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GALOIS AND PATAKI CONNECTIONS FOR
FUNCTIONS OF TWO VARIABLES AND RESIDUATED,

PREORDERED GROUPOIDS

Árpád Száz

Abstract. Having in mind Galois connections and residuated structures, we

introduce and investigate the following two basic definitions :

1. Suppose that

(a) X and Y are generalized ordered sets and Z is a set ;

(b) F is a function of X×Z to Y and G is a function of Z×Y to X .

(c) for all x ∈ X, y ∈ Y and z ∈ Z , we have

F (x, z) ⩽ y ⇐⇒ x ⩽ G (z, y) .

Then, we say that the function F is increasingly G–normal.

2. Suppose that

(a) X (∗) and X (•) are goupoids ;

(b) X (⩽) is a generalized ordered set ;

(c) for all x, y, z ∈ X, we have

x ∗ z ⩽ y ⇐⇒ x ⩽ z • y .

Then, we say that the structure X ( ∗, •, ⩽) is an increasingly normal, gene-

ralized ordered bigroupoid.

1. Introduction

The most important particular case of ”Galois connection” was already consi-
dered by G. Birkhoff, under the name ”polarity”, in the first edition of his famous
book ”Lattice Theory” [6, p. 122] .
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138 Á. SZÁZ

The observations of Birkhoff were extended to posets (partially ordered sets) by
O. Ore [56] , who having in mind the classical Galois theory of algebraic equations
introduced the term ”Galois connexion”,

The next important step, in the theory of Galois connections, was made by J.
Schmidt [75] . However, he was mainly interested in the original setting of Birkhoff
despite the papers of Everett [30] , Riquet [68] and Pickert [64] .

Schmidt actually observed that if f is a function of one poset X to another
Y , and g is a function of Y to X, then the pair (f , g) may be defined to be an
increasing Galois connection between X and Y if for all x ∈ X and y ∈ Y

f (x) ⩽ y ⇐⇒ x ⩽ g (y) .

Curiously enough, in [34, p. 18] and [45] , the increasingness of the correspon-
ding functions was also postulated. Namely, it is a consequence of the above equi-
valence even if X and Y are assumed to be only prosets (preordered sets) [96] .

Most of the former authors considered decreasing Galois connections by assum-
ing that the functions f and g are decreasing and the functions φ = g ◦ f and
ψ = f ◦ g are extensive in the sense that x ⩽ φ (x) and y ⩽ ψ (y) for all x ∈ X
and y ∈ Y .

Increasing Galois connections, by using analogous assumptions were frequently
studied under the name residuated mappings [24, 9]. Their advantage lies mainly
in the fact that the compositions of residuated maps are also residuated maps.

Now, if (f , g) is an increasing Galois connection between two gosets (gener-
alized ordered sets) X and Y and φ = g ◦ f , then for all u, v ∈ X

f (u) ⩽ f (v) ⇐⇒ u ⩽ g
(
f (v)

)
⇐⇒ u ⩽ (g ◦ f )(v) ⇐⇒ u ⩽ φ (v) .

This shows that before Galois connections it is more convenient to investigate
first another, more simple connection which usually lies between closure operations
and Galois connections.

Thus, if φ is a function of the goset X to itself such that for all u, v ∈ X

f (u) ⩽ f (v) ⇐⇒ u ⩽ φ (v) ,

then the pair (f , φ) may be called an increasing Pataki connection between X
and Y [94] .

Namely, if F is a structure (set-valued function) and □ is a unary operation
for relators (families of relations), then Pataki [60] called the function F to be
□–increasing if, for any two relators R and S on X

FR ⊆ FS ⇐⇒ R ⊆ S □ .

Several particular cases of the above Galois and Pataki connections were for-
merly also considered by the present author [84] . Moreover, he also determined
the Galois adjoints of some particular structures for relators [93] .

For a primary illustration of this situation, we can note that if R is a relator
on X to Y , then for any B ⊆ Y we may naturally define

IntR(B) =
{
A ⊆ X : ∃ R ∈ R : R [A ] ⊆ B

}
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and intR(B) =
{
x ∈ X : {x} ∈ IntR(B)

}
.

