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Abstract. In this article, we define the m-right consistent/m-left consistent

and m-consistent hypergroupoids. We also define the m-intra-consistent hy-
pergroupoid. Along these line, we define the Green’s m-relations namely m-

right relation, m-left relations, and m-relation. The other three relations,

namely m-reflexive, m-symmetric and m-transitive, are also defined. The idea
of m-equivalence relation is also given. We present different characterization

of hypergroupoids in the article through these concepts.

1. Introduction

The idea of the hyperstructure was given by Marty [11] in 1934. Among all the
hyperstructures, a hypergroupoid is the simplest one consisting of a non-empty set
together with a hyperoperation [5]. Hypergroupoids are studied by their character-
izations through the properties of their hyperideals. Kehayopulu characterized the
hypergroupoids through the properties of their fuzzy prime and fuzzy semiprime
hyperideals [6]. Suebsung et al characterized the semihypergroupoids through the
properties of almost hyperideals [23]. Hasankhani studied the hyperideals with
respect to Greens’s relations in hypersemigroups [2].

The hypergroupoids have been in use to study the problems in different scien-
tific fields. Haidari et al studied the chemical salt reactions with the help of ideals
in the hyper structures in [3]. In a recent article, Munir et. al., introduced the
m-hyperideals in the hypergroupoid, and used them to study the genetics of the
blood groups system [12].
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In this article, we basically generalize the hyperideals of hypergroupoids by an
integer m, and then discuss the concepts arising out as their consequences with
examples and applications. This work is a continuation of our work on the gen-
eralizations of ideals in the semigroup theory( [13], [14], [15], [16], [17], [18])
and semiring theory( [19], [20]) through a positive integer m. Moreover, this
work is also based on the generalization of ideals through three integers in semi-
groups( [9], [22], [1], [10]) and in fuzzy sets [21].

The contents of this paper are divided into four sections. In Sections 1, we have
presented the introduction of the article, and in Section 2, the preliminary ideas
from the literature have been presented. In Section 3, we present the idea of the m-
consistent hypergroupoid and their important characterizations. In Section 4, we
present the Green’sm-relations on the hypergroupoid with examples and important
characterizations.

2. Preliminaries

We present some preliminary ideas from the literature of hypergroupoids which
will be necessary for our onward work.

Definition 2.1. Following [4], [7] and [8], let H be a nonempty set, then the
map ◦ : H ×H → P ∗(H) is called a hyperoperation, where P ∗(H) is the family of
all nonempty subsets of H.

Definition 2.2. We define a hypergroupoid as an ordered pair (H, ◦) consisting
of a nonempty set H and a hyperoperation ◦ : H ×H → P ∗(H), where P ∗(H) is
the set of all nonempty subsets of H, defined by

(2.1) S ◦K =
⋃

a∈S,b∈K

(a ◦ b),

for all non-empty subsets S and K of H.

We shall denote the hypergroupoid (H, ◦) simply by H. It follows from the
definition that a ◦ H = {a} ◦ H and H ◦ a = H ◦ {a}. e is called left identity if
a ◦ e = e, e is called right identity if e ◦ a = {a} for al a ∈ H. e is called scalar
identity or identity if a ◦ e = e ◦ a = {a} for al a ∈ H. The identity of H is
unique by definition. An element a ∈ H is idempotent if a ◦ a = a. H is said to be
commutative if a ◦ b = b ◦a, for all a, b ∈ H. A hypergroupoid (H, ◦) is said to be a
hypersemigroup if the hyperoperation ◦ follows the associative law on all elements
of H, i.e., if a ◦ (b ◦ c) = (a ◦ b) ◦ c for every a, b, c ∈ H.

A non-empty subset S of H is known as its subhypergroupoid if a, b ∈ S
implies a ◦ b ⊆ S, comparably, S ◦ S ⊆ S infers S is subhypergroupoid of H. A
non-empty subset S of a hypergroupoid H is said to be a right(left) hyperideal of
H if S ◦H ⊆ S (H ◦ S ⊆ S). A nonempty set, T , is called a two-sided hyperideal
or simply a hyperideal of H if it is both a left hyperideal and a right hyperideal of
H, that is H ◦ T ◦H ⊆ T .
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For a positive integer m, Hm = H ◦H ◦H ◦ · · · ◦H︸ ︷︷ ︸
m-times

. Moreover, H2 = H ◦H ⊆

H( given by Definition 2.2). Continuing in this manner, we have H l ⊆ Hn for l,m
to be two positive integers such that l ⩾ m. Hm is a subhypergroupoid of H for
all values of m. Hm+n = Hn ◦Hm, for any two positive integers m, and n. Any
subset of Hm ×Hm is called an m-relation or binary m-relation.
The condition S ◦ H ⊆ S (H ◦ S ⊆ S) is equivalent to s ◦ h ⊆ S (h ◦ s ⊆ S) for
every s ∈ S and h ∈ H.

Definition 2.3. A hypergroupoidH is termed as right consistent if (a◦b)◦H =
a ◦ (b ◦ H) for all a, b ∈ H. H is called left consistent if H ◦ (a ◦ b) = (H ◦ a) ◦ b
for all a, b ∈ H. If H is both left and right consistent, then it is called a consistent
hypergroupoid [7].

