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SETS WITH APARTNESS

ORDERED UNDER CO-QUASIORDER.

REVIEW AND SOME NEW REFLECTIONS

Daniel Abraham Romano

Abstract. The logical and working environment of this text is the Intuition-

istic Logic - a logic without the principle of ’Tertium non datur’ and with

respect for the principled-philosophical orientation of Bishop’s constructive
mathematics. This orientation allows us to construct mathematical concepts

on the relational structures of the type (X,=, ̸=) as the basic carriers where
′ ̸= ′ is a diversity relation / apartness significantly different than in the classic
case. Studying algebraic structures with apartness in the period 1985-1988,

this author reached completely natural to the concept of co-equality relations

on sets with apartness. By varying the requirements for which these rela-
tions were determined, he constructed the concept of co-quasiorder relations

(the concept of co-order relations) as the dual of the quasi-order relation (the

relation of the partial ordering). In addition to the recapitulation of the prop-
erties of these relations, this article will also discuss co-ideals and co-filters in

ordered sets under co-quasiorder. Also, some new results are presented in this
article. Developed ideas and results are the specificity of the orientation of the

Bishop’s mathematics and often do not have their counterparts in the classical

theory of ordered sets.

1. Introduction

1.1. Logical Environment. Our setting is Bishop’s constructive mathemat-
ics Bish ([3], [4], [7], [9], [22] and [64]), mathematics developed with Constructive
logic (or Intuitionistic logic IL [64]) - logic without the Law of Excluded Middle
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P ∨ ¬P [TND]. We have to note that so-called ’the crazy axiom’ ¬P =⇒ (P =⇒ Q)
is included in the Constructive logic. Precisely, in Constructive logic the ’Double
Negation Law’ P ⇐⇒ ¬¬P does not hold, but the following implication P =⇒ ¬¬P
holds even in Minimal logic. In Constructive logic ’Weak Law of Excluded Middle’
¬P ∨ ¬¬P does not hold as well. It is interesting, in Constructive logic the fol-
lowing deduction principle A ∨ B,¬A ⊢ B holds, but this is impossible to prove it
without ’the crazy axiom’.

Bishop’s constructive mathematics includes the following two aspects:
(1) The Intuitionistic logic and
(2) The principled-philosophical orientations of constructivism.

1.2. Set with apartness. Intuitionistic logic does not accept the TND prin-
ciple as an axiom. In addition, Intuitionistic logic does not accept the validity of the
’double negation’ principle. This makes it possible to have a difference relation in
sets which is not a negation of equality relation. Dual of the equality relations ’=’
in a set A is diversity relation ’ ̸=’. Therefore, we accept that in Bishop’s construc-
tive mathematics we consider set A as one relational system (A,=, ̸=). Now, we
look at the carrier A as a relational system (A,=, ̸=), where ′ = ′ is the standard
equality, and ′ ̸= ′ is an apartness [3, 7]:

(∀x, y ∈ A)(x ̸= y =⇒ ¬(x = y)) (consistency);
(∀x, y ∈ A)(x ̸= y =⇒ y ̸= x) (symmetry);
(∀x, y, z ∈ A)(x ̸= z =⇒ (x ̸= y ∨ y ̸= z)) (co-transitivity).

This last relation is extensional in term of the equality in the following sense:

= ◦ ̸=⊆ ≠ and ̸= ◦ =⊆ ≠

where ′ ◦ ′ is the standard mark for the composition of the relations. It is obvious
that the following connection between these relations is valid:

= ⊆ ¬ ̸= .

In this case for relations = and ̸= we say that they are associate. So, it’s quite
natural to ask the question:

Question 1.1. Let in the set X we have the equation relation ’=’. With ̸==,
for single use, we denote the family of apartness relations associated with the given
relation =. How to check if ̸== is an empty set or it is inhabited? Is there the
maximal relation ’̸=’ such that it is associated with equality ’=’?

Note 1.1. According to the above, it seems justified to consider that for one
relation equality on a given set X there can be several apartness relations that
associated with it. Accepting this possibility, there is a need to design a hierarchy
among apartness relations associated with the given equality.

Generally speaking: Let S be a subset of set (A,=, ̸=) determined by a pred-
icate P. The first task is to construct a dual T of the set S so that the subsets
¬T = {a ∈ A : ¬(a ∈ T )} and its strong compliment T� = {a ∈ A : a � T} have
property P where a� T means (∀t ∈ T )(t ̸= a). In addition, T� ⊆ ¬T holds.
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If the relation ′ ̸= ′ satisfies only the first two conditions, then it is said to be
a ’diversity relation’. Let X and Y be subsets of A. Let us determine X ̸= Y if is
valid

(∃x ∈ X)¬(x ∈ Y ) ∨ (∃y ∈ Y )¬(y ∈ X).

Obviously, this relation is not an apartness relation in the family P(A) of all subsets
of A. In this collection, an analogous relation to an apartness relation in a set can
be introduced on axiomatic way as it is, for example, done in the [8] or, in the way
it is shown in article [25]. We will write X ▷◁ Y if it is

(∀x ∈ X)(x� Y ) ∧ (∀y ∈ Y )(y �X).

This relation is a diversity relation in the family P(A) of all subsets of A and it is
not an apartness, in the general case.

For example, if (A,=A, ̸=A) and (B,=B , ̸=B) are sets with apartnesses, then
at the A×B this relation is determined as follows

(∀x, x′ ∈ A)(∀y, y′ ∈ B)((x, y) ̸= (x′, y′) ⇐⇒ (x ̸=A x′ ∨ y ̸=B y′)).

For a natural number n, we put n := {1, 2, ..., n} Let {(Xt,=t, ̸=t)}t∈n be a family
of sets with apartness. For the pair (x1, ..., xn), (y1, ..., yn) ∈

∏
t∈n, it is defined

(x1, ..., xn) = (y1, ..., yn) ⇐⇒ (∀ t ∈ n)(xt =t yt)

(x1, ..., xn) ̸= (y1, ..., yn) ⇐⇒ (∃ t ∈ n)(xt ̸=t yt).

Generally, if {(Xy,=t, ̸=y)}t∈T is a family of sets with apartness, then in the Carte-
sian product

∏
t∈T Xt (̸= ∅) the equality and the apartness are determined by the

following:

(∀ a, b ∈
∏
t∈T

Xt)(a = b ⇐⇒ (∀ t ∈ T )(a(t) =t b(t))),

(∀ a, b ∈
∏
t∈T

Xt)(a ̸= b ⇐⇒ (∃ t ∈ T )(a(t) ̸=t b(t))).

Remark 1.1. In the previous analysis, accepting the validity of the condition∏
t∈T Xt ̸= ∅ in advance is necessary because, in Constructive Mathematics, which

does not take into account the Axiom of choice, it is not possible to verify this
requirement. For constructive set theory see [1].

For function f : A −→ B, it is said to be strongly extensional [59] if the
following

(∀x, y ∈ A)(f(x) ̸=B f(y) =⇒ x ̸=A y)

holds. For function f : A −→ B, it is said to be an embedding [59] if the following

(∀x, y ∈ A)(x ̸= y =⇒ f(x) ̸=B f(y))

holds.

In what follows, in the writing of relations of equality and the relation of apart-
nesses, we will always omit the indexes whenever it is possible and when it will not
allow a different understanding of what the author imagined.
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1.3. Our intention with this article. By choosing the Intuitionistic logic
instead of the Classic logic as a logic background, when looking at and developing
possible algebraic structures, the first opens much more possibilities than is the
case with the Classic algebra. The obligation of mathematicians is to recognize
them, describe them and correctly point out their properties and, if possible, prove
them in a logically acceptable way. The designed material on logically possible
ideas and concepts and their relationships with each other should be acceptable to
those who affect the perception of the logic of the possible structures that it allows
by prior orientation. The vast majority of mathematicians adhere to the orienta-
tion that Constructive Mathematics has the meaning in the following sense: The
procedures and algorithms used in proving within its aspects must be constructive
in the colloquial sense of the word. This attitude greatly narrows the scope of this
domain. Speaking in a colloquial language, it is rather unusual (it can also be said
astoundingly) that the academic community for a long time was reluctant to accept
the possibilities that offer the choice of the Intuicionistic logic for background in
the perception, understanding and development of algebraic structures.

By choosing Intuitionistic logic instead of classical logic for the work environ-
ment, the possibility of perceiving and analyzing the algebraic world parallel to
the classical algebraic world is opened. This author deeply believes that such a
world exists and that it should be of interest to both the academic community
of mathematicians and the academic community of researchers in the philosophy
of mathematics. By accepting the existence of an independent entity ’apartness
relation ̸= on set (S,=)’, which has a strong connection with the equation =, and
the construction of algebraic structures on the relational system (S,=, ̸=) allows to
mathematicians to accept the existence of two intertwined algebraic worlds. Such
a commitment would enable them not only to see the newly discovered algebraic
world, but also to better understand the classical world by recognizing the prop-
erties of the intertwining of these two algebraic worlds. For example, in inverse
semigroups ([12, 58]), designed on the relational system (S,=, ̸=), the existence of
an interconnected pair of natural order relations on them can be shown: the nat-
ural order ⩽ and the natural co-order ⩽̸. The observed environment enables the
recognition of pairs of interconnected substructures such as, for example, ideals and
co-ideals, and filters and co-filters on such semigroups. Also, connections between
elements in such semigroups often occur in pairs: for example, one such pair is the
concepts of congruences and co-congruences on semigroups with apartness.

It is now quite natural to try to answer the question:
Are inverse semigroups and inverse semigroups with apartness one and the

same class of semigroups?
If we look at these algebraic structures through the eyes of a traditional mathe-
matician, then it is obvious that they are two classes of algebraic structures built on
different supports. If we look at these algebraic structures through the eyes of an
open-minded mathematician through non-traditional glasses, then, of course, it is
only one class of algebraic structures. The essence is that looking through the first
glasses, one cannot notice the complexities of algebraic structures, but perceiving
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these complexities in constructed algebraic structures allow looking through other
spectacles.

In this text, some of the received results that do not have their counterparts in
the Classical theory are presented, such as, for example, the concept of co-equality
relations on sets with apartness (Section 2). Some of the information in subsection
2.4 (Theorem 2.7 and Corollary 2.3) and subsection 2.6 (Theorem 2.12) appears for
the first time. In Section 3 are presented the concept of co-quasiorder relations on
sets with apartness and described some of the obtained results related to ordered
sets under these relations. Part of the material on display (Definition 3.5 and
Definition 3.6, Proposition 3.5 and Proposition 3.6) in Subsection 3.2 is new and
it appears for the first time. In section 4 we analyze the mappings between co-
quasiordered relational systems. The material exposed in subsection 4.5 is new an
it is appears for the first time.

2. Co-equality relations

2.1. Insight into the historical development of the concept. Let (R,=
, ̸=,+, 0, ·, 1) be a commutative ring in the sense of books [7, 26, 59, 29, 64] and
papers [32]. A subset K of R is a co-ideal of R ([32], Definition2) if the following
holds

0�K,
−x ∈ K =⇒ x ∈ K,
x+ y ∈ K =⇒ (x ∈ K ∨ y ∈ K) and
xy ∈ K =⇒ (x ∈ K ∧ y ∈ K).

Co-ideals of commutative ring with apartness was first defined and studied by
Wim Ruitenburg 1982 in his dissertation [59]. After that, co-ideals (anti-ideals)
studied by A. S. Troelstra and D. van Dalen in their monograph [64]. Co-ideals
of commutative rings with apartness studied by this author in his dissertation [29]
and several his papers (see, for example, [32]). He proved, in [32], if K is a co-ideal
of R, then the relation q on R, defined by

(x, y) ∈ q ⇐⇒ x− y ∈ K,

satisfies the following properties
(1) (∀a ∈ R)((a, a)� q), (consistency)
(2) (∀a, b ∈ R)((a, b) ∈ q =⇒ (b, a) ∈ q), (symmetric)
(3) (∀a, b, c ∈ R)((a, c) ∈ q =⇒ ((a, b) ∈ q ∨ (b, c) ∈ q)), (co-transitivity)
(4) (∀a, b, c, d ∈ R)((a+ c, b+ d) ∈ q =⇒ ((a, b) ∈ q ∨ (c, d) ∈ q),
(5) (∀a, b, c, d ∈ R)((ac, bd) ∈ q =⇒ ((a, b) ∈ q ∨ (c, d) ∈ q)).

The relation q on R, which satisfies the above properties, is called co-congruence
on R ([32]). Inversely, if q is a co-congruence on a ring R, then the set Q = {a ∈
R : (a, o) ∈ q} is a co-ideal of R ([32], Proposition 2.5). Let J be an ideal of R and
let K be a co-ideal of R. Ruitenburg, in his dissertation [59], first stated a demand
that

J ⊆ ¬K.
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This condition is equivalent with the following condition

(∀a, b ∈ R)(a ∈ J ∧ b ∈ K =⇒ a+ b ∈ K).

In this case, we say that J and K are associated. A relation q on a set R with
apartness, which satisfies the conditions (1)-(3), is called a co-equality relation.
Coequality relation was first defined and studies by D. A. Romano in his dissertation
[29] and in his early works (see, for example, [30, 5, 31, 33, 34, 35, 36, 37, 43,
44, 45, 46]).

2.2. Concept of co-equality relations. Let ρ be an equivalence relation on
the set A. For the relation q we say that it is a co-equality relation on A [29, 38]
if and only if the following is valid

q ⊆ ≠, (consistency), q−1 = q, (symmetric) and q ⊆ q ∗ q. (co-transitivity).
Here, ’∗’ is the filed product between relations defined by the following way: If α
and β are relations on set A, then filed product β ∗ α of relation α and β is the
relation given by {(x, z) ∈ A×A : (∀y ∈ A)((x, y) ∈ α ∨ (y, z) ∈ β)}.

If the relations ρ and q are associated, i.e., if the following ρ ◦ q ⊆ q and
q ◦ ρ ⊆ q holds, it is possible to design the factor-set

A/(ρ, q) := {xρ : x ∈ A}
where the equality ’=1’ and the apartness ’ ̸=1 on it are determined in the following
way:

(∀x, y ∈ A)(aρ =1 yρ ⇐⇒ (x, y) ∈ ρ)

and
(∀x, y ∈ A)(xρ ̸=1 yρ ⇐⇒ (x, y) ∈ q).

It is easy to check that the relations of equality ’=1’ and apartness ’̸=1’, determined
in this way, are associated: Let x, y, z ∈ A be arbitrary elements such that xρ =1

yρ and yρ ̸=1 zρ. Then (x, y) ∈ ρ and (y, z) ∈ q. From (y, z) ∈ q it follows
(y, x) ∈ q ∨ (x, z) ∈ q by co-transitivity of q. Thus (x, z) ∈ q since the first option
is impossible according to associativity of ρ and q. This means xρ ̸=1 zρ. That the
second inclusion is valid can be shown in an analogous way to the previous one.

In order to emphasize the differences, in this analysis we used indices with the
relations equality and co-equality on the factor set (A/(ρ, q),=1, ̸=1) in relation to
the initial set (A,=, ̸=).

Of course, the strong compliment q� of the relation q is an equivalence in A
and the following

q� ⊆ ¬q, q ◦ q� ⊆ q and q� ◦ q ⊆ q

are valid. Although the evidence of this claim is known, we will again show it here
that the reader can gain an impression of the proof technique that is applied.

