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SOME COMMON FIXED POINT THEOREMS
SATISFYING (CLR)-PROPERTY AND Φ-TYPE

CONTRACTION IN S-METRIC SPACES

Gurucharan Singh Saluja

Abstract. The purpose of this paper is to prove some common fixed point

theorems for two pairs of self-mappings satisfying (CLR)-property and some

Φ-type contractive condition in the framework of S-metric spaces. We also
give some examples to validate the results. The results presented in this paper

generalize, extend and unify several previous results in the existing literature.

1. Introduction

Banach’s contraction principle in metric spaces is one of the most important
results in the theory of fixed points and non-linear analysis. From 1922, when
Stefan Banach ([3]) formulated the concept of contraction and proved the famous
theorem, scientist and mathematicians around the world are publishing new results
that are related either to establish a generalization of metric space or to get a
improvement of contractive conditions.

In the literature, there are many extensions of the famous Banach contraction
principle, which states that every self mapping R defined on a complete metric
space (X, ρ) satisfying

ρ(R(x),R(y)) ⩽ β ρ(x, y),(1.1)

for all x, y ∈ X, where β ∈ (0, 1), has a unique fixed point and for every r0 ∈ X a
sequence {Rnr0}n⩾1 is convergent to the fixed point. Inequality (1.1) also implies
the continuity of R.

2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
Key words and phrases. Common fixed point, (CLR)-property, Φ-type contractive condition,

S-metric space.
Communicated by Dusko Bogdanic.

17



18 SALUJA

In 2006, Mustafa and Sims [13] introduced G-metric spaces as a generalizations
of metric spaces and proved the existence of fixed points under different contrac-
tive conditions. In 2012, Sedghi et al. [15] introduced a new notion called S-metric
space and studied its some properties and they also stated that S-metric space is a
generalization of G-metric space. But Dung et al. [4] in 2014 showed by an exam-
ple that S-metric space is not a generalization of G-metric space and conversely.
Consequently, the class of S-metric spaces and the class of G-metric spaces are
different.

On the other hand, Jungck and Rhoades [10] introduced the concept of weak
compatibility in the year 1998. In 2002, Aamri and Moutawakil [1] introduced
the new concept called (E.A)-property. In 2012, Imdad et al. [7] introduced the
new concept called (CLR)-property for two pairs of self mappings and proved some
common fixed point theorems using this new concept.

In 2016, Sedghi et al. [17] proved some existence of the unique common fixed
point for the pair of weakly compatible self-mappings satisfying some Φ-type con-
tractive conditions in the framework of S-metric spaces and gave example to val-
idate the results. The results presented in this paper extend and improve several
results in the literature.

Recently, Sedghi et al. [18] proved some common fixed point theorems for four
mappings satisfying generalized contractive condition in the set up of S-metric
spaces and gave examples to validate the results. The results presented in this
paper extend and improve several results in the literature.

In this work, we prove some unique common fixed point theorems using (CLR)-
property and satisfying some Φ-type contractive condition in the setting of S-
metric spaces and give some corollaries of the main results. We also illustrate some
examples to support the results. Our results generalize, extend and enrich several
existing results in the literature.

In the following we provide some basic definitions and preliminaries which we
shall use in this paper.

2. Preliminaries

Following is the definition of S-metric spaces (see, [15]).

Definition 2.1. ([15]) Let X be a nonempty set and let S : X3 → [0,∞) be
a function satisfying the following conditions for all u, v, z, t ∈ X:

(S1) S(u, v, z) = 0 if and only if u = v = z;
(S2) S(u, v, z) ⩽ S(u, u, t) + S(v, v, t) + S(z, z, t).
Then the function S is called an S-metric on X and the pair (X,S) is called

an S-metric space.

Example 2.1. ([15])
(1) Let X = Rn and ∥ · ∥ a norm on X, then S(u, v, z) = ∥v+ z− 2u∥+ ∥v− z∥

is an S-metric on X.
(2)Let X = Rn and ∥ · ∥ a norm on X, then S(u, v, z) = ∥u − z∥ + ∥v − z∥ is

an S-metric on X.
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Example 2.2. ([16]) Let X = R be the real line. Then S(u, v, z) = |u − z| +
|v − z| for all u, v, z ∈ R is an S-metric on X. This S-metric on X is called the
usual S-metric on X.

Example 2.3. ([11]) Let X be a non-empty set and d be an ordinary metric
on X. Then S(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ R is an S-metric on X.

Example 2.4. ([18]) Let X be a non-empty set and d1, d2 be two ordinary
metrics on X. Then S(u, v, z) = d1(u, z)+d2(v, z) for all u, v, z ∈ X is an S-metric
on X.

Definition 2.2. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we
define the open ball BS(u, r) and closed ball BS [u, r] with center u and radius r as
follows, respectively:

BS(u, r) = {v ∈ X : S(v, v, u) < r},

BS [u, r] = {v ∈ X : S(v, v, u) ⩽ r}.

Example 2.5. ([16]) Let X = R. Denote S(u, v, z) = |v+ z − 2u|+ |v− z| for
all u, v, z ∈ R. Then

BS(1, 2) = {v ∈ R : S(v, v, 1) < 2} = {v ∈ R : |v − 1| < 1}
= {v ∈ R : 0 < v < 2} = (0, 2),

and

BS [2, 4] = {v ∈ R : S(v, v, 2) ⩽ 4} = {v ∈ R : |v − 2| ⩽ 2}
= {v ∈ R : 0 ⩽ v ⩽ 4} = [0, 4].