Definition 2.4. A hypergroupoidH is said to be intra-consistent if (a◦H)◦b =
a ◦ (H ◦ b) for all a, b ∈ H.

Definition 2.5. An element a of a hypergroupoid H is said to be a weak right
(left) magnifying element of H if there exists a proper subset K of H such that
H = K◦a(H = a◦K). a is said to be a strong right(left) magnifying element of H if
there exists a proper subhypergroupoid S of H such that H = S◦a(H = a◦S) [24].

The identity and the regular elements of a hypergroupoid are not weak right
or weak left magnifying elements [12].

Definition 2.6. A nonempty subset L(R) of a hypergroupoid (H, ◦) is called
an m-left hyperideal (m-right hyperideal) of H if Hm ◦L ⊆ L(R ◦Hm ⊆ R), where
m is a positive number. Equivalently, if for each a ∈ L (a ∈ R) and each h ∈ Hm,
we have a ◦ h ⊆ L ( h ◦ a ⊆ R). A nonempty set T of H is called an m-two-
sided hyperideal or simply m-hyperideal of H in the event that it is both m-left
hyperideal and m-right hyperideal of H, that is, Hm ◦ T ◦Hm ⊆ T .

Remark 2.1. Every left hyperideal is an m-left hyperideal of H (for m =
1), but the converse does not follows. Similar statements hold for the m-right
hyperideals and m-hyperideals of H.

Definition 2.7. The principal m-left hyperideal generated by an element a ∈
H is the m-left hyperideal Hm ◦ a. The principal m-right ideal generated by a
is characterized to be a ◦ Hm. The principal two-sided m-ideal generated by a is
characterized to be Hm ◦ a ◦Hm.

3. m-consistent hypergroupoids

In this section, we first define the m-right(m-left) consistent and m-consistent
hypergroupoids, and then explain their basic properties along with examples.

Definition 3.1. A hypergroupoid H is said to be m-right consistent if, for
every a, b ∈ H,

(a ◦ b) ◦Hm = a ◦ (b ◦Hm).
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◦ u v w
u {u} {u, v} {u}
v {u} {v} {u}
w {v} {v} {v}

Table 1

◦ u v w x
u {u} {u} {w} {u}
v {w} {v} {u} {w}
w {w} {v} {u} {v}
x {w} {v} {w} {u}

Table 2

H is called m-left consistent if, for every a, b ∈ Hm,

Hm ◦ (a ◦ b) = (Hm ◦ a) ◦ b.
If H is both m-left consistent and m-right consistent, then it is called an m-
consistent hypergroupoid [12].

Definition 3.2. A hypergroupoid H is said to be m-intra-consistent if the
following proposition follows

“ (a ◦Hm) ◦ b = a ◦ (Hm ◦ b) for all a, b ∈ H”.

This is to be noted that right consistent, left consistent and consistent hy-
pergroupoids are m-right consistent, m-left consistent and m-consistent hyper-
groupoids for all m, a positive integer; but the converse does not follow except
for m = 1. This is evident from the proceeding Example 3.1.

Example 3.1. Consider the hypergroupoid H = {u, v, w} with the hyperop-
eration ◦ defined in Table 1. If we take m = 2, then H2 = {u, v}. H is 2-right
consistent, 2-left consistent and therefore 2-consistent hypergroupoid. H is also 2-
intra-consistent hypergroupoid, but not right consistent as (v ◦w)◦H = v ◦ (w ◦H)
gives {u, v} ≠ {v} which is not possible.

The following Example 3.2 shows that all hypergoupoids are not m-right(m-
left) consistent, m-consistent or the m-intra-consistent.

Example 3.2. The hypergroupoid H = {u, v, w, x} with the hyperoperation
◦ is descibed in Table 2. For m = 2, H2 = {u, v, w}. H is not 2-right consistent
because (w ◦ v) ◦H2 = H2 and w ◦

(
{v} ◦H2

)
= {v, w}. It is not 2-left consistent

since H2 ◦ (u ◦ v) = {u,w} and (H2 ◦ u) ◦ v = {u, v} and not 2-intra-consistent as(
u ◦H2

)
◦ v = {u, v} and u ◦

(
H2 ◦ v

)
= {u}.

Example 3.3. The hypergroupoid H = {u, v, w, x, y} with hyperoperation ◦
defined by Table 3 is m-right consistent, m-left consistent and m-intra-consistent
for m = 2.
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◦ u v w x y
u {u} {u, v} {u, w} {u, x} {u, v}
v {u, v} {u, v} {u, v, w} {u, v, x} {u, v}
w {u, w} {u, v, w} {u, w} {v, w, x} {u, v, x}
x {u, x} {u, v, x} {v, w, x} {w, x} {u, v}
y {w} {w, x} {u, w, x} {u, v, x} {u, v, w}

Table 3

4. Green m-relations in hypergroupoids

On the pattern of Green Relations [7], we define the following three relations
in the context of m-hyperideals in order to characterize the m-consistent hyper-
groupoids.

Definition 4.1. For a hypergroupoid H, we define the following five relations
on it.

