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Abstract. In a former paper, by using the ideas of J. Schmidt and G. Pataki,
we have introduced two kinds of Galois–type connections.

Now, we shall show that these are very particular cases of our upper and
mild continuities of pairs of relations on one relator space to another.

Introduction

In [ 45 ] , by using the ideas of Schmidt [ 27 ] and Pataki [ 22 ] , we have
introduced the following two kinds of Galois–type connections.

A function f of one partially ordered set X to another Y is called

(a) increasingly g–normal, for some function g of Y to X , if for any x ∈ X
and y ∈ Y we have

f (x) 6 y ⇐⇒ x 6 g (y ) ;

(b) increasingly φ–regular, for some function φ of X to itself, if for any
x1 , x2 ∈ X we have

x1 6 φ (x2 ) ⇐⇒ f (x1 ) 6 f (x2 ) .
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While, in [ 37 ] , by using the ideas of [ 26 ] and [ 30 ] , we have introduced the
following two kinds of continuities of pairs of relations between relator (generalized
uniform) spaces.

A pair of relations (F , G ) on one relator space (X, Z )(R) to another
(Y , W )(S) is called

(A) upper � –continuous, for some operation � on relators, if(
S � ◦ F

)� ⊂
(
G ◦ R�)�

;

(B) mildly � –continuous, for some operation � on relators, if(
G−1 ◦ S � ◦ F

)� ⊂ R� .

Now, we shall show that properties (a) and (b) are very particular cases of (A)
and (B) . Moreover, we shall show that two basic theorems on the relationships
between (a) and (b) can be naturally extended to those on the relationships
between (A) and (B).

Property (b) is actually a particular case of (a). However, it is frequently more
important than the latter one. In particular, it allows of a unified derivation of the
various closure operations on relators. Therefore, the study of (A) and (B) has
to be preceded by that of (b) .

1. A few basic facts on relations and relators

A subset F of a product set X×Y is called a relation on X to Y . If in
particular F ⊂ X 2, then we may simply say that F is a relation on X . Thus,
∆X = {(x, x ) : x ∈ X } is a relation on X .

If F is a relation on X to Y , then for any x ∈ X the set F (x) = { y ∈ Y :
(x, y ) ∈ F } is called the image of x under F . And the set DF = {x ∈ X :
F (x) ̸= ∅ } is called the domain of F .

In particular, a relation F on X to Y is called a function if for each x ∈ DF

there exists y ∈ Y such that F (x) = {y} . In this case, by identifying singletons
with their elements, we may usually write F (x) = y in place of F (x) = {y} .

More generally, if F is a relation on X to Y , then for any A ⊂ X the
set F [A ] =

∪
x∈A F (x) is called the image of A under F . And the set

RF = F [DF ] is called the range of F .

If F is a relation on X to Y such that DF = X , then we say that F is a
relation of X to Y . While, if F is a relation on X to Y such that RF = Y ,
then we say that F is a relation on X onto Y .

If F is a relation on X to Y , then the values F (x) , where x ∈ X, uniquely
determine F since we have F =

∪
x∈X {x}×F (x) . Therefore, the inverse F −1

can be defined such that F −1 (y ) =
{
x ∈ X : y ∈ F (x)

}
for all y ∈ Y .

Moreover, if in addition G is a relation on Y to Z , then the composition
G ◦ F can be defined such that (G ◦ F )(x) = G [F (x) ] for all x ∈ X . Thus,
(G ◦ F )[A ] = G [F [A ] ] for all A ⊂ X , and (G ◦ F )−1 = F −1 ◦ G−1 .
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A relation R on X is called reflexive, symmetric, and transitive if ∆X ⊂ R ,
R−1 ⊂ R , and R◦R ⊂ R , respectively. Moreover, a symmetric (resp. transitive)
reflexive relation R on X , is called a tolerance (resp. preorder) relation on X.

Furthermore, a relation R on X is called antisymmetric and directive if
R ∩ R−1 ⊂ ∆X and X 2 ⊂ R−1 ◦ R , respectively. Moreover, a directive (resp.
antisymmetric) preorder R on X is called a direction (resp. partial order) on X.

Note that if d is a metric on X and r > 0 , then the surrounding Bd
r =

{ (x, y ) : d (x, y ) < r } is, in general, only a tolerance on X. While, if A ⊂ X ,
then the Pervin relation RA = A2 ∪ Ac×X is, in general, only a preorder on X.

If R is a relation on X , then we write Rn = R ◦ Rn−1 for all n ∈ N by
agreeing that R 0 = ∆X . Moreover, we also write R∞ =

∪∞
n=0 R

n . Thus, R∞

is the smallest preorder on X such that R ⊂ R∞ . Therefore, R∞∞ = R∞ .

A family R of relations on one nonvoid set X to another Y is called a relator
on X to Y . Moreover, the ordered pair (X, Y )(R) =

(
(X, Y ) , R

)
is called

a relator space. ( For the origins, see [ 30 ] and the references therein.)

If in particular R is a relator on X to itself, then we may simply say that R
is a relator on X . Moreover, by identifying singletons with their element, we may
naturally write X (R) in place of (X, X )(R) . Namely, (X, X ) = {{X }} .

A relator R on X, or a relator space X (R) , may be naturally called reflexive,
symmetric, and transitive if each member of R has the corresponding property.
Thus, we may also naturally speak of tolerance and preorder relators.

Note that if D is a family of pseudo-metrics on X, then RD = {Bd
r : r > 0 ,

d ∈ D } is a tolerance relator on X. While, if A is a family of subsets of X, then
RA =

{
RA : A ∈ A} is a preorder relator on X.

A relator R on X to Y may be called simple if there exists a relation R on
X to Y such that R = {R } . In this case, by identifying singletons with their
elements, we may simply write (X, Y )(R) in place of (X, Y )({R}) .

If in particular 6 is a relation on X , then according to [ 41 ] the simple
relator space X (6 ) will be called a generalized ordered set or an ordered set
without axioms. And we may usually write X in place of X (6 ) .

By our former conventions, a generalized ordered set X may be naturally called
preordered, directed, resp. partially ordered if the inequality relation 6 in it is
has the corresponding properties.

Having in mind the terminology of Birkhoff [ 1 , p. 2 ] , a partially ordered
set may called a poset, a preordered set may be called a proset, and a generalized
ordered set may be called a goset.

The usual operations on relations can be naturally extended to relators. If R
is a relator on X to Y , then we may naturally write R−1 =

{
R−1 : R ∈ R

}
.

Thus, (Y, X )(R−1 ) may be called the dual of (X, Y )(R) .

Moreover, if in addition S is a relator on Y to Z , then we may also naturally
define S ◦ R = {S ◦R : R ∈ R , S ∈ S

}
. Now, by identifying singletons with

their elements, we may naturally write S ◦ R in place of {S} ◦ R for all S ∈ S .
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2. Topological structures derived from relators

Relator spaces are natural generalizations of not only ordered sets, formal con-
texts [ 10 , p. 17 ] , and uniform spaces, but also some other classical algebraic and
topological structures.

For instance, all reasonable generalizations of proximities, closures, topologies,
filters, and convergences can be easily derived from relators with the help of the
following definitions. ( See [ 32 ] .)

If R is a relator on X to Y , then for any A ⊂ X , B ⊂ Y and x ∈ X we
write :

(1) A ∈ IntR (B ) if R [A ] ⊂ B for some R ∈ R ;

(2) A ∈ ClR (B ) if R [A ] ∩ B ̸= ∅ for all R ∈ R ;

(3) x ∈ intR (B ) if {x} ∈ IntR (B ) ; (4) x ∈ clR (B ) if {x} ∈ ClR (B ) ;

(5) B ∈ ER if intR (B ) ̸= ∅ ; (6) B ∈ DR if clR (B ) = X .

