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SEMI COMPLETE GRAPHS - III
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Abstract. A Further study about semi-complete graph is made. Path con-
nector set, Edge path connector set, Path-critical edges and neighbourhood

sets in this graph are introduced and interesting results are developed.

1. Introduction

In the earlier papers [2], [3] the utility of semi-complete graphs is mentioned. As
there is wide application of these graphs in computers and defence problems further
useful concepts, namely Path connector set, Edge path connector set, Path-critical
edge, neighbourhood set with regard to these graphs are introduced and useful
study about these is made.

2. Preliminaries

We, first give a few definitions, observations and results that are useful for
development in the succeeding articles.

Definitions 2.1([2]). (i) A graph G is said to be semi-complete(SC) iff (if
and only if) it is simple and for any two vertices u, v of G there is a vertex w of G
such that {u,w, v} is a path in G.
(ii) A graph G is said to be purely semi-complete iff G is semi-complete but not
complete.

Theorem 2.1. ([2]) G is a semi-complete graph. Then there exists a unique
path of length 2 between any two vertices of G iff the edge set of G can be partitioned
into edge disjoint triangles.

Theorem 2.2. ([2]) G is a union of triangles such that no two triangles have
a common edge; then all the triangles have a common vertex.
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22 I.H.N.RAO AND S.V.S.R.RAJU

Definition 2.2 ([3]). A semi-complete(SC) graph G is said to be strong semi-
complete (S.S.C)iff there is atleast one edge of G whose removal from G does not
affect the semi-complete property(i.e it results in a semi-complete graph).

A characterization result for a semi-complete graph to be strong semi-complete
graph is the following:

Theorem 2.3. ([3]) A semi-complete graph G is strong semi-complete iff there
is an edge uv of G such that there are atleast two paths of length 2 from u to any
point of N(v)− {u} and v to any point of N(u)− {v}.

E.Sampath Kumar [4] introduced the concept of neighbourhood sets as follows:

Definition ([4]). (i) A set S of vertices in a graph G is said to be a neigh-
bourhood set of G iff G =

∪
v∈S < N [v] >, where < N [v] > is the subgraph of G

induced by ”v” and all its neighbours(adjacent vertices) in G.
For convenience, a neighbourhood set of G is referred as n-set of G.
Since the vertex set of G is itself an n-set of G, there is no interest to discuss

about maximum n-set in a graph.
(ii)The minimum among the cardinalities of all n-sets in a graph G is called the
neighbourhood number of G and is denoted by n(G).

A characterization result for a subset of the vertex set of a graph to be an
n− set is the following:

Result 2.1. ([4]) A subset S of the vertex set V is an n-set of G iff each edge
in < V − S > (the subgraph induced by V-S in G) is in < N [v] > for some v ∈ S.

To avoid trivialities, we consider only nonempty graphs. Now we introduce
path connector set in a graph.

3. PATH CONNECTOR SET

Definitions 3.1. (i) A Path connector set(pc-set) in a graph G is a subset V ′

of the vertex set V of G such that for any distinct pair of non-adjacent vertices in
G there is a shortest path whose internal vertices are from V ′.

(ii) A path connector set in G is said to be a minimum path connector set(mpc-
set) in G iff(if and only if) it has the minimum cardinality among all the pc-sets in
G.

Example 3.1. For the graph given in Figure 1 {v3, v5, v6}, {v3, v5, v8} are mpc-
sets.

Observations 3.1. (i) As there are no non-adjacent vertices in the complete
graphKn, it follows that any subset of the vertex set ofKn is a pc-set. In particular,
the empty set is also a pc-set(infact mpc-set). So there is no interest in complete
graphs with regard to this aspect.
(ii) As there are atleast two non-adjacent vertices in a disconnected graph such that
there is no path between them it follows that pc-sets do not exist for such graphs.
Clearly
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Result 3.1. A non empty graph is connected iff it admits pc-sets.
Proof: For, if G is such a graph its vertex set itself is a pc-set(so there is no interest
to discuss about maximum pc-sets).

Conversely, ifG admits pc-sets,then by definition, it follows thatG is connected.