Proposition 2.1. The strong compliment q� of the relation q is an equivalence
in A and the following q� ⊆ ¬q, q ◦ q� ⊆ q and q� ◦ q ⊆ q holds.

Proof. Obviously, It is true that =⊆ q� and that q� is a symmetric relation.
We need to prove that q� is a transitive relation. Let x, y, z, u, v ∈ A arbitrary
elements such that (x.y)� q, (y, z)� q and (u, v) ∈ q. Then
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(u, x) ∈ q ∨ (x, y) ∈ q ∨ (y, z) ∈ q ∨ (z, v) ∈ q

by co-transitivity of q. From here follows (u, x) ∈ q ⊆ ≠ or (z, v) ∈ q ⊆ ≠ by
consistency of q and by taking into account the hypothesis of this deduction. So,
u ̸= x and z ̸= v therefore (x, z) ̸= (u, v) ∈ q. Finally, we have (x, z) � q. On this
way, the transitivity of the relation q is proven.

For the sake of illustration, we will prove inclusion q ◦ q� ⊆ q. The second
inclusion can be proven by an analogous way. Let x, z be arbitrary elements of A
such that (x, z) ∈ q ◦ q�. Then there exists an element y ∈ A such that (x, y) ∈ q�

and (y, z) ∈ q. Thus (y, x) ∈ q or (x, z) ∈ q by co-transitivity of q. Since, the first
option is impossible because q� is a symmetric relation on A and (y, x) � q, we
have (x, z) ∈ q. □

As corollary of above Proposition 2.1 we can construct the quotient-set

A/(q�, q) = {aq� : a ∈ A}
with

aq� = bq� ⇐⇒ (a, b)� q and aq� ̸= bq� ⇐⇒ (a, b) ∈ q.

For the total surjective function

π : A −→ A/(q�, q),

defined by the π(a) = aq� (a ∈ A), it is said that the canonical mapping from A
onto A/(q�, q).

Proposition 2.2. The canonical mapping π : A −→ A(q, q�) is strongly
extensional.

Proof. Indeed: Let xq� and yq� two arbitrary elements of A/(q�, q) such
that π(x) = xq� ̸= yq� = π(y). Then (x, y) ∈ q. Thus x ̸= y by consistency of
q. □

The following theorem describes some basic properties of the classes of the
relation q.

Theorem 2.1 ([5]). Let q be a co-equality relation on a set (A,=, ̸=). For the
family {qx}x∈A, where qx = {y ∈ A : (x, y) ∈ q}, the following holds:

(i) x� xq; (ii) xq = qx; (iii) (x, y) ∈ q =⇒ xq ∪ yq = A for any x, y ∈ A.

Proof. Let x ∈ A be an arbitrary elements and let u be an arbitrary element
of xq. Then (u, x) ∈ q ⊆ ≠. Thus x ̸= u ∈ xq. So, x � xq. It is clear that
xq = qx since q is symmetric. Let (x, y) be an arbitrary element of q and let t be
an arbitrary element of A. Then (x, t) ∈ q ∨ (t, y) ∈ q by co-transitivity of q. Thus
t ∈ xq ∨ t ∈ qy = yq. So, t ∈ xq ∪ yq. Finally, (x, y) ∈ q =⇒ A = xq ∪ yq. □

Example 2.1. (1) The relation ¬(=) is an apartness relation on the set Z of
integers.

(2) The relation q, defined on the set QN by

(f, g) ∈ q ⇐⇒ (∃k ∈ N)(∃n ∈ N)(m ⩾ n =⇒ |f(m)− g(m)| > k−1),
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is a coequality relation.
(3) A ring R is a local ring if for each r ∈ R, either r or 1− r is a unit, and let

M be a module over R. Then the relation q on M , defined by (x, y) ∈ q if there
exists a homomorphism f : R −→ M such that f(x − y) is a unit, is a coequality
relation on M .

Example 2.2. ([33], Theorem 4) Let T be a set and J be a subfamily of P(T )
such that

∅ ∈ J , A ⊆ B ∧ B ∈ J =⇒ A ∈ J , A ∩B ∈ J =⇒ A ∈ J ∨ B ∈ J .

If {Xt}t∈T is a family of sets, then the relation q on
∏

t∈T Xt (̸= ∅), defined by

(f, g) ∈ q ⇐⇒ {s ∈ T : f(s) = g(s)} ∈ J,

is a coequality relation on the Cartesian product
∏

t∈T Xt.

Example 2.3. ([31]) Let T be a set and K be a subfamily of P(T ) such that

T ∈ K, A ⊆ B ∧ A ∈ K =⇒ B ∈ K, A ∪B ∈ K =⇒ A ∈ K ∨ B ∈ K.

If {Xt}t∈T is a family of sets, then the relation q on
∏

t∈T Xt (̸= ∅), defined by

(f, g) ∈ q ⇐⇒ {s ∈ T : f(s) ̸= g(s)} ∈ K,

is a coequality relation on the Cartesian product
∏

t∈T Xt.

2.3. Concept of co-partitions. Before proceeding to a further analysis, we
recall the term ’strongly extensional subset of the set’: for a subset X of the set
(A,=, ̸=) it is said that a strongly extensional subset of the set A if

(∀x, y ∈ A)(x ∈ X =⇒ (x ̸= y ∨ y ∈ X))

is valid. A coequality relation q on A is strongly extensional subset of A× A: Let
(x, y) ∈ q and (u, v) ∈ A×A be arbitrary elements. Then:

(x, y) ∈ q =⇒ ((x, u) ∈ q ∨ (u, v) ∈ q ∨ (v, y) ∈ q)
=⇒ (x ̸= u ∨ (u, v) ∈ q ∨ v ̸= y)
=⇒ ((x, y) ̸= (u, v) ∨ (u, v) ∈ q).

In addition, it has shown that the classes of any co-equality relation q are
strongly extensional subsets of A. Indeed. Let x, y and u be arbitrary elements
of A such that u ∈ xq. Then (x, u) ∈ q. This (x, y) ∈ q ∈ ∨ (y, u) ∈ q by co-
transitivity of q. It is follows y ∈ xq ∨ y ̸= u . So, the subset xq is a strongly
extensional subset of A.

Now, suppose that a family {Xt}t∈A of strongly extensional proper subsets of
A satisfies the following two conditions:

(a) For any t ∈ A there exists a strongly extensional subset Xt such that that
t�Xt;

(b) Xt ̸= Xs =⇒ Xt ∪Xs = A for any t, s ∈ A.

Then the relation R on A defined by

(x, y) ∈ R ⇐⇒ (∃u ∈ A)(x ∈ Xu ∧ y �Xu)

is a co-equality in A ([38, 52]).
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For a set (A,=, ̸=) and a co-equality relation q on A, the family {aq : a ∈ A} we
will indicate with [A : q]. The family V = {Yu}u∈U of subsets of A is a co-partition
of A if V satisfies the conditions (a) and (b).

Theorem 2.2 ([5]). Let V be a subfamily of P(A) such that it satisfies the
conditions (a) and (b). Then the relation

q(V ) = {(y, z) ∈ A×A : (∃Y ∈ V )(y � Y ∧ z ∈ Y )}

is a coequality relation on A.

Proof. (1) Let (y, z) be an element of q(V ), i.e. let Y be an element of the
family V such that y � Y and z ∈ Y . From z ∈ Y ⊆ A follows that there exists a
subset Z of X such that z � Z. So Y ̸= Z and Y ∪ Z = A. Therefore y ∈ Z and
(z, y) ∈ q. So, the relation q(V ) is a symmetric relation on A.

(2) Let u be an arbitrary element of A. Then there exists a subset U of A such
that u� U . Let (y, z) be an arbitrary element of q(V ). Then

(∃Y ∈ V )(y � Y ∧ z ∈ Y ) and (∃Z ∈ V )(z � Z ∧ y ∈ Z).

From u ∈ X = Y ∪ Z follows u ∈ Y or u ∈ Z. So, (y, u) ∈ q(V ) or (z, u) ∈ q(V ).
Therefore, the relation q(V ) is a co-transitive relation on A.

(3) Let u be an element of A and let (y, z) ∈ q(V ). Then

(∃Y ∈ V )(y � Y ∧ z ∈ Y ) ∨ (∃Z ∈ V )(z � Z ∧ y ∈ Z)

and Y ∪Z = A. From u ∈ A = Y ∪Z follows u ∈ Y or u ∈ Z. If u ∈ Y , then u ̸= y.
If u ∈ Z, yhen u ̸= z. So, (u, u) ̸= (y, z). So, the relation q(V ) is a consistent
relation on A. □

Remark 2.1. When this result was first time published in 1996 [38], some of
the members of the academic public refused to accept that there were scientific
needs for researching of such families of subsets of a set with apartness. The
difficulties encountered by researchers of algebraic structures based on sets with
apartness relations were nicely described by Bauer in his article [2]. Even today,
many working mathematicians are extremely reluctant to accept the possibility
of existence an academic interest in researching and developing of structures in a
logical environment that is not the Classic logic. Unfortunately, the existence of
interest in publishing the results of the research of algebraic structures based on
sets with apartness is still being classify in activity with the prefix of exoticism.

The next theorem shows that if we generate a co-partition [A : q′] by means
of a co-equality relation q′, then the co-equality relation q([A : q′]) generated by
the co-partition [A : q′] is simply q′ again; and similarly if we begin with the co-
equality relation q(V ) generated by a co-partition V , this relation generates the
given co-partition [A : q(V )] = V . Since the article with this results is published
in a journal that is not available to the mathematical public now, the proof of this
theorem is repeated.
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Theorem 2.3 ([5, 38]). Let (A,=, ̸=) be a set with apartness. Let Q(A) =
{q ∈ A × A : q is a co-equality relation onA} and let V (A) = {V ⊆ P (A) :
V is a co-partition on A}. Then

(1) q([A : q′]) = q′ for every q ∈ Q(X);

(2) V (q(V )) = V for every V ∈ V (A).

Proof. (1) Let q′ be a co-equality relation on A. Then
((x, y) ∈ q′ ⇐⇒ y ∈ qx = Yx

=⇒ (x� Yx ∧ y ∈ Yx)
=⇒ (x, y) ∈ q(A : q′]).

(x, y) ∈ q([A : q′]) ⇐⇒ (∃Yu ∈ [A : q′])(x� Yu ∧ y ∈ Yu)
⇐⇒ (∃Yu ∈ [A : q′])(x� Yu ∧ (y, u) ∈ q′)
=⇒ (∃Yu ∈ [A : q′])(x� Yu ∧ ((y, x) ∈ q′ ∨ (x, u) ∈ q′))
=⇒ (∃Yu ∈ [A : q′])(x� Yu ∧ (y, x) ∈ q′)
=⇒ (y, x) ∈ q′.

(2) Let P ⊆ P(A). If Y ∈ P , then Y ⊂ A and (∃x ∈ A)(x� Y ). So, for every
y ∈ Y , we have (x, y) ∈ q(P ). Therefore y ∈ Yx . Thus Y ⊆ Yx. At the other
hand, u ∈ Yx implies (x, u) ∈ q(P ), i.e. x � Y and u ∈ Y . So, Y = Yx. We have
P ⊂ [A : q(P )]. Let xq = Yx ∈ [A : q(P )]. Then for every element y of Yx we
have (x, y) ∈ q(P ). Thus we conclude that there exists Y ∈ P such that x� Y and
y ∈ Y . So Yx ⊆ Y . Therefore Yx ∈ P , and [A : q(P )] ⊆ P . □

In the second part of proof of Theorem 2.3, we have the following statement:

Corollary 2.1. Let q be a co-equality relation on a set A with apartness, x
be an arbitrary element of A and let Y be an arbitrary element of [A : q] such that
x� Y . Then Yx = Y .

2.4. Some important theorems. Let f : A −→ B be a strongly extensional
function between sets with apartness. Our first theorem links the function f with
the function π.

Theorem 2.4. Let f : A −→ B be a strongly extensional mapping between sets
with apartness. The the relation

Coker(f) = {(x, y) ∈ A×A : f(x) ̸= f(y)}

is a co-equality relation on A and there exists the bijection

g : A/(Ker(f), Coker(f)) −→ f(A) ⊆ B

such that f = g ◦ π.

Without major difficulties, it can be verified that there exists a strongly ex-
tensional surjective function ϑ : A −→ [A : q], determined by ϑ(a) = aq, and
the bijection (= strongly extensional surjective, injective and embedding func-
tion) h : A/(q�, q) −→ [A : q] such that ϑ = h ◦ π and π = h−1 ◦ ϑ, where
π : A −→ A/(q�, q) is the canonical surjective function.
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Proposition 2.3. Let q be a co-equality relation on a set A. Then:
- The correspondence ϑ : A −→ [A : q] is a strongly extensional surjective

mapping;
- There exists the bijective mapping h : A/(q�, q) −→ [A : q] such that

ϑ = h ◦ π and π = h−1 ◦ ϑ.

Proof. (1) Let ϑ be defined by ϑ(x) = xq for any x ∈ A. It is clear that ϑ
is a correct defined mapping from A onto [A : q]. If x, y be arbitrary elements of
A such that ϑ(x) = xq ̸= yq = ϑ, then (x, y) ∈ q. Thus x ̸= y. So, ϑ is a strongly
extensional surjective mapping from A onto [A : q].

(2) Let us define a correspondence h : A/(q�, q) −→ [A : q] by h(xq�) = xq
for any x ∈ A. Let x and y be arbitrary elements of A such that xq� = yq�. Then
(x, y)�q and h(xq�) = xq = yq = h(yq�). So, h is a correct defined mapping from
A/(q�, q) to [A : q]. Obviously, the reverse implication

(∀x, y ∈ A)(h(xq�) = xq = yq = h(yq�) =⇒ xq� = yq�)

is valid too. Therefore, h is an injective mapping.
Let x, y ∈ A be arbitrary elements. Then

xq� ̸= yq� ⇐⇒ (x, y) ∈ q ⇐⇒ h(xq�) = xq ̸= yq = h(xq�).

So, h is a strongly extensional and embedding mapping from A/(q�, q) onto [A : q].
Finally, since that

ϑ(x) = xq = h(xq�) = h(π(x)) = (h ◦ π)(x)

holds for any x ∈ A, we have ϑ = h ◦ π. □

The follows theorem is one specificity of this aspect of observing sets (and
algebraic structures) and there is no a counterpart in corresponding the classical
theory.

Theorem 2.5. Let f : A −→ B be a strongly extensional mapping between sets
with apartness. Then there exists the bijection

k : [A : Coker(f)] −→ f(A) ⊆ B

such that k = g ◦ h−1 and f = k ◦ ϑ.

Proof. If f : A −→ B be a strongly extensional mapping, then there exists
the bijection

g : A/(Ker(f), Coker(f)) −→ f(A)

by Theorem 2.1 and the bijection

h : A/(Ker(f), Coker(f)) −→ [A : Coker(f)]

by Proposition 2.3 such that

f = g ◦ π = g ◦ (h−1 ◦ ϑ) = (g ◦ h−1) ◦ ϑ.

