we have

lim
n→∞

∥∥∥Tn
Nx(N−1)

n − xn

∥∥∥ = 0.(2.7)

Now, we shall show that limn→∞

∥∥∥Tn
N−1x

(N−2)
n − xn

∥∥∥ = 0. For each n > 1, we

have

∥xn − p∥ 6
∥∥∥Tn

Nx(N−1)
n − xn

∥∥∥+
∥∥∥Tn

Nx(N−1)
n − p

∥∥∥
6

∥∥∥Tn
Nx(N−1)

n − xn

∥∥∥+ kn

∥∥∥x(N−1)
n − p

∥∥∥ .
Using ( 2.7), we have

a = lim
n→∞

∥xn − p∥ 6 lim inf
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ .
It follows that

a 6 lim inf
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ 6 lim sup
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ 6 a.
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This implies that

lim
n→∞

∥∥∥x(N−1)
n − p

∥∥∥ = a.

On the other hand, we have∥∥∥x(N−2)
n − p

∥∥∥ 6 kN−2
n ∥xn − p∥+ d(N−2)

n , ∀n > 1,

where
∑∞

n=1 d
(N−2)
n < ∞. Therefore

lim sup
n→∞

∥∥∥x(N−2)
n − p

∥∥∥ 6 lim sup
n→∞

(kN−2
n ∥xn − p∥+ d(N−2)

n ) = a,

and hence

lim sup
n→∞

∥∥∥Tn
N−1x

(N−2)
n − p

∥∥∥ 6 lim sup
n→∞

kn

∥∥∥x(N−2)
n − p

∥∥∥ 6 a.

Next, consider∥∥∥Tn
N−1x

(N−2)
n − p+ γ(N−1)

n (u(N−1)
n − xn)

∥∥∥ 6
∥∥∥Tn

N−1x
(N−2)
n − p

∥∥∥+γ(N−1)
n

∥∥∥u(N−1)
n − xn

∥∥∥ .
Thus

lim sup
n→∞

∥∥∥Tn
N−1x

(N−2)
n − p+ γ(N−1)

n (u(N−1)
n − xn)

∥∥∥ 6 a.(2.8)

Also ∥∥∥xn − p+ γ(N−1)
n (u(N−1)

n − xn)
∥∥∥ 6 ∥xn − p∥+ γ(N−1)

n

∥∥∥u(N−1)
n − xn

∥∥∥
gives that

lim sup
n→∞

∥∥∥xn − p+ γ(N−1)
n (u(N−1)

n − xn)
∥∥∥ 6 a,(2.9)

and we observe that

x(N−1)
n − p = α(N−1)

n (Tn
N−1x

(N−2)
n − p+ γ(N−1)

n (u(N−1)
n − xn))

+(1− α(N−1)
n )(xn − p+ γ(N−1)

n (u(N−1)
n − xn)),

and hence

a = lim
n→∞

∥x(N−1)
n − p∥

= lim
n→∞

∥α(N−1)
n (Tn

N−1x
(N−2)
n − p+ γ(N−1)

n (u(N−1)
n − xn))

+ (1− α(N−1)
n )(xn − p+ γ(N−1)

n (u(N−1)
n − xn))∥.

By (2.8), (2.9) and Lemma 1.1, we have

lim
n→∞

∥∥∥Tn
N−1x

(N−2)
n − xn

∥∥∥ = 0.(2.10)

Similarly, using the same argument as in the proof above, we have

lim
n→∞

∥∥∥Tn
N−2x

(N−3)
n − xn

∥∥∥ = 0.(2.11)
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Continuing the similar process, we have

lim
n→∞

∥∥∥Tn
N−ix

(N−i−1)
n − xn

∥∥∥ = 0, 0 6 i 6 (N − 2).(2.12)

Now ∥∥∥Tn
1 xn − p+ γ(1)

n (u(1)
n − xn)

∥∥∥ 6 ∥Tn
1 xn − p∥+ γ(1)

n

∥∥∥u(1)
n − xn

∥∥∥ .
Thus

lim sup
n→∞

∥∥∥Tn
1 xn − p+ γ(1)

n (u(1)
n − xn)

∥∥∥ 6 a.(2.13)

Also ∥∥∥xn − p+ γ(1)
n (u(1)

n − xn)
∥∥∥ 6 ∥xn − p∥+ γ(1)

n

∥∥∥u(1)
n − xn

∥∥∥
gives that

lim sup
n→∞

∥∥∥xn − p+ γ(1)
n (u(1)

n − xn)
∥∥∥ 6 a,(2.14)

and hence

a = lim
n→∞

∥x(1)
n − p∥

= lim
n→∞

∥α(1)
n (Tn

1 xn − p+ γ(1)
n (u(1)

n − xn))

+ (1− α(1)
n )(xn − p+ γ(1)

n (u(1)
n − xn))∥.