Note 3.1. Any nonempty connected graph admits mpc-set.
For, if V is the vertex set of G then ℘, the class of all pc-sets in G is nonempty,

since V ∈ ℘.Hence ℘ admits an element S with minimum cardinality⇒ S is a
mpc-set in G.

Theorem 3.1. (Characterization Result) G is a purely semi-complete graph
with vertex set V . Then S ⊆ V is a pc-set in G iff for every distinct pair of non-
adjacent vertices u and v in G there is a w ∈ S which is adjacent to both u and v
in G.

Proof. Since G is semi-complete there is a path of length two between any
two vertices in G. Then the shortest path between any two non-adjacent vertices
is of length two in such a graph. If S is a pc-set in G, by definition, follows the
necessary part.Conversely, if S has the property stated then clearly S is a pc-set in
G. �

Theorem 3.2. G is a purely semi-complete graph with vertex set V . Then
(a)Any pc-set in G is a dominating set in G.
(b)Further, if | S |> 2 then S is a total dominating set in G.
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Proof. Since any semi-complete graph is connected, it follows that the graph
G admits a nonempty pc-set, say S. If S is singleton say {v0} ,then since G is semi-
complete follows that every vertex of G is adjacent with v0. Thus S is a dominating
set in G.Now, assume that | S |> 2. Let u ∈ V and v ∈ S−{u}. If u is adjacent to
v then we are through; otherwise since G is semi-complete, there is a w ∈ S such
that {u,w, v} is a shortest path in G. Now u is adjacent to w ∈ S
⇒ S is a total dominating set in G.

This completes the proof of the theorem. �

Observations 3.2. (i) If S of the above theorem has exactly two elements(vertices)
then they are adjacent in G.
(ii)S of the above theorem is an independent set iff |S| = 1.

Remark 3.1. The converse of Theorem.(3.2(a)) is true iff the cardinality of
the dominating set is 1.

For, that single vertex set is clearly a pc-set (infact a mpc-set ) in G.
If the cardinality of the dominating set is > 1 then it need not be a pc-set in

view of the following:

Example 3.2. Consider the following graph G, in Figure 2

v1

v2

v3 v4
v5

v6

Figure 2

clearly {v2, v6} is a (total) dominating set in G; but this is not a pc-set in G,
since there is only one shortest path between v3 and v5,namely {v3, v4, v5} and v4
is not in {v2, v6}.
Infact, {v2, v4, v6} is a pc-set (further mpc-set) in G.

Theorem 3.3. G is purely semi-complete graph with n vertices. Then the
domination number γ(G) = 1 ⇔ |mpcs(G)| = 1.
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Proof. Since G is purely semi-complete, it follows that n > 4. Let γ(G) = 1.
So there is a v0 ∈ V (G) such that dG(v0) = n− 1. Denote S = {v0}. Let v1, v2 ∈
V (G) such that v1 and v2 are not adjacent in G. Now follows that {v1, v0, v2} is a
shortest v1 − v2 path in G ⇒ S is a pc-set in G. Since |S| = 1, it follows that S is
a mpc-set in G ⇒ |mpcs(G)| = 1

Conversely, assume that |mpcs(G)| = 1. So there is a pc-set S in G with
|S| = 1. Now, by Theorem.(3.2(a)), it follows that S is a dominating set in G
⇒ γ(G) = 1.

This completes the proof of the theorem. �
Observations 3.3. (i) From Theorem.(3.3) and observation (3.2.(ii)), it fol-

lows that for any such graph G,γ(G) = 1 ⇔ any mpc-set in G is an independent
set in G.
(ii) From Theorem.(3.2), Remark (3.1) and Theorem.(3.3),we have

A purely semi-complete graph is a union of triangles, where all the triangles
have a common vertex iff |mpcs(G)| = 1 ⇔ any mpc-set in G is an independent set
in G.
(iii) If G is a semi-complete graph such that there is a unique path of length two
between every pair of non-adjacent vertices in G, then |mpcs(G)| = 1 ⇒ there is a
unique mpc-set and it is independent set in G.

For, by Theorem.(2.2), it follows that,the edge set of G is a union of edge
disjoint triangles where all the triangles have a common vertex
⇒ γ(G) = 1
⇔ |mpcs(G)| = 1.