(1) A relation Rm on H is said to an m-right relation if for a, b ∈ H, aRmb
implies either a = b or there exist s, t ∈ Hm such that a ∈ b ◦ s and
b ∈ a ◦ t.

(2) A relation Lm is said to an m-left relation if for a, b ∈ H, aLmb implies
either a = b or there exist s, t ∈ Hm such that a ∈ s ◦ b and b ∈ t ◦ a.

(3) The relation T m on H is said to be an m-relation if it both an m-right
relation and m-left relation. That is, it is defined by the proposition
“aT mb if and only if aLmb and aRmb”.

Proposition 4.1. Let H be a hypergroupoid and a, b ∈ H, then the following
results follow:

(1) If (a ◦Hm) ∪ {a} = (b ◦Hm) ∪ {b}, then aRmb.
(2) If (Hm ◦ a) ∪ {a} = (Hm ◦ b) ∪ {b}, then aLmb.

Proof. If a = b, then aRmb and aLmb clearly. Suppose a ̸= b.

(1) Then, let (a ◦Hm) ∪ {a} = (b ◦Hm) ∪ {b}. Since a ∈ (b ◦Hm) ∪ {b} and
a ̸= b, there exists s ∈ Hm such that a ∈ b ◦ s. Since b ∈ (a ◦Hm) ∪ {a}
and b ̸= a, there exists t ∈ Hm such that b ∈ a ◦ t. Since s, t ∈ Hm such
that a ∈ b ◦ s and b ∈ a ◦ t, we have aRmb.

(2) Similarly.

□

The converse of above Proposition 4.1 follows for H to be a hypersemigroup as
explained below.

Proposition 4.2. Let H be a hypersemigroup and aRmb [7], then

(1) if aRmb, then (a ◦Hm) ∪ {a} = (b ◦Hm) ∪ {b} and
(2) if aLmb, then (Hm ◦ a) ∪ {a} = (Hm ◦ b) ∪ {b}.

Proof. The proofs are given in the following paragraphs.
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(1) Let aRmb and u ∈ (a ◦ Hm) ∪ {a}. Since aRmb, a = b or there exist
s, t ∈ Hm such that a ∈ b ◦ s and b ∈ a ◦ t. If a = b, then (1) holds. Let
a ̸= b and a ∈ b◦s, b ∈ a◦t for some s, t ∈ Hm. Since u ∈ (a◦Hm)∪{a}, we
have u ∈ a◦v for some v ∈ Hm or u = a. We have the following two cases:

(I) a ∈ b ◦ s, b ∈ a ◦ t and u ∈ a ◦ v. Since H is an hypersemigroup, so
u ∈ a◦v ⊆ (b◦ s)◦{v} = {b}◦ (s◦v). Since s, v ∈ Hm, s◦v ⊆ Hm,
and then u ∈ {b} ◦Hm ⊆ (b ◦Hm) ∪ {b}.
Therefore,

(4.1) (a ◦Hm) ∪ {a} ⊆ (b ◦Hm) ∪ {b}.

(II) a ∈ b◦s, b ∈ a◦t and u = a. Then we have u = a ∈ b◦s ⊆ {b}◦Hm ⊆
(b ◦Hm) ∪ {b}. So again we get (a ◦Hm) ⊆ {a} ⊆ (b ◦Hm) ∪ {b}.

By symmetry, we get

(4.2) (b ◦Hm) ∪ {b} ⊆ (a ◦Hm) ∪ {a}.
Joining (1I) and (1), we get

(a ◦Hm) ∪ {a} = (b ◦Hm) ∪ {b}.
(2) Similarly.

□

Definition 4.2. We define now the m-reflexive, m-symmetric, m-transitive
and m-equivalence relations on a hypergroupoid H as follow:

(1) An m-relation Am on H is said to be m-reflexive if for all a ∈ H, aAma.
(2) An m-relation Am is said to be m-symmetric if for a, b ∈ H, aAmb implies

bAma.
(3) An m-relation Am is said to be m-transitive if for a, b, c ∈ H, aAmb and

bAmc implies aAmc.
(4) An m-relation Am is said to be m-equivalence if it is also m-reflexive,

m-symmetric, and m-transitive.

Remark 4.1. (1) An m-reflexive relation or reflexive m-relation are used
to connote the same concepts. Therefore, we use them for the same
meaning. Similar statements hold for m-symmetric, m-transitive and m-
equivalence relations.

(2) This is obvious to verify that reflexive, symmetric and transitive relations
are respectively m-reflexive, m-symmetric and m-transitive for all positive
integer m, but the converse does not follow except for m = 1.

Proposition 4.3. [7]. If H is a hypersemigroup, then the m-relations Rm and
Lm are equivalence m-relations.

Proof. An m-relation is an m-equivalence relation if it is m-reflexive, m-
symmetric and m-transitive relation. We prove for the case of Rm, the proof for
Lm follows analogously.
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(1) Rm is m-reflexive as sRms as s = s for all s ∈ Hm.
(2) aRmb implies either a = b or there exist s, t ∈ Hm such that a ∈ b ◦ s and

b ∈ a ◦ t, which clearly implies that bRma. Rm is m-symmetric.
(3) If aRmb and bRmc, the either a = b or there exist s, t ∈ Hm such that

a ∈ b ◦ s and b ∈ a ◦ t, and either b = c or there exist s, t ∈ Hm such
that b ∈ c ◦ s and c ∈ b ◦ t. These two results jointly imply that a = c
or a ∈ b ◦ s ⊆ (a ◦ t) ◦ s = a ◦ (t ◦ s) = a ◦ l, for some l = t ◦ s, l ∈ Hm.
Similarly, c ∈ a ◦ n, for some n ∈ Hm. Therefore, Rm is m-transitive.
Consequently, Rm is an m-equivalence relation.

