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ON COMMON FIXED POINT THEOREMS IN
S-METRIC SPACES USING C-CLASS FUNCTIONS

Gurucharan Singh Saluja

Abstract. In this paper, we prove some common fixed point theorems on

S-metric spaces for two pairs of weakly compatible mappings by using C-class
functions and give some consequences as corollaries of the established results.

We also give an example in support of the result. The results presented in this

paper generalize, extend and enrich various results in the existing literature.

1. Introduction

Fixed point theory is one of the most important topic in the development
of nonlinear analysis. As it is well known, one of the most useful theorem in
nonlinear analysis is the Banach contraction principle [6]. In 1922, Banach proved
the celebrated fixed point theorem, which assures the existence and uniqueness of
a fixed point under certain conditions.

There are many extensions of the famous Banach contraction principle in the
literature, which states that every self mapping T defined on a complete metric
space (X, d) satisfying the condition:

d(T (x), T (y)) ⩽ c d(x, y),(1.1)

for all x, y ∈ X, where c ∈ (0, 1) is a constant, has a unique fixed point and for
every x0 ∈ X a sequence {Tnx0}n⩾1 is convergent to the fixed point.

Generalizing the Banach contraction principle, Jungck [10] initiated the study
of common fixed point for a pair of commuting mappings satisfying contractive
type conditions. In 1982, Sessa [40] introduced a weaker concept of commutativ-
ity, which is generally known as weak commutativity and proved some interesting
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results on the existence of common fixed points for a pair of self maps. He also
showed that weak commuting mappings are commuting but the converse need not
to be true. Later, Jungck [11] generalized the concept of weak commutativity by
introducing the notion of compatible mappings which is more general than weakly
commuting mappings and showed that weak commuting maps are compatible but
converse need not be true. In 1996, Jungck [12] generalized the concept of com-
patibility by introducing weakly compatible mappings.

Mustafa and Sims [16] introduced a new notion of generalized metric space
called G-metric space and gave a modification to the Banach contraction principle.
After then, several authors studied various fixed point and common fixed point
problems for many classes of contractive mappings in generalized metric spaces
(see, [1, 2, 7, 17, 18, 19, 20, 41] and many others).

Sedghi et al. [38] introduced the concept of S-metric spaces which generalized
G-metric spaces and D∗-metric spaces. In [38] the authors proved some properties
of S-metric spaces. Also, they obtained some fixed point theorems in the setting
of S-metric spaces for a self-map.

Gupta [8] in 2013, introduced the notion of cyclic contraction in S-metric spaces
and proved some fixed theorems which are proper generalizations of the results of
Sedghi et al. [38].

Recently, a large number of authors have published many papers on S-metric
spaces in different ways (see, e.g.,[14, 15, 21, 22, 23, 24, 25, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 42, 43] and many others).

In 2014, the notion of C-class function was introduced by Ansari [5] that is
pivotal result in fixed point theory.

In this paper, we prove some common fixed point theorems on S-metric spaces
for two pairs of weakly compatible mappings by using C-class functions and give
some corollaries of our results. Our results generalize, extend and enrich several
results in the existing literature.

2. Preliminaries

In this section, we recall some definitions and lemmas that will be used to prove
our main results.

Definition 2.1. ([38]) Let E be a nonempty set and let S : E3 → [0,∞) be a
function satisfying the following conditions for all u, v, w, t ∈ E:

(S1) S(u, v, w) = 0 if and only if u = v = w;
(S2) S(u, v, w) ⩽ S(u, u, t) + S(v, v, t) + S(w,w, t).
Then the function S is called an S-metric on E and the pair (E,S) is called

an S-metric space or simply SMS.

Example 2.1. ([38]) Let E = Rn and ∥ · ∥ a norm on E, then S(u, v, w) =
∥v + w − 2u∥+ ∥v − w∥ is an S-metric on E.

Example 2.2. ([38]) Let E be a nonempty set and d be an ordinary metric on
E. Then S(u, v, w) = d(u,w) + d(v, w) for all u, v, w ∈ E is an S-metric on E.
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Example 2.3. ([39]) Let E = R be the real line. Then S(u, v, w) = |u− w|+
|v − w| for all u, v, w ∈ R is an S-metric on E. This S-metric on E is called the
usual S-metric on E.

Definition 2.2. Let (E,S) be an S-metric space. For r > 0 and u ∈ E we
define the open ball BS(u, r) and closed ball BS [u, r] with center u and radius r as
follows, respectively:

BS(u, r) = {v ∈ E : S(v, v, u) < r},

BS [u, r] = {v ∈ E : S(v, v, u) ⩽ r}.

Example 2.4. ([39]) Let E = R. Denote S(u, v, w) = |v + w − 2u| + |v − w|
for all u, v, w ∈ R. Then

BS(1, 2) = {v ∈ R : S(v, v, 1) < 2} = {v ∈ R : |v − 1| < 1}
= {v ∈ R : 0 < v < 2} = (0, 2),

and

BS [2, 4] = {v ∈ R : S(v, v, 2) ⩽ 4} = {v ∈ R : |v − 2| ⩽ 2}
= {v ∈ R : 0 ⩽ v ⩽ 4} = [0, 4].

Definition 2.3. ([38], [39]) Let (E,S) be an S-metric space and A ⊂ E.
• The subset A is said to be an open subset of E, if for every u ∈ A there exists

r > 0 such that BS(u, r) ⊂ A.
• A sequence {un} in E converges to u ∈ E if S(un, un, u) → 0 as n → ∞,

that is, for each ε > 0, there exists n0 ∈ N such that for all n ⩾ n0 we have
S(un, un, u) < ε. We denote this by limn→∞ un = u or un → u as n→ ∞.

