
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4866, ISSN (o) 2303-4947
www.imvibl.org /JOURNALS / JOURNAL
J. Int. Math. Virtual Inst., 13(1)(2023), 195-210

DOI: 10.7251/JIMVI2301195B

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

EXISTENCE OF g-BEST PROXIMITY POINTS OF
PROXIMAL F ∗−WEAK CONTRACTION MAPS

G. V. R. Babu and P. Mounika

Abstract. Let A and B be nonempty subsets of a metric space
X. Let S : A → B and g : A → A . In this paper, we prove the
existence of best approximate solution x∗ in the space such that
S x∗ is as close to gx∗ as possible. That is, we find the global
minimizer of the map x 7→ ρ(gx,S x) where S is either proximal
F ∗−weak contraction of the first kind or second kind or both, and
g is an isometry, in complete metric spaces. Examples are provided
to illustrate the validity of our results.

1. Introduction

Let (X, ρ) be a metric space. Let A and B be nonempty subsets of X. Let
S : A → B and g : A → A . Then the equation S x = gx may not have a
solution. In this situation, we consider our attention in computing an approximate
solution x∗ in the space such that the distance between S x∗ and gx∗ is as small as
possible. In fact, it is the global minimization of the mapping x 7→ ρ(gx,S x) and
if this map attains global minimum at x∗ then ρ(gx∗,S x∗) indicates the global
proximity between gx∗ and S x∗.

Since ρ(gx,S x) ⩾ ρ(A ,B) for all x ∈ A , a best proximity point theorem finds
the global minimization of x 7→ ρ(gx,S x) by computing an approximate solution
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x∗ which fulfill the condition that ρ(gx∗,S x∗) = ρ(A ,B). Such x∗ is known as
g−best proximity point of the mapping S and g.

In 2011, Sadiq Basha [5] proved the existence of g−best proximity points of
non-self proximal contractions in complete metric spaces. For extensions and more
related works, we refer Sadiq Basha and Veeramani [4], Sadiq Basha [6], Sadiq
Basha, Shahzad and Vetro [8].

In 2012, Wardowski [10], introduced a new concept of contraction, namely
F−contraction and proved the existence and uniqueness of fixed points of such
mappings in complete metric spaces which generalizes Banach contraction principle
in a different way. In 2014, Wardowski and Van Dung [11], introduced F−weak
contraction as a generalization of F−contraction and proved a fixed point theorem
for F−weak contractions in complete metric spaces.

In 2022 Salamatbakhsh, Haghi and Fallahi [9], extended F−weak contractions
that are defined for selfmaps to non-selfmaps and introduced the notion of proximal
F ∗−weak contraction of the first kind and strong proximal F ∗−weak contraction
of the second kind and proved the existence of best proximity points in complete
metric spaces.

In this paper, in Section 2, we recall some definitions and preliminaries that
we use to prove our main results. Motivated by the works of Basha [7] and Sala-
matbakhsh, Haghi and Fallahi [9], in Section 3, we extend these results to find the
existence of g−best proximity points of proximal F ∗−weak contractions of first
kind or second kind or both. In Section 4, we draw some corollaries to our main
results and provide examples in support of our results.

2. Preliminaries

In this section, we give some definitions of proximal contractions.
Let (X, ρ) be a metric space and A and B nonempty subsets of X.

ρ(A ,B) = inf{ρ(x, y) : x ∈ A and y ∈ B}

A0 = {x ∈ A : ρ(x, y) = ρ(A ,B) for some y ∈ B}
B0 = {y ∈ B : ρ(x, y) = ρ(A ,B) for some x ∈ A }.

In 2000, Basha and Veeramani [4], stated that in the setting of normed linear
spaces, if A and B are closed subsets such that ρ(A ,B) > 0, then A0 and B0

are contained in the boundaries of A and B, respectively. In 2003, Kirk, Reich,
Veeramani [2] provided sufficient conditions that A0 and B0 are nonemtpies.

Throughout this paper, we assume that ρ(A ,B) > 0.

Definition 2.1. (Basha [5]) The set B is said to be approximatively compact
with respect to A if every sequence {yn} of B satisfying the condition that
ρ(x, yn) → ρ(x,B) for some x ∈ A has a convergent subsequence.

It is trivial to see that every set is approximatively compact with respect to
itself. Also, every compact set is approximatively compact. Moreover, A0 and B0

are nonempty if A is compact and B is approximatively compact with respect to
A .
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Definition 2.2. (Basha [5]) A mapping S : A → B is said to be proximal
contraction if there exists a nonnegative real number α < 1 such that, for all
u1, u2, x1, x2 in A ,

ρ(u1,S x1) = ρ(A ,B)
ρ(u2,S x2) = ρ(A ,B)

}
⇒ ρ(u1, u2) ⩽ α(ρ(x1, x2)).

Definition 2.3. (Basha [7]) Let S : A → B and g : A → A . A point x∗ ∈ A
is said to be a g−best proximity point of the mapping S if ρ(gx∗,S x∗) = ρ(A ,B).

If g is the identity map then x∗ is a best proximal point of S .

Definition 2.4. (Basha [7]) A set A is said to have uniform approximation
in B if, for given ϵ > 0, there exists δ > 0 such that

ρ(x1, y1) = ρ(A ,B)
ρ(x2, y2) = ρ(A ,B)

ρ(x1, x2) < δ

 ⇒ ρ(y1, y2) < ϵ

for all x1, x2 ∈ A and y1, y2 ∈ B.

Definition 2.5. (Basha [7]) Let S : A → B be a map. Then, A is said to
have uniform S − approximation in B if, for given ϵ > 0, there exists δ > 0 such
that

ρ(x1,S u1) = ρ(A ,B)
ρ(x2,S u2) = ρ(A ,B)

ρ(x1, x2) < δ

 ⇒ ρ(S u1,S u2) < ϵ

for all x1, x2, u1, u2 ∈ A .

Definition 2.6. (Basha [7]) Given nonempty subsets A and B of a metric
space, a map S : A → B is said to be a proximally quasi− continuous if

ρ(xn,S un) = ρ(A ,B)
ρ(x,S u) = ρ(A ,B)

un → u

 ⇒ xnk
→ x for some subsequence xnk

of {xn} for

u, x ∈ A and for all sequences {xn} and {un} ∈ A .