Definition 2.3. ([15], [16]) Let (X,S) be an S-metric space and A ⊂ X.
(1) The subset A is said to be an open subset of X, if for every u ∈ A there

exists r > 0 such that BS(u, r) ⊂ A.
(2) A sequence {un} in X converges to u ∈ X if S(un, un, u) → 0 as n → ∞,

that is, for each ε > 0, there exists n0 ∈ N such that for all n ⩾ n0 we have
S(un, un, u) < ε. We denote this by limn→∞ un = u or un → u as n → ∞.

(3) A sequence {un} in X is called a Cauchy sequence if S(un, un, um) → 0 as
n,m → ∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ⩾ n0

we have S(un, un, um) < ε.
(4) The S-metric space (X,S) is called complete if every Cauchy sequence in

X is convergent in X.
(5) Let τ be the set of all A ⊂ X with u ∈ A and there exists r > 0 such that

BS(u, r) ⊂ A. Then τ is a topology on X (induced by the S-metric space).
(6) A nonempty subset A of X is S-closed if closure of A coincides with A.

Definition 2.4. ([15]) Let (X,S) be an S-metric space. A mapping G : X →
X is said to be a contraction if there exists a constant 0 ⩽ k < 1 such that

S(Gu,Gv,Gz) ⩽ k S(u, v, z)(2.1)

for all u, v, z ∈ X.
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Note: If the S-metric space (X,S) is complete then the mapping defined as
above has a unique fixed point (see, [15]).

Definition 2.5. ([15]) Let (X,S) and (Y,S ′) be two S-metric spaces. A
function g : X → Y is said to be continuous at a point u0 ∈ X if for every sequence
{un} in X with S(un, un, u0) → 0, S ′(g(un), g(un), g(u0)) → 0 as n → ∞. We say
that g is continuous on X if g is continuous at every point u0 ∈ X.

Definition 2.6. Let X be a non-empty set and let P,Q : X → X be two self
mappings of X. Then a point z ∈ X is called a

(i) fixed point of operator P if P(z) = z;
(ii) common fixed point of P and Q if P(z) = Q(z) = z.

Definition 2.7. ([2]) Let P and Q be single valued self-mappings on a set X.
If u = Pv = Qv for some v ∈ X, then v is called a coincidence point point of P
and Q, and u is called a point of coincidence of P and Q.

Definition 2.8. ([8]) Let P and Q be single valued self-mappings on a set X.
Mappings P and Q are said to be commuting if PQv = QPv for all v ∈ X.

Definition 2.9. ([9]) Let P and Q be single valued self-mappings on a set
X. Mappings P and Q are said to be weakly compatible if they commute at their
coincidence points, i.e., if Pv = Qv for some v ∈ X implies PQv = QPv.

Definition 2.10. ([7]) Let (X,S) be an S-metric space and A,B,R, T : X →
X be four self mappings of X. We say that two pairs (A,R) and (B, T ) of self
maps of S-metric space (X,S) are said to satisfy common limit range property
with respect to R and T if there exist two sequences {un} and {vn} in X such that

lim
n→∞

Run = lim
n→∞

Aun = lim
n→∞

Bvn = lim
n→∞

T vn = z,

for some z ∈ R(X) ∩ T (X) and it is denoted by (CLRRT ).

Lemma 2.1. ([15], Lemma 2.5) Let (X,S) be an S-metric space. Then, we have
S(u, u, v) = S(v, v, u) for all u, v ∈ X.

Lemma 2.2. ([15], Lemma 2.12) Let (X,S) be an S-metric space. If un → u
and vn → v as n → ∞ then S(un, un, vn) → S(u, u, v) as n → ∞.

Lemma 2.3. ([5], Lemma 8) Let (X,S) be an S-metric space and A is a non-
empty subset of X. Then A is said to be S-closed if and only if for any sequence
{un} in A such that un → u as n → ∞, then u ∈ A.

Lemma 2.4. ([15]) Let (X,S) be an S-metric space. If r > 0 and u ∈ X, then
the ball BS(u, r) is a subset of X.

Lemma 2.5. ([16]) The limit of {un} in S-metric space (X,S) is unique.

Lemma 2.6. ([15]) Let (X,S) be an S-metric space. Then the convergent
sequence {un} in X is Cauchy.

In the following lemma we see the relationship between a metric and S-metric.
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Lemma 2.7. ([6]) Let (X, d) be a metric space. Then the following properties
are satisfied:

(1) Sd(u, v, z) = d(u, z) + d(v, z) for all u, v, z ∈ X is an S-metric on X.
(2) un → u in (X, d) if and only if un → u in (X,Sd).
(3) {un} is Cauchy in (X, d) if and only if {un} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

We call the function Sd defined in Lemma 2.7 (1) as the S-metric generated by
the metric d. It can be found an example of an S-metric which is not generated by
any metric in [6, 14].

Proposition 2.1. ([2]) Let P and Q be weakly compatible self mappings on a
set X. If P and Q have a unique point of coincidence u = Pv = Qv, then u is the
unique common fixed point of P and Q.

In 1977, Matkowski [12] introduced the Φ-maps as the following: let Φ be the
set of all functions ϕ such that ϕ : [0,∞) → [0,∞) is a nondecreasing function
satisfying limn→∞ ϕn(t) = 0 for all t ∈ (0,∞). If ϕ ∈ Φ, then ϕ is called a Φ-map.
Furthermore, if ϕ is a Φ-map, then

(Φ1) ϕ(t) < t for all t ∈ (0,∞);
(Φ2) ϕ(0) = 0.

3. Common fixed point theorems

In this section, we prove some unique common fixed point theorems for two
pairs of self-mappings satisfying (CLR)-property and some Φ-type contractive con-
ditions in the setting of S-metric spaces.