• A sequence {un} in E is called a Cauchy sequence if S(un, un, um) → 0 as
n,m → ∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ⩾ n0
we have S(un, un, um) < ε.

• The S-metric space (E,S) is called complete if every Cauchy sequence in E
is convergent.

• Let τ be the set of all A ⊂ E having the property that for every u ∈ A, A
contains an open ball centered in u. Then τ is a topology on E (induced by the
S-metric space).

• A nonempty subset A of E is S-closed if closure of A coincides with A.

Definition 2.4. ([38]) Let (E,S) be an S-metric space. A mappingR : E → E
is said to be a contraction if there exists a constant 0 ⩽ q < 1 such that

S(Ru,Rv,Rw) ⩽ q S(u, v, w),(2.1)

for all u, v, w ∈ E.

Remark 2.1. ([38]) If the S-metric space (E,S) is complete and R : E → E
is a contraction mapping, then R has a unique fixed point in E.
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Definition 2.5. ([38]) Let (E,S) and (E′, S′) be two S-metric spaces. A
function g : E → E′ is said to be continuous at a point y0 ∈ E if for every sequence
{yn} in E with S(yn, yn, y0) → 0, S′(g(yn), g(yn), g(y0)) → 0 as n → ∞. We say
that g is continuous on E if g is continuous at every point y0 ∈ E.

Definition 2.6. ([5]) A mapping F : [0,∞) × [0,∞) → R is called a C-class
function if it is continuous and satisfies the following axioms:

(i) F (s, t) ⩽ s,
(ii) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

Note that for some F , we have that F (0, 0) = 0. The letter C denotes the set
of all C-class functions. The following example shows that C is nonempty.

Example 2.5. ([5]) Each of the functions F : [0,∞)×[0,∞) → R defined below
are elements of C.

(i) F (s, t) = s− t,
(ii) F (s, t) = ms, 0 < m < 1,
(iii) F (s, t) = s

(1+t)r , r ∈ (0,∞),

(iv) F (s, t) = log(t+as)
1+t , a > 1,

(v) F (s, t) = ln(1+as)
2 , a > e,

(vi) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞),
(vii) F (s, t) = s logt+a a, a > 1,
(viii) F (s, t) = s−

(
1+s
2+s

)(
t

1+t

)
,

(ix) F (s, t) = sβ(s), where β : [0,∞) → [0,∞) and is continuous,
(x) F (s, t) = s−

(
t

k+t

)
, F (s, t) = s⇒ t = 0,

(xi) F (s, t) = s
(1+s)r , r ∈ (0,∞).

Definition 2.7. ([5]) A function φ : [0,∞) → [0,∞) is said to be an ultra
altering distance function, if it is continuous, non-decreasing such that φ(t) > 0 for
t > 0.

Remark 2.2. ([5]) We denote by Φu the class of all ultra altering distance
functions.

Definition 2.8. ([13]) Consider the class of functions Ψ = {ψ|ψ : [0,∞) →
[0,∞)}, which satisfy the following assertions:

(Ψ1) ψ is nondecreasing and continuous;
(Ψ2) (ψ

n(t))n∈N converges to 0 for all t > 0;
(Ψ3)

∑∞
n=1 ψ

n(t) is convergent for all t > 0.

Remark 2.3. ([13]) If ψn(t)) → 0 as n → ∞ for all t > 0, then we have
ψ(t) < t for all t > 0.

Definition 2.9. Let E be a non-empty set and let P,Q : E → E be two self
mappings of E. Then a point u ∈ E is called a

(Λ1) fixed point of operator P if P (u) = u;
(Λ2) common fixed point of P and Q if P (u) = Q(u) = u.
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Definition 2.10. ([2]) Let F and G be single valued self-mappings on a set
E. If z = Gv = Hv for some v ∈ E, then v is called a coincidence point point of G
and H, and z is called a point of coincidence of G and H.

Definition 2.11. ([11]) Let R and T be single valued self-mappings on a set
E. Mappings R and T are said to be commuting if RTq = TRq for all q ∈ E.

Definition 2.12. ([12]) Let L and M be single valued self-mappings on a set
E. Mappings L and M are said to be weakly compatible if they commute at their
coincidence points, i.e., if Lu =Mu for some u ∈ E implies LMu =MLu.

Lemma 2.1. ([38], Lemma 2.5) In an S-metric space, we have S(u, u, v) =
S(v, v, u) for all u, v ∈ E.

Lemma 2.2. ([38], Lemma 2.12) Let (E,S) be an S-metric space. If un → u
and vn → v as n→ ∞ then S(un, un, vn) → S(u, u, v) as n→ ∞.

Lemma 2.3. ([8], Lemma 8) Let (E,S) be an S-metric space and A be a non-
empty subset of E. Then A is S-closed if and only if for any sequence {un} in A
such that un → u as n→ ∞, then u ∈ A.

Lemma 2.4. ([38]) Let (E,S) be an S-metric space. If r > 0 and u ∈ E, then
the ball BS(u, r) is an open subset of E.

Lemma 2.5. ([39]) The limit of a convergent sequence in a S-metric space
(E,S) is unique.

Lemma 2.6. ([38]) In a S-metric space (E,S), any convergent sequence is
Cauchy.

3. Main results

In this section, we shall prove some common fixed point theorems in the set-
ting of S-metric spaces for two pairs of weakly compatible mappings using C-class
functions.