Moreover, if in particular R is a relator on X , then for any A ⊂ X we also
write :

(7) A ∈ τR if A ∈ IntR (A) ; (8) A ∈ τ-R if Ac /∈ ClR (A) ;

(9) A ∈ TR if A ⊂ intR (A) ; (10) A ∈ FR if clR (A) ⊂ A .

The relations IntR and intR are called the proximal and the topological
interiors induced by the relator R . While, the members of the families τR , TR ,
and ER are called the proximally open, the topologically open, and the fat subsets
of the relator spaces X (R) and (X, Y )(R) , respectively.

The fat sets are frequently more important tools than the open sets. For
instance, if 6 is a certain order relation on X , then T6 and E6 are just the
families of all ascending and residual subsets of the ordered set X (6) , respectively.
Moreover, it may occur that TR = { ∅ , X } , but ER ̸= {X } for some relation R
on X .

A function φ of a preordered set Γ to X is called a Γ-net in X . The net φ is
said to be eventually (frequently) in a subset A of X if φ−1 [A ] is a fat (dense)
subset of Γ. Therefore, Γ could be here an arbitrary relator space. However,
preordered nets are usually sufficient.

If R is a relator on X to Y , then for any Γ-nets φ in X and ψ in Y , and
x ∈ X , we write :

(11) φ ∈ LimR (ψ ) if the net (φ, ψ ) is eventually in each R ∈ R ;

(12) φ ∈ AdhR (ψ ) if the net (φ, ψ ) is frequently in each R ∈ R ;

(13) x ∈ limR (ψ ) if xΓ ∈ LimR(ψ ); (14) x ∈ adhR (ψ ) if xΓ ∈ AdhR(ψ );

where xΓ means now the constant net (x )γ∈Γ = Γ×{x} .
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To let the reader feel the importance of the fat sets, it is also worth noticing
that if R is a relator on X , then for any A ⊂ X we may naturally write :

(15) A ∈ NR if clR (A) /∈ ER ;

(16) A ∈ MR if A =
∪∞

n=1 An for some sequence (An )
∞
n=1 in NR .

Thus, the members of the families NR and MR may be called the rare and
meager subsets of the relator space X (R) . And the relator R may be called a
Baire relator if ER ∩ MR = ∅ . That is, the fat sets are not meager.

Moreover, it is also worth mentioning that if R is a relator on X to Y , then
beside the relations

(17) δR =
∩

R ; (18) σR =
∪

R ;

sometimes we also need the sets

(19) ER =
∩

ER ; (20) DR =
∪(

P (Y )r DR
)
.

Finally, we note that in an arbitrary relator space (X, Y )(R) we may also
naturally introduce some order theoretic notions which are however not completely
independent of the above topological ones [ 38 ] .

For instance, if R is a relator on X to Y , then for any A ⊂ X and B ⊂ Y
we may naturally write A ∈ LbR (B ) if A×B ⊂ R for some R ∈ R . Thus, we

have LbR =
(
ClRc

)c
, where Rc means now the elementwise complement of R .

3. Closure operations and regular structures

Definition 3.1. A function φ of a poset X to itself is called an operation on
X . More generally, a function f of X to another poset Y is called a structure
on X .

Remark 3.1. The latter terminology has been mainly motivated by the various
structures derived from relators.

Note that if X is a nonvoid set, then the mapping R 7→ TR , where R is a
relator on X, is a structure on P

(
P (X 2 )

)
. ( For any two sets A and B , we

write A 6 B if A ∈ P (B ) , i. e., A ⊂ B .)

Definition 3.2. An operation φ on a poset X is called

(1) expansive if ∆X 6 φ ; (2) quasi-idempotent if φ2 6 φ .

Moreover, a structure f on X is called increasing if for any x1 , x2 ∈ X , with
x1 6 x2 , we have f (x1 ) 6 f (x2 ) .

Remark 3.2. Note that if (1) holds, then we also have φ = ∆X ◦ φ 6 φ◦φ =
φ2 . Therefore, if both (1) and (2) hold, then φ is actually idempotent.

Thus, according to [ 1 , p. 111 ] , we may naturally have the following
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Definition 3.3. An increasing and expansive operation is called a precosure
operation. And a quasi–idempotent preclosure operation is called a closure opera-
tion.

Moreover, an expansive and quasi-idempotent operation is called a semiclosure
operation. And an increasing and idempotent operation is called a modification
operation.

Remark 3.3. Now, an operation φ on X may be naturally called an interior
operation if it is a closure operation on the dual X ∗ of X .

To feel the importance of modification operations, note that if X is a nonvoid
set, then the mapping R 7→ R∞, where R is a relator on X, is only a modification
operation on P

(
P
(
X 2

))
.

In [ 45 ] , having in mind the ideas of [ 22 ] , we have introduced the following

Definition 3.4. A structure f on a poset X to another Y is called increa-
singly φ–regular, for some operation φ on X , if for any x1 , x2 ∈ X we have

x1 6 φ (x2 ) ⇐⇒ f (x1 ) 6 f (x2 ) .

Remark 3.4. Now, a structure f on X to Y may be naturally called
decreasingly φ–regular if it is an increasingly φ–regular structure on X to Y ∗ .

The above definition closely resembles to a recent definition of Galois connec-
tions [ 3 , p. 155 ] . However, instead of Galois connections, it has been more
convenient to use residuated mappings [ 2 , p. 11 ] in the following relevant form.

Definition 3.5. A structure f on a poset X to another Y is called increas-
ingly g–normal, for some structure g on Y to X , if for any x ∈ X and y ∈ Y
we have

f (x) 6 y ⇐⇒ x 6 g (y ) .

Remark 3.5. Now, a structure f on X to Y may be naturally decreasingly
g–normal if it is an increasingly g–normal structure on X to Y ∗.

In [ 45 ] , by using the above definitions for prosets instead of posets, we have
proved some straightforward extensions of the following theorems.

Theorem 3.1. If f is an increasingly g–normal structure on X to Y and
φ = g ◦ f , then f is increasingly φ–regular.

Theorem 3.2. If f is an increasingly φ–regular structure on X onto Y and
g is a structure on Y to X such φ = g ◦ f , then f is increasingly g–normal.

Theorem 3.3. f is an increasingly g–normal structure on X to Y if and
only if g is an increasingly f –normal structure on Y ∗ to X ∗ .

Theorem 3.4. If f is an increasingly φ–regular structure on X , then

(1) φ is expansive ; (2) f is increasing ; (3) f = f ◦ φ.
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Theorem 3.5. If φ is an operation on X , then the following assertions are
equivalent :

(1) φ is a closure operation ;

(2) φ is increasingly φ–regular ;

(3) there exists an increasingly φ–regular structure f on X .

Corollary 3.1. If f is a structure and φ is an operation on X , then
f is increasingly φ–regular if and only if φ is a closure operation and for any
x1 , x2 ∈ X we have φ (x1 ) 6 φ (x2 ) if and only if f (x1 ) 6 f (x2 ) .

Theorem 3.6. If f is an increasingly g–normal structure on X to Y , then
f and g are increasing. Moreover, φ = g ◦ f is a closure operation on X and
ψ = f ◦ g is an interior operation on Y .

For an easy illustration of the above notions and results, we can note here

Example 3.1. Let P = P (X ) be the poset of all subsets of a poset X .
Moreover, define F (A) = ub (A) and G (A) = lb (A) for all A ⊂ X .

Then, by the corresponding definitions, it is clear that F is a decreasingly
G–normal structure on P to itself. Hence, by defining Φ = G ◦ F and using the
duals of Theorems 3.4 and 3.2, we can easily see that F is a decreasingly Φ–regular
structure and Φ is a closure operation on P .

To feel the importance of this example, note that by [ 3 , p. 166 ] the poset
Φ [P ] is just the Dedekind–MacNeille completion of X by the cuts Φ (A) .