Theorem 3.1. Let (X,S) be a S-metric space and let P,Q,R, T : X → X be
four self-mappings of X satisfying the following conditions: (i)

S(Pu,Pu,Qv) ⩽ max
{
ϕ(S(Ru,Ru, T v)), ϕ(S(Qv,Qv,Pu)),

ϕ(S(Qv,Qv, T v)),

ϕ
(
S(Qv,Qv,Pu)

[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
,

ϕ
(
S(Pu,Pu, T v)

[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)}
,(3.1)

for all u, v ∈ X, where ϕ ∈ Φ;
(ii) the pairs (P,R) and (Q, T ) are weakly compatible.
If the pairs (P,R) and (Q, T ) satisfy (CLRRT )-property, then the mappings

P, Q, R and T have a unique common fixed point in X.

Proof. Since by hypothesis the pairs (P,R) and (Q, T ) satisfy (CLRRT )-
property, we can find two sequences {un} and {vn} in X such that

lim
n→∞

R(un) = lim
n→∞

P(un) = lim
n→∞

Q(vn) = lim
n→∞

T (vn) = µ
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for some µ ∈ R(X) ∩ T (X). Then µ = T β1 = Rβ2 for some β1, β2 ∈ X. Now, we
show that Qβ1 = T β1. For each n ∈ N, from equation (3.1), we have

S(Pun,Pun,Qβ1) ⩽ max
{
ϕ(S(Run,Run, T β1)), ϕ(S(Qβ1,Qβ1,Pun)),

ϕ(S(Qβ1,Qβ1, T β1)),

ϕ
(
S(Qβ1,Qβ1,Pun)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pun,Pun,Qβ1)]

)
,

ϕ
(
S(Pun,Pun, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pun,Pun,Qβ1)]

)}
.

Now, letting n → ∞ in the above inequality and using (S1), property of ϕ and
Lemma 2.1, we get

S(T β1, T β1,Qβ1) ⩽ max
{
ϕ(S(T β1, T β1, T β1)), ϕ(S(Qβ1,Qβ1, T β1)),

ϕ(S(Qβ1,Qβ1, T β1)),

ϕ
(
S(Qβ1,Qβ1, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(T β1, T β1,Qβ1)]

)
,

ϕ
(
S(T β1, T β1, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(T β1, T β1,Qβ1)]

)}
= max

{
ϕ(0), ϕ(S(T β1, T β1,Qβ1)), ϕ(S(T β1, T β1,Qβ1)),

ϕ
(
S(T β1, T β1,Qβ1)

[1 + S(T β1, T β1,Qβ1)]

[1 + S(T β1, T β1,Qβ1)]

)
,

ϕ
(
S(T β1, T β1, T β1)

[1 + S(T β1, T β1,Qβ1)]

[1 + S(T β1, T β1,Qβ1)]

)}
= max

{
0, ϕ(S(T β1, T β1,Qβ1)), ϕ(S(T β1, T β1,Qβ1)),

ϕ(S(T β1, T β1,Qβ1)), 0
}

= ϕ(S(T β1, T β1,Qβ1)) < S(T β1, T β1,Qβ1),

which is a contradiction. Hence we conclude that S(T β1, T β1,Qβ1) = 0. It follows
that Qβ1 = T β1. Now, we show that Pβ2 = Rβ2. For each n ∈ N, from equation
(3.1), we have

S(Pβ2,Pβ2,Qvn) ⩽ max
{
ϕ(S(Rβ2,Rβ2, T vn)), ϕ(S(Qvn,Qvn,Pβ2)),

ϕ(S(Qvn,Qvn, T vn)),

ϕ
(
S(Qvn,Qvn,Pβ2)

[1 + S(Qvn,Qvn, T vn)]

[1 + S(Pβ2,Pβ2,Qvn)]

)
,

ϕ
(
S(Pβ2,Pβ2, T vn)

[1 + S(Qvn,Qvn, T vn)]

[1 + S(Pβ2,Pβ2,Qvn)]

)}
.
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Now, letting n → ∞ in the above inequality and using Lemma 2.1, (S1) and the
property of ϕ, we get

S(Pβ2,Pβ2, µ) ⩽ max
{
ϕ(S(µ, µ, µ)), ϕ(S(µ, µ,Pβ2)), ϕ(S(µ, µ, µ)),

ϕ
(
S(µ, µ,Pβ2)

[1 + S(µ, µ, µ)]
[1 + S(Pβ2,Pβ2, µ)]

)
,

ϕ
(
S(Pβ2,Pβ2, µ)

[1 + S(µ, µ, µ)]
[1 + S(Pβ2,Pβ2, µ)]

)}
⩽ max

{
ϕ(0), ϕ(S(Pβ2,Pβ2, µ)), ϕ(0),

ϕ(S(Pβ2,Pβ2, µ)), ϕ(S(Pβ2,Pβ2, µ))
}

= max
{
0, ϕ(S(Pβ2,Pβ2, µ)), 0, ϕ(S(Pβ2,Pβ2, µ)),

ϕ(S(Pβ2,Pβ2, µ))
}

= ϕ(S(Pβ2,Pβ2, µ)) < S(Pβ2,Pβ2, µ),

which is a contradiction. Hence we conclude that S(Pβ2,Pβ2, µ) = 0 and hence
it follows that Pβ2 = µ and hence Pβ2 = Rβ2 = Qβ1 = T β1 = µ. Since the
pair (P,R) is weakly compatible and Pβ2 = Rβ2 implies that PRβ2 = RPβ2 and
hence Pµ = Rµ. Now since the pair (Q, T ) is weakly compatible and Qβ1 = T β1

implies that T Qβ1 = QT β1 and hence Qµ = T µ.
Now to show that µ is a common fixed point of P and R. For this, we consider