Theorem 3.1. Let (E,S) be a complete S-metric space and let A,B, P,Q : E →
E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ F
(
ψ(∆(u, v, w)), φ(∆(u, v, w))

)
,(3.1)

where

∆(u, v, w) = max
{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.
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Proof. Let u0 ∈ E. Since A(E) ⊆ Q(E), we can choose u1 ∈ E such that
v0 = Au0 = Qu1. Similarly, since B(E) ⊆ P (E), there exists u2 ∈ E such that
v1 = Bu1 = Pu2. Continuing in this manner, we obtain a sequence {vn}∞n=0 in E
such that

(∗)
{

v2n = Au2n = Qu2n+1,
v2n+1 = Bu2n+1 = Pu2n+2.

We shall now show that {vn}∞n=0 is a Cauchy sequence in E.
Now, we consider the following cases.
Case I. If vn = vn+1 for some n ∈ N ∪ {0}, where N is the set of all positive

integers, then vn+1 = vn+2. For if, vn+1 ̸= vn+2, then, for n = 2m, where m ∈ N
and using Lemma 2.1, we get

∆(u2m+2, u2m+2, u2m+1)

= max
{
S(Pu2m+2, Pu2m+2, Qu2m+1), S(Bu2m+1, Bu2m+1, Au2m+2),

S(Bu2m+1, Bu2m+1, Qu2m+1),

S(Bu2m+1, Bu2m+1, Au2m+1)S(Pu2m+2, Pu2m+2, Qu2m+1)

[1 + S(Bu2m+1, Bu2m+1, Pu2m+2)]

}(3.2)

= max
{
S(v2m+1, v2m+1, v2m), S(v2m+1, v2m+1, v2m+2), S(v2m+1, v2m+1, v2m),

S(v2m+1, v2m+1, v2m+1)S(v2m+1, v2m+1, v2m)

[1 + S(v2m+1, v2m+1, v2m+1)]

}
= max

{
S(v2m+1, v2m+1, v2m), S(v2m+2, v2m+2, v2m+1), S(v2m+1, v2m+1, v2m), 0

}
= max

{
S(v2m+1, v2m+1, v2m), S(v2m+2, v2m+2, v2m+1)

}
.

If ∆(u2m+2, u2m+2, u2m+1) = S(v2m+2, v2m+2, v2m+1), then from equation (3.1)
and using the property of F , we obtain

S(vn+2, vn+2, vn+1) = S(v2m+2, v2m+2, v2m+1)

= S(Au2m+2, Au2m+2, Bu2m+1)

⩽ F
(
ψ(∆(u2m+2, u2m+2, u2m+1)), φ(∆(u2m+2, u2m+2, u2m+1))

)
= F

(
ψ(S(v2m+2, v2m+2, v2m+1)), φ(S(v2m+2, v2m+2, v2m+1))

)
= F

(
ψ(S(vn+2, vn+2, vn+1)), φ(S(vn+2, vn+2, vn+1))

)
⩽ ψ(S(vn+2, vn+2, vn+1))

< S(vn+2, vn+2, vn+1),(3.3)

which is a contradiction. Hence we must have vn+1 = vn+2 when n is even. Using
a similar argument equality also holds when n is odd. Thus in any case, whenever
yn = yn+1 holds for some n, yn+1 = yn+2. By repeating this process inductively,
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one can obtain yn = yn+r for all r ⩾ 1 and {vn}∞n=0 will be eventually a constant
sequence and hence is Cauchy.

Case II. If vn ̸= vn+1 for every n ∈ N, where N is the set of all positive integers,
then for n = 2m+ 1, where m ∈ N and using Lemma 2.1, we have

∆(u2m+2, u2m+2, u2m+1)

= max
{
S(Pu2m+2, Pu2m+2, Qu2m+1), S(Bu2m+1, Bu2m+1, Au2m+2),

S(Bu2m+1, Bu2m+1, Qu2m+1),

S(Bu2m+1, Bu2m+1, Au2m+1)S(Pu2m+2, Pu2m+2, Qu2m+1)

[1 + S(Au2m+1, Au2m+1, Pu2m+2)]

}
= max

{
S(v2m+1, v2m+1, v2m), S(v2m+1, v2m+1, v2m+2), S(v2m+1, v2m+1, v2m),

S(v2m+1, v2m+1, v2m+1)S(v2m+1, v2m+1, v2m)

[1 + S(v2m+1, v2m+1, v2m+1)]

}
= max

{
S(v2m+1, v2m+1, v2m), S(v2m+2, v2m+2, v2m+1), S(v2m+1, v2m+1, v2m), 0

}
.

Now, if ∆(u2m+2, u2m+2, u2m+1) = S(v2m+2, v2m+2, v2m+1), then from equation
(3.1) and using the property of F , we obtain

S(vn+1, vn+1, vn) = S(v2m+2, v2m+2, v2m+1)

= S(Au2m+2, Au2m+2, Bu2m+1)

⩽ F
(
ψ(∆(u2m+2, u2m+2, u2m+1)), φ(∆(u2m+2, u2m+2, u2m+1))

)
= F

(
ψ(S(v2m+2, v2m+2, v2m+1)), φ(S(v2m+2, v2m+2, v2m+1))

)
= F

(
ψ(S(vn+1, vn+1, vn)), φ(S(vn+1, vn+1, vn))

)
⩽ ψ(S(vn+1, vn+1, vn))

< S(vn+1, vn+1, vn),

which is a contradiction.
Therefore, S(v2m+2, v2m+2, v2m+1) ⩽ S(v2m+1, v2m+1, v2m) and consequently