Therefore, k = g ◦ h−1 is the required bijection. □
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Let us recall (Subsection 2.2) that for the couple ρ and q of a an equality
relation and a co-equality relation we say they are associated if holds ρ◦ q ⊆ q and
q ◦ ρ ⊆ q. In this case, the factor-set A/(ρ, q) can be constructed with the equality
and apartness determined by

(∀x, y ∈ A)(xρ = yρ ⇐⇒ (x, y) ∈ ρ), (∀x, y ∈ A)(xρ ̸= yρ ⇐⇒ (x, y) ∈ q).

For example, if q is a co-equality relation on A, then q� and q are associated.
If f : A −→ B is a strongly extensional function, then the relation Ker(f) and
Coker(f) are associated, too.

Theorem 2.6 ([34]). Let ρ and q be an equality and a co-equality relations on
a set A. Then ρ and q are associated if and only if

(∀x, z ∈ A)(x ̸= z ∧ xρ ∩ zq ̸= ∅ =⇒ xρ ⊆ zq).

Since the article [34] is not available to the public in electronic form, the proof
of this theorem will be shown again.

Proof. (1) Let ρ and q be associated an equality and a co-equality relations
on set A and suppose that xρ∩zq ̸= ∅ for each x, z ∈ A such that x ̸= z. Then there
exists an element y ∈ A such that y ∈ xρ and y ∈ zq. These means (x, y) ∈ ρ and
(y, z) ∈ q. Thus (x, z) ∈ q. Let u be an arbitrary element of xρ. Then (u, x) ∈ ρ.
Further, from (u, x) ∈ ρ and x, z) ∈ q follows (u, z) ∈ q since ρ and q are associated
relations. So, u ∈ zq.

(2) Let the formula (∀x, z ∈ A)(x ̸= z ∧ xρ ∩ zq ̸= ∅ =⇒ xρ ⊆ zq) be valid
and let x, y, z ∈ arbitrary elements such that (x, y) ∈ ρ and (y, z) ∈ q. First, from
(y, z) ∈ q follows (x, y) ∈ q or (x, z) ∈ q. Let (x, y) ∈ q be holds. Then x ̸= y
and x ∈ xρ ∩ yq ̸= ∅. Thus y ∈ xρ ⊆ yq. We got a contradiction. So, have to be
(x, z) ∈ q. Therefore, relations ρ and q are associated. □

On the other hand, the validity of the following claim can be checked without
difficulty:

Corollary 2.2. Let (A,=, ̸=) be a set with apartness and ρ and q ne an
equality and a co-equality relations A. Then ρ and q associatd relations if and only
if ρ ∩ q = ∅.

Proof. Let ρ and q be associated an equality relation and a co-equality rela-
tion on A. Suppose ρ ∩ q ̸= ∅. Then there exists an element (u, v) ∈ ρ ∩ q. This
meas (u, v) ∈ ρ and (u, v) ∈ q. Then from (v, u) ∈ ρ ∧ (u, v) ∈ q it follows (v, v) ∈ q
by associativity of relations ρ and q which is impossible by consistency of q. The
obtained contradiction refutes the assumption ρ ∩ q ̸= ∅. Therefore, it must be
ρ ∩ q = ∅.

Conversely, let ρ ∩ q = ∅ be valid. Let u, z ∈ A be elements such that (u, z) ∈
ρ ◦ q. Then there exists an element v ∈ A such that (u, v) ∈ q and (v, z) ∈ ρ. Thus
from (u, v) ∈ q it follows (u, z) ∈ q ∨ (z, v) ∈ q by co-transitivity of q. Since the
second option is impossible because (z, v) ∈ q ∩ ρ = ∅, we have (y, z) ∈ q. The
second inclusion can be proved analogously to the previous. □

The question naturally arises:
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Question 2.1. Let ρ be an equality relation on a set with apartness A. Let qρ,
for single use, be the family of all coequality relations on A associated with ρ. Is
this family empty or inhabited? For the given equivalence ρ is there the maximal
coequality relation q associated with ρ?

In the Subsection 2.6, one reflection will be offered as a partial answer to this
question.

In what follows in this subsection we will pay attention to the family [A : q].
Let q1 and q2 be co-equality relations on A such that q2 ⊆ q1. We can construct co-
partitions [A : q1] and [A : q2]. In the following theorem we will give a construction
of relation [q2 : q1] on [A : q1] by relations q1 and q2.

Theorem 2.7. Let q1 and q2 be coequality relations on set with apartness A
such that q2 ⊆ q1. Then the relation [q2 : q1] ⊆ [A : q1]× [A : q1], defined by

(∀xq1, yq1 ∈ [A : q1])((xq1, yq1) ∈ [q2 : q1] ⇐⇒ (x, y) ∈ q2)

is a co-equality relation on [A : q1].

Proof.
(i) (aq1, bq1) ∈ [q2 : q1] ⇐⇒ (a, b) ∈ q2

=⇒ (∀u ∈ A)((a, u) ∈ q2 ∨ (u, b) ∈ q2)
=⇒ (∀uq1 ∈ [A : q1])((aq1, uq1) ∈ [q2 : q1] ∨ (uq1, bq1) ∈ [q2 : q1]).

(ii) (aq1, bq1) ∈ [q2 : q1] ⇐⇒ (a, b) ∈ q2
⇐⇒ (b, a) ∈ q2
⇐⇒ (bq1, aq1) ∈ [q2 : q1].

(iii) (aq1, bq1) ∈ [q2 : q1] =⇒ ((a, b) ∈ q2 ⊆ q1
=⇒ (∀u ∈ A)((a, u) ∈ q1 ∨ (u, b) ∈ q1)
=⇒ (∀uq1 ∈ [A : q1])(aq1 ̸= uq1 ∨ uq1 ̸= bq1).
=⇒ (∀uq1 ∈ [A : q1])((aq1, bq1) ̸= (uq1, uq1)). □

Corollary 2.3. Let q1 and q2 be co-equality relations on set with apartness A
such that q2 ⊆ q1. Then there exists a strongly extensional bijective and embedding
function

φ : [[A : q1] : [q2 : q1]] −→ [A : q2].

Proof. Let notations be as in the previous theorem and let ϕ : [A : q1] −→
[A : q2] be mapping defined by ϕ(xq1) = xq2 for any x ∈ A.

(i) Let xq1 = yq1 and let u ∈ xq2 where x, y ∈ A. Then (u, x) ∈ q2 and
(u, y) ∈ q2 ∨ (y, x) ∈ q2 ⊆ q1. Thus, from the second option we have x ∈ yq1 = xq1.
It is impossible because x � xq1. So, gave to be u ∈ yq2. Therefore, xq2 ⊆ yq2.
Reverse inclusion yq2 ⊆ xq2 can be proven by analogously to the previous one.
Finally. xq2 = yq2 and the mapping ϕ is correctly defined.

(ii) Let ϕ(xq1) = xq2 ̸= yq2 = ϕ(yq1) for some x, y ∈ A. Then (x, y) ∈ q2 ⊆ q1
and xq1 ̸= yq1. So, the mapping ϕ is a strongly extensional function.

(iii) Let xq2 be an element of [A : q2]. Then xq1 is an element of [A : q1] such
that ϕ(xq1) = xq2. So, the function ϕ is a surjective mapping.
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(iv) First, from xq2 = ϕ(xq1) ̸= ϕ(yq1) = yq we have (x, y) ∈ q2. Thus follows,
the relation

{(xq1, yq1) ∈ [A : q1]× [A : q1] : (x, y) ∈ q2} = [q2 : q1]

is a co-equality relation on [A : q1] and the mapping

ϑ : [A : q1] −→ [[A : q1] : [q2 : q1]]

is a surjective by Proposition 2.3. Therefore, there exists strongly extensional and
embedding surjective function

φ : [[A : q1] : [q2 : q1]] −→ [A : q2]

such that ϕ = φ ◦ ϑ. □

Let q be a coequality relation on a set A and let f : A×A −→ A be a strongly
extensional mapping. We say that f is compatible with the coequality relation q if

(∀x, y, u, v ∈ A)((f(x, y), f(u, v)) ∈ q =⇒ (x, u) ∈ q ∨ (y, v) ∈ q)

holds. In the following theorem we give a result on compatibility of function f :
A2 −→ A with the given coequality relation q on the set A.

Theorem 2.8 ([52]). If the strongly extensional mapping f : A2 −→ A is
compatible with the coequality relation q on A, then there is a strongly extensional
mapping

F : [A : q]× [A : q] −→ [A : q]

such that

ϑ ◦ f = F ◦ (ϑ, ϑ).

Proof. Let us define mapping F by F (uq, vq) = f(u, v)q. Then:

(1) Let (xq, yq) = (uq, vq). It means xq = uq and yq = vq. Suppose that
s ∈ f(x, y)q, i.e. suppose that (f(x, y), s) ∈ q. Thus, by co-transitivity of q,
we have (f(x, y), f(u, v)) ∈ q or (f(u, v), s) ∈ q. Hence, by compatibility f and q
follows (x, u) ∈ q or (y, v) ∈ q or s ∈ f(u, v)q. So, s ∈ f(u, v)q because (x, u)�q and
(y, v)� q. Finally, we have f(x, y)q ⊆ f(u, v)q. We also have f(u, v)q ⊆ f(x, y)q
by analogy. Finally, we have f(u, v)q = f(x, y)q. Therefore, the correspondence F
is a mapping.

(2) Let F (uq, vq) ̸= F (xq, yq) be holds for uq, vq, xq, yq ∈ [A : q]. It means
f(u, v)q ̸= f(x, y)q and (f(u, v), f(x, y)) ∈ q. Since the mapping f is compatible
with q, follows (u, x) ∈ q or (v, y) ∈ q. Finally, we have uq ̸= xq or vq ̸= yq. So,
the mapping F is a strongly extensional.

(3) Let (x, y) be an arbitrary pair of elements of A×A. We have

(ϑ ◦ f)(x, y) = ϑ(f(x, y)) = f(x, y)q = F (xq, yq)

= F (ϑ(x), ϑ(y)) = F ((ϑ, ϑ)(x, y)) = (F ◦ (ϑ, ϑ))(x, y).
Therefore, seeking equality is valid. □



SETS WITH APARTNESS ORDERED UNDER CO-QUASIORDER, A SURVEY 109

Accepting the validity of the previous theorem makes it possible to design an
algebraic structure that has no counterpart in the classical theory of algebraic struc-
tures. Let (A,=, ̸=) be set with apartness. A total strongly extensional function
w : A×A −→ A is a binary internal operation in A and it constructs an algebraic
structure ((A,=, ̸=), w) with

(∀x, y, u, v ∈ A)((x, y) = (y, v) =⇒ w(x, y) = w(u, v))

(∀x, y, u, v ∈ A)(w(x, y) ̸= (u, v) =⇒ (x ̸= u ∨ y ̸= v)).

If w is an associative operation, then (A,w) is a semigroup with apartness. An
interested reader can find in [12, 14, 15, 54] something about semigroups with
appartness.

Let q be a relation coequality on the semigroup (A,=, ̸=), w) which satisfies
the following condition

(∀x, y, u, v ∈ A)((w(x, y), w(y, u)) ∈ q =⇒ ((x, u) ∈ q ∨ (y, v) ∈ q)).

In this case, it is said that q is compatible with w. Speaking in the language of
classical algebra, q and w are compatible if w is cancellative with respect to q. The
compatibility of q and w allows us to construct internal binary operations on the
sets A/(q�, q) and [A : q] and thus design two new semigroups. The second of these
two does not have its dual in classical semigroup theory.

Example 2.4. Let (S,=S , ̸=S) and (Γ,=Γ, ̸=Γ) be two non-empty sets with
apartness. Then S is called a Γ-semigroup with apartness if there exist a strongly
extensional mapping

wS : S × Γ× S ∋ (x, a, y) 7−→ wS(x, a, y) ∈ S

satisfying the condition

(∀x, y, z ∈ S)(∀a, b ∈ Γ)(wS(wS(x, a, y), b, z) =S wS(x, a, wS(y, b, z))).

Let S be a Γ-semigroup with apartness. A co-equality relation q ⊆ S × S is
called a Γ-cocongruence on S if the following holds

((wS(x, a, u), wS(y, b, v)) ∈ q =⇒ ((x, y) ∈ q ∨ a ̸= b ∨ (u, v) ∈ q))

for any x, y, u, v ∈ S and all a, b ∈ Γ. The operation w[S:q] on [S : q]× Γ× [S : q] is
defined as

(∀xq, yq ∈ [S : q])(∀a ∈ Γ)(w[S:q](xq, a, yq) := (wS(x, a, y))q).

The structure ([S : q],=2, ̸=2, w[S:q]) is a Γ-semigroup and there is a unique
strongly extensional mapping (ϑ, i) : S −→ [S : q] such that the following holds

w[S:q] ◦ (ϑ, i, ϑ) = (ϑ, i) ◦ wS .

About Γ-semigroups with apartness, the reader can look at the paper [55].

Example 2.5. Let (S,=S , ̸=S) be a set with apartness. Then S is called a
semigroup with apartness if there exist a strongly extensional mapping

wS : S × S ∋ (x, y) 7−→ wS(x, y) ∈ S
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satisfying the condition

(∀x, y, z ∈ S)(wS(wS(x, y), z) =S wS(x,wS(y, z))).

Example 2.6. We call ([12], Definition 4) I-semigroup with apartness an in-
habited set with apartness (S,=, ̸=) equipped with an associative, strongly exten-
sional binary operation on S, denoted by ’·’, and with a strongly extensional unary
operation on S denoted by ’−1’ such that

(∀x ∈ S)(x · x−1 · x = x ∧ (x−1)−1 = x).

In other words, an I-semigroup with apartness is a tuple (S,=, ̸=, ·,−1 ) where
(I1) (S,=, ̸=) is an inhabited set with apartness;
(I2) ’·’ is a binary operation on S such that:
(a) for all x, y, z ∈ S, it holds x · (y · z) = (x · y) · z,
(b) for all x, y, u, v ∈ S, x · u ̸= y · v implies x ̸= y or u ̸= v;
(I3) ’−1’ is a unary operation such that:
(c) for all x ∈ S it holds (x−1)−1 = x,
(d) for all x, y ∈ S, x−1 ̸= y−1 implies x ̸= y;
(I4) for all x ∈ S it holds x · x−1 · x = x.

As usual, we will write xy instead of x · y. Since we assumed that all properties
we are dealing with are extensional, we immediately derive that · and −1 are well
defined, i.e., for all x, y, u, v ∈ S, x = u ∧ y = v implies xy = uv and x = y implies
x−1 = y−1. Moreover, by extensionality and (I3)(a), we also derive that for all
x, y ∈ S, x ̸= y implies x−1 ̸= y−1. Then, in the definition of I-semigroup with
apartness, condition (I3)(b) can be written as

(I3)(d’) for all x, y ∈ S it holds x−1 ̸= y−1 ⇐⇒ x ̸= y.

Moreover, condition (I3)(a) implies that x−1xx−1 = x−1 for all x ∈ S. Lastly,
(I3)(a) and extensionality of ’−1’ give that for all x, y ∈ S it holds

(2.1) x−1 = y−1 ⇐⇒ x = y

An inverse semigroup with apartness ([12], Definition 5) is an I-semigroup with
apartness (S,=, ̸=, ·,−1 ) such that

(I5) for all x, y ∈ S it holds

xx−1yy−1 = yy−1xx−1.

Observe that property (I5) implies, as usual, that

(xy)−1 = y−1x−1.