S(Pµ,Pµ,Qβ1) ⩽ max
{
ϕ(S(Rµ,Rµ, T β1)), ϕ(S(Qβ1,Qβ1,Pµ)),

ϕ(S(Qβ1,Qβ1, T β1)),

ϕ
(
S(Qβ1,Qβ1,Pµ)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pµ,Pµ,Qβ1)]

)
,

ϕ
(
S(Pµ,Pµ, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pµ,Pµ,Qβ1)]

)}
= max

{
ϕ(S(Pµ,Pµ, µ)), ϕ(S(Qβ1,Qβ1,Pµ)),

ϕ(S(Qβ1,Qβ1, µ)),

ϕ
(
S(Qβ1,Qβ1,Pµ)

[1 + S(Qβ1,Qβ1, µ)]

[1 + S(Pµ,Pµ,Qβ1)]

)
,

ϕ
(
S(Pµ,Pµ, µ)

[1 + S(Qβ1,Qβ1, µ)]

[1 + S(Pµ,Pµ,Qβ1)]

)}
.
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Using the condition (S1), Lemma 2.1, property of ϕ and µ = Qβ1 in the above
inequality, we obtain

S(Pµ,Pµ,Qβ1) ⩽ max
{
ϕ(S(Pµ,Pµ,Qβ1)), ϕ(S(Qβ1,Qβ1,Pµ)),

ϕ(S(Qβ1,Qβ1,Qβ1)),

ϕ
(
S(Qβ1,Qβ1,Pµ)

[1 + S(Qβ1,Qβ1,Qβ1)]

[1 + S(Pµ,Pµ,Qβ1)]

)
,

ϕ
(
S(Pµ,Pµ,Qβ1)

[1 + S(Qβ1,Qβ1,Qβ1)]

[1 + S(Pµ,Pµ,Qβ1)]

)}
= max

{
ϕ(S(Pµ,Pµ,Qβ1)), ϕ(S(Qβ1,Qβ1,Pµ)), ϕ(0),

ϕ
(
S(Qβ1,Qβ1,Pµ)

[1 + 0]

[1 + S(Pµ,Pµ,Qβ1)]

)
,

ϕ
(
S(Pµ,Pµ,Qβ1)

[1 + 0]

[1 + S(Pµ,Pµ,Qβ1)]

)}
= max

{
ϕ(S(Pµ,Pµ,Qβ1)), ϕ(S(Pµ,Pµ,Qβ1)), ϕ(0),

ϕ
( S(Qβ1,Qβ1,Pµ)

[1 + S(Pµ,Pµ,Qβ1)]

)
, ϕ

( S(Pµ,Pµ,Qβ1)

[1 + S(Pµ,Pµ,Qβ1)]

)}
⩽ max

{
ϕ(S(Pµ,Pµ,Qβ1)), ϕ(S(Pµ,Pµ,Qβ1)), 0,

ϕ(S(Pµ,Pµ,Qβ1)), ϕ(S(Pµ,Pµ,Qβ1))
}

= ϕ(S(Pµ,Pµ,Qβ1)) < S(Pµ,Pµ,Qβ1),

which is a contradiction. Hence we conclude that S(Pµ,Pµ,Qβ1) = 0. This will
imply that Qβ1 = Pµ and hence Pµ = Rµ = µ. This shows that µ is a common
fixed point of P and R.

Now we show that µ is a common fixed point of Q and T . For this, we consider
the inequality (3.1) and using Lemma 2.1, (S1) and the property of ϕ, we have

S(Pβ2,Pβ2,Qµ)) ⩽ max
{
ϕ(S(Rβ2,Rβ2, T µ)), ϕ(S(Qµ,Qµ,Pβ2)),

ϕ(S(Qµ,Qµ, T µ)),

ϕ
(
S(Qµ,Qµ,Pβ2)

[1 + S(Qµ,Qµ, T µ)]

[1 + S(Pβ2,Pβ2,Qµ)]

)
,

ϕ
(
S(Pβ2,Pβ2, T µ)

[1 + S(Qµ,Qµ, T µ)]

[1 + S(Pβ2,Pβ2,Qµ)]

)}
= max

{
ϕ(S(µ, µ, T µ)), ϕ(S(T µ, T µ, µ)), ϕ(S(T µ, T µ, T µ)),

ϕ
(
S(T µ, T µ, µ)

[1 + S(T µ, T µ, T µ)]

[1 + S(µ, µ, T µ)]

)
,

ϕ
(
S(µ, µ, T µ)

[1 + S(T µ, T µ, T µ)]

[1 + S(µ, µ, , T µ)]

)}
.
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Using the condition (S1), Lemma 2.1, the property of ϕ, Qµ = T µ and µ = Pβ2

in the above inequality, we obtain

S(µ, µ, T µ)) ⩽ max
{
ϕ(S(µ, µ, T µ)), ϕ(S(µ, µ, T µ)), ϕ(0),

ϕ
(
S(µ, µ, T µ)

[1 + 0]

[1 + S(µ, µ, T µ)]

)
,

ϕ
(
S(µ, µ, T µ)

[1 + 0]

[1 + S(µ, µ, , T µ)]

)}
= max

{
ϕ(S(µ, µ, T µ)), ϕ(S(µ, µ, T µ)), 0,

ϕ
( S(µ, µ, T µ)

[1 + S(µ, µ, T µ)]

)
, ϕ

( S(µ, µ, T µ)

[1 + S(µ, µ, , T µ)]

)}
⩽ max

{
ϕ(S(µ, µ, T µ)), ϕ(S(µ, µ, T µ)), 0, ϕ(S(µ, µ, T µ)),

ϕ(S(µ, µ, T µ))
}

= ϕ(S(µ, µ, T µ)) < S(µ, µ, T µ),

which is a contradiction. Hence we conclude that S(µ, µ, T µ) = 0. This will imply
that T µ = µ and hence Qµ = T µ = µ. This shows that µ is a common fixed point
of Q and T . Hence µ is a common fixed point of P, Q, R and T .