Here we note that a proximally quasi-continuous mapping is not necessarily
continuous. ([7], Example 3.3)

Definition 2.7. (Wardowski [10]) Let F : (0,∞) → R be a mapping satisfy-
ing:
F1: F is strictly increasing, that is, α < β implies F (α) < F (β) for all α, β ∈
(0,+∞),
F2: For every sequence {αn} in (0,+∞) we have

lim
n→+∞

αn = 0 if and only if lim
n→+∞

F (αn) = −∞.

F3: There exists a number k ∈ (0, 1) such that lim
α→0

αkF (α) = 0.

We denote Ψ = The family of all functions F which satisfy the conditions
F1 − F3.
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A mapping T : X → X is said to be a Wardowski F − contraction [10] if
there exists τ > 0 such that

ρ(Tx, Ty) > 0 ⇒ τ + F (ρ(Tx, Ty)) ⩽ F (ρ(x, y))

for all x, y ∈ X, where F ∈ Ψ.
In 2014, Wardowski and Van Dung [11], introduced F−weak contraction as a

generalization of Wardowski contraction as follows:

Definition 2.8. (Wardowski and Van Dung [11]) A mapping T : X → X is
said to be a F − weak contraction if there exists τ > 0 such that

ρ(Tx, Ty)>0 ⇒ τ+F (ρ(Tx, Ty))⩽F (max{ρ(x, y),ρ(x, Tx),ρ(y, Ty), ρ(x, Ty) + ρ(y, Tx)

2
})

for all x, y ∈ X and where F ∈ Ψ.

Every F−contraction is an F−weak contraction. But its converse is not true.
([11], Example 2.3).

We denote Ψ∗ = The family of all functions F which satisfy the conditions F1

and F2.
In 2022, Salamatbakhsh, Haghi and Fallahi [9], introduced the notion of prox-

imal F ∗−weak contraction mappings by using F in Ψ∗.

Definition 2.9. (Salamatbakhsh, Haghi and Fallahi [9]) A mapping S : A →
B is called a proximal F ∗ − weak contraction of the first kind if there exist
F ∈ Ψ∗ and τ > 0 such that

ρ(u1,S a1) = ρ(A ,B)
ρ(u2,S a2) = ρ(A ,B)

}
⇒ τ + F (ρ(u1, u2)) ⩽ F (ρ(a1, a2)),

where a1, a2, u1, u2 ∈ A and a1 ̸= a2, u1 ̸= u2.

Example 2.1. Let X = [0, 1] × [0, 1] endowed with metric ρ((u, v), (a, b)) =
|u − a| + |v − b|. Let A = {(0, u); 0 ⩽ u ⩽ 1},B = {(1, v); 0 ⩽ v ⩽ 1}. It is
clear that A0 = A and B0 = B and S (A0) ⊆ B0. Define S : A → B by

S ((0, u)) = (1, u2

4 ), 0 ⩽ u ⩽ 1. Let a1 = (0, u) and a2 = (0, v) with u ̸= v
so that a1 ̸= a2. We choose u1, u2 ∈ A such that ρ(u1,S a1) = ρ(u2,S a2) =

ρ(A ,B) = 1. Also, S a1 = S ((0, u)) = (1, u2

4 ) which implies that u1 = (0, u2

4 )

and S a2 = S ((0, v)) = (1, v2

4 ) which implies that u2 = (0, v2

4 ), and u1 ̸= u2. Also

ρ(u1,S a1) = ρ((0, u2

4 ), (1, u2

4 )) = |1|+ |u
2

4 − u2

4 | = 1

ρ(u2,S a2) = ρ((0, v2

4 ), (1, v2

4 )) = |1|+ |v
2

4 − v2

4 | = 1.
Therefore ρ(u1,S a1) = ρ(u2,S a2) = ρ(A ,B). We choose τ = log 2 and F (α) =
−1√
α
+ logα, α > 0. We consider

τ + F (ρ(u1, u2)) = log 2 + F (ρ((0, u2

4 ), (0, v2

4 )))

= log 2 + F ( 14 |u
2 − v2|)

= log 2− 1√
1
4 |u2−v2|

+ log( 14 |u
2 − v2|)

= log 2− 2√
|u2−v2|

+ log |u2 − v2| − log 4

⩽ log 2− 2√
|u2−v2|

+ log 2 + log |u− v| − 2 log 2
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= −2√
|u2−v2|

+ log |u− v|

⩽ −2

2
√

|u−v|
+ log |u− v|

= −1√
|u−v|

+ log |u− v|
= F (|u− v|)
= F (ρ((0, u), (0, v)))
= F (ρ(a1, a2)).

Hence S is a proximal F ∗−weak contraction of the first kind.

Definition 2.10. (Salamatbakhsh, Haghi and Fallahi [9]) Let A ,B be nonempty
subsets of a metric space X. S : A → B is said to be a proximal F ∗ −
weak contraction of the second kind if there exists F ∈ Ψ∗ and τ > 0 such
that

ρ(u1,S a1) = ρ(A ,B)
ρ(u2,S a2) = ρ(A ,B)

}
⇒ τ + F (ρ(S u1,S u2)) ⩽ F (ρ(S a1,S a2)),

where a1, a2, u1, u2 ∈ A and S a1 ̸= S a2,S u1 ̸= S u2.

Definition 2.11. (Salamatbakhsh, Haghi and Fallahi [9]) A mapping
S : A → B is said to be a strong proximal F ∗−weak contraction of the second
kind if the following conditions are satisfied:
(a) S is a proximally quasi-continuous,
(b) S is a proximal F ∗−weak contraction of the second kind.