By (2.13), (2.14) and Lemma 1.1, we have

lim
n→∞

∥Tn
1 xn − xn∥ = 0.(2.15)

On the other hand, we also have∥∥∥x(N−1)
n − xn

∥∥∥ =
∥∥∥α(N−1)

n Tn
N−1x

(N−2)
n + β(N−1)

n xn + γ(N−1)
n u(N−1)

n − xn

∥∥∥
=

∥∥∥α(N−1)
n (Tn

N−1x
(N−2)
n − xn) + γ(N−1)

n (u(N−1)
n − xn)

∥∥∥
6 α(N−1)

n

∥∥∥Tn
N−1x

(N−2)
n − xn

∥∥∥+ γ(N−1)
n

∥∥∥u(N−1)
n − xn

∥∥∥ .
Therefore, it follows from (2.10) and condition

∑∞
n=1 γ

(N−1)
n < ∞ that∥∥∥x(N−1)

n − xn

∥∥∥ → 0, as n → ∞.

It follows from the uniform equi-continuity of TN that∥∥∥Tn
Nx(N−1)

n − Tn
Nxn

∥∥∥ → 0, as n → ∞.(2.16)

Now observe that

∥xn − Tn
Nxn∥ 6

∥∥∥Tn
Nxn − Tn

Nx(N−1)
n

∥∥∥+
∥∥∥Tn

Nx(N−1)
n − xn

∥∥∥ .(2.17)

From (2.7), (2.16) and (2.17), we can obtain

lim
n→∞

∥Tn
Nxn − xn∥ = 0.(2.18)
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Now, we have

∥xn+1 − xn∥ =
∥∥∥α(N)

n Tn
Nx(N−1)

n + (1− α(N)
n − γ(N)

n )xn + γ(N)
n u(N)

n − xn

∥∥∥
6 α(N)

n

∥∥∥Tn
Nx(N−1)

n − xn

∥∥∥+ γ(N)
n

∥∥∥u(N)
n − xn

∥∥∥(2.19)

→ 0 as n → ∞.

It follows from the uniform equi-continuity of TN that
∥∥Tn+1

N xn+1 − Tn+1
N xn

∥∥
→ 0 as n → ∞. Again it follows from ( 2.17) that

lim
n→∞

∥∥Tn+1
N xn − TNxn

∥∥ = 0.

Therefore we have

∥TNxn − xn∥ 6 ∥xn+1 − xn∥+
∥∥xn+1 − Tn+1

N xn+1

∥∥
+
∥∥Tn+1

N xn+1 − Tn+1
N xn

∥∥+
∥∥Tn+1

N xn − TNxn

∥∥
(2.20)

It follows from (2.18), (2.19) and above inequality that

lim
n→∞

∥TNxn − xn∥ = 0.(2.21)

Similarly, by using the same argument as in the proof above, we have

lim
n→∞

∥TN−1xn − xn∥ = 0.(2.22)

Continuing similar process, we have

lim
n→∞

∥TN−ixn − xn∥ = 0, 0 6 i 6 (N − 2).(2.23)

Now

∥T1xn − xn∥ 6 ∥xn+1 − xn∥+
∥∥xn+1 − Tn+1

1 xn+1

∥∥
+
∥∥Tn+1

1 xn+1 − Tn+1
1 xn

∥∥+
∥∥Tn+1

1 xn − T1xn

∥∥(2.24)

Since T1 is uniformly equi-continuous, it follows from (2.15) and (2.19) that∥∥Tn+1
1 xn − T1xn

∥∥ → 0 and
∥∥Tn+1

1 xn+1 − Tn+1
1 xn

∥∥ → 0 as n → ∞.

Therefore from (2.15), (2.19), (2.24) and above that

lim
n→∞

∥T1xn − xn∥ = 0,(2.25)

and hence

lim
n→∞

∥TN−ixn − xn∥ = 0, 0 6 i 6 (N − 1).(2.26)

This completes the proof. �

Theorem 2.1. Let E be a uniformly convex Banach space and K be a nonempty
convex subset of E. Let T1, T2, . . . , TN : K → K be N uniformly equi-continuous

and asymptotically quasi-nonexpansive mappings with sequences {k(i)n } for 1 6 i 6
N such that

∑∞
n=1(kn − 1) < ∞ where kn = max{k(i)n : i = 1, 2, . . . , N}. Let {xn}

be the sequence as defined in (1.6) and for some δ1, δ2 ∈ (0, 1) with the following
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restrictions:

(i) 0 < δ1 6 α
(i)
n 6 δ2 < 1, ∀n > n0 for some n0 ∈ N,

(ii)
∑∞

n=1 γ
(i)
n < ∞, 1 6 i 6 N .