Moreover, if in particular R is a relator on X, then we may also naturally
define τR =

{
A ⊆ X : A ∈ IntR(A)

}
,

TR =
{
A ⊆ X : A ⊆ intR(A)

}
and ER =

{
A ⊆ X : intR(A) ̸= ∅ } .

Thus, only the most widely used structure T is not, in general, union-preser-
ving. Moreover, for a relator R on X, there does not, in general, exist a largest
relator S on X such that TR = TS .

However, Mala [49, 51] could still find a projection operation ♢ for relators
such that for any two nonvoid relators R and S on X we could have

TR ⊆ TS ⇐⇒ R♢ ⊆ S♢ .

In the sequel, if ( f , g) is an increasing Galois connection, then following a
more convenient terminology of [96] , we shall say that f is increasingly g–normal.
While, if (f , φ) is an increasing Pataki connection, then we shall say that f is
increasingly φ–regular.

Moreover, we shall introduce and investigate the following two basic definitions.

Definition 1.1. Suppose that

(a) X and Y are gosets and Z is a set ;

(b) F is a function of X×Z to Y and G is a function of Z×Y to X;

(c) for all x ∈ X, y ∈ Y and z ∈ Z , we have

F (x, z) ⩽ y ⇐⇒ x ⩽ G (z, y) .

Then, we say that the function F is increasingly G–normal.

Definition 1.2. Suppose that

(a) X (⩽) is a goset ;

(b) X (∗) and X (•) are goupoids ;

(c) for all x, y, z ∈ X, we have

x ∗ z ⩽ y ⇐⇒ x ⩽ z • y .

Then, we say that the structure X (∗, •, ⩽) is an increasingly normal, generalized
ordered bigroupoid.

For an easy illustration of the above two definitions, we can state here the
following two relational examples.

Example 1.1. Suppose that R is a relator on X to Y , and for all A ⊆ X,
B ⊆ Y and R ∈ R define

F (B, R ) = clR−1(B) and G (R , A ) = intR(B) .

Then, F is an increasingly G–normal function of P (Y )×R to P (X) .
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Example 1.2. Suppose that X is a set, and for all R, S, T ⊆ X 2 define

R ∗ T = T ◦R and T •B =
(
S c ∗ T −1

)c
.

Then, P (X 2)(∗, •,⊆) is an increasingly normal, partially ordered bigroupoid.

Remark 1.1. Here, we can also note that G and • are uniquely determined
by F and ∗ , respectively.

Therefore, instead of ”increasingly normal” we may write ”uniquely increas-
ingly normal” in the above two examples.

2. A few basic facts on relations

A subset F of a product set X ×Y is called a relation on X to Y . In
particular, a relation F on X to itself is simply called a relation on X. And,
∆X = {(x, x) : x ∈ X} is called the identity relation on X.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
F (x) = {y ∈ Y : (x, y) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images

or neighbourhoods of x and A under F , respectively.

If (x, y) ∈ F , then instead of y ∈ F (x) , we may also write x F y . However,
instead of F [A ] , we cannot write F (A) . Namely, it may occur that, in addition
to A ⊆ X, we also have A ∈ X.

The sets DF = {x ∈ X : F (x) ̸= ∅ } and RF = F [X ] are called the domain
and range of F , respectively. And, if DF = X, then we say that F is a relation
of X to Y , or that F is a non-partial relation on X to Y .

If F is a relation on X to Y and U ⊆ DF , then the relation F |U = F∩(U×Y )
is called the restriction of F to U . Moreover, if F and G are relations on X to
Y such that DF ⊆ DG and F = G |DF , then G is called an extension of F .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y instead of f(x) = {y} .

Moreover, a function ⋆ of X to itself is called a unary operation on X. While,
a function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x⋆ and x ∗ y instead of ⋆(x) and ∗

(
(x, y)

)
.

If F is a relation on X to Y , then a function f of DF to Y is called a
selection function of F if f (x) ∈ F (x) for all x ∈ DF . Thus, by the Axiom of
Choice [39] , we can see that every relation is the union of its selection functions.

For a relation F on X to Y , we may naturally define two set-valued functions
φ

F
of X to P (Y ) and ΦF of P (X ) to P (Y ) such that φ

F
(x) = F (x) for all

x ∈ X and ΦF (A) = F [A ] for all A ⊆ X.