□

Since the hypergroupoids are the natural extension of the groupoids, we can find
them from the groupoids by defining a relation between the binary operation · and
the hyperoperation ◦ [5]. In the following lines, we characterize the hypergroupoids
using groupoids and vice versa in relation to the m-consistencies. Before this, we
first formally define m-consistent and m-intra-consistent groupoids.

Definition 4.3. A groupoid (G, ·) is said to an m-right (m-left) consistent if
for any a, b ∈ G, (ab)Gm = a(bGm) (Gm(ab) = (Gma)b), for a positive integer m.
The groupoid G is said to be an m-consistent if it is both an m-right and an m-left
consistent.

Definition 4.4. A groupoid (G, ·) is called an m-intra-consistent if (aGm)b =
a(Gmb) for every a, b ∈ G, and m is a positive integer.

The following proposition explains how groupoids are converted into hyper-
groupoids using the ideas of m-right(m-left) consistencies.

Proposition 4.4. Let (G, ·) be an m-right ( m-left) consistent or m-intra-
consistent groupoid and ◦ is the hyperoperation on G defined by a ◦ b = {ab}, then

(1) (G, ◦) is an m-right (m-left) consistent hypergroupoid,
(2) (G, ◦) is an m-intra-consistent hypergroupoid.

Proof. The proofs are given below:

(1) Let (G, ·) be an m-right consistent groupoid. We shall show that (a ◦ b) ◦
Gm = {a}◦ (b◦Gm) for all a, b ∈ G. Let t ∈ (a◦ b)◦Gm, then t ∈ u◦h for
some u ∈ a ◦ b, h ∈ Gm. Moreover, t = uh and u = ab. Since G is m-right
consistent, t = (ab)h ∈ (ab)Gm = a(bGm). We again have t = a(bk) for
some k ∈ Gm. By the same reason, t ∈ a(bk) = a ◦ (bk) = {a} ◦ {bk} =
{a} ◦ (b ◦ k) ⊆ {a} ◦ (b ◦G), and so

(4.3) (a ◦ b) ◦Gm ⊆ {a} ◦ (b ◦Gm).

Similarly,

(4.4) {a} ◦ (b ◦Gm) ⊆ (a ◦ b) ◦Gm.

Joining (4.3) and (4.4), we get

(a ◦ b) ◦Gm = {a} ◦ (b ◦Gm).
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· u v w x y
u u u v v u
v v v u u w
w w w x x x
x x x w w v
y u w v x u

Table 4

Thus (G, ◦) ism-right consistent. Similarly, if (G, ·) is anm-left consistent,
then we can prove that (G, ◦) is m-left consistent as well.

(2) Suppose that (G, ·) is an m-intra-consistent groupoid. In order to show
that (G, ◦) is an m-intra-consistent hypergroupoid, we shall show that
{a} ◦ (Gm ◦ b) ⊆ (a ◦Gm) ◦ {b} for all a, b ∈ G. If t ∈ (a ◦Gm) ◦ {b}, then
t ∈ u ◦ b for some u ∈ a ◦Gm and u ∈ a ◦ v for some v ∈ Gm. Since G is
m-intra-consistent, so t = ub = (av)b ∈ (aGm)b = a(Gmb). Again since
there exists h ∈ G such that t = a(hb), we get t ∈ {a(hb)} = a ◦ (hb) =
{a}◦{hb} = {a}◦(h◦b) ⊆ {a}◦(Gm◦b), and (a◦Gm)◦{b} ⊆ {a}◦(Gm◦b).
In a similar way, we prove that {a} ◦ (Gm ◦ b) ⊆ (a ◦ Gm) ◦ {b}, and so
the equality holds; therefore result follows.

□

Example 4.1. We consider the groupoid G = {u, v, w, x, y} with the multipli-
cation · defined by Table 4. In this case, G2 = {u, v, w, x}. Taking m = 2, G is a
2-left consistent groupoid, as Gmx = Gm for any x ∈ G then, for any a, b ∈ G, we
have Gm(ab) = Gm and (Gma)b = Gmb = Gm, so Gm(ab) = (Gma)b and (G, ·) is
a 2-left consistent. By Proposition 4.4, the set G with the hyperoperation defined
by Table 5 is a 2-left consistent hypergroupoid. In addition, this is an example of
a 2-left consistent hypergroupoid which is not 2-right consistent. In fact, we have
(v ◦ x) ◦G2 = {1, v} but {v} ◦ (x ◦G2) = {a}.