4. Characterizations of increasingly regular structures

In [ 45 ] , we have also proved some straightforward extensions of the following
theorems.

Theorem 4.1. For any two structures f on X to Y and g on Y to X , the
following assertions are equivalent :

(1) f is increasingly g–normal ;

(2) f is increasing and f −1 [ lb (y ) ] = lb
(
g (y )

)
for all y ∈ Y ;

(3) f is increasing and, for each y ∈ Y , g (y ) is the largest element of X
such that f

(
g (y )

)
6 y .

Corollary 4.1. For any structure f on X to Y , there exists at most one
structure g on Y to X such that f is increasingly g–normal.

Theorem 4.2. If φ is an operation and f is a structure on X , then the
following assertions are equivalent :

(1) f is increasingly φ–regular ;

(2) f is increasing and f −1
[
lb
(
f (x)

) ]
= lb

(
φ (x)

)
for all x ∈ X ;
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(3) f is increasing and, for each x ∈ X, φ (x) is the largest element of X
such that f

(
φ (x)

)
6 f

(
x) .

Remark 4.1. Note that if (1) holds, then by Theorem 3.4 we also have
f
(
φ (x)

)
= f

(
x) for all x ∈ X .

Moreover, if (1) holds, then by identifying singletons with their elements we
simply have f −1 ◦ lb ◦f = lb ◦φ by (2).

Corollary 4.2. For any structure f on X , there exists at most one operation
φ on X such that f is increasingly φ–regular.

Definition 4.1. A structure f on X is called increasingly regular if there
exists an operation φ on X such that f is increasingly φ–regular.

Moreover, a structure f on X to Y is called increasingly normal if there
exists a structure g on Y to X such that f is increasingly g–normal.

Remark 4.2. By Theorem 3.1, an increasingly normal structure is in particular
increasingly regular.

Moreover, in [ 45 ] and [ 44 ] , we have proved some straightforward extensions
of the following theorems.

Theorem 4.3. If f is an increasingly regular structure on X onto Y , then
f is increasingly normal.

Theorem 4.4. If f is a structure on a complete poset X to Y , then the
following assertions are equivalent :

(1) f is increasingly normal ;

(2) f [ sup (A) ] = sup
(
f [A ]

)
for all A ⊂ X .

Theorem 4.5. If f is a structure on a complete poset X onto Y , then the
following assertions are equivalent :

(1) f is increasingly regular ;

(2) f [ sup (A) ] = sup
(
f [A ]

)
for all A ⊂ X .

Theorem 4.6. If φ is a closure operation on a complete poset X , then

φ
[
sup (A)

]
= φ

(
sup

(
φ [A ]

))
for all A ⊂ X .

Remark 4.3. This theorem can also be easily proved directly, without using
Theorems 3.5 and 4.5.
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5. Increasingly regular structures on power sets

In the sequel, we shall assume that X is only a nonvoid set and, by identifying
singletons with their elements, we shall consider X to be a subset of P (X ) .

Definition 5.1. If F is an increasing structure on P (X ) to Y , then for any
y ∈ Y we define

GF (y ) =
{
x ∈ X : F (x) 6 y

}
.

Moreover, according to Theorem 3.1, we also define ΦF = GF ◦ F .

Remark 5.1. Note that if F is a decreasing structure on P (X ) to Y , then
GF (y ) has to be defined by the reverse inequality.

In [ 43 ] , we have proved some straightforward extensions of the following
theorems.

Theorem 5.1. If F is an increasing structure on P (X ) to Y , then

(1) GF is an increasing structure on Y to P (X ) ;

(2) F (A) 6 y implies A ⊂ GF (y ) for all A ⊂ X and y ∈ Y .

Theorem 5.2. If F is an increasing structure on P (X ) to Y , then

(1) ΦF is a preclosure operation on P (X ) ;

(2) F (A1 ) 6 F (A2 ) implies A1 ⊂ ΦF (A2 ) for all A1 , A2 ⊂ X .

Theorem 5.3. If F is a structure on P (X ) to Y , then the following asser-
tions are equivalent :

(1) F is increasingly normal ;

(2) F is increasingly GF –normal ;

(3) F is increasing and F ◦ GF 6 ∆Y ;

(4) F is increasing and A ⊂ GF (y ) implies F (A) 6 y for all A ⊂ X
and y ∈ Y .

Theorem 5.4. If F is a structure on P (X ), then the following assertions
are equivalent :

(1) F is increasingly regular ;

(2) F is increasingly ΦF –regular ;

(3) F is increasing and F ◦ ΦF 6 F ;

(4) F is increasing and A1 ⊂ ΦF (A2 ) implies F (A1 ) 6 F (A2 ) for all
A1 , A2 ⊂ X .

Remark 5.2. Note that if (2) holds, then by Theorem 3.4 we also have
F ◦ ΦF = F .
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Theorem 5.5. If F is an increasingly regular structure on P (X ), then ΦF

is a closure operation on P (X ) and for any A1 , A2 ⊂ X we have

A1 6 ΦF (A2 ) ⇐⇒ F (A1 ) 6 F (A2 ) ⇐⇒ ΦF (A1 ) 6 ΦF (A2 ) .

Theorem 5.6. If F is a structure on P (X ) to Y , then the following asser-
tions are equivalent :

(1) F is increasingly normal ;

(2) F (A) = sup
(
F [A ]

)
for all A ⊂ X ;

(3) F is increasing and F
(
GF (y )

)
6 sup

(
F [GF (y ) ]

)
for all y ∈ Y .

Theorem 5.7. If F is a structure on P (X ) onto Y , then the following
assertions are equivalent :

(1) F is increasingly regular ;

(2) F (A) = sup
(
F [A ]

)
for all A ⊂ X ;

(3) F is increasing and F
(
ΦF (A)

)
6 sup

(
F [ ΦF (A) ]

)
for all A ⊂ X .

Remark 5.3. Note that if in particular F is a structure on P (X ) to P (Y ) ,
then we simply have sup

(
F [A ]

)
=

∪
F [A ] for all A ⊂ X .

6. Normality of the most important topological structures

Throughout in the sequel, we shall assume that X and Y are nonvoid sets.

Theorem 6.1. The mappings, defined by

R 7→ IntR , R 7→ intR and R 7→ ER
for any relator R on X to Y , are increasingly normal structures on
P
(
P (X×Y )

)
to P

(
P (Y )×P (X )

)
, P

(
P (Y )×X

)
and P

(
P (Y )

)
, respec-

tively.

Hint. To prove the first statement, for any relator R on X to Y , define

F (R ) = IntR .

Moreover, by using the corresponding definitions, note that

F (R ) =
∪

R∈R
F (R ) =

∪
F [R ] .

Therefore, by Theorem 5.6, F is an increasingly normal structure on P
(
P (X×Y )

)
to P

(
P (Y )×P (X )

)
. �

Remark 6.1. In this respect, it is worth noticing that the mapping defined by
R 7→ IntR for any relation R on X to Y is a decreasingly normal structure on
P (X×Y ) to P

(
P (Y )×P (X )

)
.

However, it is now more interesting that in particular we also have the following
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Theorem 6.2. The mappings, defined by

R 7→ τR and R 7→ τ-R

for any relator R on X, are increasingly normal structures on P
(
P (X 2 )

)
to

P
(
P (X )

)
.

Remark 6.2. Later, we shall see that the increasing structures, defined by

R 7→ TR and R 7→ FR

for any relator R on X, are not, in general, even increasingly regular.

In addition to Theorem 6.1, we can also easily establish the following

Theorem 6.3. The mappings, defined by

R 7→ ClR , R 7→ clR and R 7→ DR

for any relator R on X to Y , are decreasingly normal structures on
P
(
P (X×Y )

)
to P

(
P (Y )×P (X )

)
, P

(
P (Y )×X

)
and P

(
P (Y )

)
, respec-

tively.