Now, we show uniqueness of the common fixed point. Let us assume that µ′

be another common fixed point of P, Q, R and T such that Pµ′ = Qµ′ = Rµ′ =
T µ′ = µ with µ′ ̸= µ. Again we consider the given inequality (3.1) and using the
condition (S1), Lemma 2.1 and the properties of ϕ, we have

S(µ, µ, µ′) = S(Pµ,Pµ,Qµ′)

⩽ max
{
ϕ(S(Rµ,Rµ, T µ′)), ϕ(S(Qµ′,Qµ′,Pµ)),

ϕ(S(Qµ′,Qµ′, T µ′)),

ϕ
(
S(Qµ′,Qµ′,Pµ)

[1 + S(Qµ′,Qµ′, T µ′)]

[1 + S(Pµ,Pµ,Qµ′)]

)
,

ϕ
(
S(Pµ,Pµ, T µ′)

[1 + S(Qµ′,Qµ′, T µ′)]

[1 + S(Pµ,Pµ,Qµ′)]

)}
= max

{
ϕ(S(µ, µ, µ′)), ϕ(S(µ′, µ′, µ)), ϕ(S(µ′, µ′, µ′)),

ϕ
(
S(µ′, µ′, µ)

[1 + S(µ′, µ′, µ′)]

[1 + S(µ, µ, µ′)]

)
,

ϕ
(
S(µ, µ, µ′)

[1 + S(µ′, µ′, µ′)]

[1 + S(µ, µ, µ′)]

)}
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= max
{
ϕ(S(µ, µ, µ′)), ϕ(S(µ, µ, µ′)), ϕ(0),

ϕ
(
S(µ, µ, µ′)

[1 + 0]

[1 + S(µ, µ, µ′)]

)
,

ϕ
(
S(µ, µ, µ′)

[1 + 0]

[1 + S(µ, µ, µ′)]

)}
= max

{
ϕ(S(µ, µ, µ′)), ϕ(S(µ, µ, µ′)), 0,

ϕ
( S(µ, µ, µ′)

[1 + S(µ, µ, µ′)]

)
, ϕ

( S(µ, µ, µ′)

[1 + S(µ, µ, µ′)]

)}
⩽ max

{
ϕ(S(µ, µ, µ′)), ϕ(S(µ, µ, µ′)), 0, ϕ(S(µ, µ, µ′)),

ϕ(S(µ, µ, µ′))
}

= ϕ(S(µ, µ, µ′)) < S(µ, µ, µ′),

which is a contradiction. Hence we conclude that S(µ, µ, µ′) = 0, tat is, µ = µ′.
This shows that the common fixed point of P, Q, R and T is unique. This completes
the proof. □

Theorem 3.2. Let (X,S) be a S-metric space and let P,Q,R, T : X → X be
four self-mappings of X satisfying the following conditions: (i)

S(Pu,Pu,Qv) ⩽ d1 ϕ(S(Ru,Ru, T v)) + d2 ϕ(S(Qv,Qv,Pu))

+d3 ϕ(S(Qv,Qv, T v))

+d4 ϕ
(
S(Qv,Qv,Pu)

[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
+d5 ϕ

(
S(Pu,Pu, T v)

[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
,(3.2)

for all u, v ∈ X, where ϕ ∈ Φ and d1, d2, d3, d4, d5 > 0 are nonnegative reals such
that d1 + d2 + d3 + d4 + d5 < 1;

(ii) the pairs (P,R) and (Q, T ) are weakly compatible.
If the pairs (P,R) and (Q, T ) satisfy (CLRRT )-property, then the mappings

P, Q, R and T have a unique common fixed point in X.

Proof. Since by hypothesis the pairs (P,R) and (Q, T ) satisfy (CLRRT )-
property, we can find two sequences {un} and {vn} in X such that

lim
n→∞

R(un) = lim
n→∞

P(un) = lim
n→∞

Q(vn) = lim
n→∞

T (vn) = µ
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for some µ ∈ R(X) ∩ T (X). Then µ = T β1 = Rβ2 for some β1, β2 ∈ X. Now, we
show that Qβ1 = T β1. For each n ∈ N, from equation (3.2), we have

S(Pun,Pun,Qβ1) ⩽ d1 ϕ(S(Run,Run, T β1)) + d2 ϕ(S(Qβ1,Qβ1,Pun))

+d3 ϕ(S(Qβ1,Qβ1, T β1))

+d4 ϕ
(
S(Qβ1,Qβ1,Pun)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pun,Pun,Qβ1)]

)
+d5 ϕ

(
S(Pun,Pun, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(Pun,Pun,Qβ1)]

)
.

Now, letting n → ∞ in the above inequality and using (S1), property of ϕ and
Lemma 2.1, we get

S(T β1, T β1,Qβ1) ⩽ d1 ϕ(S(T β1, T β1, T β1)) + d2 ϕ(S(Qβ1,Qβ1, T β1))

+d3 ϕ(S(Qβ1,Qβ1, T β1))

+d4 ϕ
(
S(Qβ1,Qβ1, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(T β1, T β1,Qβ1)]

)
+d5 ϕ

(
S(T β1, T β1, T β1)

[1 + S(Qβ1,Qβ1, T β1)]

[1 + S(T β1, T β1,Qβ1)]

)
= d1 ϕ(0) + d2 ϕ(S(T β1, T β1,Qβ1)) + d3 ϕ(S(T β1, T β1,Qβ1))

+d4 ϕ
(
S(T β1, T β1,Qβ1)

[1 + S(T β1, T β1,Qβ1)]

[1 + S(T β1, T β1,Qβ1)]