By interchanging rows and columns in Table 4, we get the groupoid (G, ·) given
by Table 6. We have aG2 = G2 for any a ∈ G. Thus, for any a, b ∈ G, we have
(ab)G2 = G2 and a(bG2) = aG2 = G2. Then we have (ab)G2 = a(bG2), and G is
2-right consistent. By Proposition 4.4, the hypergroupoid (G, ◦) given by Table 7
is 2-right consistent. But this is not 2-left consistent as G2 ◦ (v ◦ x) = {w, x} and
(G2 ◦ v) ◦ {x} = {x}. By Proposition 4.4, the hypergroupoids defined in Tables 5
and 7 are 2-intra-consistent also.

For the hypersemigroups, we the following proposition.

Proposition 4.5. If H is an hypersemigroup and a, b ∈ Hm, then we have

(1) aRmb ⇐⇒ (a ∗Hm) ∪ {a} = (b ∗H) ∪ {b},
(2) aLmb ⇐⇒ (Hm ∗ a) ∪ {a} = (Hm ∗ b) ∪ {b}.

By Corollary 2.4 we have the following
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◦ u v w x y
u {u} {u} {v} {v} {u}
v {v} {v} {u} {u} {w}
w {w} {w} {x} {x} {x}
x {x} {x} {w} {w} {v}
y {u} {w} {v} {x} {u}

Table 5

· u v w x y
u u v w x u
v u v w x w
w v u x w v
x v u x w x
y u w x v u

Table 6

◦ u v w x y
u {u} {v} {w} {x} {u}
v {u} {v} {w} {x} {w}
w {v} {u} {x} {w} {v}
x {v} {u} {x} {w} {x}
y {u} {w} {x} {v} {u}

Table 7

Proposition 4.6. If H is an hypersemigroup, then the relations Rm and Lm

are equivalence relations on Hm.

Proof. (1) Rm is reflexive as xRmx as x = x for all x ∈ Hm.
(2) aRmb implies either a = b or there exist x, y ∈ Hm such that a ∈ b ◦ x

and b ∈ a ◦ y, which clearly implies that bRma.
(3) aRmb and bRmc. The either a = b or there exist x, y ∈ Hm such that

a ∈ b ◦ x and b ∈ a ◦ y, and either b = c or there exist s, t ∈ Hm such
that b ∈ c ◦ s and c ∈ b ◦ t. These two results jointly impy that a = c or
a ∈ b ◦ x ⊆ (a ◦ y) ◦ x = a ◦ (y ◦ x) = a ◦ l, for some l = y ◦ x. Similarly,
c ∈ a ◦ n, for some n ∈ Hm.

□

Remark 4.2. A right consistent hypergroupoid is an m-right consistent, but
the converse does not follow. This is evident from the following Example 4.2.

Example 4.2. Consider the hypergroupoid H = {a, b, c} with the hyperoper-
ation ◦ defined in the following Table 8. Here H2 = {a, b}. This is a 2-right con-
sistent, 2-left consistent and 2-intra-consistent hypergroupoid, but it is not right
consistent as (b ◦ c) ∗H = {b} ∗ ({c} ∗H) gives {a, b} ≠ {b}, which is not possible.
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◦ a b c
a {a} {a, b} {a}
b {a} {b} {a}
c {b} {b} {b}

Table 8

◦ a b c d
a {a} {a} {c} {a}
b {c} {b} {a} {c}
c {c} {b} {a} {b}
d {c} {b} {c} {a}

Table 9

◦ a b c d e
a {a} {a, b} {a, c} {a, d} {a, b}
b {a, b} {a, b} {a, b, c} {a, b, d} {a, b}
c {a, c} {a, b, c} {a, c} {b, c, d} {a, b, d}
d {a, d} {a, b, d} {b, c, d} {c, d} {a, b}
e {c} {c, d} {a, c, d} {a, b, d} {a, b, c}

Table 10

Example 4.3. Consider the hypergroupoid H = {a, b, c, d} with the hyperop-
eration defined in Table 9 which makes it an hypergroupoid. Here H2 = {a, b, c}.
This is not 2-right consistent because (c◦b)∗H2 = H2 and {c}∗

(
{b} ∗H2

)
= {b, c},

not 2-left consistent since H2 ∗ (a ◦ b) = {a, c} and (H∗{a}) ∗ {b} = {a, b} and not
2-intra-consistent as

(
{a} ∗H2

)
∗ {b} = {a, b} and {a} ∗

(
H2 ∗ {b}

)
= {a}.

Example 4.4. The hypergroupoid defined by Table 10 is m-right consistent,
m-left consistent and m-intra-consistent for m = 2.

Definition 4.5. A groupoid (G, ·) is said to be m-right (resp. m-left) consis-
tent if for any x, y ∈ G, we have (xy)Gm = x(yGm) (resp. Gm(xy) = (Gmx)y). G
is called m-intra-consistent if (xGm)y = x(Gmy) for every x, y ∈ G.

Example 4.5. We consider the groupoidG = {a, b, c, d} with the multiplication
· defined by the following Table 11.

This is a 2-left consistent groupoid, as Gmx = Gm for any x ∈ G then, for
any x, y ∈ G, we have Gm(xy) = Gm and (Gmx)y = Gmy = Gm, so Gm(xy) =
(Gmx)y and (G, ·) is a 2-left consistent. By Proposition 4.4, the set G with the
hyperoperation defined by Table 12 is a 2-left consistent hypergroupoid.