The converse of (iii) is false in view of the following:

Example 3.3. Consider the following graph G in Figure 3

v0

v1

v2

v3 v4

v5

Figure 3

{v0} is a mpc-set of G. But there are two paths namely {v2, v0, v5}, {v2, v1, v5}
between the pair v2, v5 of non-adjacent vertices in G.
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Theorem 3.4. G is a semi-complete graph such that |mpcs(G)| = 2. Then
γ(G) = 2.

Proof. Under the given hypothesis and Theorem.(3.3), it follows that γ(G) >
2. By Th.(3.2) follows that there is a dominating set with 2 elements; so γ(G) 6 2.
Hence γ(G) = 2. �

The converse of the above theorem is false in view of the following:

Example 3.4. For the graph given in Remark (3.1), {v2, v6} is a minimum
dominating set and so γ(G) = 2 ̸= 3 = |mpcs(G)|.

Theorem 3.5. G is a semi-complete graph such that the triangles formed by
the edges in G have a common edge, say uv iff {u} and {v} are mpc-sets in G(⇒
independent sets in G).

Proof. Under the given hypothesis ,let S = {u}.Let x, y be non-adjacent
vertices in G.
⇒ {x, y} ̸= {u, v}. So x, y lie on different triangles of G
⇒ Since uv is a common edge of the triangles, follows that {x, u, y} and {x, v, y}
are shortest x− y paths in G
⇒ {u}, {v} are mpc-sets in G.

Conversely, assume that the vertices u, v of G are such that {u}, {v} are mpc-
sets in G.
⇒ γ(G) = 1
⇒ any vertex x /∈ {u, v} of G is adjacent with both u and v. Further u and v must
be adjacent in G ; otherwise we get a contradiction to the hypothesis. Thus all the
triangles have a common edge uv.

This completes the proof of the theorem. �

Theorem 3.6. G be a semi-complete graph which has a cut-vertex,say v0. Then
{v0} is a mpc-set in G(⇒ |mpcs(G)| = 1 ).

Proof. By hypothesis follows that v0 is adjacent to all the other vertices in G
⇒ {v0} is a pc-set in G
⇒ it is an mpc-set in G(|mpcs(G)| = 1). �

The converse of Theorem.(3.6) is false in view of the following example:

Example 3.5. Consider the following graph G in Figure 4
{v0} is a mpc-set in G with |{v0}| = 1; but v0 is not a cut-vertex of G.

Now, we switch on to Edge path connector sets.

4. EDGE PATH CONNECTOR SET

Definitions 4.1. (i) Let G = (V,E) be a graph. Then E′ ⊆ E is said to be an
edge path connector set(Ed.pc-set) for G iff for every pair of non-adjacent vertices
u, v in G there is a shortest u− v path whose edges are from E′.
(ii) A Ed.pc-set with minimum cardinality is said to be a mEd.pc-set for G.
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Observation 4.1. G admits an Ed.pc-set ⇒ G is non empty connected. In
that case E is itself an Ed.pc-set. So we are interested in minimum Ed.pc-sets only.

Example 4.1. For the graph given in Figure 5

v1
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v4

v5

v6

G:

Figure 5

{v1v2, v2v3, v3v4, v4v5, v5v6, v6v1, v1v3, v3v5} is an Ed.pc-set for G. We observe
that this is a mEd.pc-set.

Result 4.1. Any Ed.pc-set in a (connected) graph is an edge dominating set.
Proof. Let G = (V,E) be a nonempty, connected graph and E′ be an Ed.pc-set
for G. If E′ = E then the result is trivial.

Otherwise, let e ∈ E −E′. Take any e′ ∈ E′.If e&e′ are adjacent in G, then e′

dominates e. Otherwise, let u be an end of e and u′ be an end of e′. Since u&u′
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are non-adjacent vertices in G, there is a shortest u−u′ path whose edges are from
E′.
⇒ there is an edge f ∈ E′ such that e&f are adjacent(having the common end u)
in G. Hence E′ is an edge dominating set in G.