Example 2.2. Let X = [0, 1] × [0, 1] endowed with metric ρ((u, v), (a, b)) =
|u − a| + |v − b|. Let A = {(0, u); 0 ⩽ u ⩽ 1},B = {(1, v); 0 ⩽ v ⩽ 1}. It is
clear that A0 = A and B0 = B and S (A0) ⊆ B0. Define S : A → B by
S ((0, u)) = (1, 1 − u

2 ), 0 ⩽ u ⩽ 1. It is easy to see that S is proximally quasi-
continuous. Let a1 = (0, u) and a2 = (0, v) with u ̸= v so that a1 ̸= a2 and S a1 ̸=
S a2. We choose u1, u2 ∈ A such that ρ(u1,S a1) = ρ(u2,S a2) = ρ(A ,B) = 1.
Then S a1 = S ((0, u)) = (1, 1 − u

2 ) which implies that u1 = (0, 1 − u
2 ), and

S a2 = S ((0, v)) = (1, 1− v
2 ) which implies that u2 = (0, 1− v

2 ). Now,
ρ(u1,S a1) = ρ((0, 1− u

2 ), (1, 1−
u
2 )) = |1|+ |1− u

2 − 1 + u
2 | = 1

ρ(u2,S a2) = ρ((0, 1− v
2 ), (1, 1−

v
2 )) = |1|+ |1− v

2 − 1 + v
2 | = 1.

Therefore ρ(u1,S a1) = ρ(u2,S a2) = ρ(A ,B) = 1. We choose τ = log 2 and
F (α) = −1

α + logα+ α, α > 0. Also, for such u1 = (0, 1− u
2 ) and u2 = (0, 1− v

2 ),
we have S u1 ̸= S u2. Now
τ + F (ρ(S u1,S u2)) = log 2 + F (ρ(S (0, 1− u

2 ),S (0, 1− v
2 )))

= log 2 + F (ρ((1, 1− 1−u
2 )

2 ), (1, 1− 1− v
2

2 )))

= log 2 + F (ρ((1, u+2
4 ), (1, v+2

4 )))

= log 2 + F ( 14 |(u− v|)
= log 2− 1

1
4 |u−v| + log( 14 |u− v|) + 1

4 |u− v|

= log 2− 4
|u−v| + log( |u−v|

4 ) + |u−v|
4

= log 2− 4
|u−v| + log(|u− v|)− log 4 + |u−v|

4

= log 2− 4
|u−v| + log(|u− v|)− 2 log 2 + |u−v|

4
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= − 4
|u−v| + log(|u− v|)− log 2 + |u−v|

4

= − 4
|u−v| log(

|u−v|
2 ) + |u−v|

4

⩽ − 2
|u−v| + log( |u−v|

2 ) + |u−v|
2

= F (ρ((1, 1− u
2 ), (1, 1−

v
2 )))

= F (ρ(S a1,S a2)).
Therefore S is a strong proximal F ∗−weak contraction of the second kind.

Definition 2.12. (Mongkolkeha, Cho, Kumam [3]) Let S : A → B and
g : A → A be an isometry. The mapping S is said to preserve the isometric
distance with respect to g if ρ(S gx,S gy) = ρ(S x,S y) for all x, y ∈ A .

Theorem 2.1. (Salamatbakhsh, Haghi and Fallahi [9]) Let (M , ρ) be a com-
plete metric space. Suppose that the following conditions are satisfied:
(i) A ,B are nonempty subsets of M and A is closed;
(ii) B is approximatively compact with respect to A ;
(iii) A0 is nonempty;
(iv) S : A → B is a proximal F ∗-weak contraction of the first kind;
(v) S (A0) ⊆ B0;
(vi) F is continuous.
Then there exists a unique element a ∈ A such that ρ(a,S a) = ρ(A ,B). Further,
for any fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,S an) = ρ(A ,B) is
convergent to a.

Theorem 2.2. (Salamatbakhsh, Haghi and Fallahi [9]) Let (M , ρ) be a com-
plete metric space. Suppose that the following conditions are satisfied:
(i) A ,B are nonempty closed subsets of M ;
(ii) A is approximatively compact with respect to B;
(iii) A0 is nonempty;
(iv) S : A → B is a strong proximal F ∗-weak contraction of the second kind;
(v) S (A0) ⊆ B0;
(vi) F is continuous.
Then there exists a unique element a ∈ A such that ρ(a,S a) = ρ(A ,B). Further,
for any fixed a0 ∈ A0, the sequence {an} defined by ρ(an+1,S an) = ρ(A ,B) is
convergent to a.

The following lemma is useful in proving our results.

Lemma 2.1. (Babu and Sailaja [1]) Suppose (X, d) is a metric space. Let {xn}
be a sequence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy
sequence then there exist ϵ > 0 and sequences of positive integers {mk} and {nk}
with mk > nk > k such that d(xmk

, xnk
) ⩾ ϵ, d(xmk−1, xnk

) < ϵ and
i) lim

k→∞
d(xmk

, xnk
) = ϵ ii) lim

k→∞
d(xmk−1, xnk

) = ϵ

iii) lim
k→∞

d(xmk−1, xnk+1) = ϵ iv) lim
k→∞

d(xmk−1, xnk−1) = ϵ.
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3. Main results

Lemma 3.1. Let A and B be nonempty subsets of a metric space X. Assume
that A0 and B0 are nonempty. Let S : A → B be a map and g : A → A be
an isometry. Also assume that S (x0) ∈ B0 for any x0 ∈ A0. Then there exists a
sequence {xn} in A0 such that ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... .

Proof. Let x0 ∈ A0 be arbitrary. Since S (A0) ⊆ B0, we have S x0 ∈ B0.
So ρ(x,S x0) = ρ(A ,B) for some x ∈ A . This implies that x ∈ A0.
Since A0 ⊆ g(A0), we have x = gx1 for some x1 ∈ A0. Therefore ρ(gx1,S x0) =
ρ(A ,B) for some x1 ∈ A0. Again, by repeating the same process, we obtain that
ρ(gx2,S x1) = ρ(A ,B) for some x2 ∈ A0.
In general, we obtain that there is a sequence {xn} ⊆ A0 such that
ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . □

Theorem 3.1. Let A and B be nonempty, closed subsets of a complete metric
space X such that B is approximatively compact with respect to A . Moreover,
assume that A0 and B0 are nonempty. Let S : A → B and g : A → A satisfy
the following conditions:
a) S : A → B is a proximal F ∗− weak contraction of the first kind
b) B0 contains S (A0)
c) g is an isometry
d) g(A0) contains A0

e) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(gxn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(gx∗,S x∗) = ρ(A ,B). Such x∗ is unique.