)
+d5 ϕ

(
S(T β1, T β1, T β1)

[1 + S(T β1, T β1,Qβ1)]

[1 + S(T β1, T β1,Qβ1)]

)
= d1 .(0) + d2 ϕ(S(T β1, T β1,Qβ1)) + d3 ϕ(S(T β1, T β1,Qβ1))

+d4 ϕ(S(T β1, T β1,Qβ1)) + d5 .(0)

= (d2 + d3 + d4)ϕ(S(T β1, T β1,Qβ1))

⩽ (d1 + d2 + d3 + d4 + d5)ϕ(S(T β1, T β1,Qβ1))

⩽ ϕ(S(T β1, T β1,Qβ1)), since d1 + d2 + d3 + d4 + d5 < 1

< S(T β1, T β1,Qβ1),

which is a contradiction. Hence we conclude that S(T β1, T β1,Qβ1) = 0. It follows
that Qβ1 = T β1. Now, we show that Pβ2 = Rβ2. For each n ∈ N, from equation
(3.2), we have

S(Pβ2,Pβ2,Qvn) ⩽ d1 ϕ(S(Rβ2,Rβ2, T vn)) + d2 ϕ(S(Qvn,Qvn,Pβ2))

+d3 ϕ(S(Qvn,Qvn, T vn))

+d4 ϕ
(
S(Qvn,Qvn,Pβ2)

[1 + S(Qvn,Qvn, T vn)]

[1 + S(Pβ2,Pβ2,Qvn)]

)
+d5 ϕ

(
S(Pβ2,Pβ2, T vn)

[1 + S(Qvn,Qvn, T vn)]

[1 + S(Pβ2,Pβ2,Qvn)]

)
.
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Now, letting n → ∞ in the above inequality and using Lemma 2.1, (S1) and the
property of ϕ, we get

S(Pβ2,Pβ2, µ) ⩽ d1 ϕ(S(µ, µ, µ)) + d2 ϕ(S(µ, µ,Pβ2)) + d3 ϕ(S(µ, µ, µ))

+d4 ϕ
(
µ, µ,Pβ2)

[1 + S(µ, µ, µ)]
[1 + S(Pβ2,Pβ2, µ)]

)
+d5 ϕ

(
S(Pβ2,Pβ2, µ)

[1 + S(µ, µ, µ)]
[1 + S(Pβ2,Pβ2, µ)]

)
⩽ d1 .ϕ(0) + d2 ϕ(S(Pβ2,Pβ2, µ)) + d3 .ϕ(0)

+d4 ϕ(S(Pβ2,Pβ2, µ)) + d5 ϕ(S(Pβ2,Pβ2, µ))

= d1 .(0) + d2 ϕ(S(Pβ2,Pβ2, µ)) + d3 .(0)

+d4 ϕ(S(Pβ2,Pβ2, µ)) + d5 ϕ(S(Pβ2,Pβ2, µ))

= (d2 + d4 + d5)ϕ(S(Pβ2,Pβ2, µ))

⩽ (d1 + d2 + d3 + d4 + d5)ϕ(S(Pβ2,Pβ2, µ))

⩽ ϕ(S(Pβ2,Pβ2, µ)), since d1 + d2 + d3 + d4 + d5 < 1

< S(Pβ2,Pβ2, µ),

which is a contradiction. Hence we conclude that S(Pβ2,Pβ2, µ) = 0 and hence
it follows that Pβ2 = µ and hence Pβ2 = Rβ2 = Qβ1 = T β1 = µ. Since the pair
(P,R) is weakly compatible and Pβ2 = Rβ2 implies that PRβ2 = RPβ2 and hence
Pµ = Rµ. Now since the pair (Q, T ) is weakly compatible and Qβ1 = T β1 implies
that T Qβ1 = QT β1 and hence Qµ = T µ. Now to show that µ is a common fixed
point of P and R. Rest of the proof follows from Theorem 3.1. This completes the
proof. □

Remark 3.1. (i) Completeness of the space X is relaxed in Theorem 3.1 and
Theorem 3.2.

(ii) Continuity of the mappings P, Q, R and T are relaxed in Theorem 3.1 and
Theorem 3.2.

4. Consequences of Theorem 3.1

Corollary 4.1. Let (X,S) be a S-metric space and let P,R : X → X be two
self-mappings of X satisfying the following conditions: (i)

S(Pu,Pu,Pv) ⩽ max
{
ϕ(S(Ru,Ru,Rv)), ϕ(S(Pv,Pv,Pu)),

ϕ(S(Pv,Pv,Rv)),

ϕ
(
S(Pv,Pv,Pu)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)
,

ϕ
(
S(Pu,Pu,Rv)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)}
,

for all u, v ∈ X, where ϕ ∈ Φ;
(ii) the pair (P,R) is weakly compatible.
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If the pair (P,R) satisfies (CLRRT )-property, then the mappings P and R
have a unique common fixed point in X.

Proof. Putting P = Q and R = T in inequality (3.1). Then all conditions of
Theorem 3.1 are satisfied and hence the result follows. □

Corollary 4.2. Let (X,S) be a S-metric space and let P,Q,R, T : X → X
be four self-mappings of X satisfying the following conditions: (i)

S(Pu,Pu,Qv) ⩽ K max
{
S(Ru,Ru, T v),S(Qv,Qv,Pu),S(Qv,Qv, T v),

S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]
,

S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

}
,

for all u, v ∈ X, where K ∈ [0, 1);
(ii) the pairs (P,R) and (Q, T ) are weakly compatible.
If the pairs (P,R) and (Q, T ) satisfy (CLRRT )-property, then the mappings

P, Q, R and T have a unique common fixed point in X.