2.5. Class preserving mappings of co-equality relational systems. The
concept of a relational system was introduced by A. I. Maltsev [24]. This notion
was investigated by I. Chajda (for example in [10]). However, R. D. Maddux [23]
suggests that text [62] written by A. Tarski in 1941 is probably one of the first
articles which relates to ’The calculus of relations’ ([23], page 438). The approach
outlined in [62] is worked out in more detail in [63]. According to R. D. Madduox
already mentioned, the first definition of relation algebras appears in [20] (cited by
[23], page 441).
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We will restrict our consideration to relational systems with only one binary
relation. Hence, for a relational system we will take a pair A = ((A,=, ̸=), α), where
(A,=, ̸=) is a set with apartness and α ⊆ A×A, i. e., α is a binary relation on A.
Relational systems play an important role both in mathematics and in applications
since every formal description of a real system can be done by means of relations.
In this subsection, we are mostly interested in relational systems A = ((A,=, ̸=), α)
where α is consistent, symmetric or co-transitive. In cumulative case, the relation
α is a co-equality relation and the system A is called a co-equality relational system.

A mapping φ : ((A,=, ̸=), α) −→ ((B,=, ̸=), β) of co-equality relational sys-
tems is class preserving mapping if φ(αa) = (φ(a))β holds for each a ∈ A. The
following result ’A mapping φ is a class preserving mapping if and only if α and
Kerφ permute.’ is the main result of this subsection.

Let f : ((A,=, ̸=), α) −→ ((B,=, ̸=), β) be a strongly extensional mapping.
- f is called isotone if

(∀x, y ∈ A)((x, y) ∈ α =⇒ (f(x), f(y)) ∈ β);

- f is called reverse isotone if

(∀x, y ∈ A)((f(x), f(y)) ∈ β =⇒ (x, y) ∈ α).

If we introduce the relation φ−1(β) on set A by the following way

(a, b) ∈ φ−1(β) ⇐⇒ (φ(a), φ(b)) ∈ β,

then φ is isotone if and only if α ⊆ φ−1(β). Also, φ is a reverse isotone if and only
if φ−1(β) ⊆ α holds.

Further on,
(i) a strongly extensional reverse isotone mapping φ : A −→ B is called a

reverse isotone strong mapping of A to B if

φ−1(β) ⊆ α ⊆ Kerφ ◦ φ−1(β) ◦Kerφ;
(ii) a strongly extensional isotone mapping φ : A −→ B is called isotone strong

mapping ([10]) of A to B if:

α ⊆ φ−1(β) ⊆ Kerφ ◦ α ◦Kerφ.
Firstly, we will start with two definitions: Let A = ((A,=, ̸=), α) be a relational

system and q a coequality relation on A. Define a binary relation [α : q] on the set
[A : q] as follows:

(∀a, b ∈ A)((aq, bq) ∈ [α : q] ⇐⇒ (a, b) ∈ q� ◦ α ◦ q�).
Then [A : q] = (([A : q],=1, ̸=1), [α : q]) will be called a quotient relational system
of A by q.

It is evident that we need for the following assertions:

Lemma 2.1 ([16], Theorem 1). Let (A,α) be a relational system and q be a
co-equality on A.

- If α ⊆ q, then [α : q] is a consistent relation, too.

- [α : q] is a symmetric relation if and only if α is a symmetric relation.
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- If α is co-transitive relation, then [α : q] is a co-transitive relation, too.

Theorem 2.9 ([16], Theorem 2). Let A and B be two co-equality relational
systems and φ : A −→ B be a surjective mapping. Then

- If φ is a class preserving isotone mapping, then φ is an isotone strong mapping
of A onto B.

- If φ is a reverse isotone strong mapping, then φ is a class preserving mapping.

Example 2.7. The converse of the previus theorem does not hold in general.
Consider A = ((A,=, ̸=), α) and B = ((B,=, ̸=), β), where A = {x1, x2, y1, y2, z1,
z2, w}, B = {a, b, c, d}, and

α = A×A \({x1, x2}2 ∪ {y1, y2}2 ∪ {z1, z2}2 ∪ {w}2),
β = {(a, d), (b, d), (c, d), (d, a), (d, b), (d, c)}

are coequalities relations respectively. Let φ : A −→ B be defined as follows:
φ(x1) = φ(y1) = a, φ(x2) = φ(z1) = b, φ(y2) = φ(z2) = c, φ(w) = d. Then
φ is a surjective and strong mapping of A onto B but it is not a class pre-
serving mapping. For example, for x1 we have: φ(x1α) = ({y1, y2, z1, z2, w}) =
{φ(y1), φ(y2), φ(z1), φ(z2), φ(w)} = {a, b, c, d} ≠ {d} = aβ = φ(x1)β. ⋄

In the following theorem we present a condition for class preserving mapping.

Theorem 2.10 ([16], Theorem 3). Let A and B be two co-equality relational
systems and φ : A −→ B be a strong surjective mapping. Then φ is a class
preserving mapping if and only if α and Kerφ permute.

Corollary 2.4. Let A and B be two co-equality relational systems and φ :
A −→ B be a class preserving reverse isotone surjective mapping. Then φ is a
strong reverse isotone mapping if and only if β and Kerφ−1 permute.

At the end of this consideration we analyze the natural mapping ϑ : A −→ [A :
q].

Theorem 2.11 ([16], Theorem 4). Let A = ((A,=, ̸=), α) be a coequality system
and q be a co-equality on A such that α ⊆ q. Suppose that α and q� permute. Then
the natural mapping ϑ : A −→ [A : q] is a class preserving mapping.

2.6. The important question. As mentioned earlier, this subsection offers
a partial answer to the Question 2.1. For this purpose we need some prior thinking:

Proposition 2.4. Let {qk}k∈K be a family of co-equality relations on a set
with apartness (A,=, ̸=). Then

⋃
k∈K qk is a co-equality relation on A, too.

Proof. It is clear that
⋃

k∈K qk is a consistent and symmetric relation since
each of the components qk is a consistent and symmetric relation on A. It remains to
show that the union is a co-transitive relation. Let x, y, z ∈ A be arbitrary elements
such that (x, z) ∈

⋃
k∈K qk. Then there exists an index j ∈ K such that (x, z) ∈ qj .

Thus (x, y) ∈ qj ⊆
⋃

k∈K qk ∨ (y, z) ∈ qj ⊆
⋃

k∈K qk. So, the relation
⋃

k∈K qk is
a co-transitive relation on A. Therefore,

⋃
k∈K qk is a co-equality relation on A □
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As an important consequence of the previous proposition, we have the following
corollary.

Corollary 2.5. Let (A,=, ̸=) be a set with apartness. Then the family Q(A)
od all co-equality relations on A form a complete lattice.

Proof. Let {qk}k∈K a family of co-equality relations in A and let T be a family
of all co-equality relations on A included in

⋂
k∈K qk. Then

⋃
T is the maximal

co-equality relation on A included in
⋂

k∈K qk. If we put ⊔k∈Kqk =
⋃

k∈K qk and
⊓k∈Kqk =

⋃
T, then (Q(A),⊔,⊓) is a completely lattice. □

The next theorem is a partial answer to the above question.

Theorem 2.12. Let ρ be an equality relation on a set (A,=, ̸=). If T is the
family of all co-equality relations included in ¬ρ, then qmax(ρ) =

⋃
T is the maximal

co-equality relation on A associated with ρ.

Proof. From the analysis that preceded this theorem, we conclude that
⋃

T
is the maximal co-equality relation included in ¬ρ. Let us show that qmax(ρ) is
associate with ρ. Let x, z ∈ A arbitrary elements such that (x, z) ∈ ρ ◦ qmax(ρ).
Then there exists an element y such that (x, y) ∈ qmax(ρ) and (y, z) ∈ ρ. Thus
there exists a co-equality relation q included in ¬ρ such that (x, y) ∈ q. From this
follows (x, z) ∈ q ⊆ qmax(ρ) or (z, y) ∈ q ⊆ ¬ρ by co-transitivity of q. Since the
second option is impossible due to (z, y) ∈ ρ−1 = ρ, it must be (x, z) ∈ qmax(ρ).
The second inclusion qmax(ρ) ◦ ρ ⊆ qmax(ρ) can be show in an analogous way.
Therefore, the relation qmax(ρ) is associated with ρ. □

Remark 2.2. We have proved the hypothetical existence of the maximal co-
equality relation that associated with given an equality relation. There remains
an open question how to construct this relation effectively. As one of the pos-
sible answers to this problem, the offered is a construction described with more
detailed in the article [40] which some members of the academic community treat
as unacceptable.

3. Co-quasiorder relations

3.1. Concept of co-quasiorder relations. If in the definition of the concept
of co-equality relations we omit the requirement of symmetry, a new notion that
meets the axiom of consistency and the axiom of co-transitivity occurs. Thus, if τ
is one such relation in a set (A,=, ̸=), then q = τ ∪ τ−1 is a relation of co-equality
on A. This analysis justifies introducing a new concept in set with apartness.

Definition 3.1. A relation τ ⊆ A×A is a co-quasiorder on A if holds

τ ⊆ ≠ (consistency) and τ ⊆ τ ∗ τ (co-transitivity).

It is clear that each coequality relation q on set A is a co-quasiorder relation
on A, and the apartness is the trivial co-quasiorder relation on A. The notion of
co-quasiorder the first time is defined in article [39] (See the articles [6, 13] also).
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Remark 3.1. Sometimes in the definition of the concept of co-quasiorder rela-
tions we add the request τ ∩ τ−1 = ∅. In this case, we are talking about the strict
co-quasiorder relation.

If in the previous determination we add a new request, the linearity request,
a new notion appears. In the following definition, we precisely describe this new
concept.

Definition 3.2. Let A be a set with apartness and σ ⊆ A× A be a relation
on A. The relation σ on A is a co-order on A if the following is valid

σ ⊆ ≠ (consistency), σ ⊆ σ ∗ σ (co-transitivity) and ̸=⊆ σ ∪ σ−1 (linearity).

If τ is a co-quasiorder (co-order, res.) relation on a set (A,=, ̸=), it is said that
A is a ordered set under relation τ , or that A is co-quasiordered set (res. co-ordered
set). The notion of co-order relation the first time is defined in articles [38, 41].

Example 3.1. ([41]) Let (K,=, 0,+, ·, 1) be a Heyting field with apartness.
The subset D of K is a co-subring of K if and only if

1�D, 0�D, −a ∈ D =⇒ a ∈ D,
a+ b ∈ D =⇒ (a ∈ D ∨ b ∈ D),
ab ∈ D =⇒ (a ∈ D ∨ b ∈ D).

The set S = {a ∈ K : a ∈ D ∨ a−1 ∈ D} is a strongly extensional co-subgroup
of the multiplicative group K∗ = {a ∈ K : a ̸= 0} compatible with the subgroup
S� = {a ∈ K∗ : a � S} of K∗ such that we can construct the factor-group G =
K∗/(S�, S). On the group G we define a relation τ by

(aS�, bS�) ∈ τ ⇐⇒ a−1b ∈ D.

The relation τ is a co-order relation on G compatible with the group operation.

Example 3.2. Let ((S,=S , ̸=S), wS) be a Γ-semigroup with apartness (Exam-
ple 2.4). A co-order relation ⩽̸S on S is compatible with the semigroup operations
wS in S if the following holds

((wS(x, a, z) ⩽̸S wS(y, a, z) ∨ wS(z, a, x) ⩽̸S wS(z, a, y)) =⇒ x ⩽̸S y

for all x, y, z ∈ S and a ∈ Γ. In this case it is said that S is an ordered Γ-semigroup
under co-order ⩽̸ or it is co-ordered Γ-semigroup.

About co-ordered Γ-semigroups with apartness, the reader can look at the
articles [56, 57].

Example 3.3. Let ((S,=S , ̸=S), wS) be a semigroup with apartness (Example
2.5) and let ⩽̸S be a co-order relation on S satisfy the following

(∀x, y, z ∈ S)((wS(x, z) ⩽̸S ws(y, z) ∨ wS(z, x) ⩽̸S wS(z, y)) =⇒ x ⩽̸S y).

S is a semigroup with apartness ordered under the co-order ⩽̸S .

Example 3.4. ([27]) Following to classical definition, for algebraic structure
((S,=, ̸=, ·, 1),⊗) is called a (strong) semilattice-ordered semigroup if :

(i) (S,=, ̸=, ·, 1) is a semigroup, where the semigroup operation is strongly
extensional in the following way
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(∀a, b, c ∈ S)((ac ̸= bc ∨ ca ̸= cb) =⇒ a ̸= b);

(ii) (S,=, ̸=,⊗) is a semilattice, i.e. (S,⊗) is a commutative semigroup with
(∀x ∈ S)(x⊗ x = x) where the semigroup operation is strongly extensional:

(∀a, b, c ∈ S)((a⊗ c ̸= b⊗ c ∨ c⊗ a ̸= c⊗ b) =⇒ a ̸= b);

(iii) (∀a, b, c ∈ S)((a(b⊗ c) = ab⊗ ac) ∧ ((a⊗ b)c = ac⊗ bc)); and
(iv) (∀x ∈ S)(x⊗ 1 = 1).

In the following we show that semilattice-ordered semigroup is equipped with
the natural defined co-order relation:

If (S,=, ̸=, ,⊗) is a semilattice-ordered semigroup and we define, for any a, b
of S,

(a, b) ∈ α⇐⇒ a⊗ b ̸= a,

then the structure (S,=, ̸=, ·,⊗) is an ordered semigroup under xo-order α.

Proof. (i) It is clear that the relation α is consistent.
(ii) Let a, b, c be arbitrary elements of S such that (a, c) ∈ α, i.e. such that

a⊗ c ̸= a. Then,

a⊗ c ̸= a =⇒ a⊗ c ̸= b⊗ a ∨ b⊗ a ̸= a.

If b⊗ a ̸= a, then (a, b) ∈ α. Suppose that a⊗ c ̸= b⊗ a. Then, a⊗ c ̸= a⊗ b⊗ c
or a⊗ b⊗ c ̸= b⊗ a. In the first case, we conclude:

a⊗ c ̸= a⊗ b⊗ c =⇒ a ̸= a⊗ b ∨ c ̸= c
=⇒ (a, b) ∈ α.

In the second case, we have
a⊗ b⊗ c ̸= b⊗ a =⇒ b⊗ c ̸= b ∨ a ̸= a

=⇒ (b, c) ∈ α .
Therefore, the relation α is co-transitive.

(iii) Let a and b be arbitrary element of S such that a ̸= b. Thus, a ̸= a ⊗ b
or a ⊗ b ̸= b. So, we have a ̸= b =⇒ (a, b) ∈ α ∨ (b, a) ∈ α, and the relation α is
linear.

(iv) Let a, b, c be arbitrary elements of semigroup (S,=, ̸=, ·,⊗) such that
(ac, bc) ∈ α. Then,

ac⊗ bc ̸= ac⇐⇒ (a⊗ b)c ̸= ac
=⇒ a⊗ b ̸= a
=⇒ (a, b) ∈ α.

Analogously, we derive the implication (ca, cb) ∈ α =⇒ (a, b) ∈ α.
(v) Let a, b, c be elements of S such that (a ⊗ c, b ⊗ c) ∈ α, i.e. such that

a⊗ c⊗ b⊗ c ̸= a⊗ c. Thus, a⊗ b⊗ c ̸= a⊗ c and a⊗ b ̸= a. Hence, (a, b) ∈ α.