∆(u2m+2, u2m+2, u2m+1) = S(v2m+1, v2m+1, v2m).
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Using equation (3.1) and the property of F , we have

S(vn+1, vn+1, vn) = S(v2m+2, v2m+2, v2m+1)

= S(Au2m+2, Au2m+2, Bu2m+1)

⩽ F
(
ψ(∆(u2m+2, u2m+2, u2m+1)), φ(∆(u2m+2, u2m+2, u2m+1))

)
= F

(
ψ(S(v2m+1, v2m+1, v2m)), φ(S(v2m+1, v2m+1, v2m))

)
= F

(
ψ(S(vn, vn, vn−1)), φ(S(vn, vn, vn−1))

)
⩽ ψ(S(vn, vn, vn−1))

< S(vn, vn, vn−1).(3.4)

Using a similar arguments, one can obtain the same inequality when n is an even
integer. Thus, we have S(vn+1, vn+1, vn) < S(vn, vn, vn−1) for all n ∈ N, and the
sequence {S(vn+1, vn+1, vn)} is decreasing and bounded below by zero. Hence,
there exists d ⩾ 0 such that S(vn+1, vn+1, vn) → d as n→ ∞.

LetHn = S(vn+1, vn+1, vn). Now using (3.1) for u = vn+1, v = vn, ∆(vn, vn, vn−1)
= S(vn+1, vn+1, vn) for every n ∈ N and using the property of F , we obtain

Hn = S(vn+1, vn+1, vn) = S(Avn, Avn, Bvn−1)

⩽ F
(
ψ(∆(vn, vn, vn−1)), φ(∆(vn, vn, vn−1))

)
⩽ F

(
ψ(S(vn+1, vn+1, vn)), φ(S(vn+1, vn+1, vn))

)
⩽ ψ(S(vn+1, vn+1, vn)).(3.5)

Since ψ is continuous, so taking limit as n → ∞ in equation (3.5) and using the
property of ψ, we obtain

d ⩽ ψ(d) < d,

which is a contradiction. Thus, d = 0.
Hence

lim
n→∞

Hn = lim
n→∞

S(vn+1, vn+1, vn) = 0.(3.6)

Now, we show that {vn}∞n=1 is a Cauchy sequence in E. Because of (3.6) it is
sufficient to show that {v2n}∞n=1 is a Cauchy sequence. If otherwise, then there
exists ε > 0 for which we can find subsequences {v2m(k)} and {v2n(k)} of {v2n} and
increasing sequences of integers {2m(k)} and {2n(k)} such that n(k) is smallest
index for which,

n(k) > m(k) > k,(3.7)

S(v2m(k), v2m(k), v2n(k)) ⩾ ε.(3.8)

Further corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (3.7). Then

S(v2m(k), v2m(k), v2n(k)−1) < ε.(3.9)



ON COMMON FIXED POINT THEOREMS IN S-METRIC SPACES 81

Now, using (3.8), (S2) and Lemma 2.1, we have

ε ⩽ S(v2m(k), v2m(k), v2n(k))

= S(v2n(k), v2n(k), v2m(k))

⩽ 2S(v2n(k), v2n(k), v2n(k)−1)

+S(v2m(k), v2m(k), v2n(k)−1)

⩽ ε+ 2S(v2n(k), v2n(k), v2n(k)−1). (by (3.7))(3.10)

Letting k → ∞ in equation (3.10) and using (3.6), we get

lim
k→∞

S(v2m(k), v2m(k), v2n(k)) = ε.(3.11)

Again, using (S2) and Lemma 2.1, we have

S(v2m(k), v2m(k), v2n(k)) ⩽ 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2n(k), v2n(k), v2m(k)−1)

= 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2m(k)−1, v2m(k)−1, v2n(k)).(3.12)

Also, by using (S2) and Lemma 2.1, we have

S(v2m(k)−1, v2m(k)−1, v2n(k)) ⩽ 2S(v2m(k)−1, v2m(k)−1, v2m(k))

+S(v2n(k), v2n(k), v2m(k))

= 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2m(k), v2m(k), v2n(k)).(3.13)

Letting k → ∞ in equation (3.13) and using (3.6), (3.9) and (3.11), we get

lim
k→∞

S(v2m(k)−1, v2m(k)−1, v2n(k)) = ε.(3.14)

Again, note that with the help of (S2) and Lemma 2.1, we have

S(v2m(k), v2m(k), v2n(k)+1) ⩽ 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2n(k)+1, v2n(k)+1, v2m(k)−1)

⩽ 2S(v2m(k), v2m(k), v2m(k)−1)

+2S(v2n(k)+1, v2n(k)+1, v2n(k))

+S(v2m(k)−1, v2m(k)−1, v2n(k)).(3.15)
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Also, with the help of (S2) and Lemma 2.1, we have

S(v2m(k)−1, v2m(k)−1, v2n(k)) = S(v2n(k), v2n(k), v2m(k)−1)

⩽ 2S(v2n(k), v2n(k), v2n(k)+1)

+S(v2m(k)−1, v2m(k)−1, v2n(k)+1)

= 2S(v2n(k)+1, v2n(k)+1, v2n(k))

+S(v2m(k)−1, v2m(k)−1, v2n(k)+1)

⩽ 2S(v2n(k)+1, v2n(k)+1, v2n(k))

+2S(v2m(k)−1, v2m(k)−1, v2m(k))

+S(v2n(k)+1, v2n(k)+1, v2m(k))