Proof. Let x0 ∈ A0 be arbitrary. By Lemma 3.1, we have a sequence
{xn} ⊂ A0 such that ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . Suppose
xn = xn+1 for some n ∈ N. Since ρ(gxn+1,S xn) = ρ(A ,B), in this case,
we have ρ(gxn,S xn) = ρ(A ,B). Hence the conclusion of the theorem holds
with xn inplace of x∗. Therefore, without loss of generality, we assume that
xn+1 ̸= xn for n = 0, 1, 2, ... . Since S is a proximal F ∗−weak contraction of
the first kind, we have τ + F (ρ(gxn+2, gxn+1)) ⩽ F (ρ(xn+1, xn)). Since g is an
isometry, it follows that τ + F (ρ(xn+2, xn+1)) ⩽ F (ρ(xn+1, xn)). This implies
that F (ρ(xn+2, xn+1)) ⩽ F (ρ(xn+1, xn)) − τ. By repeating this process, we get
F (ρ(xn+1, xn)) ⩽ F (ρ(x1, x0))− nτ. On letting n → ∞, we have
lim

n→∞
F (ρ(xn+1, xn)) = −∞. By F2, we have lim

n→∞
ρ(xn+1, xn) = 0. We now show

that {xn} is a Cauchy sequence. If {xn} is not Cauchy, by Lemma 2.1, there exist
ϵ > 0 and two subsequences of positive integers {mk} and {nk} with nk > mk > k
such that

(3.1) ρ(xnk
, xmk

) ⩾ ϵ and ρ(xnk−1, xmk
) < ϵ

and lim
k→∞

ρ(xnk
, xmk

) = ϵ and lim
k→∞

ρ(xnk−1, xmk−1) = ϵ. Since ρ(gxnk
,S xnk−1) =

ρ(gxmk
,S xmk−1) = ρ(A ,B), by proximal F ∗−weak contraction of the first kind,
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we have τ + F (ρ(gxnk
, gxmk

)) ⩽ F (ρ(xnk−1, xmk−1)). Since g is an isometry, we
have τ + F (ρ(xnk

, xmk
)) ⩽ F (ρ(xnk−1, xmk−1)). On letting k → ∞, we have

τ + F (ϵ) ⩽ F (ϵ), a contradiction. Hence {xn} is a Cauchy sequence. Since X is
a complete metric space and A is closed in X, it follows that there exists x∗ ∈ A
such that xn → x∗ as n → ∞. Since g is continuous and {xn} converges to x∗, we
have {gxn} converges to gx∗. Now, we have
ρ(gx∗,B) ⩽ ρ(gx∗,S xn)

⩽ ρ(gx∗, gxn+1) + ρ(gxn+1,S xn)
= ρ(gx∗, gxn+1) + ρ(A ,B)
⩽ ρ(gx∗, gxn+1) + ρ(gx∗,B).

Therefore ρ(gx∗,S xn) → ρ(gx∗,B).
Since B is approximatively compact with respect to the set A , it follows that the
sequence {S xn} has a subsequence {S xnk

} converging to some element y in B.
Now, for the subsequence {xnk

} of {xn}, we have ρ(gxnk+1,S xnk
) = ρ(A ,B) for

n = 1, 2, ... . On taking limits as k → ∞, it follows that ρ(gx∗, y) = ρ(A ,B)
and hence gx∗ is a member of A0. Since A0 ⊆ g(A0), gx∗ = gu for some element
u ∈ A0. Since g is an isometry, we have ρ(x∗, u) = ρ(gx∗, gu) = 0. Therefore, x∗

and u are identical and hence x∗ is a member of A0. Since S (A0) ⊆ B0, we have
ρ(z,S x∗) = ρ(A ,B) for some z ∈ A . Also, since ρ(gxn+1,S xn) = ρ(A ,B) for
n = 0, 1, 2, ... . Since S is a proximal F ∗−weak contraction of the first kind,
we have τ + F (ρ(gxn+1, z)) ⩽ F (ρ(xn, x

∗)) which implies that F (ρ(gxn+1, z)) <
F (ρ(xn, x

∗)). Since F is strictly increasing we have ρ(gxn+1, z) ⩽ ρ(xn, x
∗) → 0

as n → ∞. Hence {gxn} converges to z. Since the sequence {gxn} converges to
gx∗, we have Thus z and gx∗ must be identical. Hence, it can be concluded that
ρ(gx∗,S x∗) = ρ(z,S x∗) = ρ(A ,B).
Suppose that there is another element b∗ ∈ A0 such that ρ(gb∗,S b∗) = ρ(A ,B).
Also, we have ρ(gx∗,S x∗) = ρ(A ,B) ⇒ τ + F (ρ(gx∗, gb∗)) ⩽ F (ρ(x∗, b∗)).
Since S is a proximal F ∗−weak contraction of the first kind, and g is an isometry,
we have F (ρ(x∗, b∗)) = F (ρ(gx∗, gb∗)) < τ + F (ρ(gx∗, gb∗)) ⩽ F (ρ(x∗, b∗)), a
contradiction. Hence ρ(x∗, b∗) = 0. Therefore x∗ = b∗. Hence the theorem follows.

□

Theorem 3.2. Let A and B be nonempty, closed subsets of a complete metric
space X such that A is approximatively compact with respect to B. Moreover,
assume that A0 and B0 are nonempty. Let S : A → B and g : A → A satisfy
the following conditions:
a) S : A → B is a strong proximal F ∗− weak contraction of the second kind
b) B0 contains S (A0)
c) g is an isometry
d) g(A0) contains A0

e) F is continuous
f ) S preserves isometric distance with respect to g.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(gxn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(gx∗,S x∗) = ρ(A ,B).
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Proof. Let x0 ∈ A0 be arbitrary. By Lemma 3.1, we have a sequence
{xn} ⊂ A0 such that ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . Without loss
of generality, we assume that xn+1 ̸= xn for n = 0, 1, 2, ... . Since S is a proximal
F ∗−weak contraction of the second kind, we have τ +F (ρ(S gxn+2,S gxn+1)) ⩽
F (ρ(S xn+1,S xn)). Since S preserves isometric distance with respect to g τ +
F (ρ(S xn+2,S xn+1)) ⩽ F (ρ(S xn+1,S xn)). This implies that
F (ρ(S xn+2,S xn+1)) ⩽ F (ρ(S xn+1,S xn)) − τ. By repeating this process, we
get F (ρ(S xn+1,S xn)) ⩽ F (ρ(S x1,S x0)) − nτ. On letting n → ∞, we have
lim

n→∞
F (ρ(S xn+1,S xn)) = −∞. By F2, we have lim

n→∞
ρ(S xn+1,S xn) = 0. We

now show that {S xn} is a Cauchy sequence. If {S xn} is not Cauchy by Lemma
2.1, there exist ϵ > 0 and two subsequences of positive integers {S xmk