If F = ∩N
i=1F (Ti) ̸= ∅. Suppose {T1, T2, . . . , TN} satisfies condition (B). Then

{xn} converges strongly to a common fixed point of the mappings {T1, T2, . . . , TN}.

Proof. By Lemma 2.1, we know that limn→∞ ∥xn − p∥ exists for all p ∈ F .
Let limn→∞ ∥xn − p∥ = a for some a > 0. Without loss of generality, if a = 0,
there is nothing to prove. Assume that a > 0. As proved in Lemma 2.1, we have

∥xn+1 − p∥ =
∥∥∥x(N)

n − p
∥∥∥ 6 kNn ∥xn − p∥+ d(N)

n , ∀n > 1,

where d
(N)
n = knd

(N−1)
n + γ

(N)
n M such that

∑∞
n=1 d

(N)
n < ∞. This gives that

d(xn+1, F ) 6 [1 + (kNn − 1)]d(xn, F ) + d(N)
n , ∀n > 1,

since
∑∞

n=1(kn−1) < ∞ is equivalent to
∑∞

n=1(k
N
n −1) < ∞ and since

∑∞
n=1 d

(N)
n <

∞. From Lemma 1.2, we know that limn→∞ d(xn, F ) exists. Also by Lemma 2.2,
limn→∞ ∥xn − Tixn∥ = 0 for all i = 1, 2, . . . , N . Since {T1, T2, . . . , TN} satisfies
Condition (B), we conclude that limn→∞ d(xn, F ) = 0.

Next we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn, F ) = 0,
given any ε > 0, there exists a natural number n0 such that d(xn, F ) < ε

3 for all
n > n0. So, we can find p∗ ∈ F such that ∥xn0 − p∗∥ < ε

2 . For all n > n0 and
m > 1, we have

∥xn+m − xn∥ 6 ∥xn+m − p∗∥+ ∥xn − p∗∥
6 ∥xn0 − p∗∥+ ∥xn0 − p∗∥

<
ε

2
+

ε

2
= ε.

This shows that {xn} is a Cauchy sequence and so is convergent since E is complete.
Let limn→∞ xn = q∗. Then q∗ ∈ K. It remains to show that q∗ ∈ F . Let ε1 > 0
be given. Then there exists a natural number n1 such that ∥xn − q∗∥ < ε1

4 for all
n > n1. Since limn→∞ d(xn, F ) = 0, there exists a natural number n2 > n1 such
that for all n > n2 we have d(xn, F ) < ε1

5 and in particular we have d(xn2 , F ) 6 ε1
5 .

Therefore, there exists w∗ ∈ F such that ∥xn2 − w∗∥ < ε1
4 . For any i ∈ I and

n > n2, we have

∥Tiq
∗ − q∗∥ 6 ∥Tiq

∗ − w∗∥+ ∥w∗ − q∗∥
6 2 ∥q∗ − w∗∥
6 2[∥q∗ − xn2∥+ ∥xn2 − w∗∥]

< 2[
ε1
4

+
ε1
4
]

< ε1.
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This implies that Tiq
∗ = q∗. Hence q∗ ∈ F (Ti) for all i ∈ I and so q∗ ∈ F =

∩N
i=1F (Ti). Thus {xn} converges strongly to a common fixed point of the mappings

{T1, T2, . . . , TN}. This completes the proof. �
For our next result, we shall need the following definition:

Definition 2.1. Let K be a nonempty closed subset of a Banach space E. A
mapping T : K → K is said to be semi-compact, if for any bounded sequence {xn}
in K such that limn→∞ ∥xn − Txn∥ = 0, there exists a subsequence {xnj} ⊂ {xn}
such that limn→∞ xnj = x ∈ K.

Theorem 2.2. Let E be a uniformly convex Banach space and K be a nonempty
convex subset of E. Let T1, T2, . . . , TN : K → K be N uniformly equi-continuous

and asymptotically quasi-nonexpansive mappings with sequence {k(i)n } for 1 6 i 6 N

such that
∑∞

n=1(kn − 1) < ∞ where kn = max{k(i)n : i = 1, 2, . . . , N}. Let {xn}
be the sequence as defined in ( 1.6) and for some δ1, δ2 ∈ (0, 1) with the following
restrictions:

(i) 0 < δ1 6 α
(i)
n 6 δ2 < 1, ∀n > n0 for some n0 ∈ N,

(ii)
∑∞

n=1 γ
(i)
n < ∞, 1 6 i 6 N .