Remark 6.3. Unfortunately, the aggregate N (X ) of all nets in X is not a
well-defined collection.

Therefore, we can only somewhat incorrectly state here the following

Theorem 6.4. The mappings, defined by

R 7→ LimR , R 7→ AdhR , R 7→ limR and R 7→ adhR

for any relator R on X to Y , are decreasingly normal structures on
P
(
P (X×Y )

)
to P

(
N (Y )×N (X )

)
and P

(
N (Y )×X

)
, respectively.

Remark 6.4. This theorem could only be made precise by imposing some
inconvenient restrictions on the domains of the corresponding nets.

In addition to the above theorems, it is also worth mentioning the following

Theorem 6.5. The modification operation, defined by R 7→ R∞ for any
relator R on X, is an increasingly normal structure on P

(
P (X 2 )

)
to itself.

Remark 6.5. In this respect, it is worth noticing that the closure operation,
defined by R 7→ R∞ for any relation on R on X, is, in general, only an
increasingly regular structure on P

(
P (X 2 )

)
to itself.

Actually, it is the unique operation on P (X 2 ) for which the mapping, defined
by R 7→ TR for any relation R on X, is a decreasingly regular structure on
P
(
P (X 2 )

)
to P

(
P (X )

)
. ( This has also been proved in [ 43 ] .)

Definition 6.1. For any relator R on X , we define

R∂ =
{
S ⊂ X 2 : S∞ ∈ R

}
.
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Remark 6.6. By using this definition and the idempotency of ∞ , we can
easily see that ∂ is also a modification operation on P

(
P (X 2 )

)
.

Thus, for any relator R on X , the relators R∞ and R∂ may be naturally
called the direct and the inverse preorder modifications of R .

However, it is now more interesting that we also have the following

Theorem 6.6. ∂ is the unique operation on P
(
P (X 2 )

)
such that the

operation ∞ considered in Theorem 6.5 is an increasingly ∂–normal structure
on P

(
P (X 2 )

)
to itself.

Hint. To check this, by Theorems 6.5 and 5.3 and Corollary 4.1, it is enough
to note only that if F (R ) = R∞ for any relator R on X , then according to
Definition 5.1 we have GF (R ) = R∂ for any relator R on X . �

Remark 6.7. From the above theorem, by Theorem 3.6, we can see that ∞ ∂
is a closure and ∂∞ is an interior operation on P

(
P (X 2 )

)
.

Therefore, in particular, we have R ∂ ∞ ⊂ R ⊂ R∞ ∂ , and hence also
R∞ = R∞ ∂ ∞ and R∂ = R∂ ∞ ∂ for any relator R on X .

7. The most important closure operations on relators

Definition 7.1. For any relator R on X to Y , we define

R∗ =
{
S ⊂ X×Y : ∃ R ∈ R : R ⊂ S

}
,

R# =
{
S ⊂ X×Y : ∀ A ⊂ X : A ∈ IntR

(
S (A)

)}
,

R∧ =
{
S ⊂ X×Y : ∀ x ∈ X : x ∈ intR

(
S (x)

) }
,

R△ =
{
S ⊂ X×Y : ∀ x ∈ X : S (x) ∈ ER

}
.

Remark 7.1. Hence, by the corresponding definitions, it is clear that

R ⊂ R∗ ⊂ R# ⊂ R∧ ⊂ R△

for any relator R on X to Y .

Moreover, if in particular R is a relator on X, then we can easily see that

R∞ ⊂ R∗∞ ⊂ R∞∗ ⊂ R∗ ,

and hence also R∗∞ = R∞∗∞ and R∞∗ = R∗∞∗ .

Furthermore, by using Definition 5.1 and Remark 5.1, we can easily establish

Theorem 7.1. If R is a relator on X to Y , then

(1) R∗ = ΦLim (R ) = ΦAdh (R ) ; (2) R# = ΦInt (R ) = ΦCl (R ) ;

(3) R∧ = Φint (R ) = Φcl (R ) ; (4) R∧ = Φlim (R ) = Φadh (R ) ;

(5) R△ = ΦE (R ) = ΦD (R ) .



GALOIS–TYPE CONNECTIONS 51

Hint. To prove the first part of (1) , note that Lim is a decreasing structure
on P

(
P (X×Y )

)
to P

(
N (Y )×N (X )

)
. Therefore, by Remark 5.1, we now

have

ΦLim (R ) =
{
S ⊂ X×Y : LimR ⊂ LimS

}
.

Hence, by the corresponding definitions it is clear that R∗ ⊂ ΦLim .

To prove the converse inclusion, assume on the contrary that there exists
S ∈ ΦLim such that S /∈ R∗ . Then, for each R ∈ R , there exists

(xR , yR ) ∈ R such that (xR , yR ) /∈ S .

Hence, by partially ordering R with the reverse set inclusion, we can easily see
that

φ = (xR )R∈R and ψ = ( yR )R∈R

are nets in X and Y , respectively, such that

φ ∈ LimR (ψ ) , but φ /∈ LimS (ψ ) .

Therefore, LimR ̸⊂ LimS , and thus S /∈ ΦLim . This contradiction proves the
required inclusion. �

Remark 7.2. In this respect, it is noteworthy that to prove ΦAdh ⊂ R∗ any
preorder on R can be applied.

From Theorem 7.1, by using the results of Section 6 and Theorem 5.4 and
Corollary 4.2 and their duals, we can immediately derive the following

Theorem 7.2. ∗ , # , ∧ and △ are the unique operations on P
(
P (X×Y )

)
such that

(1) Lim ( resp. Adh ) is decreasingly ∗–regular ;

(2) Int ( resp. Cl ) is increasingly (resp. decreasingly) #–regular ;

(3) int ( resp. cl , lim , adh ) is increasingly (resp. decreasingly) ∧–regular ;

(4) E ( resp. D ) is increasingly (resp. decreasingly) △–regular

Theorem 7.3. ∗ , # , ∧ and △ are closure operations on P
(
P (X×Y )

)
such that for any two relators R1 and R2 on X to Y we have

(1) R1 ⊂ R ∗
2 ⇐⇒ R ∗

1 ⊂ R ∗
2 ⇐⇒ LimR2 ⊂ LimR1 ⇐⇒ AdhR2 ⊂ AdhR1 ;

(2) R1 ⊂ R#
2 ⇐⇒ R#

1 ⊂ R#
2 ⇐⇒ IntR1 ⊂ IntR2 ⇐⇒ ClR2 ⊂ ClR1 ;

(3) R1 ⊂ R∧
2 ⇐⇒ R∧

1 ⊂ R∧
2 ⇐⇒ intR1 ⊂ intR2 ⇐⇒ clR2 ⊂ clR1 ;

(4) R1 ⊂ R∧
2 ⇐⇒ R∧

1 ⊂ R∧
2 ⇐⇒ limR2 ⊂ limR1 ⇐⇒ adhR2 ⊂ adhR1 ;

(5) R1 ⊂ R△
2 ⇐⇒ R△

1 ⊂ R△
2 ⇐⇒ ER1 ⊂ ER2 ⇐⇒ DR2 ⊂ DR1 .

Moreover, as an immediate consequence of Theorem 4.2 and Remark 4.1 and
its duals, we can also state
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Theorem 7.4. For every relator R on X to Y ,

(1) R∗ is the largest relator on X to Y such that LimR = LimR∗ , or
equivalently AdhR = AdhR∗ ;

(2) R# is the largest relator on X to Y such that IntR = IntR# , or
equivalently ClR = ClR# ;

(3) R∧ is the largest relator on X to Y such that limR = limR∧ , or
equivalently adhR = adhR∧ ;

(4) R∧ is the largest relator on X to Y such that intR = intR∧ , or equi-
valently clR = clR∧ ;

(5) R△ is the largest relator on X to Y such that ER = ER△ , or equivalently
DR = DR△ .