Proof. Putting ϕ(t) = K t for all t ⩾ 0 in inequality (3.1). Then all conditions
of Theorem 3.1 are satisfied and hence the result follows. □

Corollary 4.3. Let (X,S) be a S-metric space and let P,Q,R, T : X → X
be four self-mappings of X satisfying the following conditions: (i)

S(Pu,Pu,Qv) ⩽ A1 NS
1 (u, u, v) +A2 NS

2 (u, u, v),

for all u, v ∈ X, where ϕ ∈ Φ, A1,A2 are nonnegative reals with A1 +A2 < 1,

NS
1 (u, u, v) = max

{
ϕ(S(Ru,Ru, T v)), ϕ(S(Qv,Qv,Pu)), ϕ(S(Qv,Qv, T v))

}
,

and

NS
2 (u, u, v) = max

{
ϕ
(S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
,

ϕ
(S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)}
,

(ii) the pairs (P,R) and (Q, T ) are weakly compatible.
If the pairs (P,R) and (Q, T ) satisfy (CLRRT )-property, then the mappings

P, Q, R and T have a unique common fixed point in X.

Proof. Follows from Theorem 3.1 and Theorem 3.2. □

Example 4.1. Let X = [0, 2] and S(u, v, z) = max{|u− v|, |v − z|, |z − u|} for
all u, v, z ∈ X and ϕ ∈ Φ. Denote P,R : X → X by

P(u) = 1 and R(u) = 2− u.

We obtain that P and R satisfy the inequality of Corollary 4.1. Indeed, we have

S(Pu,Pu,Pv) = 0,
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and

max
{
ϕ(S(Ru,Ru,Rv)), ϕ(S(Pv,Pv,Pu)), ϕ(S(Pv,Pv,Rv)),

ϕ
(
Pv,Pv,Pu)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)
,

ϕ
(
S(Pu,Pu,Rv)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)}
= max

{
ϕ(|u− v|), ϕ(0), ϕ(|1− v|), ϕ(0), ϕ([|1− v|(1 + |1− v|)])

}
= max

{
ϕ(|u− v|), 0, ϕ(|1− v|), 0, ϕ([|1− v|(1 + |1− v|)])

}
.

That is,

S(Pu,Pu,Pv)

⩽max
{
ϕ(S(Ru,Ru,Rv)), ϕ(S(Pv,Pv,Pu)),

ϕ(S(Pv,Pv,Rv)),

ϕ
(
Pv,Pv,Pu)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)
,

ϕ
(
S(Pu,Pu,Rv)

[1 + S(Pv,Pv,Rv)]

[1 + S(Pu,Pu,Pv)]

)}
.

It is easy to show that P andR are weakly compatible maps, that is, the pair (P,R)
is weakly compatible. Now, we show that the pair (P,R) satisfies (CLR) property.
For this, consider the sequence {qn} = {1 + 1

2n+1}n⩾1. Clearly the sequence {qn}
is in X and note that Pqn = 1 and Rqn = 2− qn = 2− {1 + 1

2n+1} for all n ∈ N.
This will implies that

S(Pqn,Pqn, 1) = S(1, 1, 1) = max{1, 1, 1} = 1 as n → ∞.

This shows that Pqn → 1 as n → ∞.
Also note that

S(Rqn,Rqn, 1) = S
(
2− {1 + 1

2n+ 1
}, 2− {1 + 1

2n+ 1
}, 1

)
= max

{
2− {1 + 1

2n+ 1
}, 2− {1 + 1

2n+ 1
}, 1

}
= 2− {1 + 1

2n+ 1
} → 1 as n → ∞.

This shows that Rqn → 1 as n → ∞.
Thus there exists a sequence {qn} in X such that Pqn → 1 and Rqn → 1 as

n → ∞. Hence the pair (P,R) satisfies (CLR) property.
Hence all the assumptions in Corollary 4.1 are satisfied. Consequently P and

R have a unique common fixed point, say, u = 1 in X.
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Example 4.2. Let X = [0, 1]. We define the function S : X3 → [0,∞) by

S(u, v, z) =
{

0, if u = v = z,
max{u, v, z}, if otherwise,

for all u, v, z ∈ X, then S is an S-metric on X. Define four self-maps P,Q,R, T
: X → X on X by P(u) = u

4 , Q(u) = u
4 , T (u) = u and R(u) = u

2 for all u ∈ X.
Let u, v ∈ X. We also define ϕ : [0,∞) → [0,∞) by ϕ(α) = α

2 for all α ∈ [0,∞).
Clearly ϕ is continuous on [0,∞) satisfying ϕ(0) = 0 and 0 < ϕ(α) < α for all
α > 0. Now consider the following cases:

Case I. (1) Let u < v. Then we have

S(Pu,Pu,Qv) = S
(u
4
,
u

4
,
v

4

)
= max

{u

4
,
u

4
,
v

4

}
=

v

4
,

S(Ru,Ru, T v) = S
(u
2
,
u

2
, v
)
= max

{u

2
,
u

2
, v
}
= v,

S(Qv,Qv,Pu) = S
(v
4
,
v

4
,
u

4

)
= max

{v

4
,
v

4
,
u

4

}
=

v

4
,

S(Qv,Qv, T v) = S
(v
4
,
v

4
, v
)
= max

{v

4
,
v

4
, v
}
= v,

S(Pu,Pu, T v) = S
(u
4
,
u

4
, v
)
= max

{u

4
,
u

4
, v
}
= v,

S(Qv,Qv,Ru) = S
(v
4
,
v

4
,
u

2

)
= max

{v

4
,
v

4
,
u

2

}
=

v

4
.