= 2S(v2n(k)+1, v2n(k)+1, v2n(k))

+2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2m(k), v2m(k), v2n(k)+1).(3.16)

Letting k → ∞ in equation (3.16) and using (3.6), (3.11),(3.14) and (3.15), we get

lim
k→∞

S(v2m(k), v2m(k), v2n(k)+1) = ε.(3.17)

Again, we notice that by using Lemma 2.1

S(v2m(k)−1, v2m(k)−1, v2n(k)+1) ⩽ 2S(v2m(k)−1, v2m(k)−1, v2m(k))

+S(v2n(k)+1, v2n(k)+1, v2m(k))

= 2S(v2m(k)−1, v2m(k)−1, v2m(k))

+S(v2m(k), v2m(k), v2n(k)+1),(3.18)

and

S(v2m(k), v2m(k), v2n(k)+1) ⩽ 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2n(k)+1, v2n(k)+1, v2m(k)−1)

= 2S(v2m(k), v2m(k), v2m(k)−1)

+S(v2m(k)−1, v2m(k)−1, v2n(k)+1).(3.19)

Letting k → ∞ in equation (3.18) and (3.19) and using (3.6) and (3.17), we get

lim
k→∞

S(v2m(k)−1, v2m(k)−1, v2n(k)+1) = ε.(3.20)

Now consider inequality (3.1) and putting u = v = u2m(k)−1, w = u2n(k), we obtain

S(Au2m(k)−1, Au2m(k)−1, Bu2n(k)) = S(v2m(k)−1, v2m(k)−1, v2n(k))

⩽ F
(
ψ(∆(u2m(k)−1, u2m(k)−1, u2n(k))),(3.21)

φ(∆(u2m(k)−1, u2m(k)−1, u2n(k)))
)
,

where

∆(u2m(k)−1, u2m(k)−1, u2n(k))
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= max
{
S(Pu2m(k)−1, Pu2m(k)−1, Qu2n(k)), S(Bu2n(k), Bu2n(k), Au2m(k)−1),

S(Bu2n(k), Bu2n(k), Qu2n(k)),

S(Bu2n(k), Bu2n(k), Au2n(k))S(Pu2m(k)−1, Pu2m(k)−1, Qu2n(k))

[1 + S(Bu2n(k), Bu2n(k), Pu2m(k)−1)]

}
= max

{
S(v2m(k)−2, v2m(k)−2, v2n(k)−1), S(v2n(k), v2n(k), v2m(k)−1),

S(v2n(k), v2n(k), v2n(k)−1),

S(v2n(k), v2n(k), v2n(k))S(v2m(k)−2, v2m(k)−2, v2n(k)−1)

[1 + S(v2n(k), v2n(k), v2m(k)−2)]

}
.

Passing to the limit as k → ∞ in the above inequality and using equations (3.6)
and (3.14), we obtain

∆(u2m(k)−1, u2m(k)−1, u2n(k)) = max{ε, ε, 0, 0} = ε.(3.22)

Now, passing to the limit as k → ∞ in (3.21), using the equations (3.14), (3.22)
the properties of F and ψ, we have

ε ⩽ F
(
ψ(ε), φ(ε)

)
⩽ ψ(ε) < ε,(3.23)

which is a contradiction. Hence {v2n}∞n=1 is a Cauchy sequence in E. Thus, in both
the cases, it has been shown that {vn}∞n=0 is a Cauchy sequence in E. Since (E,S)
is a complete S-metric space, so {vn}∞n=0 is convergent in E. Suppose vn → p as
n → ∞. We shall now show that p is a common fixed point for the mappings A
and Q. It is clear that

lim
n→∞

v2n = lim
n→∞

Au2n = lim
n→∞

Qu2n+1 = p,(3.24)

and

lim
n→∞

v2n+1 = lim
n→∞

Bu2n+1 = lim
n→∞

Pu2n+2 = p.(3.25)

Assume that P (E) is closed, there exists a z ∈ E such that p = Pz. We claim that
Az = p. If not, then

∆(z, z, u2n+1)

= max
{
S(Pz, Pz,Qu2n+1), S(Bu2n+1, Bu2n+1, Az), S(Bu2n+1, Bu2n+1, Qu2n+1),

S(Bu2n+1, Bu2n+1, Au2n+1)S(Pz, Pz,Qu2n+1)

[1 + S(Bu2n+1, Bu2n+1, P z)]

}
.

(3.26)

Passing to the limit as n→ ∞ in equation (3.26) and using (S1), we get

lim
n→∞

∆(z, z, u2n+1) = max{0, S(p, p,Az), 0, 0}

= S(p, p,Az).(3.27)
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Now, from equation (3.1), we have

S(Az,Az,Bu2n+1) ⩽ F
(
ψ(∆(z, z, u2n+1)), φ(∆(z, z, u2n+1))

)
,(3.28)

on taking the limit as n→ ∞ in equation (3.28), which implies that

S(Az,Az, p) ⩽ F
(
ψ(S(p, p,Az)), φ(S(p, p,Az))

)
,(3.29)

using Lemma 2.1, the property of F and the property of ψ, we obtain

S(p, p,Az) ⩽ ψ(S(p, p,Az)) < S(p, p,Az),

which is a contradiction as S(p, p,Az) > 0. Hence S(p, p,Az) = 0, that is, Az = p
and Az = Pz = p. Since the mappings A and P are weakly compatible, so
Ap = APz = PAz = Pp. Next, we claim that Ap = p. If not, then

∆(p, p, u2n+1)

= max
{
S(Pp, Pp,Qu2n+1), S(Bu2n+1, Bu2n+1, Ap), S(Bu2n+1, Bu2n+1, Qu2n+1),

S(Bu2n+1, Bu2n+1, Au2n+1)S(Pp, Pp,Qu2n+1)

[1 + S(Bu2n+1, Bu2n+1, Pp)]

}
.