Remark 7.3. Because of the above results, the relators R∗, R#, R∧ and
R△ are called the uniform, the proximal, the topological and the paratopological
closures of R , respectively.

8. The importance of the preorder modifications

The following theorem has been proved in [ 15 ] by using the ideas of [ 13 ] .

Theorem 8.1. #∞ and ∧∞ are modification operations on P
(
P (X 2 )

)
such that for any two relators R1 and R2 on X we have

(1) R∞
1 ⊂ R#

2 ⇐⇒ R#∞
1 ⊂ R#∞

2 ⇐⇒ τR1
⊂ τR2

⇐⇒ τ-R1
⊂ τ-R2

;

(2) R∧∞
1 ⊂ R∧

2 ⇐⇒ R∧∞
1 ⊂ R∧∞

2 ⇐⇒ TR1 ⊂ TR2 ⇐⇒ FR1 ⊂ FR2 .

Hint. The implication R∞
1 ⊂ R#

2 =⇒ τR1
⊂ τR2

follows from the facts
that τR∞ = τR and τR# = τR for any relation R and relator R on X .

While, to prove the converse implication, note that if R ∈ R1 , then for each
A ⊂ X we have

R
[
R∞ [A ]

]
⊂ R∞ [

R∞ [A ]
]
=

(
R∞ )2 [A ] ⊂ R∞ [A ] ,

and thus R∞ [A ] ∈ τR1
. Therefore, if τR1

⊂ τR2
holds, then we also have

R∞ [A ] ∈ τR2
, and thus R∞ [A ] ∈ IntR2

(
R∞ [A ]

)
. Hence, since A ⊂

R∞ [A ] , it is clear that A ∈ IntR2

(
R∞ [A ]

)
. Therefore, R∞ ∈ R#

2 , and

thus R∞
1 ⊂ R#

2 . �

Remark 8.1. To prove (2), it is convenient to use that τR∧ = TR and
τ-R∧ = FR for any nonvoid relator R on X . ( For some extensions, see [ 30 ,
Theorem 6.7 ] .)

Now, by using Theorem 8.1, we can easily establish the following
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Theorem 8.2. For every relator R on X ,

(1) R#∞ is the largest preorder relator on X such that τR = τR#∞ , or
equivalently τ-R = τ-R#∞ ;

(2) R∧∞ is the largest preorder relator on X such that TR = TR∧∞ , or
equivalently FR = FR∧∞ .

Remark 8.2. Concerning the modification operation △ ∞ , in contrast to
[ 15 , Theorem 5.12 ] , we we can only prove that if R is a total relator on X in
the sense that X is the domain of each member of R , then R△∞ is the largest
preorder relator on X such that ER = ER△∞ , or equivalently DR = DR△∞ .

Moreover, by using Theorem 8.1, we can also prove the following supplement
to Theorem 7.1.

Theorem 8.3. If R is a relator on X , then

(1) R#∂ = Φτ (R) = Φτ- (R) ; (2) R∧∂ = ΦT (R) = ΦF (R) .

Hint. To prove this, note that by Definition 5.1, Theorem 8.1 and Definition
6.1, for any S ⊂ X 2 , we have

S ∈ Φτ (R) ⇐⇒ τS ⊂ τR ⇐⇒ S∞ ∈ R# ⇐⇒ S ∈ R# ∂ .

Hence, by Remark 8.1 and the equalities TS = τS and R∧# = R∧, it is clear
that we also have

S ∈ ΦT (R) ⇐⇒ TS ⊂ TR ⇐⇒ τS ⊂ τR∧

⇐⇒ S ∈ Φτ

(
R∧) ⇐⇒ S ∈ R∧#∂ ⇐⇒ S ∈ R∧∂ .

�

From the first statement of the above theorem, by our former results, it is clear
that the following three theorems are true.

Theorem 8.4. # ∂ is the unique operation on P
(
P (X 2 )

)
such that

τ ( resp. τ- ) is an increasingly # ∂–normal structure on P
(
P (X 2 )

)
to

P
(
P (X )

)
.

Theorem 8.5. # ∂ is a closure operation on P
(
P (X 2 )

)
such that for any

two relators R1 and R2 on X we have

R1 ⊂ R#∂
2 ⇐⇒ R#∂

1 ⊂ R#∂
2 ⇐⇒ τR1

⊂ τR2
⇐⇒ τ-R1

⊂ τ-R2
.

Theorem 8.6. For every relator R on X , R#∂ is the largest relator on X
such that τR = τR#∂ , or equivalently τ-R = τ-R#∂ .

Moreover, from the second statement of Theorem 8.3, by Theorem 5.2, it is
clear that we also have the following



54 SZÁZ

Theorem 8.7. ∧ ∂ is a preclosure operation on P
(
P
(
X 2

))
such that for

any two relators R1 and R2 on X we have R1 ⊂ R∧ ∂
2 whenever TR1 ⊂ TR2 ,

or equivalently FR1 ⊂ FR2 .

Remark 8.3. Now, by our former results, it is clear that

R#∞ ⊂ R# ⊂ R#∂ and R∧∞ ⊂ R∧ ⊂ R∧∂ ,

and hence also R#∞ = R#∂∞ and R∧∞ = R∧∂∞ .

Moreover, by using the ideas of [ 13 , Example 5.3 ] and [ 22 , Example 7.2 ] ,
we can also prove the following statements. ( See [ 43 , Example 10.11 ] .)

Example 8.1. If card (X ) > 2 and R = {X 2} , then R is a topologically
fine equivalence relator on X such that

(1) R# ∂ ̸⊂ R ; (2) TR∧∂ ̸⊂ TR ; (3) R∧ ∂ ∧ ̸⊂ R∧ ∂ ;

(4) there is no largest relator S on X such that TS ⊂ TR ( resp. TS = TR ).

Remark 8.4. This example shows that in contrast to # and #∞ , the
operation # ∂ is not, in general, stable.

Moreover, the operation ∧ ∂ is not, in general, idempotent. Therefore, by
Theorems 5.5 and 8.3, the assertions of Remark 6.2 are true.

9. Composition compatible operations

Definition 9.1. If � is an operation on relators, then we say that:

(1) � is left composition compatible if
(
S ◦ R

)�
=

(
S ◦ R�)�

for any
three nonvoid sets X , Y and Z and any relator R on X to Y and any relation
S on Y to Z ;

(2) � is right composition compatible if
(
S ◦ R

)�
=

(
S � ◦ R

)�
for any

three nonvoid sets X , Y and Z and any relation R on X to Y and any relator
S on Y to Z .

Remark 9.1. Now, the operation � may be naturally called composition
compatible if it is both left and right composition compatible.

Note that (1) and (2) are actually very weak composition compatibility proper-
ties of � . However, they will prove to be strong enough to simplify our forthcoming
definitions of continuities.

Concerning left composition compatible operations, we can easily establish the
following two theorems.

Theorem 9.1. If � is a preclosure operation on relators, then the following
assertions are equivalent :

(1) � is left composition compatible;
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(2) (S ◦ R� )� ⊂
(
S ◦ R

)�
for any three nonvoid sets X , Y and Z and

any relator R on X to Y and any relation S on Y to Z .

Proof. If R and S are as above, then by the expansivity and the increas-

ingness of � , we have S ◦R ⊂ S ◦R� , and hence
(
S ◦ R )� ⊂

(
S ◦ R� )�

.
Therefore, the implication (2) =⇒ (1) is also true. �

Remark 9.2. Note that if � is a preclosure operation on relators, then we

also have
(
S ◦ R )� ⊂

(
S ◦ R� )�

for any three nonvoid sets X , Y and Z
and any two relators R on X to Y and S on Y to Z .