In addition, this is an example of a 2-left consistent hypergroupoid which is not
2-right consistent. In fact, we have (b ◦ d) ∗ G2 = {a, b} but {b} ∗ (d ∗ G2) = {a}.
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· a b c d e
a a a b b a
b b b a a c
c c c d d d
d d d c c b
e a c b d a

Table 11

◦ a b c d e
a {a} {a} {b} {b} {a}
b {b} {b} {a} {a} {c}
c {c} {c} {d} {d} {d}
d {d} {d} {c} {c} {b}
e {a} {c} {b} {d} {a}

Table 12

· a b c d e
a a b c d a
b a b c d c
c b a d c b
d b a d c d
e a c d b a

Table 13

◦ a b c d e
a {a} {b} {c} {d} {a}
b {a} {b} {c} {d} {c}
c {b} {a} {d} {c} {b}
d {b} {a} {d} {c} {d}
e {a} {c} {d} {b} {a}

Table 14

By interchanging rows and columns in Table 11, we get the groupoid (G, ·) given
by the following Table 13.

We have xG2 = G2 for any x ∈ G. Thus, for any x, y ∈ G, we have (xy)G2 = G2

and x(yG2) = xG2 = G2. Then we have(xy)G2 = x(yG2), and G is 2-right
consistent. By Proposition 4.4, the hypergroupoid (G, ◦) given by Table 14 is 2-
right consistent.
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But this is not 2-left consistent as G2 ∗ (b ◦d) = {c, d} and (G2 ∗ b) ∗ {d} = {d}.
By Proposition 4.4, the hypergroupoids defined in Tables 12 and 14 are 2-intra-
consistent also.

Proposition 4.7. Let H be an m-right consistent hypergroupoid and aRmb.
Then (a ∗Hm) ∪ {a} = (b ∗Hm) ∪ {b}.

Proof. The result follows for a = b immediately. For a ̸= b, then since aRmb,
there exist x, y ∈ Hm such that a ∈ b◦x and b ∈ a◦y. Then a∗Hm ⊆ (b◦x)∗Hm =
{b} ∗ (x ∗Hm) ⊆ {b} ∗Hm ⊆ (a ◦ y) ∗Hm = {a} ∗ (y ∗Hm) ⊆ {a} ∗Hm, and so
a ∗Hm = b ∗Hm.
Hence we obtain (a∗Hm)∪{a} = (b∗Hm)∪{a} ⊆ (b∗Hm)∪ (b∗Hm) = b∗Hm ⊆
(b ∗Hm) ∪ {b}.

and
(b∗Hm)∪{b} = (a∗Hm)∪{b} ⊆ (a∗Hm)∪(a∗Hm) = a∗Hm ⊆ (a∗Hm)∪{a}.
and then (a ∗Hm) ∪ {a} = (b ∗Hm) ∪ {b}. □

Corollary 4.1. If H is an m-left consistent hypergroupoid and aLm, then
(Hm ∗ a) ⊆ {a} = (Hm ∗ b) ⊆ {b}(∗)

Corollary 4.2. If H is an m-right (resp. an m-left) consistent hypergroupoid
then, for every a, b ∈ H, then aRmb if and only if (a∗Hm) ⊆ {a} = (b∗Hm) ⊆ {b}
(resp. aLmb if and only if (Hm ∗ a) ⊆ {a} = (Hm ∗ b) ⊆ {b}).

Proposition 4.8. Let H be an m-intra-consistent hypergroupoid and aRmb.
Then (a ∗Hm) ⊆ {a} = (b ∗Hm) ⊆ {b}

Proof. The result holds for a = b. If a ̸= b, then there exist x, y ∈ Hm such
that a ∈ b ◦ x and b ∈ a ◦ y. If t ∈ a ∗Hm, then t ∈ a ◦ u for some u ∈ Hm, then

t ∈ a ◦ u ⊆ (b ◦ x) ∗ {u} ⊆ (b ∗Hm) ∗ {u}
= {b} ∗ (Hm ∗ u)(since H is m-intra-consistent).

⊆ {b} ∗ (Hm ∗Hm) ⊆ b ∗Hm

so a∗Hm ⊆ b∗Hm. Similarly b∗Hm ⊆ a∗Hm and so a∗Hm = b∗Hm. Then as
before in the proof of Proposition 4.7, we have (a∗Hm)∪{a} = (b∗Hm)∪{b}. □

Corollary 4.3. Let H be an m-intra-consistent hypergroupoid. Then we have
aRmb if and only if(a ∗Hm) ∪ {a} = (b ∗Hm) ∪ {b}.

Proposition 4.9. If H is a m-right (resp. m-left) consistent hypergroupoid
then, for every a ∈ H, the set a ∗Hm (resp. Hm ∗ a) is a subgroupoid of H.