Finally, the relation α is a co-order relation on semigroup (S,=, ̸=, ) and the struc-
ture (S,=, ̸= , α) is a semigroup ordered under co-order α. □

Example 3.5. On an inverse semigroup with apartness S (Example 2.6), the
relation ’⩽̸’ we define ([58]) as follows

(∀a, b ∈ S)(a ⩽̸ b ⇐⇒ a ̸= ba−1a).

We may now establish the main properties of the relation ’⩽̸’.
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In the mentioned text it is shown that the condition that is determined by this
co-order is equivalent to the following conditions:

ab−1 ̸= aa−1, a−1b ̸= a−1a a ̸= aa−1b.

- The relation ⩽̸ is a co-order relation on the set S.
- (∀a, v ∈ S)(a ⩽̸ b =⇒ a−1 ⩽̸ b−1).
- (∀a, b, u ∈ S)(au ⩽̸ bu =⇒ a ⩽̸ b) and
- (∀a, b, u ∈ S)(ua ⩽̸ ub =⇒ a ⩽̸ b).

This co-order relation on inverse semigroups with apartness is the constructive dual
of natural order on classical inverse semigroups.

Proof. (1) The relation ⩽̸ is a co-order relation on the set (S,=, ̸=):
(1.1) The relation ⩽̸ is consistent. Let a, b ∈ S be such that x ⩽̸ y. This means

a ̸= ba−1a. On the other hand, since a = aa−1a, we have aa−1a ̸= ba−1a. Then
a ̸= b by (I2)(b) thus showing that the relation ⩽̸ is consistent.

(1.2) The relation ⩽̸ is co-transitive. Let a, b, c ∈ S be arbitrary elements such
that a ⩽̸ c. This means a ̸= ca−1a. Then

a ̸= ba−1a ∨ ba−1a ̸= ca−1a

by co-transitivity od the apartness.
(i) The first option gives a ⩽̸ b.

(ii) Suppose the second option is valid Since a = aa−1a, we have

ba−1(aa−1a) ̸= ca−1(aa−1a)

which we can write in form

b(a−1a)(a−1a) ̸= c(a−1a)(a−1a).

Hence follows

b(a−1a)(a−1a) ̸= (cb−1b)(a−1a)(a−1a) ∨ (cb−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a)

due to the co-transitivity of the apartness relation.
(ii-a) From the first option

b(a−1a)(a−1a) ̸= (cb−1b)(a−1a)(a−1a),

we get b ̸= cb−1b by (I2)(b). So, b ⩽̸ c.
(ii-b) Assume that the second option

(cb−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a)

is valid. We can write it in form

c(b−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a).

From here, we have

(b−1b)(a−1a)(a−1a) ̸= (a−1a)(a−1a)

by (I2)(b). The next three transformations of this formula are

(a−1a)(b−1b)(a−1a) ̸= (a−1a)(a−1a),
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(a−1ab−1)(ba−1a) ̸= (a−1aa−1)a

and

(ba−1a)−1(ba−1a) ̸= a−1a,

respectively. Hence

(ba−1a)−1 ̸= a−1 ∨ ba−1a ̸= a.

Both previous cases give a ⩽̸ b.
This completes the proof of the co-transitivity of the relation ⩽̸.

(1.3) The relation ⩽̸ is linear. let a, b ∈ S be elements such that a ̸= b. Then

a ̸= b(a−1a) ∨ b(a−1a) ̸= b

by co-transitivity of the apartness. If the first option a ̸= b(a−1a) is valid, then we
have a ⩽̸ b. Assume that the second option

b(a−1a) ̸= b

is valid. The previous formula can be written as follows (bb−1b)(a−1a) ̸= b and,
further on, in the following way b(b−1b)(a−1a) ̸= b. The next allowed transforma-
tion of the previous valid formula is b(a−1a)(b−1b) ̸= b according to (I5). From
here it follows

(b(a−1a))(b−1b) ̸= a(b−1b) ∨ a(b−1b) ̸= b

according to the co-transitivity of the apartness. The second option gives imme-
diately b ⩽̸ a. Suppose the (b(a−1a))(b−1b) ̸= a(b−1b) option is valid. From here,
according to (I2)(b), it follows b(a−1a) ̸= a. This means a ⩽̸ b.

(2) Let a, b ∈ S be elements such that a ⩽̸ b. This means a ̸= b(a−1a)
and a ̸= aa−1b. From here, according to (I3)(d’), it follows a−1 ̸= b−1(aa−1) =
b−1((a−1)−1a−1). This means a−1 ⩽̸ b−1.

(3) Let a, b, u ∈ S be arbitrary elements such that au ⩽̸ bu. Then (au)−1(bu) ̸=
(au)−1(au). Thus u−1a−1bu ̸= u−1a−1au. Hence a−1b ̸= a−1a by (I2)(b). This
means a ⩽̸ b.

(4) Let a, b, u ∈ S be arbitrary elements such that ua ⩽̸ ub. Then (ua)(ub)−1 ̸=
(ua)(ua)−1. Thus uab−1u−1 ̸= uaa−1u−1. Hence ab−1 ̸= aa−1 by (I2)(b). This
means a ⩽̸ b. □

In order for an interested reader to gain an idea of what kind of relation is a
co-quasiorder relation, in our next proposition we show the connection between the
concept of quasi-order relations and the concept of co-quasiorder relations.

Proposition 3.1. Let τ be a co-quasiorder relation on a set (A,=, ̸=). Then
the relation τ� is a quasi-order relation on A associate with τ in the following sense

(τ�)−1 ◦ τ ⊆ τ and τ ◦ (τ�)−1 ⊆ τ .

Proof. Let x, u, v ∈ A arbitrary elements such that (u, v) ∈ τ . Then (u, x) ∈ τ
or (x, v) ∈ τ by co-transitivity of τ . Thus u ̸= x ∨ x ̸= v by consistency of τ . So,
we have (x, x) ̸= (u, v) ∈ τ and (x, x) ∈ τ�. Therefore, the relation τ� is a reflexive
relation in A.
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Let x, y, z, u, v be arbitrary elements of A such that (x, y) ∈ τ�, (y, z) ∈ τ� and
(u, v) ∈ τ . Then (u, x) ∈ τ ∨ (x, y) ∈ τ ∨ (y, z) ∈ τ ∨ (z, v) ∈ τ by co-transitivity of
τ . Thus u ̸= x or z ̸= v because the options (x, y) ∈ τ and (y, z) ∈ τ are impossible
by hypothesis. So, (x, z) ̸= (u, v) ∈ τ and (x, z) ∈ τ�. Therefore, the relation τ�

is a transitive relation in A.
Let x, z ∈ A such that (x, z) ∈ τ ◦ (τ�)−1. Then there exists an element y ∈ A

such that (y, x) � τ and (y, z) ∈ τ . Thus (y, x) ∈ τ ∨ (x, z) ∈ τ . Since the first
option is impossible, we have (x, z) ∈ τ . The second inclusion is proven analogously
to the previous one. □

Our second propositions link the idea of a co-quasiorder relation to the concept
of co-equality relations.

Proposition 3.2 ([42], Lemma 1). If τ is a co-quasiorder relation on a set A,
then the relation q = τ ∪ τ−1 is a co-equality relation on A.

From this claim, follow are very interesting consequences.

Corollary 3.1 ([42], Lemma 2). Let τ be a co-quasiorder relation on A,
q = τ ∪ τ−1¿. Then the relation α on the set [A : q], defined by

(∀ aq, bq ∈ [A : q])((xq, yq) ∈ α ⇐⇒ (x, y) ∈ τ),

is a co-order relation on [X : q].

The relationship that exists between the relations α and α� if α is a co-order
relation on a set (A,=, ̸=), is much more complex than in the previous proposition.

Proposition 3.3. Let α be a co-order relation on a set (A,=, ̸=). Then the
relation α� is an order relation on the set (A, ̸=�, ̸=) associated with α in the
following sense

α ◦ (α�)−1 ⊆ α and (α�)−1 ◦ α ⊆ α.

Proof. Reflexivity and transitivity can be proved as in Proposition 3.1. An-
tisymmetry should be demonstrated. Let x, y, u, v ∈ A be arbitrary elements such
that (x, y) ∈ α�, (y, x) ∈ α� and u ̸= v. Then (u, v) ∈ α ∪ α−1 by linearity of α
and (u, v) ∈ α or (v, u) ∈ α. As the following implications

(u, v) ∈ α =⇒ (u, x) ∈ α ∨ (x, y) ∈ α ∨ (y, v) ∈ α

=⇒ (u ̸= x ∨ y ̸= v)
and

(v, u) ∈ α =⇒ (v, y) ∈ α ∨ (y, x) ∈ α ∨ (x, u) ∈ α

=⇒ (u ̸= x ∨ y ̸= v)

hold, we conclude that x ̸=� y is valid. □

Remark 3.2. If ̸= is not a tight relation on A, i.e. if the following

(∀x, y ∈ A)(¬(x ̸= y) =⇒ x = y)

not valid, then the sets (A,=, ̸=) and (A, ̸=�, ̸=) are different. The presence of this
difference significantly complicates the functional connections between co-ordered
sets.
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Let (A,=, ̸=, τ) and (B,=, ̸=, σ) be ordered sets under co-quasiorders τ and σ
respectively and let f : A −→ B be a strongly extensional function. Let’s introduce
a notation f−1(σ) by the following way

(∀x, x′ ∈ A)((x, x′) ∈ f−1(σ) ⇐⇒ (f(x), f(x′)) ∈ σ).

The following notions are naturally appear.

Definition 3.3. Let f : (A,=, ̸=, τ) −→ (B,=, ̸=, σ) be a strongly extensional
function between ordered sets under co-quasiorders.

(a) f is said to be an isotone function if τ ⊆ f−1(σ) is valid;
(b) For f , it is said that it is reverse isotone function if f−1(σ) ⊆ τ holds.

Corollary 3.2. Let τ be a co-quasiorder relation on a set A and q = τ ∪ τ−1

and α as in Corollary 3.1. The mapping ϑ : A −→ [A : q] is a strongly extensional
surjective reverse isotone mapping and holds α ◦ ϑ = τ , in which case α is equal to
τ ◦ ϑ−1.

Proof. ϑ is a strongly extensional surjective mapping by Proposition 2.3. Let
us prove that it is a reverse isotone mapping. In that direction, let us take (a, b) ∈
vartheta−1(α). Then (ϑ(a), ϑ(b)) ∈ α. Thus (a, b) ∈ τ by definition of α. So,
ϑ−1(α) ⊆ τ . This means that the mapping ϑ is a reverse isotone mapping. □

If τ is a co-quasiorder relation on a set (A,=, ̸=) and let a, b be elements of A,
then the set aτ = {y ∈ A : (a, y) ∈ τ} is a left class of τ generated by the element
a, and the set τb = {x ∈ A : (x, b) ∈ τ} is a right class of τ generated by the
element b. Our third proposition describes in more detail the properties of these
classes.

Proposition 3.4. Let τ be a co-quasiorder relation in a set (A,=, ̸=). Then
(0) Subsets aτ and τb are strongly extended subsets in A for any a, b ∈ A.
(1) (∀a, b ∈ A)((a, b) ∈ τ =⇒ A = aτ ∪ τb).
(2) (∀a, b ∈ A)(¬((a, b) ∈ τ) =⇒ (aτ ⊆ bτ ∧ τb ⊆ τa)).

Proof. (0) Let x, y ∈ A be arbitrary elements such that y ∈ aτ . Then from
(a, y) ∈ τ follows (a, x) ∈ τ ∨ (x, y) ∈ τ . Thus x ∈ aτ ∨ x ̸= y. So, the set aτ is a
strongly extensional subset of A. The second claim can be proven by analogy with
the first one.

(1) Let a, b ∈ A be arbitrary elements such that (a, b) ∈ τ . Then the following
(∀x ∈ A)((a, x) ∈ τ ∨ (x, b) ∈ τ) holds by co-transitivity of τ . Thus (∀x ∈ A)(x ∈
aτ ∨ x ∈ τb). So, A ⊆ aτ ∪ τb.

(2) Let a, b ∈ A elements such that ¬((a, b) ∈ τ). Suppose x ∈ aτ . Then
(a, x) ∈ τ . Thus (a, b) ∈ τ or (b, x) ∈ τ . Since the first option is impossible, we
have x ∈ bτ . So, aτ ⊆ bτ . The second claim can be proven analogous to the
previous one. □

Theorem 3.1. Let (A,=, ̸=) be a non-empty set with apartness. Then the
family C(A) of all co-quasiorders in A forms a complete lattice.
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Proof. Let {τk}k∈K be a family of co-quasiorder relations on a set A. It is
clear that

⋃
k∈K τk is a consistent relation since each of the components in the

union is a consistent relation. Let x, y, z ∈ A be arbitrary elements such that
(x, z) ∈

⋃
k∈K τk. Then there exists an index k ∈ K such that (x, z) ∈ τk. Thus

(x, y) ∈ τ or (y, z) ∈ τ by co-transitivity of τl. So, we have (x, y) ∈
⋃

k∈K τk or
(y, z) ∈

⋃
k∈K τk. Therefore, the relation

⋃
k∈K τk is a co-transitive relation n X.

Let Y be the family of all co-quasiorders included in
⋂

kK
τk. Then

⋃
Y is a

co-quasiorder relation on X included in
⋂

kK
τk.

If we put ⊔k∈Kτk =
⋃

k∈K τk and ⊓k∈Kτk =
⋃
Y, then we have that

(C(X),⊔,⊓) is a complete lattice. □

Let τ be a co-quasiorder relation on a set A. Then for every pair (x, z) of τ
there exists a pair (Ax, Bz) of strongly extensional subsets of A such that x� Ax,
z � Bz, A = Ax ∪ Bz and x ∈ Bz ∧ z ∈ Ax. Indeed, if (x, z) ∈ τ is a pair of
elements, we can put Ax = xτ and Bz = τz. Then the following holds x�Az and
z � Bz and A = Az ∪ Bz. Since x ∈ A = Ax ∪ Bz and x� Ax, it must be x ∈ Bz.
The second claim, z ∈ Ax, can be proven analogous to the previous one.

Example 3.6. If B is a strongly extensional subset of A, then the relation τ
on X, defined by

(x, y) ∈ τ ⇐⇒ (x ∈ A ∧ x ̸= y),

is a co-quasiorder on A.

Proof. It is clear that τ is a consistent relation on A. Let (x, z) ∈ τ and let y
be an arbitrary element of A. Then x ∈ B ∧ x ̸= z. Thus x ̸= y ∨ y ̸= z. If x ̸= y
and x ∈ B, then (x, y) ∈ τ . If y ̸= z and x ∈ B, we have y ̸= z and x ∈ B and
x ̸= y ∨ y ∈ B by strongly extensionality of B. In the case y ̸= z ∧ x ∈ B x ̸= y
we have again (x, y) ∈ τ ; in the case y ̸= z and x ∈ B and y ∈ B we have
(y, z) ∈ τ . So, the relation τ is a co-transitive relation on A. Therefore, relation τ
is a co-quasiorder relation on A. Further, we have:

x ∈ B =⇒ xτ = {t ∈ A : t ̸= x} and ¬(x ∈ B) =⇒ xτ = ∅ and
y ∈ B =⇒ τy = {t ∈ A : t ̸= x} ∩B and y �B =⇒ τy = B. □

In the following theorem we give a connection between the family C(A) of all
co-quasiorders on set A and the family Q(A) of all coequality relations on A. The
following theorem is similar to Theorem 7 in the article [47]. Since in that article is
about regular co-equality relations, and in this theorem this requirement is omitted,
we will demonstrate the proof.