Theorem 9.2. If � is a closure operation on relators, then the following
assertions are equivalent :

(1) � is left composition compatible;

(2) S ◦R� ⊂
(
S ◦R

)�
for any three nonvoid sets X , Y and Z and any

relator R on X to Y and any relation S on Y to Z .

Proof. If (1) holds, and R and S are as above, then by the expansivity of

� and Definition 9.1 it is clear that S ◦ R� ⊂
(
S ◦ R�)�

=
(
S ◦ R

)�
, and

thus (2) also holds.

While, if (2) holds, then by the increasingness and the idempotency � we also

have
(
S ◦ R�)� ⊂

(
S ◦ R

)��
=

(
S ◦ R

)�
. Hence, by Theorem 9.1, we can

see that (1) also holds. �

Example 9.1. By using the latter theorem, for instance, we can easily show
that the topological closure operation ∧ is left composition compatible.

For this, note that if R and S are as in Theorem 9.2 and W ∈ S ◦ R∧ , then
there exists V ∈ R∧ such that W = S ◦ V . Moreover, by the definition of ∧ ,
for each x ∈ X there exists R ∈ R such that R (x) ⊂ V (x) . Now, by using
the notation U = S ◦R , we can see that U ∈ S ◦ R such that

U (x) = (S ◦R )(x) = S [R (x) ] ⊂ S [V (x) ] = (S ◦ V )(x) =W (x) ,

and thus W ∈
(
S ◦R )∧ . Hence, it is clear that S ◦R� ⊂

(
S ◦R

)�
, and thus

by Theorem 9.2 the required assertion is also true.

Remark 9.3. By using a similar argument, instead of the right composition

compatibility of ∧ , we can only prove that
(
S ◦ R

)∧
=

(
S # ◦ R

)∧
for any

three nonvoid sets X , Y and Z and any relation R on X to Y and any relator
S on Y to Z .

In addition to Theorem 9.2, we can also easily prove the following

Theorem 9.3. If � is a left composition compatible closure operation on
relators, then (

S ◦ R
)�

=
(
S ◦ R� )�
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for any three nonvoid sets X , Y and Z and any two relators R on X to Y and
S on Y to Z .

Proof. If R and S are as above, then by Theorem 4.6 and the left compo-
sition compatibility of � it is clear that

(
S ◦ R

)�
=

( ∪
S∈S

S ◦ R
)�

=

( ∪
S∈S

(
S ◦ R

)� )�

=

( ∪
S∈S

(
S ◦ R� )� )�

=

( ∪
S∈S

S ◦ R�
)�

=
(
S ◦ R� )�

.

�
Now, by using a similar theorem for right composition compatible closure

operations, we can also easily establish the following

Theorem 9.4. If � is a composition compatible closure operation on relators,
then (

S ◦ R
)�

=
(
S � ◦ R� )�

for any three nonvoid sets X , Y and Z and any two relators R on X to Y and
S on Y to Z .

Proof. If R and S are as above, then by Theorem 9.3 and its right-sided

counterpart, it is clear that
(
S ◦ R

)�
=

(
S ◦ R� )�

=
(
S � ◦ R� )�

. �
Remark 9.4. Concerning the operation ∧ , because of Remark 9.3, we can

only prove that
(
S ◦ R

)∧
=

(
S # ◦ R∧ )∧

for any three nonvoid sets X , Y and
Z and any two relators R on X to Y and S on Y to Z .

Hence, by writing S∧ in place of S and using that S ∧# = S ∧ , we can

immediately derive that
(
S ∧ ◦ R

)∧
=

(
S ∧# ◦ R∧ )∧

=
(
S ∧ ◦ R∧ )∧

.

10. Continuities of pairs of relations

If F is a relation on X to Y and G is a relation on Z to W , then we say
that (F , G ) is a pair of relations on (X, Y ) to (Z , W ) .

Moreover, according to [ 30 ] , [ 26 ] and [ 37 ] , we introduce the following three
basic continuity properties of a pair of relations on one relator space to another.

Definition 10.1. If (F , G ) is a pair of relations on one relator space(
X, Z

)
(R ) to another

(
Y , W

)
(S ) and � is a unary operation on rela-

tors, then we say that :

(1) (F , G ) is mildly �–continuous if
(
G−1 ◦ S � ◦ F

)� ⊂ R� ;

(2) (F , G ) is upper �–semicontinuous if
(
S � ◦ F

)� ⊂
(
G ◦ R�)�

;

(3) (F , G ) is lower �–semicontinuous if
(
G−1 ◦ S � )� ⊂

(
R� ◦ F −1

)�
.
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Remark 10.1. Now, the pair (F , G ) may be naturally called �–continuous
if it is is both upper and lower �–semicontinuous.

Moreover, the pair (F , G ) may, for instance, be naturally called properly
continuous if it is �–continuous with � being the identity operation.

And the the pair (F , G ) may, for instance, be naturally called uniformly
and topologically continuous if it is �–continuous with � = ∗ and � = ∧ ,
respectively.

Note that, by using the various operations on relators, some mixed type conti-
nuities of (F , G ) can also be introduced. However, here we shall only be interested
in the properties (1)–(3).

To simplify Definition 10.1, by using Theorem 3.5 and Definition 9.1, we can
easily establish the following two theorems.

Theorem 10.1. If (F , G ) is a pair of relations on one relator space(
X, Y

)
(R ) to another

(
Z , W

)
(S ) , and � is a closure operation on relators,

then

(1) (F , G ) is mildly �–continuous ⇐⇒ G−1 ◦ S � ◦ F ⊂ R� ;

(2) (F , G ) is upper �–semicontinuous ⇐⇒ S � ◦ F ⊂
(
G ◦ R�)�

;

(3) (F , G ) is lower �–semicontinuous ⇐⇒ G−1◦ S � ⊂
(
R�◦F −1

)�
.

Theorem 10.2. If (F , G ) is a pair of relations on one relator space(
X, Y

)
(R ) to another

(
Z , W

)
(S ) and � is a composition compatible closure

operation on relators, then

(1) (F , G ) is mildly �–continuous ⇐⇒ G−1 ◦ S ◦ F ⊂ R� ;

(2) (F , G ) is upper �–semicontinuous ⇐⇒ S ◦ F ⊂
(
G ◦ R

)�
;

(3) (F , G ) is lower �–semicontinuous ⇐⇒ G−1 ◦ S ⊂
(
R ◦ F −1

)�
.

Hint. To prove (1), note that by Definition 9.1 we have(
G−1 ◦ S � ◦ F

)�
=

(
G−1 ◦

(
S � ◦ F

)�)�

=
(
G−1 ◦

(
S ◦ F

)�)�
=

(
G−1 ◦ S ◦ F

)�
.

Moreover, by Theorem 3.5, we have
(
G−1 ◦ S ◦ F

)� ⊂ R� if and only if

G−1 ◦ S ◦ F ⊂ R� . �

Remark 10.2. Unfortunately, the corresponding theorem is not true for the
topological closure operation ∧ .

For instance, if F is not a function, then we can only prove that (F , G ) is

topologically upper semicontinuous if and only if S ∧ ◦ F ⊂
(
G ◦ R

)∧
.
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Definition 10.2. If ♢ and � are operations on relators, then we say that
� is ♢–compatible if for any two nonvoid sets X and Y and any relator R on
X to Y we have R�♢ = R♢� .

Remark 10.3. In particular, the operation � is called inversion compatible

if
(
R�)−1

=
(
R−1

)�
for any relator R on X to Y .

Now, to let the reader feel the appropriateness of Definition 10.1, we can note
that the following theorem is also true.