Proof. Let H be an m-right consistent hypergroupoid and x, y ∈ a ∗ Hm.
Then x ∈ a ◦ u and y ∈ a ◦ v for some u, v ∈ Hm. Then we have

x ◦ y ⊆ (a ◦ u) ∗ (a ◦ v) ⊆ (a ◦ u) ∗ (Hm ∗Hm) ⊆ (a ◦ u) ∗Hm

= {a} ∗ (u ∗Hm)(since H is m-right consistent)

⊆ {a} ∗ (Hm ∗Hm) ⊆ a ∗Hm

so a ∗Hm is a subgroupoid of H. □
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Proposition 4.10. If an hypergroupoid H is m-right consistent (resp. m-left
consistent) then, for any nonempty subset A of H, the set A ∪ (A ∗ Hm) (resp.
A ∪ (Hm ∗A)) is the m-right (resp. m-left) ideal of H generated by A.

Proof. Let H be m-right consistent. Clearly, the set A ∪ (A ∗ Hm) is a
nonempty subset of H containing A. Moreover, (A ∪ (A ∗Hm)) ∗Hm ⊆ A ∪ (A ∗
Hm). Let t ∈ (A ∪ (A ∗Hm) ∗ Hm. Then t ∈ u ◦ h for some u ∈ A ∪ (A ∗ Hm),
h ∈ Hm. If u ∈ A, then t ∈ u◦h ⊆ A∗Hm ⊆ A∪ (A∗Hm). Let u ∈ A∗Hm. Then
u ∈ a◦v for some a ∈ A, v ∈ Hm. Then we have t ∈ u◦h ⊆ (a◦v)∗Hm = {a}∗(v∗
H)m (since H is m-right consistent) ⊆ A ∗ (Hm ∗Hm) ⊆ A ∗Hm ⊆ A∪ (A ∗Hm);
thus A ∪ (A ∗Hm) is an m-right ideal of H. Let now T be an m-right ideal of H
such that T ⊇ A. Then we have A ∪ (A ∗Hm) ⊆ T ∪ (T ∗Hm) ⊆ T and so the set
A ∪ (A ∗Hm) is the m-right ideal of H generated by A. If H is m-left consistent,
then in a similar way we prove that the set A ∪ (Hm ∗ A) is the m-left ideal of H
generated by A. □

Corollary 4.4. If an hypergroupoid H is m-right consistent (resp. m-left
consistent) then, for any a ∈ H, the set {a} ∪ (a ∗Hm) (resp. {a} ∪ (Hm ∗ a)) is
the m- right (resp. m-left) ideal of H generated by A.

As a result, if H is an m-right or an m-left consistent hypergroupoid then, for
every a ∈ H, the sets {a} ∪ (a ∗Hm) and {a} ∪ (Hm ∗ a) are subgroupoids of H.

Remark 4.3. We denote by Rm(A) (resp. Lm(A)) the m-right (resp. m-
left) ideal of H generated by A. For A = {a}, we write Rm(a), Lm(a) instead of
Rm({a}), Lm({a}).

Corollary 4.5. If an hypergroupoid H is m-right consistent (resp. m-left
consistent) then, for every nonempty subset A of H, we have Rm(A) = A∪(A∗Hm)
(resp. Lm(A) = A ∪ (Hm ∗A)).

Corollary 4.6. If H is a m-right consistent or m-intra-consistent hyper-
groupoid, then aRmb if and only if Rm(a) = Rm(b). If H is a m-left consistent
hypergroupoid, then aLmb if and only if Lm(a) = Lm(b).

By Propositions 3.9, 3.10 and 3.12 or by Corollary 3.19. we have the following

Theorem 4.1. If an hypergroupoid H is m-right (m-left) consistent or m-intra-
consistent, then the relations Rm and Lm are equivalence relations on Hm.

Proposition 4.11. A commutative hypergroupoid H is m-right consistent if
and only if it is m-left consistent and therefore m-consistent.

Proof. Let H be m-right consistent and x, y ∈ H. Then we have

Hm ∗ (x ◦ y) = (x ◦ y) ∗Hm

= (y ◦ x) ∗Hm(since H is commutative)

= {y} ∗ (x ∗H)(since H is m-right consistent)

= {y} ∗ (H ∗ x) = (H ∗ x) ∗ {y}(since H is commutative)
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· a b c d
a c b c c
b b b c b
c c c c c
d c b c b

Table 15

so H ∗ (x ◦ y) = (H ∗ x) ∗ {y}, and H is m-left consistent.
Conversely, let Hbe an m-left consistent and x, y ∈ H. Then we have (x ◦ y) ∗H =
H ∗ (y ◦ x) = (H ∗ y) ∗ {x} = {x} ∗ (y ∗H), so (x ◦ y) ∗H = {x} ∗ (y ∗H), and H is
m-right consistent. □

Proposition 4.12. Let H be a commutative hypergroupoid. If H is an m-right
(resp. m-left) consistent, then H is an m-intra-consistent. The converse statement
does not hold in general. However, there are commutative m-intra-consistent hy-
pergroupoids that are m-consistent.

Proof. Let H be an m-right consistent and x, y ∈ H. Then we have

(x ∗Hm) ∗ {y} = {y} ∗ (x ∗Hm)(since H is commutative)

= (y ◦ x) ∗Hm(since H is m-right consistent)

= (x ◦ y) ∗Hm(since H is commutative)

= {x} ∗ (y ∗Hm)(since H is m-right consistent)

= {x} ∗ (Hm ∗ y)(since H is commutative),

so (x ∗Hm) ∗ {y} = {x} ∗ (Hm ∗ y), and H is m-intra-consistent. Let now H
be m-left consistent and xy ∈ H. Then we have
(x ∗Hm) ∗ {y} = (Hm ∗ x) ∗ {y} = Hm ∗ (x ◦ y) = Hm ∗ (y ◦ x)
= (Hm ∗ y) ∗ {x} = {x} ∗ (Hm ∗ y),

and again H is m-intra-consistent. □

For the converse statement we give the following example.