} and
{S xnk

} with nk > mk > k such that

(3.2) ρ(S xnk
,S xmk

) ⩾ ϵ and ρ(S xnk−1,S xmk
) < ϵ

and lim
k→∞

ρ(S xnk
,S xmk

) = ϵ and lim
k→∞

ρ(S xnk−1,S xmk−1) = ϵ.

Since ρ(gxnk
,S xnk−1) = ρ(gxmk

,S xmk−1) = ρ(A ,B), by proximal F ∗−weak
contraction of second kind, we have
τ +F (ρ(S gxnk

,S gxmk
)) ⩽ F (ρ(S xnk−1,S xmk−1)). Since S preserves isomet-

ric distance with respect to g, we have
τ + F (ρ(S xnk

,S xmk
)) ⩽ F (ρ(S xnk−1,S xmk−1)). On letting k → ∞, we have

τ + F (ϵ) ⩽ F (ϵ), a contradiction. Hence {S xn} is a Cauchy sequence. Since X
is a complete metric space and B is closed there exists y ∈ B such that S xn → y
as n → ∞. Further,
ρ(y,A ) ⩽ ρ(y, gxn+1)

⩽ ρ(y,S xn) + ρ(S xn, gxn+1)
⩽ ρ(y,S xn) + ρ(B,A )
⩽ ρ(y,S xn) + ρ(y,A ).

This implies that ρ(y, gxn+1) → ρ(y,A ). Since A is approximatively compact with
respect to the set B, then {gxn} has a convergent subsequence {gxnk

} such that
lim
k→∞

gxnk
= x ∈ A . Hence it follows that ρ(x, y) = ρ(A , y).

Since ρ(B,A ) ⩽ ρ(y,A ) ⩽ ρ(y, gxn+1) ⩽ ρ(y,S xn) + ρ(S xn, gxn+1), we have
ρ(B,A ) ⩽ ρ(y, gxn+1) ⩽ ρ(y,S xn) + ρ(B,A ). On letting n → ∞, we get
ρ(B,A ) ⩽ lim

n→∞
ρ(y, gxn+1) ⩽ lim

n→∞
ρ(y,S xn)+ρ(B,A ), i.e., ρ(B,A ) ⩽ ρ(y, x) ⩽

ρ(B,A ). Therefore ρ(x, y) = ρ(A ,B) and hence x is a member of A0. Since
A0 ⊆ g(A0), x = gx∗ for some element x∗ ∈ A0.
Since g is an isometry, we have gxn → x = gx∗ implies that xn → x∗. Since
S (A0) ⊆ B0, it follows that ρ(u∗,S x∗) = ρ(A ,B) for some u∗ ∈ A . Also,
since ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ..., and xn → x∗, since S is a
proximally quasi-continuous, we have unk

→ u∗ for some subsequence {unk
} of

{un}. i.e., {gxnk+1} → u∗ as k → ∞. Therefore gx∗ = u∗ so that ρ(gx∗,S x∗) =
ρ(u∗,S x∗) = ρ(A ,B).

□
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Theorem 3.3. Let A and B be nonempty, closed subsets of a complete metric
space X. Assume that A0 and B0 are nonempty. Let S : A → B and g : A → A
satisfy the following conditions:
a) S : A → B is a proximal F ∗− weak contraction of the first kind
b) S : A → B is a strong proximal F ∗− weak contraction of the second kind
c) B0 contains S (A0)
d) g is an isometry
e) g(A0) contains A0

f ) S preserves isometric distance with respect to g
g) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(gxn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(gx∗,S x∗) = ρ(A ,B). Such x∗ is unique.

Proof. Let x0 ∈ A0 be arbitrary. By Lemma 3.1, we consider a sequence
{xn} ⊂ A0 such that ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . As in the proof
of Theorem 3.1, it follows that {xn} ⊆ A0 is a Cauchy sequence. Since X is a
complete and A is closed, then there exists x∗ ∈ A such that xn → x∗ as n → ∞.
Since g is an isometry we have gxn → gx∗ as n → ∞. Also as in the proof of
Theorem 3.2, it follows that {S xn} is a Cauchy sequence. So there exists b ∈ B
such that S xn → b as n → ∞. Now, ρ(gxn+1,S xn) → ρ(x∗, b) = ρ(A ,B) as
n → ∞, so that x∗ ∈ A0. Since S (A0) ⊆ B0, it follows that ρ(z,S x∗) = ρ(A ,B)
for some z ∈ A . Again proceeding as in the proof of Theorem 3.1, it follows that
ρ(z,S x∗) = ρ(gx∗,S x∗) = ρ(A ,B), and x∗ is the unique best proximity point of
S . Hence the theorem follows. □

In the following, we extend the existence of best proximity points in the setting
of fairly complete space (Theorem 2.5 and Theorem 2.6, [9]) to the existence of
g−best proximity points in complete metric spaces.

Theorem 3.4. Let A and B be nonempty, closed subsets of a complete metric
space X such that A0 and B0 are nonempty. Let the mapping S : A → B be such
that A has uniform S−approximation in B. Moreover, assume that
a) S : A → B is a proximal F ∗− weak contraction of the first kind
b) B0 contains S (A0)
c) g : A → A is an isometry
d) g(A0) contains A0

e) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(gxn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(gx∗,S x∗) = ρ(A ,B). Such x∗ is unique.