(3.30)

Passing to the limit as n → ∞ in equation (3.30) and using (S1), Ap = Pp and
Lemma 2.1, we get

lim
n→∞

∆(p, p, u2n+1) = max{S(Ap,Ap, p), S(Ap,Ap, p), 0, 0}

= S(Ap,Ap, p).(3.31)

Now, from equation (3.1), we have

S(Ap,Ap,Bu2n+1) ⩽ F
(
ψ(∆(p, p, u2n+1)), φ(∆(p, p, u2n+1))

)
,(3.32)

on taking the limit as n→ ∞ in equation (3.32), which implies that

S(Ap,Ap, p) ⩽ F
(
ψ(S(Ap,Ap, p)), φ(S(Ap,Ap, p))

)
,(3.33)

using the property of F and the property of ψ, we obtain

S(Ap,Ap, p) ⩽ ψ(S(Ap,Ap, p)) < S(Ap,Ap, p),

which is a contradiction as S(Ap,Ap, p) > 0. Hence S(Ap,Ap, p) = 0, that is,
Ap = p and hence Ap = Pp = p.

Moreover, we show that p is a common fixed point of the mappings B and Q.
Since A(E) ⊆ Q(E), there is some r ∈ E such that Ap = Qr. Then Ap = Qr =
Pp = p. We claim that Br = p. If not, then from equation (3.1) and using Lemma
2.1 and (S1), we have

S(p, p,Br) = S(Ap,Ap,Br)

⩽ F
(
ψ(∆(p, p, r)), φ(∆(p, p, r))

)
,(3.34)
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where

∆(p, p, r) = max
{
S(Pp, Pp,Qr), S(Br,Br,Ap), S(Br,Br,Qr),

S(Br,Br,Ar)S(Pp, Pp,Qr)

[1 + S(Br,Br, Pp)]

}
= max

{
S(p, p, p), S(Br,Br, p), S(Br,Br, p),

S(Br,Br,Ar)S(p, p, p)

[1 + S(Br,Br, p)]

}
= max

{
0, S(p, p,Br), S(p, p,Br), 0

}
= S(p, p,Br).

Using this value in equation (3.34) and using the property of F and ψ, we have

S(p, p,Br) ⩽ F
(
ψ(S(p, p,Br)), φ(S(p, p,Br))

)
⩽ ψ(S(p, p,Br)) < S(p, p,Br),

which is a contradiction as S(p, p,Br) > 0. Hence S(p, p,Br) = 0, that is, Br = p.
Thus, Br = Qr = p and by weak compatibility of the mappings B and Q, we have
Bp = BQr = QBr = Qp. Now, we show that p is a fixed point of B. If Bp ̸= p,
then by equation (3.1) and using Lemma 2.1 and (S1), we have

S(p, p,Bp) = S(Ap,Ap,Bp)

⩽ F
(
ψ(∆(p, p, p)), φ(∆(p, p, p))

)
,(3.35)

where

∆(p, p, p) = max
{
S(Pp, Pp,Qp), S(Bp,Bp,Ap), S(Bp,Bp,Qp),

S(Bp,Bp,Ap)S(Pp, Pp,Qp)

[1 + S(Bp,Bp, Pp)]

}
= max

{
S(p, p,Bp), S(Bp,Bp, p), S(Bp,Bp,Bp),

S(Bp,Bp, p)S(p, p,Bp)]

[1 + S(Bp,Bp, p)]

}
⩽ max

{
S(p, p,Bp), S(p, p,Bp), 0, S(p, p,Bp)

}
= S(p, p,Bp).

Using this value in equation (3.35) and using the property of F and ψ, we have

S(p, p,Bp) ⩽ F
(
ψ(S(p, p,Bp)), φ(S(p, p,Bp))

)
⩽ ψ(S(p, p,Bp)) < S(p, p,Bp),

which is a contradiction as S(p, p,Bp) > 0. Hence S(p, p,Bp) = 0, that is, Bp = p.
Hence Ap = Bp = Pp = Qp = p. This shows that p is a common fixed point of
the mappings A, B, P and Q. A similar fashion is also valid for the case in which
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Q(E) or A(E) or B(E) is closed. Also, the uniqueness of the common fixed point
p follows from Theorem 3.1. This completes the proof. □

From Theorem 3.1, we obtain the following corollaries.

Corollary 3.1. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ F
(
ψ(S(Pu, Pv,Qw)), φ(S(Pu, Pv,Qw))

)
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.

Corollary 3.2. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ F
(
ψ(∆1(u, v, w)), φ(∆1(u, v, w))

)
,

where

∆1(u, v, w) = max
{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw)

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.

Corollary 3.3. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ F
(
ψ(∆2(u, v, w)), φ(∆2(u, v, w))

)
,

where

∆2(u, v, w) = max
{
S(Pu, Pv,Qw), S(Bw,Bw,Av),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.



ON COMMON FIXED POINT THEOREMS IN S-METRIC SPACES 87

Corollary 3.4. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ F
(
ψ(∆3(u, v, w)), φ(∆3(u, v, w))

)
,

where

∆3(u, v, w) = max
{
S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.

If we take P = Q = I (where I is an identity mapping) in Theorem 3.1, then
we have the following result.