Theorem 10.3. If (F , G ) is a pair of relations on one relator space(
X, Z

)
(R ) to another

(
Y , W

)
(S ) and � is an inversion compatible

operation on relators, then

(1) (F , G ) is mildly �–continuous with respect to the relators R and S
if and only if (G, F ) is mildly �–continuous with respect to the relators
R−1 and S−1 ;

(2) (F , G ) is lower �–semicontinuous with respect to the relators R and S
if and only if (G, F ) is upper �–semicontinuous with respect to the relators
R−1 and S−1 .

Hint. To prove (2), note that((
G−1 ◦ S� )�)−1

=
((

G−1 ◦ S� )−1
)�

=
( (

S�)−1 ◦
(
G−1

)−1
)�

=
( (

S−1
)� ◦ G

)�

and quite similarly
((

R� ◦ F −1
)�)−1

=
(
F ◦

(
R−1

)�)�
. �

Remark 10.4. Unfortunately, the topological and the paratopological closure
operations ∧ and △ are not inversion compatible. ( See [ 14 ] .)

Therefore, the above theorem can have only a limited range of applicability.
However, it helps us to keep in mind the definition of lower �–semicontinuity.

11. Relationship with normality and regularity

In addition to Theorems 10.1 and 10.2, it is also worth noticing the following

Theorem 11.1. If (F , G ) is a pair of relations on one simple relator space(
X, Y

)
(R ) to another

(
Z , W

)
(S ) , then

(1) (F , G ) is properly mildly continuous ⇐⇒ G−1 ◦ S ◦ F = R ;

(2) (F , G ) is properly upper semicontinuous ⇐⇒ S ◦ F = G ◦R ;

(3) (F , G ) is properly lower semicontinuous ⇐⇒ G−1 ◦ S = R ◦ F −1 .
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Hint. Namely, if for instance S ◦ F = G ◦R , then

{S } ◦ F = {S ◦ F } = {G ◦R } = G ◦ {R } .

Thus, in particular, (F , G ) is properly upper semicontinuous.

While, if (F , G ) is properly upper semicontinuous, then we have

{S ◦ F } = {S } ◦ F ⊂ G ◦ {R } = {G ◦R } .

Hence, it follows that S ◦ F = G ◦R . Therefore, (2) is true. �

A simple application of the assertion (2) of Theorem 11.1 yields the following

Theorem 11.2. If f is a function of one simple relator space X (R) to
another Y (S ) and g is a function of Y to X, then the following assertions
are equivalent :

(1) ( f , g−1 ) is properly upper semicontinuous ;

(3) f (x)S y ⇐⇒ xR g (y ) for all x ∈ X and y ∈ Y .

Proof. From Theorem 11.1, we can at once see that (1) is equivalent to the
equality S ◦ f = g−1 ◦ R .

Moreover, by the corresponding definitions, it is clear that for any x ∈ X and
y ∈ Y we have

f (x)S y ⇐⇒ y ∈ S
(
f (x)

)
⇐⇒ y ∈ (S ◦ f )(x) ⇐⇒ (x, y ) ∈ S ◦ f

and

xR g (y ) ⇐⇒ g (y ) ∈ R (x) ⇐⇒ y ∈ g−1 [R (x) ]

⇐⇒ y ∈
(
g−1 ◦ R

)
(x) ⇐⇒ (x, y ) ∈ g−1 ◦R .

Therefore, (2) is also equivalent to the equality S ◦ f = g−1 ◦ R . �

Now, as an immediate consequence of Theorem 11.2 and Definition 3.5, we can
also state

Corollary 11.1. If f is a structure on one poset X to another Y and g is
a structure on Y to X , then the following assertions are equivalent :

(1) f is increasingly g–normal ;

(2) ( f , g−1 ) is properly upper semicontinuous .

Remark 11.1. This shows that increasing normality is a very particular case
of upper semicontinuity.

Analogously to Theorem 11.2, we can also prove the following
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Theorem 11.3. If f is a function of one simple relator space X (R) to
another Y (S ) and φ is a function of X to itself, then the following assertions
are equivalent :

(1) x1R φ(x2) ⇐⇒ f (x1 )S f (x2) for all x1 , x2 ∈ X .

(2) f is properly mildly continuous with respect φ−1 ◦ R and S .

Proof. From Theorem 11.1, we can at once see that (2) is equivalent to the
equality φ−1 ◦ R = f −1 ◦ S ◦ f .

Moreover, by the corresponding definitions, it is clear that for any x1 , x2 ∈ X
we have

x1 R φ(x2 ) ⇐⇒ φ (x2 ) ∈ R (x1 ) ⇐⇒ x2 ∈ φ−1
[
R (x1 )

]
⇐⇒ x2 ∈

(
φ−1 ◦ R

)
(x1 ) ⇐⇒ (x1 , x2 ) ∈ φ−1 ◦ R

and

f (x1 ) S f (x2 ) ⇐⇒ f (x2 ) ∈ S
(
f (x1 )

)
⇐⇒ x2 ∈ f −1

[
S
(
f (x1 )

) ]
⇐⇒ x2 ∈

(
f −1 ◦ S ◦ f

)
(x1 ) ⇐⇒ (x1 , x2 ) ∈ f −1 ◦ S ◦ f .

Therefore, (2) is also equivalent to the equality φ−1 ◦ R = f −1 ◦ S ◦ f . �

Now, as an immediate consequence of Theorem 11.5 and Definition 3.7, we can
also state

Corollary 11.2. If f is a structure on a poset X to another Y and φ is
an operation on X, then the following assertions are equivalent :

(1) f is increasingly φ–regular ;

(2) f is properly mildly continuous with respect to φ−1◦ 6 and 6 .

Remark 11.2. This shows that increasing regularity is a very particular case
of mild continuity.

In this respect, it is also worth noticing that a structure f on a poset X to
another Y is increasing if and only if it is uniformly mildly continuous.

12. Generalizations of Theorems 3.1 and 3.2

Theorem 12.1. If (F , G ) is a pair relations on one relator space X (R) to
another Y (S ) and � is an increasing left composition compatible operation on
relators such that (F , G ) is upper �–semicontinuous, then by defining
Φ = F −1 ◦ G we can state that F is mildly �–continuous with respect to the
relators Φ ◦ R and S .
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Proof. By the upper �–semicontinuity of (F , G ) , we have(
S � ◦ F

)� ⊂
(
G ◦ R�)�

.

This implies that

F −1 ◦
(
S � ◦ F

)� ⊂ F −1 ◦
(
G ◦ R�)�

.

Hence, by the increasingness of � , it follows that(
F −1 ◦

(
S � ◦ F

)� )�
⊂

(
F −1 ◦

(
G ◦ R� )� )�

.

Now, by the left composition compatibility of � and the definition of Φ , it is
clear that(

F −1 ◦ S � ◦ F
)� ⊂

(
F −1 ◦ G ◦ R�)�

=
(
Φ ◦ R� )�

=
(
Φ ◦ R

)�
.

Thus, F is mildly �–continuous with respect to the relators Φ ◦ R and S . �

From the above theorem, by using Theorems 11.2 and 11.3, we can easily derive

Corollary 12.1. If f is a function of one simple relator space X (R) to
another Y (S ) and g is a function of Y to X such that

f (x)S y ⇐⇒ xR g (y ) ,

for all x ∈ X and y ∈ Y , then by defining φ = g ◦ f we can state that

x1 R φ (x2 ) ⇐⇒ f (x1 ) S f (x2 )

for all x1 , x2 ∈ X .

Proof. Let � be the identity operation on relators. Then, � is in-
creasing and left composition compatible. Moreover, by Theorem 11.2, the pair(
f , g−1

)
is upper �–semicontinuous with respect to the relators {R } and {S } .

Furthermore, we can note that

Φ = f −1◦ g−1 = ( g◦ f )−1 = φ−1 and Φ ◦{R } = φ−1◦ {R } = {φ−1◦R } .