Proof. Let x0 ∈ A0 be arbitrary. By Lemma 3.1, ρ(gxn+1,S xn) = ρ(A ,B)
for some sequence {xn} ⊂ A0. Now, proceeding as in the proof of Theorem 3.1,
it follows that {xn} is a Cauchy sequence in A . Since g is an isometry, we have
{gxn} is a Cauchy sequence. Since A has uniform S−approximation in B and
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since {gxn} is Cauchy, given ϵ > 0 there exists N ∈ Z+ such that ρ(gxn, gxm) < ϵ
for all n > m ⩾ N. We choose δ = ϵ. Then for all n > m ⩾ N , we have

ρ(gxm+1,S xm) = ρ(A ,B)
ρ(gxn+1,S xn) = ρ(A ,B)

ρ(gxm+1, gxn+1) < δ for all n > m ⩾ N

 ⇒ ρ(S xn,S xm) < ϵ.

Therefore {S xn} is a Cauchy sequence. Since X is a complete and A and
B are closed subsets of X, we have A and B are complete and so there exist
w∗ ∈ A and y∗ ∈ B such that lim

n→∞
gxn = w∗ and lim

n→∞
S xn = y∗. Therefore

ρ(w∗, y∗) = lim
n→∞

ρ(gxn+1,S xn) = ρ(A ,B). So w∗ is an element of A0. Since

A0 ⊆ g(A0), w
∗ = gx∗ for some x∗ in A0. Since g is an isometry, we have

(3.3) gxn → w∗ = gx∗ implies that xn → x∗.

Since S (A0) ⊆ B0, it follows that ρ(u
∗,S x∗) = ρ(A ,B) for some u∗ ∈ A . Also,

since ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . Since S is a proximal F ∗−weak
contraction of the first kind, we have F (ρ(gxn+1, u

∗)) ⩽ τ + F (ρ(gxn+1, u
∗)) ⩽

F (ρ(xn, x
∗)) which implies that F (ρ(gxn+1, u

∗)) ⩽ F (ρ(xn, x
∗)). Since F is

strictly increasing we have ρ(gxn+1, u
∗) ⩽ ρ(xn, x

∗) → 0 as n → ∞. Therefore

(3.4) lim
n→∞

gxn+1 = u∗

Therefore from (3.3) and (3.4), we have gx∗ = u∗, and ρ(gx∗,S x∗) = ρ(u∗,S x∗) =
ρ(A ,B). Uniqueness of x∗ follows as in the proof of Theorem 3.1. □

Theorem 3.5. Let A and B be nonempty, closed subsets of a complete metric
space X such that A0 and B0 are nonempty. Moreover, assume that B has uni-
form approximation in A . Let S : A → B and g : A → A satisfy the following
conditions:
a) S : A → B is a strong proximal F ∗− weak contraction of the second kind
b) B0 contains S (A0)
c) g : A → A is an isometry
d) g(A0) contains A0

e) S preserves isometric distance with respect to g
f ) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(gxn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satifies
ρ(gx∗,S x∗) = ρ(A ,B). Such x∗ is unique.

Proof. Let x0 ∈ A0 be arbitrary. By Lemma 3.1, we have a sequence {xn} ⊂
A0 such that ρ(gxn+1,S xn) = ρ(A ,B) for n = 1, 2, ... . Now, proceeding as in the
proof of Theorem 3.2, we have {S xn} is a Cauchy sequence. Since B has uniform
approximation in A and since {S xn} is Cauchy sequence, it follows that {gxn}
is a Cauchy sequence. Since X is complete, A and B are closed subsets of X, we
have A and B are complete and so there exist w∗ ∈ A and y∗ ∈ B such that
lim
n→∞

gxn = w∗ and lim
n→∞

S xn = y∗. Therefore ρ(w∗, y∗) = lim
n→∞

ρ(gxn+1,S xn) =

ρ(A ,B) and hence w∗ is an element of A0. Since A0 ⊆ g(A0), w
∗ = gx∗ for some



206 G. V. R. BABU AND P. MOUNIKA

element x∗ in A0. Since g is an isometry, we have

(3.5) gxn → w∗ = gx∗ implies that xn → x∗.

Since S (A0) ⊆ B0, it follows that ρ(u
∗,S x∗) = ρ(A ,B) for some x∗ ∈ A . Also,

since ρ(gxn+1,S xn) = ρ(A ,B) for all n, and xn → x∗. Since S is a proximally
quasi-continuous, we have unk

→ u∗ for some subsequence {unk
} of {un}. That is

(3.6) gxnk+1 → u∗ as k → ∞.

Therefore from (3.5) and (3.6), we have gx∗ = u∗. Hence,
ρ(gx∗,S x∗) = ρ(u∗,S x∗) = ρ(A ,B).
Suppose that there is another element b∗ ∈ A0 such that ρ(gb∗,S b∗) = ρ(A ,B)
also we have ρ(gx∗,S x∗) = ρ(A ,B) that implies τ+F (ρ(gx∗, gb∗)) ⩽ F (ρ(x∗, b∗)).
Since S is a proximal F ∗−weak contraction of the second kind and S preserves
isometric distance with respect to g, we have
F (ρ(S x∗,S b∗)) = F (ρ(S gx∗,S gb∗)) < τ + F (ρ(S gx∗,S gb∗)) ⩽ F (ρ(S x∗,S b∗)),

a contradiction. Hence ρ(S x∗,S b∗) = 0. Therefore S x∗ = S b∗. Since B has
uniform approximation in A , it follows that
ρ(gx∗,S x∗) = ρ(A ,B)
ρ(gb∗,S b∗) = ρ(A ,B)
0 = ρ(S x∗,S b∗) < δ

 ⇒ ρ(gx∗, gb∗) < ϵ. Since g is an isometry, we have

ρ(x∗, b∗) < ϵ. Since ϵ > 0 is arbitrary, we have x∗ = b∗. □

4. Corollaries and examples

Remark 4.1. If g is the identity mapping in Theorem 3.1 and Theorem 3.2 then
Theorem 2.1 and Theorem 2.2 follow as corollaries, respectively. Further, Theorem
2.4 of [9] follow as corollary to Theorem 3.3 when g is the identity mapping.

When g is the identity in Theorem 3.4, we have the following corollary.