Theorem 3.2. The mapping f : C(A) −→ Q(A), defined by f(τ) = τ ∪ τ−1, is
a strongly extensional function. Relations

ε = Ker(f) = {(τ, σ) ∈ C(A)× C(A)|τ ∪ τ−1 = σ ∪ σ−1} and
ω = Coker(f) = {(τ, σ) ∈ C(A)× C(A)|τ ∪ τ−1 ̸= σ ∪ σ−1}

are compatible an equality and a diversity relation on C(A) and there is the strongly
extensional injective and embedding mapping

g : C(A)/(Ker(f), Coker(f)) −→ Q(A).
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Proof. The mapping f is a well-defined strongly extensional function: If τ is
a co-quasiorder relation on A, then f(τ) = τ ∪ τ−1 is a coequality relation on A.

Let σ and τ be elements of C(A) such that τε = σε. Then (τ, σ) ∈ ε and
g(τε) = f(τ) = τ ∪ τ−1 = σ ∪ σ−1 = f(σ) = g(σε). Suppose that g(τε) = f(τ) =
τ ∪ τ−1 ̸= σ ∪ σ−1 = f(σ) = g(σε) for some σ, τ ∈ C(A). Then there exists
an element (x, y) ∈ A × A such that ((x, y) ∈ τ ∪ τ−1 and (x, y) � σ ∪ σ−1) or
((x, y) ∈ σ ∪ σ−1 and (x, y)� τ ∪ τ−1). In the first case, we have:

((x, y) ∈ τ ∨ (x, y) ∈ τ−1) ∧ (x, y)� σ ∧ (x, y)� σ−1 =⇒
((x, y) ∈ τ ∧ (x, y)� σ) ∨ ((x, y) ∈ τ−1 ∧ (x, y)� σ−1) ⇐⇒
((x, y) ∈ τ ∧ (x, y)� σ) ∨ ((y, x) ∈ τ ∧ (y, x)� σ) =⇒ τ ̸= σ.

In the second case we derive similar implication analogously.
g is an injective function. In fact: let τ and σ be elements of C(A) such that

g(τε) = f(τ) = τ ∪ τ−1 = σ ∪ σ−1 = f(σ) = g(σε). Then, (τ, σ) ∈ ε and τε = σε.
g is an embedding. Indeed, let τ and σ be elements of C(A) such that τε ̸= σε,

i.e. such that (τ, σ) ∈ ω. It means

g(τε) = f(τ) = τ ∪ τ−1 ̸= σ ∪ σ−1 = f(σ) = g(σε).

□

Let ≺ and ⊀ be a pair of a quasi-order and a co-quasiorder relation on set
(A,=, ̸=). For pair (≺,⊀) it is said that they are associated if the following holds

≺−1 ◦ ⊀⊆⊀ and ⊀ ◦ ≺−1 ⊆⊀ .

As proved in Proposition 3.1, for every co-quasiorder relation ⊀ there exists a
quasi-order ⊀� associated with ⊀. It is quite justified to ask the question:

Question 3.1. Does a co-quasiorder relation exist for a given quasi-order re-
lation ≺ associated with it?

One partial affirmative answer to the posed question is given by Theorem 3.1.
Let T be the family of all co-quasiorder relations included in ¬ ≺. Then τ := ∪T
is the maximal co-quasiorder relation included in ¬ ≺. Without much difficulty it
can be shown that ≺ and τ are associated relations.

3.2. Concept of regular co-equality relations. The proof of the previous
theorem is the motivation for the introduction of a particular link between the
relation of co-equality q and the relation of co-quasiorder τ in the intention that
the function g be surjective mapping.

For a given ordered set (A,=, ̸=, α) under a co-order α it is essential to know
if there exists a coequality relation q on X such that [A : q] is an ordered set. This
plays an important role in the investigation of ordered sets under co-orders. The
following question is natural:

Question 3.2. If (A,=, ̸=, α) is an ordered set under a co-order α and q a
coequality on A, is the set [A : q] an ordered set?

A possible co-order on [A : q] could be the relation Θ on [A : q] defined by the
co-order α on A, by Θ = {(xq, yq) ∈ [A : q] × X : q|(x, y) ∈ α}. But it is not a
co-order, in general. The following question arises:
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Question 3.3. Is there a coequality q on A for which [A : q] is ordered set?

According to Proposition 3.2, if (A,=, ̸=, α) is an ordered set and σ (⊆ α)
is a co-quasiorder on A, then the relation q on A, defined by q = σ ∪ σ−1 is a
coequality relation on A and the set [A : q] is ordered set under co-order Θ defined
by (xq, yq) ∈ Θ ⇐⇒ (x, y) ∈ σ. This was motivation for a new notion.

Definition 3.4. A co-equality relation q on a ordered set (A,=, ̸=, α) under
a co-order α is called regular co-equality relation if there is a co-order θ on [A : q]
satisfying the following conditions:

(1) ([A : q],=1, ̸=1,Θ) is a co-ordered set under co-order Θ;
(2) The mapping ϑ : A ∋ a 7−→ aq ∈ [A : q] is a reverse isotone surjection with

respect to α and Θ.

We call the co-order θ on [X : q] a regular co-order with respect to a regular co-
equality q on A and the co-order α.

About these concepts a reader can look at the texts [43, 44, 47, 61].
In the following theorem we giving an answer on the Question 3.2, we find

necessary and sufficient conditions that the relation Θ = ϑ ◦ α ◦ ϑ−1 is a co-order
relation on [A : q].

Theorem 3.3 ([43], Theorem 4). Let q be a co-equality relation on an ordered
set (A,=, ̸=) under a co-order α. Then the relation Θ = ϑ ◦ α ◦ ϑ−1 is a co-order
relation on the family [A : q] if and only if the relation τ = q� ◦ α ◦ q� is a
co-quasiorder relation on A such that τ ∪ τ−1 = q.

We will show the proof of this theorem again because an interested reader
can recognize in it the specifics of the technique used in this principled-logical
orientation.

Proof. (1) Let q be a coequality relation on A and let Θ := ϑ ◦ α ◦ ϑ−−1 be
an co-order relation on [X : q]. Then the relation ϑ−−1(Θ) = {(a, b) ∈ A × A :
(aq, bq) ∈ Θ} is a co-quasiorder relation on X under α such that q = (ϑ−1(Θ)) ∪
(ϑ−−1(Θ))−−1 where the mapping ϑ : X −→ [X : q] is the canonical reverse isotone
surjective strongly extensional function. At the other hand, we have

(a, b) ∈ ϑ−1(Θ) ⇐⇒
(aq, bq) ∈ Θ = ϑ ◦ α ◦ ϑ−1 ⇐⇒
(∃x, y ∈ A)((aq, x) ∈ ϑ−1 ∧ (x, y) ∈ α ∧ (y, bq) ∈ ϑ) =⇒
(∃x, y ∈ A)((a, aq) ∈ ϑ ∧ (aq, x) ∈ ϑ−1 ∧ (x, y) ∈ α ∧ (y, bq) ∈ ϑ ∧ (bq, b) ∈ ϑ−1)

=⇒ (a, b) ∈ (ϑ−1 ◦ ϑ) ◦ α ◦ (ϑ−1 ◦ ϑ)
=⇒ (a, b) ∈ q� ◦ α ◦ q�.

Opposite, let (a, b) be an arbitrary element of q� ◦ α ◦ q�. Then there exist
elements x, y ∈ A such that (a, x) ∈ q�, (x, y) ∈ α and (y, b) ∈ q�. Thus, aq =2

xq =2 ϑ(x), ϑ(y) =2 by =2 yq and (x, y) ∈ α. Since (aq, x) ∈ ϑ−1, (x, y) ∈ α and
(y, bq) ∈ ϑ we have the following (aq, bq) ∈ ϑ◦α◦ϑ−1 = Θ. Hence, (a, b) ∈ ϑ−1(Θ).
Therefore, the relation q� ◦ α ◦ q� = τ is a co-quasiorder relation on A such that
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τ ∪ τ−1 = q where ϑ is the canonical reverse isotone strongly extensional function
from A onto [A : q].

Finally, let us show that q = ϑ−1◦ϑ holds. Let a, b ∈ A such that (a, b) ∈ ϑ−1◦ϑ.
Then there exists an element xq ∈ [A : q] such that (a, xq) ∈ ϑ and (xq, b) ∈ ϑ−1.
Thus ϑ(a) =2 xq =2 ϑ(b). Hence (a, b) ∈ q�. The reverse implication can be proved
as follows. If a, b ∈ A be such that (a, b) ∈ q�, then aq = ϑ(a) =2 ϑ(b) = bq. Thus
(a, aq) ∈ ϑ ∧ aq =2 bq ∧ (bq, b) ∈ ϑ−1. So, (a, b) ∈ ϑ−1 ◦ ϑ.

(2) Let τ := q� ◦α ◦ q� is a co-quasiorder relation on A such that τ ∪ τ−1 = q.
Then, the relation Θ = {(aq, bq) ∈ [A : q] × [A : q] : (a, b) ∈ τ} is a co-order
relation on [A : q]. The inclusion of ϑ ◦ α ◦ ϑ−1 ⊆ Θ can be proved by analogy
with the procedure in point (1) of this proof. Conversely, if a, b ∈ A are such that
(aq, bq) ∈ Θ, then (a, b) ∈ τ ⊆ α. Thus

(aq, a) ∈ ϑ−1 ∧ (a, b) ∈ α ∧ (b, bq) ∈ ϑ−1.

Hence (aq, bq) ∈ ϑ ◦ α ◦ ϑ−1. □

In what follows we introduce the concept of quotient co-ordered mappings and
the concept of quotient co-quasiorders:

Definition 3.5. Let (A,=, ̸=, α) be a co-ordered set. A co-quasiorder τ on A
is called a quotient co-quasiorder on A if the following holds

α ⊆ q� ◦ τ ◦ q�.

Let

φ : (A,=, ̸=, α) −→ (B,=, ̸=, β)
be a strongly extensional reverse isotone mapping. Then, the relation φ−1(β) is a
co-quasiorder on A with φ−1(φ) ∪ (φ−1(β)) = Cokerφ, and [A : Cokerφ] is a co-
ordered sets. Besides, holds φ−1(β) ⊆ α because φ is a reverse isotone mapping.
A little generalization of notion introduced in the Definition 3.5 is the following
notion:

Definition 3.6. Let (A,=, ̸=, α) and (B,=, ̸=, β) be co-ordered sets. A reverse
isotone strongly extensional mapping φ : A −→ B is called a quotient co-ordered
mapping from A to B if the following holds

α ⊆ q� ◦ φ−1(β) ◦ q�.
In the case when φ is onto, B is called a quotient co-ordered set of A.

Proposition 3.5. Let (A,=, ̸=, α) be a co-ordered set and τ be a quotient co-
quasiorder on A. Then ϑ : X −→ [A : τ ∪ τ−1] is a quotient co-ordered mapping
from A onto [A : τ ∪ τ−1]. Thus, [A : τ ∪ τ−1] is a quotient co-ordered set of A.

Proof. Let τ is a quotient co-quasiorder relation on A. Then q = τ ∪ τ−1

is a coequality relation on A and Θ, defined by (aq, bq) ∈ Θ ⇐⇒ (a, b) ∈ τ , is a
co-order on [A : q] and the mapping ϑ : A −→ [A : q] is a strongly extensional
reverse isotone mapping from A onto [A : q]. Since τ is a quotient co-quasiorder
relation on A, then the inclusion α ⊆ q� ◦ τ ◦ q� holds. Besides, since τ = ϑ−1(Θ),
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we have α ⊆ q� ◦ϑ−1(Θ)◦q�. Therefore, ϑ is a quotient co-ordered mapping from
A onto [A : q]. □

In the next assertion we give a connection between quotient co-ordered mapping
and quotient co-quasiorder on co-ordered set.

Proposition 3.6. Let (A,=, ̸=, α) and (B,=, ̸=, β) be co-ordered sets and φ :
A −→ B be a strongly extensional reverse isotone quotient co-ordered mapping.
Then, φ−1(β) is a quotient co-quasiorder on A with φ−1(β)∪(φ−1(β))−1 = Cokerφ.

Proof. Let φ : A −→ B be a strongly extensional reverse isotone quotient
co-ordered mapping. Then φ−1(β) is a co-quasiorder on A such that φ−1(β) ∪
(φ−1(β)) = Cokerφ. Since we have α ⊆ Kerφ ◦φ−1(β) ◦Kerφ, we conclude that
φ−1(β) is a quotient co-quasiorder relation on A. □

At the end of this subsection we introduce and study a coequality relation
q on an ordered set (A,=, ̸=) under a co-order α when the following inclusion
q� ◦ α ⊆ α ◦ q� holds. For such co-equality we say that it is a weakly regular
coequality relation on A. The following result can be proved by a similar technique
to the previous theorem:

Theorem 3.4 ([61], Theorem 2.1). If a co-equality relation q is a weakly reg-
ular, then the relation τ := α ◦ q� is a co-quasiorder relation on A and the set
[A : q] is an ordered set under co-quasiorder Θ := ϑ ◦ α ◦ ϑ−1 where the mapping
ϑ : A −→ [A : q] is the canonical strongly extensional reverse isotone surjective
function.

Proof. (1) We have:

α ◦ q� ⊆ q� ◦ α ◦ q� ⊆ q� ◦ (α ∗ α) ◦ q� ⊆ (q� ◦ α) ∗ (α ◦ q�)
⊆ (α ◦ q�) ∗ (α ◦ q�).

(2) Let us prove that the implication

q� ◦ α ⊆ α ◦ q� =⇒ α ◦ q� = q� ◦ α ◦ q�

is valid. In fact:

(i) α ◦ q� = IdX ◦ α ◦ q� ⊆ q� ◦ α ◦ q�

(ii) q� ◦ α ◦ q� ⊆ α ◦ q� ◦ q� ⊆ α ◦ q�.
Therefore, if the relation q is a weakly regular coequality relation on set (A,=, ̸=, α),
then holds α ◦ q� = q� ◦α ◦ q�. From this, we conclude that the following relation

ϑ◦(α◦q�)◦ϑ−1 = ϑ◦(α◦(ϑ−1◦ϑ))◦ϑ−1 = (ϑ◦α◦ϑ−1)◦(ϑ◦ϑ−1) = (ϑ◦α◦ϑ−1) = Θ

is a co-quasiorder on [A : q]. □

3.3. Concepts of co-ideals and co-filters. We will start this subsection
with the following statement.

Proposition 3.7 ([51], Proposition 3.1). Let τ be a co-quasiorder on a set A.
Then classes aτ and τb are strongly extensional subsets of A such that a� aτ and
b� τb, for any a, b ∈ A. Moreover, the following implications holds
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(1) (∀x, y ∈ A)(y ∈ aτ ∧ x ∈ A =⇒ x ∈ aτ ∨ (x, y) ∈ τ);
(2) (∀x, y ∈ A)(y ∈ τb ∧ x ∈ A =⇒ x ∈ τb ∨ (y, x) ∈ τ).