Functions of X to P (Y ) can be naturally identified with relations on X to
Y . While, functions of P (X ) to P (Y ) are more powerful objects than relations
on X to Y . In [99, 104, 105] , they were briefly called corelations on X to Y .

However, if U is a relation on P (X) to Y and V is a relation on P (X) to
P (Y ), then it is better to say that U is a super relation and V is a hyper relation
on X to Y [109] . Thus, closures (proximities) [113] are super (hyper) relations.
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Note that a super relation on X to Y is an arbitrary subset of P (X)× Y .
While, a corelation on X to Y is a particular subset of P (X)×P (Y ) . Thus, set
inclusion is a natural partial order for super relations, but not for corelations.

For a relation F on X to Y , the relation, F c = (X×Y ) ∖ F is called the
complement of F . Thus, it can be shown that F c(x) = F (x) c = Y ∖ F (x) for
all x ∈ X, and F c [A ]c =

⋂
a∈A F (a) for all A ⊆ X.

Moreover, the relation F −1 = {(y, x) : (x, y) ∈ F } is called the inverse
of F . Thus, it can be shown that F −1 [B ] = {x ∈ X : F (x) ∩ B ̸= ∅ } for all
B ⊆ Y , and in particular DF = F −1 [Y ] .

If F is a relation on X to Y , then we have F =
⋃

x∈X {x}×F (x). Therefore,
the values F (x), where x ∈ X, uniquely determine F . Thus, a relation F on X
to Y can also be naturally defined by specifying F (x) for all x ∈ X.

For instance, if G is a relation on Y to Z, then the composition product
relation G ◦ F can be defined such that (G ◦ F )(x) = G [F (x) ] for all x ∈ X.
Thus, it can be shown that (G ◦ F ) [A ] = G

[
F [A ]

]
also holds for all A ⊆ X.

While, if G is a relation on Z to W , then the box product relation F ⊠G can
be defined such that (F ⊠ G)(x, z) = F (x) × G (z) for all x ∈ X and z ∈ Z .
Thus, it can be shown that (F ⊠G)[A ] = G ◦A ◦ F −1 for all A ⊆ X×Z [98] .

Hence, by taking A = {(x, z)} , and A = ∆Y if Y = Z , one can at once see
that the box and composition products are actually equivalent tools. However, the
box product can be immediately defined for any family of relations.

3. Some important relational properties

Now, a relation R on X may be defined to be reflexive if R 0 = ∆X ⊆ R ,
and transitive if R 2 = R ◦R ⊆ R . Moreover, R may be defined to be symmetric
if R−1 ⊆ R , antisymmetric if R ∩R−1 ⊆ R 0 , and total if X 2 ⊆ R ∪R−1.

In addition to the above well-known, basic properties, several further remar-
kable relational properties were also studied in [87] with the help of the self closure

and interior relations R− = R−1 ◦ R and R ◦ = R c− c =
(
R−1◦ R c

)c
.

In the sequel, as it is usual, a reflexive and transitive (symmetric) relation
will be called a preorder (tolerance) relation. And, a symmetric (antisymmetric)
preorder relation will be called an equivalence (partial order) relation.

If R is a relation on X, then we may also naturally define Rn = R ◦ R n−1

for n ∈ N . Moreover, we may also define R∞ =
⋃∞

n=0 R
n . Thus, R∞ is the

smallest preorder relation on X containing R [35] .

Now, in contrast to (R c)c = R and (R−1)−1 = R, we have (R∞)∞ = R∞ .
And, analogously to (R c)−1 = (R−1)c , we also have (R∞)−1 = (R−1)∞ .
Moreover, R may be briefly defined to be well-chained if X 2 ⊆ R∞ [43] .

For A ⊆ X, the Pervin relation RA = A2 ∪ (Ac×X ) is an important
preorder on X [63] . While, for a pseudometric d on X, the Weil surrounding
B d

r = {(x, y) ∈ X 2 : d (x, y) < r }, with r > 0, is only a tolerance on X [117] .