Corollary 4.1. Let A and B be nonempty, closed subsets of a complete
metric space X such that A0 and B0 are nonempty. Let the mapping S : A → B
be such that A has uniform S−approximation in B. Moreover, assume that
a) S : A → B is a proximal F ∗− weak contraction of the first kind
b) B0 contains S (A0)
c) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(xn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(x∗,S x∗) = ρ(A ,B). Such x∗ is unique.

When g is the identity in Theorem 3.5, we have the following corollary.

Corollary 4.2. Let A and B be nonempty, closed subsets of a complete
metric space X such that A0 and B0 are nonempty. Moreover, assume that B has
uniform approximation in A . Let S : A → B satisfy the following conditions:
a) S : A → B is a strong proximal F ∗− weak contraction of the second kind
b) B0 contains S (A0)
c) S preserves isometric distance with respect to g
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d) F is continuous.
Then for any fixed element x0 ∈ A0, the sequence {xn} defined by ρ(xn+1,S xn) =
ρ(A ,B) is Cauchy, and converges to an element x∗ (say) in A0 that satisfies
ρ(x∗,S x∗) = ρ(A ,B). Such x∗ is unique.

Remark 4.2. Every proximal contraction S with contraction constant α ∈
(0, 1) is a proximal F ∗−weak contraction of the first kind with F (a) = ln(a), a ∈
(0,∞) and τ = − lnα.

Remark 4.3. By Remark 4.2, we get the Theorem 3.1 in [5] follows as a
corollary to Theorem 3.1.

Example 4.1. Let X = [0, 1] × [0, 1] endowed with metric ρ((u, v), (a, b)) =
|u − a| + |v − b|. Let A = {(0, u); 0 ⩽ u ⩽ 1},B = {(1, v); 0 ⩽ v ⩽ 1}. It is clear
that A0 = A and B0 = B and S (A0) ⊆ B0. Moreover, B is approximatively

compact with respect to A . Define S : A → B by S ((0, u)) = (1, u2

4 ), 0 ⩽ u ⩽ 1.
Define g : A → A by g((0, u)) = (0, 1− u). Therefore
ρ(gx, gy) = ρ(g(0, u), g(0, v))

= ρ((0, 1−u), (0, 1−v)) = |0|+|u−v| = |u−v| = |(0, u)−(0, v)| = ρ(x, y).
Therefore g is an isomtery. For each a = (0, u) ∈ A0, there exist b = (0, v) ∈ A0

such that (0, u) = g(b) = g(0, v) = (0, 1−v) ⇔ u = 1−v implies v = 1−u. Therefore
ρ((0, u), (0, 1− u)) = 1 = ρ(A ,B) so that b = (0, 1− u) ∈ g(A0). Therefore g(A0)
contains A0. Let a1 = (0, u) and a2 = (0, v) with u ̸= v, then a1, a2 ∈ A and a1 ̸=
a2. We choose gu1, gu2 ∈ A such that ρ(gu1,S a1) = ρ(gu2,S a2) = ρ(A ,B) = 1.

S a1 = S ((0, u)) = (1, u2

4 ) which implies that gu1 = (0, u2

4 ) S a2 = S ((0, v)) =

(1, v2

4 ) which implies that gu2 = (0, v2

4 ). Here we observe that gu1 ̸= gu2. Now,

ρ(gu1,S a1) = ρ((0, u2

4 ), (1, u2

4 )) = |1|+ |u
2

4 − u2

4 | = 1

ρ(gu2,S a2) = ρ((0, v2

4 ), (1, v2

4 )) = |1|+ |v
2

4 − v2

4 | = 1.
Therefore ρ(gu1,S a1) = ρ(gu2,S a2) = ρ(A ,B) = 1. We choose τ = log 2 and
F (α) = −1

α + logα, α > 0. Then F ∈ Ψ∗, and F is continuous on (0,∞). We
consider τ + F (ρ(u1, u2)) = τ + F (ρ(gu1, gu2)), since g is an isometry

= log 2 + F (ρ((0, u2

4 ), (0, v2

4 )))

= log 2 + F ( 14 |u
2 − v2|)

= log 2− 1
1
4 |u2−v2| + log( 14 |u

2 − v2|)
= log 2− 4

|u2−v2| + log |u2 − v2| − log 4

⩽ log 2− 4
|u2−v2| + log 2 + log |u− v| − 2 log 2

= −4
|u2−v2| + log |u− v|

⩽ −1
|u−v| + log |u− v|

= F (|u− v|)
= F (ρ((0, u), (0, v)))
= F (ρ(a1, a2)).

Therefore S is proximal F ∗−weak contraction of the first kind.
Hence S satisfies all the hypotheses of Theorem 3.1 and (−2 + 2

√
2,−2 + 2

√
2) is

a unique best proximity point of S .
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Example 4.2. Let X = [0, 1] × [0, 1] endowed with metric ρ((u, v), (a, b)) =
|u − a| + |v − b|. Let A = {(0, u); 0 ⩽ u ⩽ 1},B = {(1, v); 0 ⩽ v ⩽ 1}. It is clear
that A0 = A and B0 = B and S (A0) ⊆ B0. Moreover, A has uniform S−
approximation in B. Define S : A → B by S ((0, u)) = (1, 1 − u2

4 ), 0 ⩽ u ⩽ 1.
Define g : A → A by g((0, u)) = (0, 1− u). Therefore
ρ(gx, gy) = ρ(g(0, u), g(0, v))

= ρ((0, 1−u), (0, 1−v)) = |0|+|u−v| = |u−v| = |(0, u)−(0, v)| = ρ(x, y).
Therefore g is an isomtery. For each a = (0, u) ∈ A0, there exist b = (0, v) ∈ A0

such that (0, u) = g(b) = g(0, v) = (0, 1 − v) ⇔ u = 1 − v implies v = 1 − u.
Therefore ρ((0, u), (0, 1− u)) = 1 = ρ(A ,B) so that b = (0, 1− u) ∈ g(A0).
Therefore g(A0) contains A0. Let a1 = (0, u) and a2 = (0, v) with u ̸= v, then
a1, a2 ∈ A and a1 ̸= a2. We choose gu1, gu2 ∈ A such that ρ(gu1,S a1) =