The converse of the above result is false in view of the following:

Example 4.2. For the graph given in Example(3.2),E′ = {v4v6, v2v6, v2v4} is
an edge dominating set in G; it is not an Ed.pc-set for G, since there is no shortest
v3 − v5 path whose edges are from E′.

Theorem 4.1. (Characterization Result) G is a purely semi-complete graph

with edge set E. Then E
′ ⊆ E is an Ed.pc set in G iff for every pair of distinct

non-adjacent vertices u, v in G, there are adjacent edges e, f in E
′
such that e

incident with u and f incident with v.

Proof. Under the given hypothesis, let E
′
be an Ed.pcs(G). Let u, v be two

non-adjacent vertices in G. Now follows that any shortest path between u and v is
of length 2. So by the definition of E

′
follows the necessary part.

Conversely if E
′
has the property stated, clearly E

′
is an Ed.pc set in G. �

Result 4.2. G is a purely semi-complete graph and S is a pc-set. Then the
set of all edges which are incident with the vertices of S is an Ed.pc-set for G.
Proof: Under the given hypothesis, let E′ = {e ∈ E : e is incident with an element of S}.
Let v1, v2 be two non-adjacent vertices in G. Since G is semi-complete and S is a
pc-set for G follows that there is v3 ∈ S such that {v1, v3, v2} is a path in G.
⇒ v1v3, v3v2 ∈ E′

⇒ A shortest path from v1 to v2 has edges from E′

⇒ E′ is an Ed.pc-set in G.

Observation 4.2. The converse of the above result is false in view of the
following:

Example 4.3. Consider the graph G in Figure 6:
S = {v5} is a pc set for G and E

′
= {v1v2, v2v3, v3v4, v4v5, v5v1} is an Ed.pc-set

for G. But, except the edges v4v5 and v5v1 no other edges of E
′
is incident with

v5.

Result 4.3. G is a purely semi-complete graph. If |mpcs(G)| ̸= 1 then any
Ed.pc-set for G is an edge cover for G.
Proof: Let E′ be an Ed.pc-set for G. Since |mpcs(G)| ̸= 1 follows that γ(G) ̸= 1.
Hence for every u ∈ V (G) there is a v ∈ V such that u is not adjacent to v in G.
Since G is semi-complete any shortest u− v path in G has length 2. Since E′ is an
Ed.pc-set for G there is a w ∈ V such that uw, vw ∈ E′

⇒ every vertex of G lies on a an edge of E′.
⇒ E′ is an edge cover for G.

The converse is false in view of the following:

Example 4.4. Consider the graph G in Figure 7:
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{v1v2, v3v4, v5v6} is an edge cover for G; but it is not an Ed.pc-set for G, since
there is no shortest v1 − v3 path. Further |mpcs(G)| ̸= 1.

Result 4.4. G = (V,E) is a purely semi-complete graph having a unique path
of length 2 between any pair of non-adjacent vertices. Then G has
(i) Unique mpc set with single element,say v0.

(ii)Unique mEd.pc set E
′
given by {v0v : v ∈ V − {v0}}.

Proof: By hypothesis, in virtue of Theorems (2.2) and (2.3), it follows that E is a
union of edge disjoint triangles having a common vertex say v0. Now follows that
v0 is the only vertex which is adjacent with all other vertices of G. Hence follows
that {v0} is the only mpc set in G. This proves (i).

Consider E
′
= {v0v : v ∈ V − {v0}}.

Let v1 and v2 be any two non-adjacent vertices in G, then clearly v1 ̸= v0 ̸= v2 and
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{v1, v0, v2} is a(the) shortest v1 − v2 path, where v0v1, v0v2 ∈ E
′
. Hence E

′
is an

Ed.pc set of G.
If ′n′ is the number of edge disjoint triangles in G, then follows that |E′ | = 2n.

If E
′′ ⊆ E with |E′′ | < 2n then there is atleast one v ∈ V − {v0} such that

v0v /∈ E
′′
. Since G has atleast four vertices there is a vertex v

′
which is non-

adjacent with v. Now there is no path of length 2 between v and v
′
with edges

from E
′′ ⇒ E

′′
is not an Ed.pc set for G. Hence E

′
is a mEd.pc set for G. Clearly

E
′
is unique. This proves (ii).
Thus the proof of the theorem is complete.