Hence, by Theorem 12.1, we can see that the pair
(
f , g−1

)
is mildly �–continuous

with respect to the relators {φ−1 ◦ R } and {S } . Therefore, by Theorem 11.3,
the required assertion is also true. �

Remark 12.1. Now, as an immediate consequence of Corollary 12.1 and Defi-
nitions 3.4 and 3.5, we can also state Theorem 3.1.

As a partial converse to Theorem 12.1, we can also prove the following

Theorem 12.2. Let f be a function on one relator space X (R ) onto another
Y (S ) and Φ be a relation on X to itself. Suppose that � is an increasing left
composition compatible operation on relators such that f is a mildly �–continuous
with respect to the relators Φ◦R and S . Moreover, suppose that G is a relation on
X to Y such Φ = f −1 ◦G . Then, the pair ( f , G ) is upper �–semicontinuous
with respect to the relators R and S .
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Proof. By the assumed mild continuity of f , we have(
f −1 ◦ S � ◦ f

)� ⊂
(
Φ ◦ R

)�
.

This implies that

f ◦
(
f −1 ◦ S � ◦ f

)� ⊂ f ◦
(
Φ ◦ R

)�
.

Hence, by the increasingness of � , it follows that(
f ◦

(
f −1 ◦ S � ◦ f

)� )�
⊂

(
f ◦

(
Φ ◦ R

)� )�
.

Now, by the left composition compatibility of � and the equality Φ = f −1 ◦ G ,
it is clear that(
f ◦ f −1 ◦ S � ◦ f

)� ⊂
(
f ◦Φ ◦ R

)�
=

(
f ◦Φ ◦ R� )�

=
(
f ◦ f −1 ◦G ◦ R� )�

.

Moreover, since f is a function on X onto Y , we have f ◦ f −1 = ∆
Y
. Now, by

noticing that f ◦ f −1 ◦ U = ∆Y ◦ U = U for any relator U on X to Y , we can
see that (

S � ◦ f
)� ⊂

(
G ◦ R� )�

.

Therefore, the pair ( f , G ) is upper �–semicontinuous with respect to the relators
R and S . �

From the above theorem, by using Theorems 11.3 and 11.2, we can easily derive

Corollary 12.2. Suppose that f is a function of one simple relator space
X (R ) onto another Y (S ) and φ is a function of X to itself such that

x1 R φ (x2 ) ⇐⇒ f (x1 ) S f (x2 )

for all x1 , x2 ∈ X . Moreover, suppose that g is a function of Y to X such
that φ = g ◦ f . Then

f (x)S y ⇐⇒ xR g (y )

for all x ∈ X and y ∈ Y .

Proof. Let � be the identity operation on relators. Then, � is increa-
sing and left composition compatible. Moreover, by Theorem 11.3, the function
f is mildly �–continuous with respect to the relators {φ−1 ◦ R } and {S } .
Furthermore, we can note that

{φ−1 ◦ R } = φ−1 ◦ {R } and φ−1 = ( g ◦ f )−1 = f −1 ◦ g−1 .

Hence, by Theorem 12.2, we can see that the pair
(
f , g−1

)
is upper �–semi-

continouous with respect to the relators {R } and {S } . Therefore, by Theorem
11.2, the required assertion is also true. �

Remark 12.2. Now, as an immediate consequence of Corollary 12.2 and
Definitions 3.4 and 3.5, we can also state Theorem 3.2.
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13. Relationships between mild and upper continuities

Definition 13.1. If ♢ and � are operations on relators, then we say that
� is ♢–dominating, ♢–invariant and ♢–absorbing if for any two nonvoid sets X
and Y and any relator R on X to Y we have R♢ ⊂ R� , R� = R�♢ and
R� = R♢� , respectively.

Remark 13.1. Note that if ♢ is an expansive and � is a ♢–dominating
operation on relators, then � is also expansive.

Moreover, by using the corresponding definitions, we can also easily prove the
following two propositions.

Proposition 13.1. If ♢ is an expansive and � is a ♢–dominating idem-
potent operation on relators, then � is ♢–invariant.

Proposition 13.2. If ♢ is an expansive and � is a ♢–dominating modifi-
cation operation on relators, then � is ♢–absorbing.

Remark 13.2. Now, from Remark 7.1 and Theorem 7.3, by using the above
propositions, we can at once see that, for instance, ∧ is both ∗–invariant and
∗–absorbing.

Moreover, in addition to Theorems 12.2 and 12.1, we can also prove the
following two theorems.

Theorem 13.1. If (F , g ) is a pair relations on one relator space
(X , Z )(R ) to another (Y , W )(S ) such that g is a function, and � is a
∗–dominating modification operation for relators such that (F , g ) is mildly
�–continuous, then (F , g ) is upper �–semicontinuous.

Proof. Now, by Remark 13.1, � is also expansive. Therefore, by Definition
10.1, we have

g−1 ◦ S � ◦ F ⊂ R� .

This implies that

g ◦ g−1 ◦ S � ◦ F ⊂ g ◦ R� .

Hence, by the increasingness of � , it follows that(
g ◦ g−1 ◦ S � ◦ F

)� ⊂
(
g ◦ R� )�

.

Moreover, since g is a function on X to Y , we also have g ◦ g−1 ⊂ ∆
Y
. Hence,

by using the corresponding definitions, we can easily see that

S � ◦ F = ∆
Y
◦ S � ◦ F ⊂

(
g ◦ g−1 ◦ S � ◦ F

)∗ ⊂
(
g ◦ g−1 ◦ S � ◦ F

)�
.

Therefore, we also have

S � ◦ F ⊂
(
g ◦ R� )�

.

Thus, by Theorem 10.1, the pair (F , g ) is upper �–semicontinuous. �
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Theorem 13.2. If (F , G ) is a pair relations on one relator space
(X , Z )(R ) to another (Y , W )(S ) such that D

G
= Z , and � is an increa-

sing, ∗–absorbing and left composition compatible operation for relators such that
(F , G ) is upper �–semicontinuous, then (F , G ) is also mildly �–continuous.

Proof. By the upper �–semicontinuity of (F , G ) , we have(
S � ◦ F

)� ⊂
(
G ◦ R� )�

.

This implies that

G−1 ◦
(
S � ◦ F

)� ⊂ G−1 ◦
(
G ◦ R� )�

.

Hence, by the increasingness of � , it follows that(
G−1 ◦

(
S � ◦ F

)� )�
⊂

(
G−1 ◦

(
G ◦ R� )� )�

.

Hence, by the left composition compatibility of � , it is clear that(
G−1 ◦ S � ◦ F

)� ⊂
(
G−1 ◦ G ◦ R� )�

=
(
G−1 ◦ G ◦ R

)�
.

Moreover, since D
G
= X , we also have ∆

Z
⊂ G−1 ◦ G . Hence, by using the

corresponding definitions, we can easily see that

G−1 ◦ G ◦ R ⊂
(
∆

Z
◦ R )∗ = R∗ .

Hence, since � is increasing and ∗–absorbing, it is clear that(
G−1 ◦ G ◦ R

)� ⊂ R∗� = R� .

Therefore, we also have (
G−1 ◦ S � ◦ F

)� ⊂ R� .

Thus, (F , G ) is mildly �–continuous. �

Now, as an immediate consequence of Theorem 13.1 and 13.2, we can also state

Corollary 13.1. If (F , g ) is a pair relations on one relator space
(X , Z )(R ) to another (Y , W )(S ) such that g is a function and Dg = Z ,
and � is a ∗–dominating, left composition compatible modification operation for
relators, then the following assertions are equivalent :

(1) (F , g ) is mildly �–continuous;

(2) (F , g ) is upper �–semicontinuous.

Proof. The implication (1) =⇒ (2) is immediate from Theorem 13.1. While,
to prove the converse implication, we can note that now by Proposition 13.2 � is
∗–absorbing. Therefore, Theorem 13.2 can be applied. �
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