Generalizing the example (1) and (2) in Proposition 3.7, we can introduce the
concept of special subsets in ordered set under a co-quasiorder.

Definition 3.7. Let A be ordered set under co-quasiorder τ . For subset G of
A we say that it is a co-filter in A if

(∀x, y ∈ A)(y ∈ G =⇒ (x ∈ G ∨ (x, y) ∈ τ)).

So, the subset aτ is a principal co-filter of A generated by the element a. In
addition, the sets ∅ and A are trivial co-filters of A.

Definition 3.8. For subset K of ordered subset A under a co-quasiorder τ we
say that it is a co-ideal in A if

(∀x, y ∈ A)(y ∈ K =⇒ (x ∈ K ∨ (y, x) ∈ τ)).

So, the subset τb is a principal co-ideal of A generated by the element b. In
addition, the sets ∅ and A are trivial co-ideals of A.

Theorem 3.5 ([51], Theorem 3.1). If G is a co-filter of ordered set A under
co-quasiorder τ , then G� is a filter in ordered set A under quasiorder τ� such that
G ∩G� = ∅.

If K is a co-ideal of ordered set A under co-quasiorder τ , then K� is an ideal
in ordered set A under quasiorder τ� such that G ∩G� = ∅.

It is quite justified to ask the following question:

Question 3.4. Let ⪯̸ be a co-quasiorder in a set with apartness (A,=, ̸=). If
H is an ideal (a filter) in an ordered set (A,=, ̸=) under a co-quasiorderd ⪯̸�, is
there a maximal co-ideal K (co- filter G, res.) u (A,=, ̸=,⪯) such that H ∩K = ∅
(res. G ∩H = ∅)?

To answer this question we need the following theorem and its immediate con-
sequences:

Theorem 3.6 ([51], Theorem 3.2). If {Kj}j∈J be a family of co-filters (co-
ideals) in ordered set A under co-quasiorder τ , then

⋃
j∈J Kj is a co-filter (co-ideal

respectively) too.
If G1 and G2 are co-filters (co-ideals), then the intersection G1 ∩ G2 is also

co-filter (co-ideal respectively) in A.

Corollary 3.3. Let A is a ordered set with apartness under co-quasiorder τ .
Then the family G(A) of all co-filters (the family K(A) of all co-ideals) in A forms
a complete lattice. The greatest element in this lattice is A.

Proof. Let {Kj}j∈J be a family of co-filters (co-ideals) in ordered set A under
co-quasiorder τ . If T is the family of all co-filters (co-ideals, res.) in A contained
in

⋂
j∈J Kj , then ∪T is the maximal co-filter (the maximal co-ideal) contained in⋂

j∈J Kj .

If we put ⊔j∈JKj and ⊓j∈JKj = ∪T, then (G(A),⊔,⊓) ((K(A),⊔,⊓), res.) is
a complete lattice. □
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Theorem 3.7. Let H be an ideal (a filter) in ordered set (A,=, ̸=) under a
co-quasiorder ⪯̸. Then there is a maximal co-ideal (maximal co-filter, res.) M u A
such that M ∩H = ∅.

Proof. Let T be the family of all co-ideals (co-filters) included in ¬H. Then
M := ∪T is the maximal co-ideal (co-filter, res.) in A such that H ∩ M = ∅
according to previous corollary. □

About other forms of substructures in the ordered set under a co-quasiorder
relation, an interested reader can look at the article [51]. About co-quasiordered
residuated relational systems, a reader can find in the text [53].

4. Some mappings between co-quasiordered sets

The notion of a mapping between ordered sets is one of the fundamental notions
in the study of the structure of ordered sets. In literature, for example, in [11], [18],
[21], [28] and [60] there are several definitions of (isotone) mappings on ordered
sets. Following [11] and [18] there are:

(i) isotone mappings;
(ii) strong isotone mappings;
(iii) U -mappings and L-mappings.
This paper presents a new approach to mappings between co-quasiordered rela-

tional systems in the constructive setting. The concepts of relational systems with
co-order and co-quasiorder relations were analyzed in article [19, 48, 49, 50].

4.1. Strong mappings. Halaš and Hort ([18]) observed that there are several
different definitions of mappings on partially ordered sets. Following ideas exposed
in articles [19, 48], we describe some mappings between co-quasiordered relational
systems. First, we modify the notion of a strong mapping in Chajda and Hoškova
sense ([11]), as in article [48].

Definition 4.1. ([48]) Let ((A,=, ̸=), σ) and ((B,=, ̸=), τ) be co-quasiordered
relational systems and let φ : A −→ B be a strongly extensional mapping. Isotone
mapping φ is called an isotone strong mapping from A to B if the following holds:

σ ⊆ φ−1(τ) ⊆ Kerφ ◦ σ ◦Kerφ.

Definition 4.2. ([48]) Let ((A,=, ̸=), σ) and ((B,=, ̸=), τ) be co-quasiordered
relational systems and let φ : A −→ B be a strongly extensional mapping. A reverse
isotone mapping φ is called a reverse isotone strong mapping from A to B if the
following holds

φ−1(τ) ⊆ σ ⊆ Kerφ ◦ φ−1(τ) ◦Kerφ.

Results in the following proposition are very important in our understanding
of these notions:

Proposition 4.1 ([49], lemma 3.1). Let ((A,=, ̸=), σ) and ((B,=, ̸=), τ) be
co-quasiordered relational systems and let φ : A −→ B be a strongly extensional
mapping. Then:

σ ⊆ φ−1(τ) ⊆ Kerφ ◦ σ ◦Kerφ⇐⇒ φ−1(τ) = Kerφ ◦ σ ◦Kerφ.
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φ−1(τ) ⊆ σ ⊆ Kerφ ◦ φ−1(τ) ◦Kerφ⇐⇒ σ = Kerφ ◦ φ−1(τ) ◦Kerφ.

4.2. U - mappings. Following ideas in the articles [19] and [48] we describe
U -mappings between co-quasiorder relational systems in this section.

Let (A,α) and (B, β) be relational systems. For a binary relation α on A and
a ∈ A denote Uα(a) = {t ∈ A : (a, t) ∈ α}. The set Uα(a) (the left class of α
generated by a) is called the upper class generated by a. A mapping φ : A −→ B
is called U -mapping if

φ(Uα(a)) = Uβ(φ(a)) for each a ∈ A.

Remark 4.1. (1). If φ is a strongly extensional and reverse isotone surjective
mapping, then Uβ(φ(x)) ⊆ φ(Uα(x)). Indeed, let z ∈ Uβ(φ(x)), i.e. let (φ(x), z) ∈
β. Since φ is a surjective mapping, then there exists an element t of A such that
z = φ(t) and (φ(x), φ(t)) ∈ β. Since φ is a reverse isotone mapping, we have
(x, t) ∈ α. Thus, t ∈ Uα(x) and z = φ(t) ∈ φ(Uα(x)).

(2). If φ is a strongly extensional and isotone surjective mapping, then Uβ(φ(x)) ⊇
φ(Uα(x)). Indeed, let z ∈ φ(Uα(x)). Then there exists an element t of A such that
z = φ(t) and (x, t) ∈ α. Since φ is an isotone mapping, we have (φ(x), φ(t)) ∈ β.
Thus, z = φ(t) ∈ Uβ(φ(x)).

In the following theorem we prove that every strongly extensional reverse iso-
tone strong mapping between two co-quasiorder relational systems is a U -mapping.

Theorem 4.1 ([49], Theorem 3.1). Let ((A,=, ̸=), σ) and ((B,=, ̸=), τ) be co-
quasiordered relational systems and let φ : A −→ B be a strongly extensional reverse
isotone surjective strong mapping. Then, the mapping φ is an isotone and reverse
isotone U -mapping.

It is easy to verify that the converse assertion is not valid in general. The
following theorem is the main result of [48]:

Theorem 4.2 ([48]). Let (A, σ) and (B, τ) be co-quasiordered relational sys-
tems and let φ : A −→ B be a strongly extensional surjective mapping. Then:

φ is a U -mapping if and only if σ ⊆ φ−1(τ) ⊆ Kerφ ◦ σ holds;
φ is a U -mapping if and only if φ−1(τ) ⊆ σ ⊆ Kerφ ◦ φ−1(τ) holds.

Now, in the following theorem we show a necessary condition for a U -mapping
to be a strong mapping:

Theorem 4.3 ([49], Theorem 3.3). Let (A, σ) and (B, τ) be quasi-antiordered
relational systems and let φ : A −→ B be a strongly extensional surjective U -
mapping and

Kerφ ◦ φ−1(τ) ⊆ φ−1(τ) ◦Kerφ

holds. Then, the mapping φ is a strongly extensional reverse isotone strong map-
ping.
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4.3. L - mappings. Let (A,α) and (B, β) be relational systems. For a binary
relation α on A and a ∈ A we set Lα(a) = {t ∈ A : (t, a) ∈ α}. The set Lα(a) (the
right class of α generated by a) is called the lower class generated by a. A mapping
φ : A −→ B is called L-mapping if

φ(Lα(a)) = Lβ(φ(a)) for each a ∈ A.

Remark 4.2. (1). Let φ be a (strongly extensional) reverse isotone surjective
mapping and let z ∈ Lβ(φ(a)), i.e. let (z, φ(a)) ∈ β. Since φ is a surjective
mapping, there exists an element t of A such that z = φ(t) and (φ(t), φ(a)) ∈ β.
Since φ is a reverse isotone mapping, we have (t, a) ∈ α. Thus, t ∈ Lα(a) and
z = φ(t) ∈ φ(Lα(a)). So,

φ−1(β) ⊆ α =⇒ Lβ(φ(a)) ⊆ φ(Lα(a)).

(2). If φ is a strongly extensional and isotone surjective mapping, then Lβ(φ(a)) ⊆
φ(Lα(a)). Indeed, let z ∈ φ(Lα(x)). Then there exists an element t of A such that
z = φ(t) and (t, a) ∈ α. Since φ is an isotone mapping, we have (φ(t), φ(a)) ∈ β.
Thus, z = φ(t) ∈ Lβ(φ(a)). Therefore, the following implication is valid

α ⊆ φ−1(β) =⇒ φ(Lα(a)) ⊆ Lβ(φ(a)).

Theorem 4.4 ([49], Theorem 3.4). Let (A, σ), (B, τ) be co-quasiordered re-
lational systems and let φ : A −→ B be a strongly extensional reverse isotone
surjective mapping. Then, if φ is an L-mapping then the following holds φ−1(τ) ⊆
σ ⊆ φ−1(τ) ◦Kerφ.

Some more details about co-quasiordered systems and mappings between co-
quasiordered relational systems can be found in articles [19, 53] and [49, 50].

4.4. Strongly isotone and weakly reverse isotone mapping. Strongly
isotone mappings, in classical mathematics, were introduced by Esakia in his well-
known article [17]. Recall that a mapping φ of an ordered set (A,⩽A) into an
ordered set (B,⩽B) is said to be strongly isotone in classical sense if φ(x) ⩽B y
holds for (x, y) ∈ A × B if and only if there exists x′ ∈ A such that x ⩽A x′ and
φ(x′) = y.

For our needs, a strongly isotone (a weakly reverse isotone) mapping of a re-
lational system into another one is a special case of a strong homomorphism of
relational systems in the sense of papers [17, 48, 49] modified for our needs.

Definition 4.3. ([50]) Let φ : A −→ B be a mapping of a relational system
(A,α) into a relational system (B, β). It is said that φ to be:

- strongly isotone if (φ(x), y) ∈ β holds for (x, y) ∈ A×B if there exists x′ ∈ A
such that (x, x′) ∈ α and φ(x′) = y;

- weakly reverse isotone if (φ(x), y) ∈ β holds for (x, y) ∈ A × B than there
exists an element x′ ∈ A such that (x, x′) ∈ α and φ(x′) = y.

Let us note that in our special case, a mapping φ : (A, ̸=A) −→ (B, ̸=B) is:
- a strongly isotone if φ(x) ̸=B y holds if there exists an element x′ ∈ A such

that x ̸=A x′ and φ(x′) = y;
- a weakly reverse isotone if the following implication holds
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φ(x) ̸=B y =⇒ (∃x′ ∈ A)(x ̸=A x′ ∧ φ(x′) = y).

In the following proposition we show connection between isotone (reverse iso-
tone) and strongly isotone (weakly reverse isotone) mappings.

Theorem 4.5 ([50], Theorem 2.2). Let φ : A −→ B a mapping from relational
system (A,α) into relational system (B, β). Then:

(1) If φ is strongly isotone mapping, then φ is an isotone mapping.
(2) If φ is reverse isotone mapping, then φ is a weakly reverse isotone mapping.

So, since the notion of strongly isotone mapping is stronger then notion of
isotone mapping, the notion of weakly reverse isotone mapping is weaker then
notion of reverse isotone mapping.

In the next theorems we analyze some characteristics of weakly isotone map-
pings between relational systems.

Our first characterization of weakly reverse isotone mapping is given in the
following proposition:

Theorem 4.6 ([50], Theorem 3.1). Let φ : A −→ B be a mapping between
two relational systems. Then, φ is a weakly reverse isotone mapping if and only if
φ−1(β) ⊆ Kerφ ◦ α holds.

For strongly isotone mapping we have the following assertion:

Theorem 4.7 ([50], Theorem 3.2). A mapping φ : (A,α) −→ (B, β) between
relational systems is a strongly isotone mapping if and only if α ⊆ φ−1(β) ◦Kerφ
holds.

4.5. Some important results. Some of the above considerations about func-
tions between co-ordered sets with apartness can be sublimated into the following
two theorems of which the second has no a counterpart in the classical theory:

Theorem 4.8. Let (A,=A, ̸=A,⩽̸A) and (B,=B , ̸=B ,⩽̸B) be co-ordered sets
and let f : A −→ B is a strongly extensional reverse isotone mapping. Then
(⊀ :=) f−1(⩽̸B) is a co-quasiorder relation on A such that ⊀⊆⩽̸A and the following
holds

(q :=)Coker(f) = (f−1(⩽̸B))
−1 ∪ f−1(⩽̸B) =⊀−1 ∪ ⊀ .

The set (A/(q�, q),=1, ̸=1,⪯̸) is an ordered set under a co-order ⪯̸, defined by

(∀x, y ∈ A)(xq� ⪯̸ yq� ⇐⇒ x ⊀ y)

and π : A −→ A/(q�, q) is a reverse isotone strongly extensional surjective map-
ping. In addition, there exists a unique injective, embedding and surjective strongly
extensional mapping

g : A/(q�, q) −→ (f(A),=B , ̸=B ,⩽̸B)

such that

f = g ◦ π.
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Theorem 4.9. Let (A,=A, ̸=A,⩽̸A) and (B,=B , ̸=B ,⩽̸B) be co-ordered sets
and let f : A −→ B is a strongly extensional reverse isotone mapping. Then
(⊀ :=) f−1(⩽̸B) is a co-quasiorder relation on A such that ⊀⊆⩽̸A and the following
holds

(q :=)Coker(f) = (f−1(⩽̸B))
−1 ∪ f−1(⩽̸B) =⊀−1 ∪ ⊀ .