ρ(gu2,S a2) = ρ(A ,B) = 1. Then S a1 = S ((0, u)) = (1, 1 − u2

4 ) which implies

that gu1 = (0, 1 − u2

4 ), and S a2 = S ((0, v)) = (1, 1 − v2

4 ) which implies that

gu2 = (0, 1− v2

4 ). Here we observe that gu1 ̸= gu2. Now,

ρ(gu1,S a1) = ρ((0, 1− u2

4 ), (1, 1− u2

4 )) = |1|+ |1− u2

4 − 1 + u2

4 | = 1

ρ(gu2,S a2) = ρ((0, 1− v2

4 ), (1, 1− v2

4 )) = |1|+ |1− v2

4 − 1 + v2

4 | = 1.
Therefore ρ(gu1,S a1) = ρ(gu2,S a2) = ρ(A ,B) = 1. We choose τ = log 2 and
F (α) = −1√

α
+ logα, α > 0. Then F ∈ Ψ∗. Here we note that F is continuous on

(0,∞). Thus, we have
τ + F (ρ(u1, u2)) = τ + F (ρ(gu1, gu2)), since g is an isometry

= log 2 + F (ρ((0, 1− u2

4 ), (0, 1− v2

4 )))

= log 2 + F ( 14 |u
2 − v2|)

= log 2− 1√
1
4 |u2−v2|

+ log( 14 |u
2 − v2|)

= log 2− 2√
|u2−v2|

+ log |u2 − v2| − log 4

⩽ log 2− 2√
|u2−v2|

+ log 2 + log |u− v| − 2 log 2

= −2√
|u2−v2|

+ log |u− v|

⩽ −1√
|u−v|

+ log |u− v|
= F (|u− v|)
= F (ρ((0, u), (0, v)))
= F (ρ(a1, a2)).

Therefore S is proximal F ∗−weak contraction of the first kind.
Hence S satisfies all the hypotheses of Theorem 3.4 and (0, 0) is a unique best
proximity point of S .

Example 4.3. Let X = [0, 1] × [0, 1] endowed with metric ρ((u, v), (a, b)) =
|u−a|+|v−b|. Let A = {(0, u); 0 ⩽ u ⩽ 1},B = {(1, v); 0 ⩽ v ⩽ 1}. It is clear that
A0 = A and B0 = B and S (A0) ⊆ B0. Moreover, B has uniform approximation
in A . Define S : A → B by S ((0, u)) = (1, 1 − u

2 ), 0 ⩽ u ⩽ 1. It is easy to see
that S is proximally quasi-continuous. Define g : A → A by g((0, u)) = (0, 1−u).
Therefore
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ρ(gx, gy) = ρ(g(0, u), g(0, v))
= ρ((0, 1−u), (0, 1−v)) = |0|+|u−v| = |u−v| = |(0, u)−(0, v)| = ρ(x, y).

Therefore g is an isomtery. For each a = (0, u) ∈ A0, there exist b = (0, v) ∈ A0

such that (0, u) = g(b) = g(0, v) = (0, 1 − v) ⇔ u = 1 − v implies v = 1 − u.
Therefore ρ((0, u), (0, 1− u)) = 1 = ρ(A ,B) so that b = (0, 1− u) ∈ g(A0).
Therefore g(A0) contains A0. Let a1 = (0, u) and a2 = (0, v) with u ̸= v, then
a1, a2 ∈ A and a1 ̸= a2. We choose gu1, gu2 ∈ A such that ρ(gu1,S a1) =
ρ(gu2,S a2) = ρ(A ,B) = 1. Then S a1 = S ((0, u)) = (1, 1 − u

2 ) which implies
that gu1 = (0, 1 − u

2 ), and S a2 = S ((0, v)) = (1, 1 − v
2 ) which implies that

gu2 = (0, 1− v
2 ). Here we observe that gu1 ̸= gu2. Now,

ρ(gu1,S a1) = ρ((0, 1− u
2 ), (1, 1−

u
2 )) = |1|+ |1− u

2 − 1 + u
2 | = 1

ρ(gu2,S a2) = ρ((0, 1− v
2 ), (1, 1−

v
2 )) = |1|+ |1− v

2 − 1 + v
2 | = 1.

Therefore ρ(gu1,S a1) = ρ(gu2,S a2) = ρ(A ,B) = 1. We choose τ = 2 and
F (α) =

√
α− 1

α , α > 0. Then F ∈ Ψ∗ and F is continuous on (0,∞).
Let x = (0, u) ∈ A , y = (0, v) ∈ A .
ρ(S gx,S gy) = ρ(S (0, 1− u),S (0, 1− v))

= ρ((1, 1− 1−u
2 ), (1, 1− 1−v

2 ))

= |1− 1|+ |(1− 1−u
2 )− (1− 1−v

2 )|
= |u−v|

2 .
ρ(S x,S y) = ρ(S (0, u),S (0, v))

= ρ((1, 1− u
2 ), (1,

1−v
2 ))

= |u−v
2 |

so that ρ(S gx,S gy) = ρ(S x,S y) for any x, y ∈ A . Therefore, S preserves
isometric distance with respect to g. Hence, for any u1, u2 ∈ A with u1 ̸= u2 we
have S u1 ̸= S u2 and so
τ + F (ρ(S u1,S u2)) = τ + F (ρ(S gu1,S gu2))

= 2 + F (ρ(S (0, 1− u
2 ),S (0, 1− v

2 )))

= 2 + F (ρ((1, 1− 1−u
2

2 ), (1, 1− 1− v
2

2 )))

= 2 + F (ρ((1, u+2
4 ), (1, v+2

4 )))

= 2 + F ( 14 |u− v|)
= 2 +

√
1
4 |u− v| − 1

1
4 |u−v|

= 2 +
√

1
4 |u− v| − 2

|u−v| −
2

|u−v|

⩽ 2 +
√

1
4 |u− v| − 2− 2

|u−v|

=
√

1
4 |u− v| − 2

|u−v|

⩽
√

1
2 |u− v| − 2

|u−v|

= F ( 12 |u− v|)
= F (ρ((1, 1− u

2 ), (1, 1−
v
2 )))

= F (ρ(S a1,S a2)).
Therefore S is strong proximal F ∗−weak contraction of the second kind.
Hence S satisfies all the hypotheses of Theorem 3.5 and (0, 0) is a unique best
proximity point of S .
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