Note 4.1. If the edge set of G is a union of ′n′ edge disjoint triangles then,
we observe that |mEd.pcs(G)| = 2n. The converse of this is false in view of:

Example 4.5. Consider the following graph in Figure 8:

v0

v1 v2

v3

v4
v5

v6

G:

Figure 8

|mEd.pcs(G)| = |{v0v1, v0v2, v0v3, v0v4, v0v5, v0v6}| = 6 = 2(3) = 2(Number of
edge disjoint triangles).
But the edge set of G is not a union of ’3’ edge disjoint triangles.

Result 4.5. G is a purely semi-complete graph which is a union of ′n′ triangles
having a common edge. Then |mEd.pcs(G)| = n.
Proof: Under the given hypothesis follows that there are (n + 2) vertices in G.
Let uv be the common edge of all the ′n′ triangles. Now follows that {u} and
{v} are mpc-sets for G.Now by Result(4.7),{uw : w ∈ V (G)} is an Ed.pc-set for
G.Since u&v are adjacent with all the remaining (n + 1) vertices it follows that
E′ = {uw : w ∈ V (G)}− {uv} is an Ed.pc-set for G with |E′| = (degG(u))− 1 = n
Similarly E′′ = {vw : w ∈ V (G)} − {uv} is an Ed.pc-set for G with E′′ = n.
Let E0 ⊆ E with |E0| < n
⇒ there is a w ∈ V (G)−{u, v} such that uw and vw are not in E0. Let w

′ be any
non-adjacent vertex with w. Now there is no shortest w−w′ path with edges from
E0

⇒ |mEPCS(G)| = |E′| = |E′′| = n.
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Result 4.6. G is a purely semi-complete graph with edge set E and S is a
pc-set for G. Let F = {e ∈ E : e is incident with S}; then H = G(F ) is connected.
Proof: Under the given hypothesis G[S] ⊆ H. Let v1, v2 ∈ V (H).
Now either none of v1, v2 are in S or atleast one of v1, v2 is in S.
Case:1 v1, v2 /∈ S.
Now there exists v3, v4 ∈ S such that v1v3, v2v4 ∈ F . Since v3, v4 ∈ S and G[S] is
connected, there is a v3 − v4 path in G[S]
⇒ v1, v2 are connected in F .
Case:2 Only one of v1, v2 /∈ S.
w.l.g we can suppose that v2 /∈ S ⇒ v1 ∈ S . Now there is a v3 ∈ S such that
v2v3 ∈ F . Since there is a v1 − v3 path in S follows that v1, v2 are connected in F .

Thus F is a connected graph.

Result 4.7. G is a purely semi-complete graph with (n+1) vertices and having
a unique mpc-set and |mpcs(G)| = 1. If |mEd.pcs(G)| < n, then G is strong semi-
complete . Proof: Under the given hypothesis there exists a subgraph G′ of G
such that the edge set of G′ is a union of disjoint triangles having common vertex
⇒ |mEd.pcs(G

′
)| = n.

Since |mEd.pcs(G)| < n ⇒ ∃ vertices v1, v2 on different triangles that are adjacent
in G.
⇒ ∃ an edge between two vertices lying on different triangles having a common
vertex. Hence by a Theorem.(2.3) G is strong semi-complete.

Now,we consider path- critical edges.

5. ON PATH-CRITICAL EDGES

Definitions 5.1. (i) An edge e in a nonempty,connected graph is said to be a
path-critical edge w.r.t a mpc-set S in G iff |mpcs(G− e)| > |mpcs(G)|.
(ii) G is said to be path-critical edge free w.r.t. S iff no edge of G is a path-critical
edge w.r.t. S.

Example 5.1. (i) In the following graph in Figure 9
S = {v2} is the only mpc-set in G. The edge v2v5 is a path-critical edge(w.r.t.

S) in G, since {v2, v5}, {v2, v4} are mpc-sets in G− v2v5.
So |mpcs(G− v2v5)| = 2 > 1 = |mpcs(G)|.