Now using inequality (3.1) and the property of ϕ, we have

S(Pu,Pu,Qv) =
v

4

⩽ max
{
ϕ(S(Ru,Ru, T v)), ϕ(S(Qv,Qv,Pu)),

ϕ(S(Qv,Qv, T v)),

ϕ
(S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
,

ϕ
(S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)}
= max

{
ϕ(v), ϕ

(v
4

)
, ϕ(v), ϕ

(v(1 + v)

(v + 4)

)
, ϕ

(4v(1 + v)

(v + 4)

)}
= max

{v

2
,
v

8
,
v

2
,
v(1 + v)

2(v + 4)
,
4v(1 + v)

2(v + 4)

}
=

4v(1 + v)

2(v + 4)
,

that is,

v

4
⩽

4v(1 + v)

2(v + 4)
.

Taking u = 0 and v = 1, we obtain

1

4
⩽

4

5
,
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which is true.
Hence we conclude that

S(Pu,Pu,Qv) ⩽ max
{
ϕ(S(Ru,Ru, T v)), ϕ(S(Qv,Qv,Pu)),

ϕ(S(Qv,Qv, T v)),

ϕ
(S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
,

ϕ
(S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)}
.

(2) Now using inequality (3.2) of Theorem 3.2, we have

S(Pu,Pu,Qv) =
v

4
⩽ d1 ϕ(S(Ru,Ru, T v)) + d21ϕ(S(Qv,Qv,Pu)),

+d3 ϕ(S(Qv,Qv, T v))

+d4 ϕ
(S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
+d5 ϕ

(S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
= d1 ϕ(v) + d2 ϕ(

v

4
) + d3 ϕ(v)

+d4 ϕ
(v(1 + v)

(v + 4)

)
+ d5 ϕ

(4v(1 + v)

(v + 4)

)
,

that is,

v

4
⩽ d1 ϕ(v) + d2 ϕ(

v

4
) + d3 ϕ(v)

+d4 ϕ
(v(1 + v)

(v + 4)

)
+ d5 ϕ

(4v(1 + v)

(v + 4)

)
= d1

(v
2

)
+ d2

(v
8

)
+ d3

(v
2

)
+d4

(v(1 + v)

2(v + 4)

)
+ d5

(4v(1 + v)

2(v + 4)

)
.

Taking u = 0 and v = 1, we obtain

1

4
⩽

(d1
2

)
+
(d2
8

)
+

(d3
2

)
+
(d4
5

)
+

(4d5
5

)
.

The above inequality is satisfied for d1 = 1
5 , d2 = 1

6 , d3 = 1
4 , d4 = 1

8 and d5 = 1
8

with d1 + d2 + d3 + d4 + d5 < 1.
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Hence we conclude that

S(Pu,Pu,Qv) ⩽ d1 ϕ(S(Ru,Ru, T v)) + d2 ϕ(S(Qv,Qv,Pu))

+d3 ϕ(S(Qv,Qv, T v))

+d4 ϕ
(S(Qv,Qv,Pu)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
+d5 ϕ

(S(Pu,Pu, T v)[1 + S(Qv,Qv, T v)]

[1 + S(Pu,Pu,Qv)]

)
.

Case II. Now we show that the pairs (P,R) and (Q, T ) are weakly compatible.
For this, suppose that T u = Qu for u ∈ X. Then u = u

4 . It follows that u = 0.
Now, we consider T Q(u) = T (Qu) = T (0) = 0 and QT (u) = Q(T u) = Q(0) = 0.
Thus, the pair (Q, T ) is weakly compatible. Now, let Pu = Ru for u ∈ X. This
implies that u

4 = u
2 and hence u = 0. Now, we consider PR(u) = P(Ru) = P(0) =

0 and RP(u) = R(Pu) = R(0) = 0. It follows that the pair (P,R) is also weakly
compatible.

Case III. Now we show that the pairs (P,R) and (Q, T ) satisfy (CLRRT )
property. For this, we choose the sequences {un} = { 1

n}n⩾1 and {vn} = { 1
2n+3}n⩾1.

Clearly the sequences {un} and {vn} are in X. Then we have

S(Run,Run, 0) = S
( 1

2n
,
1

2n
, 0
)
= max

{ 1

2n
,
1

2n
, 0
}

=
1

2n
→ 0 as n → ∞.

This shows that Run → 0 as n → ∞.
Also we observe that

S(Pun,Pun, 0) = S
( 1

4n
,
1

4n
, 0
)
= max

{ 1

4n
,
1

4n
, 0
}

=
1

4n
→ 0 as n → ∞.

This shows that Pun → 0 as n → ∞.
Similarly, we obtain that

S(Qvn,Qvn, 0) = S
( 1

4(2n+ 3)
,

1

4(2n+ 3)
, 0
)
= max

{ 1

4(2n+ 3)
,

1

4(2n+ 3)
, 0
}

=
1

4(2n+ 3)
→ 0 as n → ∞.

This shows that Qvn → 0 as n → ∞.
Also we observe that

S(T vn, T vn, 0) = S
( 1

2n+ 3
,

1

2n+ 3
, 0
)
= max

{ 1

2n+ 3
,

1

2n+ 3
, 0
}

=
1

2n+ 3
→ 0 as n → ∞.

This shows that T vn → 0 as n → ∞.
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Since R(0) = 0 = T (0), we have 0 ∈ R(X) ∩ T (X). Therefore there exist
sequences {un} and {vn} in X such that

lim
n→∞

R(un) = lim
n→∞

P(un) = lim
n→∞

T (vn) = lim
n→∞

Q(vn).

Therefore the pairs (P,R) and (Q, T ) satisfy (CLRRT ) property.
Thus all the conditions of Theorem 3.1 and Theorem 3.2 are satisfied and hence

the mappings P, Q, R and T have a unique common fixed point, namely u = 0 ∈ X.
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