Corollary 3.5. Let (E,S) be a complete S-metric space and let A,B : E → E
be two mappings satisfying the following condition:

S(Au,Av,Bw) ⩽ F
(
ψ(Γ(u, v, w)), φ(Γ(u, v, w))

)
,

where

Γ(u, v, w) = max
{
S(u, v, w), S(Bw,Bw,Av), S(Bw,Bw,w),

S(Bw,Bw,Aw)S(u, u, w)

[1 + S(Bw,Bw, u)]

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C. Then A and B have a unique
common fixed point in E.

If we take F (s, t) = h s where h ∈ [0, 1) is a constant, in Theorem 3.1, then we
have the following result.

Corollary 3.6. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ hψ
(
max

{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

})
,

for all u, v, w ∈ E, where h ∈ [0, 1) is a constant and ψ ∈ Ψ;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.
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If we take F (s, t) = s and ψ(t) = q t, where q ∈ [0, 1) is a constant, in Theorem
3.1, then we have the following result.

Corollary 3.7. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ q max
{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
,

for all u, v, w ∈ E, where q ∈ [0, 1) is a constant;
(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.

Corollary 3.8. Let (E,S) be a complete S-metric space and let A,B, P,Q :
E → E be four mappings satisfying the following conditions:

(i)

S(Au,Av,Bw) ⩽ p1 S(Pu, Pv,Qw) + p2 S(Bw,Bw,Av) + p3 S(Bw,Bw,Qw)

+p4
S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]
,

for all u, v, w ∈ E, where p1, p2, p3, p4 are nonnegative reals such that p1+p2+p3+
p4 < 1;

(ii) A(E) ⊆ Q(E) and B(E) ⊆ P (E);
(iii) the pairs (A,P ) and (B,Q) are weakly compatible.
If one of the range A(E) or B(E) or P (E) or Q(E) is closed in E, then A, B,

P and Q have a unique common fixed point in E.

Proof. Follows from Corollary 3.7, by noting that

p1 S(Pu, Pv,Qw) + p2 S(Bw,Bw,Av) + p3 S(Bw,Bw,Qw)

+p4
S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

⩽ (p1 + p2 + p3 + p4)max
{
S(Pu, Pu,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
.

□

If we take A = B and P = Q = I (where I is an identity mapping) in Theorem
3.1, then we have the following result.
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Corollary 3.9. Let (E,S) be a complete S-metric space and let A : E → E
be a mapping satisfying the inequality:

S(Au,Av,Aw) ⩽ F
(
ψ(Γ1(u, v, w)), φ(Γ1(u, v, w))

)
,

where

Γ1(u, v, w) = max
{
S(u, v, w), S(Aw,Aw,Av), S(Aw,Aw,w)

}
,

for all u, v, w ∈ E, ψ ∈ Ψ, φ ∈ Φu and F ∈ C. Then A has a unique fixed point in
E.

If we take max
{
S(u, v, w), S(Aw,Aw,Av), S(Aw,Aw,w)

}
= S(u, v, w), F (s, t)

= s and ψ(t) = k t, where k ∈ [0, 1) is a constant, in Corollary 3.9, then we have
the following result.

Corollary 3.10. Let (E,S) be a complete S-metric space and let A : E → E
be a mapping satisfying the inequality:

S(Au,Av,Aw) ⩽ k S(u, v, w),

for all u, v, w ∈ E, where k ∈ [0, 1) is a constant. Then A has a unique fixed point
in E.

Remark 3.1. Corollary 3.10 extends the well-known Banach fixed point theo-
rem [6] from complete metric space to the setting of complete S-metric space.

Corollary 3.11. Let (E,S) be a complete S-metric space and let A : E → E
be a self-mapping of E satisfying the contractive condition:

S(Anu,Anv,Anw) ⩽ k S(u, v, w),

for all u, v, w ∈ E, where n is some positive integer and k ∈ [0, 1) is a constant.
Then A has a unique fixed point in E.

Proof. By Corollary 3.10, there exists z ∈ E such that Anz = z. Then

S(Az,Az, z) = S(AAnz,AAnz,Anz)

= S(AnAz,AnAz,Anz)

⩽ k S(Az,Az, z),

which is a contradiction, since 0 ⩽ k < 1 and so S(Az,Az, z) = 0, that is, Az = z.
This shows that A has a unique fixed point in E. This completes the proof. □

Remark 3.2. Corollary 3.10 is a special case of Corollary 3.11 for n = 1.

Now, we give an example in support of the results.

Example 3.1. Let E = [0, 1]. We define the function S : E3 → [0,∞) by

S(u, v, w) =

{
0, if u = v = w,

max{u, v, w}, if otherwise,

for all u, v, w ∈ E, then S is an S-metric on E. Define four self-maps A,B, P,Q : E
→ E on E by A(u) = u

4 , B(u) = u
4 , P (u) = u and Q(u) = u

2 for all u ∈ E. We also
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define ψ : [0,∞) → [0,∞) by ψ(t) = t
2 for all t ∈ [0,∞). Clearly ψ is continuous

on [0,∞) satisfying 0 < ψ(t) < t for all t > 0. Now consider the following cases:
Case I. (1) Let u > v > w. Then we have