(ii) In the graph given in Remark(3.1), S = {v2, v4, v6} is the only mpc-set in G.
For any edge e of G,mpcs(G− e) = {v2, v4, v6} = mpcs(G).
So G has no path-critical edges (w.r.t S). Thus G is a path-critical edge free w.r.t
S.

Theorem 5.1. (Characterization Result) G is a purely semi-complete graph
and S is a mpc-set of G. Then the edge e = uv of G is a path-critical edge in G
w.r.t S iff u and v do not a common neighbour from S(⇒ N(u)

∩
N(v)

∩
S = Φ ).

Proof. Under the given hypothesis, let e = uv be a path-critical edge in G
w.r.t S. Suppose u and v have a common neighbour from S. Let x,y be any two
non-adjacent vertices in G− e.If {x, y} = {u, v}, then by our supposition there is a
w in S such that {w, x, y} is a (minimum) path in (G− e).
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Figure 10

If {x, y} ̸= {u, v} then x and y are non-adjacent vertices in G as well . Since
G is semi-complete, by the definition of S there is a w0 in S such that {x,w0, y} is
a minimum path in G− e. Hence follows that S is also a mpc-set in G− e.
⇒ e is not a path-critical edge w.r.t. S in G and hence our supposition is false.

Conversely, assume that e = uv is such that u and v do not have a common
neighbour from S. Let

V1 = {w ∈ V (G) : {u,w, v}is a path in G}.

Since G is semi-complete it follows that V1 ̸= Φ.
By hypothesis S

∩
V1 = Φ ⇒ S is not a path connector set for G − e. Further

S′ = S
∪
{w0}, where w0 ∈ V1 is a pc-set in G− e. By the property of S, it follows

that S′ is a mpc-set for G− e.Hence

|mpcs(G− e)| = |mpcs(G)|+ 1 > |mpcs(G)|
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⇒ e is a path-critical edge w.r.t S in G.
This completes the proof of the theorem. �

Corollary 5.1. G is a purely semi-complete graph and S is a mpc-set for G.
Then G is path-critical edge free graph w.r.t S iff the ends of each edge of G has
atleast one neighbour from S.

Theorem 5.2. G is a purely semi-complete graph whose edge set is a union of
triangles having a common edge. Then there is exactly one path-critical edge w.r.t
any mpc-set in G.

Proof. Under the given hypothesis, let e = uv be the common edge of the
triangles. Now follows that {u} and {v} are the only mpc-sets in G. Clearly e is a
path-critical edge w.r.t these mpc-sets. Further for any other edge ′f ′ of G, u and
v are the only mpc-sets in G − f also. So no other edge is path-critical w.r.t {u}
and {v}.

This completes the proof of the theorem. �

Theorem 5.3. G is a purely semi-complete graph with ′n′ vertices and |mpcs(G)| =
1. Then G has exactly (n− 1) path-critical edges w.r.t any mpc-set S of G.

Proof. By hypothesis we can assume that, S = {v0}(v0 ∈ V (G)) is a mpc-set
for G. Then for any v1 ∈ V − S, we have v1v0 ∈ E(G).
⇒ |mpcs(G−v0v1)| = 2 > 1 = |mpcs(G)|
⇒ v0v1 is a critical edge for G,w.r.t S.
Let u, v ∈ E(G) ∋ u ̸= v0 ̸= v. Since G is semi-complete follows that G − uv is
connected and so {u, v0, v} is a minimum path in it ⇒ uv is not a path-critical edge
w.r.t. S ⇒ G has exactly (n− 1) critical edges. �

Corollary 5.2. G be a purely semi-complete graph which is path-critical edge
free w.r.t a mpc-set S of G. Then |mpcs(G)| > 1.

Proof. Under the given hypothesis, if |mpcs(G)| = 1; then by Theorem.(5.3)
it follows that G has critical edges w.r.t the mpc-set, say S. This contradicts the
hypothesis on S. Hence the result holds. �

Observation 5.1. The converse of the above corollary is false in view of the
following example in Figure 11:

S = {v1, v3} is a mpcs(G), but G is not critical edge free graph w.r.t S.
Finally, we end up by considering the neighbourhood sets.