If F = ∩N
i=1F (Ti) ̸= ∅. Suppose one of the mappings in {T1, T2, . . . , TN}

is semi-compact. Then {xn} converges strongly to a common fixed point of the
mappings {T1, T2, . . . , TN}.

Proof. Suppose Ti0 is semi-compact for some i0 ∈ {1, 2, . . . , N}. By Lemma
2.2, we have

lim
n→∞

∥xn − Ti0xn∥ = 0.

So there exists a subsequence {xnj} of {xn} such that limj→∞ xnj = x∗ ∈ K. Now

Lemma 2.2 guarantees that limnj→∞
∥∥xnj − Tixnj

∥∥ = 0 for all i = 1, 2, . . . , N and

so ∥x∗ − Tix
∗∥ = 0 for all i = 1, 2, . . . , N . This implies that x∗ ∈ F = ∩N

i=1F (Ti).
Since limn→∞ d(xn, F ) = 0, it follows, as in the proof of Theorem 2.1, that {xn}
converges strongly to a common fixed point of the mappings {T1, T2, . . . , TN}. This
completes the proof. �

Remark 2.1. Theorem 2.1 extends Theorem 2 and 3 of Rhoades [13], Theorem
1.5 of Schu [14], Khan and Fukhar-ud-din [6], Khan and Takahashi [7] to the case
of finite family of more general class of nonexpansive and asymptotically nonex-
pansive mappings and multi-step iteration scheme with errors considered here and
no boundedness condition imposed on K.

Remark 2.2. Theorem 2.1 also extends the corresponding results of Xu and
Noor [20] to the case of finite family of more general class of asymptotically nonex-
pansive mappings and multi-step iteration scheme with errors considered here and
no boundedness condition imposed on K.
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Remark 2.3. Theorem 2.1 also extends the corresponding result of Shahzad
and Udomene [17] to the case of finite family of uniformly equi-continuous asymp-
totically quasi-nonexpansive mappings and multi-step iteration scheme with errors
considered in this paper.

Remark 2.4. Theorem 2.1 also extends the corresponding result of Cho et al.
[1] to the case of finite family of more general class of asymptotically nonexpansive
mappings and multi-step iteration scheme with errors considered in this paper.

Remark 2.5. Theorem 2.2 extends Theorem 2 of Osilike and Aniagbosor [11]
and Theorem 2.2 of Schu [15] to the case of finite family of more general class of
asymptotically nonexpansive mappings and multi-step iteration scheme with errors
considered here and no boundedness condition imposed on K.

Remark 2.6. Theorem 2.1 also extends Theorem 2.3 of Qin et al. [12] to the
case of finite family of mappings and multi-step iteration scheme considered in this
paper.

Example 2.1. Let E = [−π, π] and let T be defined by

Tx = x cosx

for each x ∈ E. Clearly F (T ) = {0}. T is a quasi-nonexpansive mapping since if
x ∈ E and z = 0, then

|Tx− z| = |Tx− 0| = |x||cos x| 6 |x| = |x− z|,
and hence T is asymptotically quasi-nonexpansive mapping with constant sequence
{1}. But it is not a nonexpansive mapping and hence asymptotically nonexpansive
mapping. In fact, if we take x = π

2 and y = π, then

|Tx− Ty| = |π
2
cos

π

2
− π cos π| = π,

whereas

|x− y| = |π
2
− π| = π

2
.

Example 2.2. Let E = R and let T be defined by

T (x) =

{
x
2 sin 1

x , if x ̸= 0,
0, if x = 0.

If x ̸= 0 and Tx = x, then x = x
2 sin 1

x . Thus 2 = sin 1
x which is impossible. T

is a quasi-nonexpansive mapping since if x ∈ E and z = 0, then

|Tx− z| = |Tx− 0| = |x
2
||sin 1

x
| 6 |x|

2
< |x| = |x− z|,

and hence T is asymptotically quasi-nonexpansive mapping with constant sequence
{1}. But it is not a nonexpansive mapping and hence asymptotically nonexpansive
mapping. In fact, if we take x = 2

9π and y = 3
19π , then

|Tx− Ty| 6 |x− y|
is not satisfied.
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3. Conclusion

The class of mappings considered in this paper is more general than the class
of nonexpansive, quasi-nonexpansive and asymptotically nonexpansive mappings.
Hence the results presented in this paper are good improvement and generalization
of many known results from the literature (see e.g. [1,6,7,11–15,17,20]) and many
others.
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