S(Au,Av,Bw) = S
(u
4
,
v

4
,
w

4

)
= max

{u
4
,
v

4
,
w

4

}
=
u

4
,

S(Pu, Pv,Qw) = S
(
u, v,

w

2

)
= max

{
u, v,

w

2

}
= u,

S(Pu, Pu,Qw) = S
(
u, u,

w

2

)
= max

{
u, u,

w

2

}
= u,

S(Bw,Bw,Av) = S
(w
4
,
w

4
,
v

4

)
= max

{w
4
,
w

4
,
v

4

}
=
v

4
,

S(Bw,Bw,Qw) = S
(w
4
,
w

4
,
w

2

)
= max

{w
4
,
w

4
,
w

2

}
=
w

2
,

S(Bw,Bw,Aw) = S
(w
4
,
w

4
,
w

4

)
= max

{w
4
,
w

4
,
w

4

}
=
w

4
,

S(Bw,Bw,Pu) = S
(w
4
,
w

4
, u

)
= max

{w
4
,
w

4
, u

}
= u,

S(Bw,Bw,Aw)S(Pu, Pu,Qw)]

[1 + S(Bw,Bw,Pu)]
=

w
4 .u

[1 + u]
=

uw

4(1 + u)
.

Now using the inequality of Corollary 3.6 and the property of ψ, we have

S(Au,Av,Bw) =
u

4

⩽ hψ
(
max

{
u,
v

4
,
w

2
,

uw

4(1 + u)

})
= hψ(u) = h

u

2
,

or,

1

4
⩽
h

2
,

or,

h ⩾
1

2
.

If we take 0 ⩽ h < 1, then the inequality of Corollary 3.6 is satisfied. Hence we
conclude that

S(Au,Av,Bw) ⩽ hψ
(
max

{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

})
.

(2) Now using inequality of Corollary 3.7, we have

S(Au,Av,Bw) =
u

4

⩽ q max
{
u,
v

4
,
w

2
,

uw

4(1 + u)

}
= q u,

or,
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1

4
⩽ q,

or,

q ⩾
1

4
.

If we take 0 ⩽ q < 1, then the inequality of Corollary 3.7 is satisfied. Hence we
conclude that

S(Au,Av,Bw) ⩽ q max
{
S(Pu, Pv,Qw), S(Bw,Bw,Av), S(Bw,Bw,Qw),

S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]

}
.

(3) Now using inequality of Corollary 3.8, we have

S(Au,Av,Bw) =
u

4

⩽ p1 u+ p2
v

4
+ p3

w

2
+ p4

uw

4(1 + u)
.

If we take u = 1, v = 1
2 and w = 1

4 , then we have

1

4
⩽ p1 +

p2
4

+
p3
8

+
p4
32
,

or,

8 ⩽ 32 p1 + 8 p2 + 4 p3 + p4.

The above inequality is satisfied for: (i) p1 = 1
8 , p2 = 1

4 , p3 = 1
2 and p4 = 0, (ii)

p1 = 1
4 and p2 = p3 = p4 = 0 and (iii) p1 = 1

8 , p2 = 1
2 and p3 = p4 = 0 with

p1 + p2 + p3 + p4 < 1. Thus we conclude that

S(Au,Av,Bw) ⩽ p1 S(Pu, Pv,Qw) + p2 S(Bw,Bw,Av) + p3 S(Bw,Bw,Qw)

+p4
S(Bw,Bw,Aw)S(Pu, Pu,Qw)

[1 + S(Bw,Bw,Pu)]
.

(4) Now using inequality of Corollary 3.10, we have

S(Au,Av,Aw) =
u

4
⩽ k u,

or,

1

4
⩽ k,

or,

k ⩾
1

4
.

If we take 0 ⩽ k < 1, then the inequality of Corollary 3.10 is satisfied. Hence we
conclude that

S(Au,Av,Aw) ⩽ k S(u, v, w).

Case II. Now we show that the pairs (A,P ) and (B,Q) are weakly compatible.
For this, suppose that Qz = Bz for z ∈ E. Then z

2 = z
4 . It follows that z = 0. Now,
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we consider BQ(z) = B(Q(z)) = B(0) = 0 and QB(z) = Q(B(z)) = Q(0) = 0.
Thus, the pair (B,Q) is weakly compatible. Now, let Az = Pz for z ∈ E. This
implies that z

4 = z and hence z = 0. Now, we consider AP (z) = A(P (z)) = A(0) =
0 and PA(z) = P (A(z)) = P (0) = 0. It follows that the pair (A,P ) is also weakly
compatible.

Case III. Now we show that A(E) ⊆ Q(E) and B(E) ⊆ P (E). Since E =
[0, 1], so it is easy to see that A(E) = [0, 14 ], B(E) = [0, 14 ], P (E) = [0, 1] and

Q(E) = [0, 12 ]. Hence A(E) ⊆ Q(E) and B(E) ⊆ P (E).
Thus all the conditions of Corollary 3.6, Corollary 3.7, Corollary 3.8 and Corol-

lary 3.10 are satisfied and hence the mappings A, B, P andQ have a unique common
fixed point, namely u = 0 ∈ E.
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9. F. S. De Blasi and J. Myjak, Sur la porosité des contractions sans point fixed, C. R. Acad.

Sci. Paris, 308 (1989), 51–56.

10. G. Jungck, Commuting maps and fixed points, Am. Math. Monthly, 83 (1976), 261–263.
11. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9

(1986), 771–779.

12. G. Jungck, Common fixed points for noncontinuous, nonself maps on nonnumetric spaces, Far
East J. Math. Sci., 4 (2) (1996), 195–215.

13. J. K. Kim, S. Sedghi, A. Gholidahneh and M. M. Rezaee, Fixed point theorems in S-metric
spaces, East Asian Math. J., 32 (5) (2016), 677–684.
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