6. ON NEIGHBOURHOOD SETS

Using the Result(2.1) and Corollary(5.1)we have the following characterization
result for a pc-set in a purely semi-complete graph to be an n-set for G.

Theorem 6.1. S is a pc-set in a purely semi-complete graph G whose vertex set
is V. S is an n-set of G iff every edge in (the subgraph) < V −S > is a non-critical
edge in G w.r.t S.
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v1
v2

v3

v4v5

v6
G   :

Figure 11

Observation 6.1. S is an n- set of a purely semi-complete graph G. Then
every edge of G need not be a non-critical edge for G w.r.t S.

Example 6.1. Consider the graph G given in Figure 12

v1
v2

v3

v4v5

G:

Figure 12

Clearly S = {v3} is an n-set of G. But the edges v1v2, v3v4 are critical w.r.t S.

Theorem 6.2. S is an independent path connector set for the purely semi-
complete graph G. Then S is an n-set for G.

Proof. Under the given hypothesis, by observation.(3.2(ii)) it follows that
|S| = 1. Let S={v0}. So follows that every vertex of G other than v0 is adjacent
with v0. Hence follows that S is an n-set. �

Remark 6.1. The converse of the above theorem is false in view of the fol-
lowing:
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Example 6.2. Consider the graph G given in Example(4.1):
S = {v1, v3, v5} is an n-set for G. But this is not an independent set(Infact, any
two of them are adjacent in G).

Theorem 6.3. G is a purely semi-complete G with vertex set V and S ⊆ V .
If each triangle in G has atleast one vertex from S then S is an n-set of G.

Proof. Under the given hypothesis, consider any edge e = pq of G. Since G is
semi-complete there is an r ∈ V such that {p, q, r} is a path in G. Now {p, q, r, p}
is a triangle in G. By hypothesis either p or q or r is in S ⇒ e ∈< N [v] >, where
v ∈ S. Since e is arbitrary follows that G =

∪
v∈S < N [v] >.

Thus S is an n-set of G. �
Observation 6.2. The converse of Theorem.(6.2) is false in view of the fol-

lowing:

Example 6.3. For the graph in Example(3.2),S = {v1, v3, v5} is an n-set for
G. But the triangle {v2, v4, v6} has no vertex from S.

From Theorem.(6.2),we have the following:

Corollary 6.1. G be a purely semi-complete graph, then n(G) 6 s, where s
is the number of vertex disjoint triangles in G.

Theorem 6.4. G is a purely semi-complete graph in which there is a unique
path of length 2, between any pair of non-adjacent vertices in G. Then any pc-set
is an n-set for G.

Proof. Under the given hypothesis,by Theorem.(2.1) and Theorem.(2.2) G
is a union of edge disjoint triangles where all the triangles of G have a common
vertex(say v0). Then any non-trivial pc-set of G, contains v0. By the property of
v0, in virtue of Theorem.(6.3) follows that any pc-set is an n-set for G. �

Finally we prove the following:

Theorem 6.5. G is a purely semi-complete graph with vertex set V and S ⊆
V is an independent n-set of G. If < Sc > is a clique, then Sc is a pc-set for G.

Proof. Under the given hypothesis, let u, v be any non-adjacent vertices in
G. Since G is semi-complete there is w ∈ V such that {u,w, v} is a path in G.

Since S is an n-set follows that atleast one of u, v is in S.
Without loss of generality we can suppose that u ∈ S. Since w is adjacent

with u in G and S is an independent set follows that w /∈ S ⇒ w ∈ Sc. Since u, v
are arbitrary non-adjacent vertices in G follows that Sc is a pc-set(Infact minimum
pc-set) in G. �

Remark 6.2. The converse of the above Theorem is false in view of the fol-
lowing:

Example 6.4. Consider the following graph G in Figure 13:
Let S = {v2, v3, v5, v6}. Now Sc = {v1, v4}.< Sc > is a clique and Sc is a

pc-set for G.
But S is not an independent n-set of G.
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v1

v2

v3

v4

v5

v6

G  :

Figure 13

7. Conclusion

As semi-complete graphs play a vital role in tackling defence problems, a com-
plete study of these graphs gives an overall view to apply them in our practical
problems. Thus a continuous study about these graphs is made.
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