The set ([A : q],=2, ̸=2,⪯̸) is an ordered set under a co-order ⪯̸, defined by

(∀x, y ∈ A)(xq ⪯̸ yq ⇐⇒ x ⊀ y)

and ϑ : A −→ [A : q] is a reverse isotone strongly extensional surjective map-
ping. In addition, there exists a unique injective, embedding and surjective strongly
extensional mapping

h : [A : q] −→ (f(A),=B , ̸=B ,⩽̸B)

such that

f = h ◦ ϑ.

The following theorem is one of the specifics of the Bishop aspect on sets with
apartness ordered under a co-order relation and does not have its counterpart in
the classical theory.

Let us consider ordered set with apartness (S,=S , ̸=S ,⩽̸S) under a co-order
⩽̸S and let σ and τ be co-quasiorder relations on S such that σ ⊆ τ ⊆ ⩽̸S . It
is known that co-congruences qσ = σ ∪ σ−1 and qτ = τ ∪ τ−1 on S such that
qσ ⊆ qτ can be designed. Further, by Theorem 4.9, this allows us to construct sets
with apartness ([S : qσ],=σ, ̸=σ, wσ) and ([S : qτ ],=τ , ̸=τ , wτ ) which are ordered
by co-order relations ≰σ and ≰τ respectfully as follows

(∀x, y ∈ S)(xqσ ≰σ yqσ ⇐⇒ (x, y) ∈ σ)

and

(∀x, y ∈ S)(xqτ ≰τ yqτ ⇐⇒ (x, y) ∈ τ).

Let us define the relation [σ : τ ] on co-ordered set with apartness [S : qτ ] as
follows

(∀x, y ∈ S)((xqτ , yqτ ) ∈ [σ : τ ] ⇐⇒ (x, y) ∈ σ).

Lemma 4.1. Let σ and τ be co-quasiorder on a co-ordered set with apartness
(S,=S , ̸=S ,⩽̸S) such that σ ⊆ τ ⊆ ⩽̸S. Then [σ : τ ] is a co-quasiorder relation
on [S : qτ ].

Proof. Ler x, y, z ∈ S be arbitrary elements. Then:

(xqτ , yqτ ) ∈ [σ : τ ] =⇒ (x, y) ∈ σ ⊆ τ ⊆ qτ

=⇒ xqτ ̸=τ yqτ ;

(xqτ , zqτ ) ∈ [σ : τ ] ⇐⇒ (x, z) ∈ σ

=⇒ (x, y) ∈ σ ∨ (y, z) ∈ σ

=⇒ (xqτ , yqτ ) ∈ [σ : τ ] ∨ (yqτ , zqτ ) ∈ [σ : τ ]. □
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For ease of writing, let’s put

q := q[σ:τ ] = [σ : τ ] ∪ [σ : τ ]−1.

Without major difficulties it can be verified that q is a co-congruence on the co-
ordered set with apartness ([S, qτ ],=τ , ̸=τ ,≰τ ). Set with apartness

([[S : qτ ] : q],=3, ̸=3,⪯̸3)

can be designed, where is

(∀x, y ∈ S)((xqτ )q =3 (yqτ )q ⇐⇒ (xqτ , yqτ )� q),

(∀x, y ∈ S)((xqτ )q ̸=3 (yqτ )q ⇐⇒ (xqτ , yqτ ) ∈ q).

The co-order relation ⪯̸3 in [[S : qτ ] : q] is determined as follows

(∀x, y ∈ S)((xqτ )q ⪯̸3 (yqτ )q ⇐⇒ (xqτ , yqτ ) ∈ [σ : τ ]).

We can now design and prove the following theorem. Of course, this form of
this theorem does not have its counterpart in the classical theory.

Theorem 4.10. Let σ and τ be co-quasiorder relations on co-ordered set with
apartness (S,=S , ̸=S ,⩽̸S) such that σ ⊆ τ ⊆ ⩽̸S. Then there is a unique injective,
embedding and surjective strongly extensional mapping

γ : [[S; qτ ] : q] −→ [S; qσ].

Proof. Let us define γ by

(∀(xqτ )q ∈ [[S : qτ ] : q])(γ((xqτ )q) := xqσ).

First, let us show that γ is a well-defined mapping. Assume x, y, u, v ∈ S are
such that (xqτ )q =3 (yqτ )q and (u, v) ∈ qσ. then (xqτ , yqτ )�q. On the other hand,
from (u, v) ∈ qσ we get (u, x) ∈ qσ ∨ (x, y) ∈ qσ ∨ (y, v) ∈ qσ. If we assume that
(x, y) ∈ qσ is valid, then we would have the following (x, y) ∈ σ or (y, x) ∈ σ. It
would follow from here

(x, y) ∈ σ ∨ (y, x) ∈ σ =⇒ (xqτ , yqτ ) ∈ [σ : τ ] ⊆ q ∨ (yqt, xqt) ∈ [σ : τ ] ⊆ q

which would contradict the hypothesis (xqτ , yqτ ) � q. So, it has to be (u, x) ∈ qσ
or (y, v) ∈ qσ. Thus x ̸=S u or y ̸=S v. Therefore, (x, y) ̸= (u, v) ∈ qσ. This means
(x, y)� qσ. Hence

γ((xqτ )q) := xqσ =σ yqσ := γ((yqτ )q).

Second, let us show that γ is a strongly extensional mapping. Let x, y ∈ S be
such that

xqσ = γ((xqτ )q) ̸=3 γ((yqτ )q) = yqσ.

Then (x, y) ∈ qσ = σ ∪ σ−1. Thus ((xqτ , yqτ ) ∈ [σ : τ ] ∪ [σ : τ ]−1 = q. Hence

(xqτ )q ̸=3 (yqτ )q.

Let x, y, u, v ∈ S be such that xqσ =σ yqσ and (uqτ , vqτ ) ∈ q. Then (x, y)�qσ =
σ∪σ−1 and (uqτ , vqτ ) ∈ q. Thus (uqτ , xqτ ) ∈ q or (xqτ , yqτ ) ∈ q or (yqτ , vqtau) ∈ q.
The option (xqτ , yqτ ) ∈ q gives (x, y) ∈ σ ∪ σ−1 which is in contradiction with the
hypothesis. So, it has to be (uqτ , xqτ ) ∈ q or (yqτ , vqτ ) ∈ q. Thus xqτ ̸=τ uqτ
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or yqτ ̸=τ vqτ . Hence (xqτ , yqτ ) ̸= (uqτ , vqτ ) ∈ q. This means (xqτ , yqτ ) � q, i.e.
(xqτ )q =3 (yqτ )q. This shows that γ is an injective mapping.

It remains to show that γ is an embedding. Let x, y ∈ S be such that (xqτ )q ̸=3

(yqτ )q. Then (xqτ , yqτ ) ∈ q = [σ : τ ]∪ [σ : τ ]−1. Thus (x, y) ∈ σ∪σ−1 = qσ. Hence
xqσ ̸=σ yqσ.

Finally, it is obvious that γ is a surjective mapping. □

Let A be an ordered set with apartness under a co-order α and let S be a
family of co-quasiorders on A. We say that S separates the elements of A if for
each x, y ∈ A such that (x, y) ∈ α there exist σ ∈ S such that (x, y) ∈ σ.

In what follows, we need the following lemmas:

Lemma 4.2. Let (A,=, ̸=) be an ordered set with apartness under a co-order
α and let S be a family of co-quasiorders on A. If every σ ∈ S is contained in
α and if S separates the elements of A, then α =

⋃
{σ : σ ∈ S}. Conversely, if⋃

{σ : σ ∈ S} ⊇ α, then S separates the elements of A.

Proof. Since S is a family of co-quasiorders, then
⋃
{σ : σ ∈ S} is a co-

quasiorder relation on A such that
⋃
{σ : σ ∈ S} ⊆ α. Let x, y ∈ A be arbitrary

elements such that (x, y) ∈ α. Since S separates the elements of A, then there
exists σ ∈ S such that (x, y) ∈ σ. Therefore (x, y) ∈

⋃
{σ : σ ∈ S}. This shows

that α =
⋃
{σ : σ ∈ S} is valid.

Suppose that
⋃
{σ : σ ∈ S} ⊇ α. Then for any pair (x, y) ∈ α there exists

and a co-quasiorder σ ∈ S such that (x, y) ∈ σ. Thus, the family S separates the
elements of set A. □

Lemma 4.3. Let {(Bi,=i, ̸=i, αi) : i ∈ I} be an inhabited family of ordered
sets under co-orders αi respectively, where I is a discrete set. Then the inhabited
Cartesian product B :=

∏
i∈I Bi is an ordered set under the co-order β determined

by

(x, y) ∈ β ⇐⇒ (∃i ∈ I)(((x(i), y(i)) ∈ αi).

Proof. Let x, y ∈ B such that (x, y) ∈ β. then there exist an index i ∈ I such
that ((x(i), y(i)) ∈ αi ⊆ ≠i. This means x ̸=B y.

Let x, y, z ∈ B be elements such that (x, z) ∈ β. Then there exists an index
i ∈ I such that ((x(i), y(i)) ∈ αi. Thus (x(i), y(i)) ∈ αi ∨ (y(i), z(i)) ∈ αi. Hence
(x, y) ∈ β ∨ (y, z) ∈ β.

For elements x, y ∈ B such that x ̸=B y there exists an index i ∈ I such that
x(i) ̸=i y(i). Then (x(i), y(i)) ∈ αi ∨ (y(i), x(i)) ∈ αi. This means (x, y) ∈ β or
(y, x) ∈ β. □

Let {Bi : i ∈ I} be a family of ordered set with apartness under co-orders αi

respectively. An ordered set with apartness (A,=A, ̸=A) under a co-order αA is a
subdirect product of the family {Bi : i ∈ I} if and only if:

(1) There exists a subset D of
∏

i∈I Bi and a strongly extensional injective
embedding mapping Ψ from D onto A; and

(2) (∀i ∈ I)(proji(D) = Bi).
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Theorem 4.11. Let (A,=A, ̸=A) be an ordered set with apartness under a co-
order αA. If A is a subdirect product of the co-ordered sets {(Bi,=i, ̸=i, αi) : i ∈ I},
then there exists a family {σi ⊆ A × A : i ∈ I} of co-quasiorders on A which
separates the elements of A. Conversely, if {σi : i ∈ I} is a family of co-quasiorders
on A which separates the elements if A, then A is a subdirect product of the co-
ordered sets {[A : σi ∪ (σi)

−1] : i ∈ I}.

Proof. (1) Let Ψ : A −→
∏

i∈I Bi be an isotone and reverse isotone strongly
extensional mapping such that proji(Ψ(A)) = Bi for each i ∈ I. For each j ∈ I,
we consider the mapping ψj : A −→ Bj by ψj(x) = projj(Ψ(x)) = Ψ(x)(j).

(1.1) The mapping ψj is a strongly extensional function because it is a compo-
nent of a strongly extensional mapping;

(1.2) Let x, y ∈ A be elements such that (x, y) ∈ αA. Since Ψ is an isotone
mapping we have (Ψ(x),Ψ(y)) ∈ β. This means that there exists an index k ∈ I
such that (Ψ(x)(k),Ψ(y)(k)) ∈ αk. Thus (projkΨ(x), projkΨ(y)) ∈ αk that is
(ψk(x), ψk(y)) ∈ αk. Since ψk is a strongly extensional mapping, the relation
ψ−1(σk), is a co-quasiorder relation on A.

By Lemma 4.2, it is enough to prove that
⋃
{σk : k ∈ I} ⊇ α. Let (x, y) ∈ α.

Then (Ψ(x),Ψ(y)) ∈ β because Ψ is an isotone mapping. This means that there
exist an index k ∈ I such that (Ψ(x)(k),Ψ(y)(k)) ∈ αk. Thus (x, y) ∈ σk. Hence
(x, y) ∈

⋃
{σk : k ∈ I}. Thus, the family {σk}k∈I of co-quasiorders in A separates

the elements of A.

(2) Converse, let {σi : i ∈ I} be a family of co-quasiorder relations on a co-
ordered set (S,=A, ̸=A, αA) which separates the elements of A. We can construct
the co-equality qk = σk ∪ (σk)

−1, and the ordered set [S : qk] under a co-order αk,
defined by (xqk, yqk) ∈ αk ⇐⇒ (x, y) ∈ σk, for every k ∈ I. Now, we can construct
the Cartesian product

∏
k∈I([A : qk],=k, ̸=k, αk) with

a = b ⇐⇒ (∀k ∈ I)(a(k), b(k) ∈ [A : qk] ∧ a(k) =k b(k)),

a ̸= b ⇐⇒ (∃k ∈ I)(a(k), b(k) ∈ [A : qk] ∧ a(k) ̸=k b(k))

and with xo-order β, defined by

(a, b) ∈ β ⇐⇒ (∃k ∈ I)((a(k), b(k)) ∈ αk).

We consider the mapping Ψ : A −→
∏

k∈I [A : qk].

(2.1) Ψ is well-defined mapping:
If x ∈ A, then xqk ∈ [A : qk] for any k ∈ I. So, we have Ψ(x) ∈

∏
l∈I [S : qk].

Let x, y ∈ A be arbitrary elements. If x =A y, then (x, y)� qi for every i ∈ I.
So, for every i ∈ I we have xqi =i yqi, i.e. (∀i ∈ I)(Ψ(x)(i) =i Ψ(y)(i)), i.e.
Ψ(x) = Ψ(y). So, Ψ is a mapping.

Let x, y ∈ A be elements such that f(x) ̸= f(y). Then there exists an index
j ∈ I such that Ψ(x)(j) ̸=j Ψ(y)(j). This means xqj ̸=j yqj . Thus (x, y) ∈ qj =
σj ∪ (σj)

−1. Hence (x, y) ∈ σj ∨ (y, x) ∈ σj . Therefore, x ̸= y. So, the mapping Ψ
is a strongly extensional function from A into

∏
j∈I [A : qj ].

(2.2) Ψ is an isotone mapping: Let x, y ∈ A ve sych that (x, y) ∈ α. Then
(x, y) ∈

⋃
{σk : k ∈ I} because the family {σk : k ∈ I} separates the elements of
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A. Then there exists an index k ∈ I such that (x, y) ∈ σk. i.e. (xqk, yqk) ∈ αk.
Therefore, (Ψ(x),Ψ(y)) ∈ β.

(2.3) Ψ is a reverse isotone mapping:: Let x, y ∈ A be such that (Ψ(x),Ψ(y)) ∈
β. Then there exists an index k ∈ I such that (Ψ(x)(k),Ψ(y)(k)) ∈ αk, i.e.
(xqk, yqk) ∈ αk. Thus (x, y) ∈ σk ⊆ α.

(2.4) (∀k ∈ I)(projk(Ψ(A)) = [A : qk]): For x ∈ A we have Ψ(x) ∈
∏

k∈I [A :
qk]. Thus for any index k ∈ I we have projkΨ(x) = xqk ∈ [A : qk]. This means
(∀k ∈ I)(projk(Ψ(S)) [A : qk]). Let b ∈

∏
kinI [A : qk], i.e. let (∀k ∈ I)(b(k) ∈

[A : qk]). Then there exists an element x in A such that Ψ(x) = b, determined by
(∀k ∈ I)(b(k) = Ψ(x)(k)). So, (∀k ∈ I)(projk(Ψ(x)) = b(k) ∈ [A : qk]). Therefore,
(∀k ∈ I)(projk(Ψ(S)) ⊇ [A : qk]). □
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