Example 4.6. We consider the commutative groupoid G = {a, b, c, d} given
by Table 15. For m = 2, G2 = {a, b, c}

One can check 16 cases to see that this is an m-intra-consistent groupoid.
According to Proposition 3.7, the set G with the hyperoperation defined by Table 16
is an m-intra-consistent commutative hypergroupoid.

This is not m-right regular because (a◦a)∗H2 = {c} and {a}∗(a∗H2) = {b, c}.
As (G, ◦) is commutative, this is not m-left consistent as well.

We prove the last part of the proposition by the following example.

Example 4.7. Applying Proposition 4.4 in the groupoid given in following
example, we get the hypergroupoid G = {a, b, c, d} defined by Table 17. This is a
commutative, m-intra-consistent and m-consistent hypergroupoid.
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◦ a b c d
a {c} {b} {c} {c}
b {b} {b} {c} {b}
c {c} {c} {c} {c}
d {c} {b} {c} {b}

Table 16

◦ a b c d
a {c} {c} {a} {b}
b {c} {a} {a} {b}
c {a} {a} {c} {c}
d {b} {b} {c} {c}

Table 17

Lemma 4.1. If H is an hypergroupoid then, for any nonempty subsets A, B,
C of H, we

(1) A ∗ (B ∪ C) = (A ∗B) ∪ (A ∗ C) and
(2) (A ∪B) ∗ C = (A ∗ C) ∪ (B ∗ C).

Proof. (1) Since B ∪C ⊇ B,C, we have A ∗ (B ∪C) ⊇ A ∗B,A ∗C, so
A ∗ (B ∪C) ⊇ (A ∗B)∪ (A ∗C). Let x ∈ (A ∗B)∪ (A ∗C). If x ∈ A ∗B,
then x ∈ a◦b for some a ∈ A, b ∈ B ⊆ B∪C, so x ∈ a◦b ⊆ A∗ (B∪C). If
x ∈ A∗C, then x ∈ a◦c for some a ∈ A, c ∈ C, then again x ∈ A∗(B∪C).
So result follows.

(2) The proof is similar.
□

Proposition 4.13. If an hypergroupoid H is m-right (resp. m-left) consistent,
(a, b) ∈ Rm (resp. (a, b) ∈ Lm) and c ∈ H, then we have Rm(c ◦ a) = Rm(c ◦ b)
(resp. Lm(a ◦ c) = Lm(b ◦ c)).

Proposition 4.14. Let H be m-right consistent, (a, b) ∈ Rm and c ∈ H. Then
Rm(c ◦ a) = Rm(c ◦ b). Indeed:

R(c ◦ a) = (c ◦ a) ∪ ((c ◦ a) ∗Hm) (by Corollary 3.18)

= ({c} ∗ {a}( ∪ ({c} ∗ (a ∗Hm)) (since H is right consistent)

= {c} ∗ ({a} ∪ (a ∗Hm)) (by Lemma 3.23)

= {c} ∗ ({b} ∪ (b ∗Hm)) (by Proposition 3.9)

= ({c} ∗ {b}( ∪ ({c} ∗ (b ∗Hm)) (by Lemma 3.23)

= (c ◦ b) ∪ ((c ◦ b) ∗Hm) (since H is m-right consistent)

= R(c ◦ b)(by Corollary 3.18).
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Proposition 4.15. If H is a m-right consistent hypergroupoid such that x ∈
x ◦ x for every x ∈ H then, for every a ∈ H, we have Rm(a) = Rm(a ◦ a).

Proof. Let a ∈ H. Then, we have

Rm(a ◦ a) = (a ◦ a) ∪ ((a ◦ a) ∗Hm) (by Corollary 3.18)

= ({a} ∗ {a}( ∪ ({a} ∗ (a ∗Hm)) (since H is right consistent)

⊆ (a ∗Hm) ∪ ({a} ∗ (Hm ∗Hm)) ⊆ (a ∗Hm) ∪ (a ∗Hm)

= (a ∗Hm) ⊆ {a} ∪ (a ∗Hm)

= Rm(a)

and Rm(a) = {a} ∪ (a ∗Hm) ⊆ (a ◦ a) ∪ ((a ◦ a) ∗Hm) = Rm(a ◦ a), so Rm(a) =
Rm(a ◦ a). □

In a similar way we have the following

Proposition 4.16. If H is a m-left consistent hypergroupoid such that x ∈ x◦x
for every x ∈ H then, for every a ∈ H, we have Lm(a) = Lm(a ◦ a).

Remark 4.4. If H is a commutative hypergroupoid and a, b ∈ H, then we have
Rm(a) = Lm(a) and Rm(a◦b) = (a◦b)∪(a◦b)∗Hm = (b◦a)∪(b◦a)∗H=Rm(b◦a)
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