142 Á. SZÁZ

Note that SA = RA ∩ R−1
A = RA ∩RAc = A2 ∪

(
Ac)2 is already an equiva-

lence relation on X. And, more generally, if A is a cover (partition) of X, then
SA =

⋃
A∈A A2 is a tolerance (equivalence) relation on X.

Now, as a straightforward generalization of the Pervin relation RA , for any
A ⊆ X and B ⊆ Y , we may also naturally consider the Hunsaker–Lindgren
relation R(A,B) = (A×B) ∪ (Ac×Y ) [38] .

However, it is now more important to note that if A = (An

)∞
n=1

is an increa-

sing sequence in P (X) , then the Cantor relation RA = ∆X ∪
⋃∞

n=1

(
An × Ac

n

)
is also an important preorder on X [58, 40] .

Note that if R is only reflexive relation on X and x ∈ X, then AR(x) =(
Rn(x)

)∞
n=1

is already an increasing sequence in P (X) . Thus, the preorder
relation RAR(x) may also be naturally investigated.

Moreover, for a real function φ of X and a quasi-pseudo-metric d on X [31] ,
the Brøndsted relation R (φ,d) = {(x, y) ∈ X 2 : d (x, y) ⩽ φ (y)− φ (x)} is also
an important preorder on X [14] .

From this relation, by letting φ and d to be the zero functions, we can obtain
the specialization and preference relations Rd = { (x, y) ∈ X 2 : d (x, y) = 0 }
and Rφ = { (x, y) ∈ X 2 : φ (x) ⩽ φ (y)} , respectively. ( See [21, 115] .)

In this respect, it is also worth mentioning that the divisibility relation on Z ,
the subsequence relation on XN , and the refines and devides relations for covers,
relations and relators are also, in general, only preorder relations [86] .

For a relation R on X to Y , the ordered pair (X, Y )(R) =
(
(X, Y ), R

)
is usually called a formal context or context space [33] . However, it is better to
call it a relational space or a properly simple relator space [59] .

If in particular R is a relation on X, then having in mind a widely used
terminology of Birkhoff [6] the ordered pair X (R) = (X, R) may be called a
goset (generalized ordered set) [101] , instead of a relational system [17, 10, 71] .

If P is a relational property, then the goset X (R) will be said to have property
P if the relation R has this property. For instance, the goset X (R) will be called
reflexive if R is a reflexive relation on X.

In particular, the goset X (R) will be called a proset (preordered set) if R is
a preorder on X. Moreover, X (R) will be called a poset (partially ordered set) if
R is a partial order on X.

The terms ”goset” and ”proset” were perhaps first introduced by the present
author [94] . However, by Rudeanu [72] , the abbreviations ”toset” and ”woset”
for totally and well-ordered sets, respectively, were also used.

Thus, every set X is a poset with the identity relation ∆X . Moreover, X is a
proset with the universal relation X 2. And, the power set P (X ) = {A : A ⊆ X}
of X is a poset with the ordinary set inclusion ⊆ , and also with its inverse ⊇ .

Several definitions on posets can as well be applied to gosets. For instance, if
X (R) is a goset, then for any Y ⊆ X the goset Y (R ∩ Y 2) is called a subgoset
of X (R) . While, the goset X ′(R ′) = X (R−1) is called the dual of X (R) .
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4. Lower and upper bounds in simple relator spaces

Notation 4.1. In this section, we shall assume that R is a relation
on X to Y .

Remark 4.1. However, the subsequent definitions can be easily extended to
the more general case when R is replaced by a relator R [91] .

Definition 4.1. For any A ⊆ X, B ⊆ Y and x ∈ X, y ∈ Y , we define

(1) A ∈ LbR(B) and B ∈ UbR(A) if A×B ⊆ R ;

(2) x ∈ lbR(B) if {x} ∈ LbR(B) ; (3) y ∈ ubR(A) if {y} ∈ UbR(A) .

(4) B ∈ LR if lbR(B) ̸= ∅ ; (5) A ∈ UR if ubR(A) ̸= ∅ .

Thus, we can easily prove the following two theorems.

Theorem 4.1. We have

(1) UbR = LbR−1 = Lb−1
R ; (2) ubR = lbR−1 ; (3) UR = LR−1 .

Theorem 4.2. For any A ⊆ X and B ⊆ Y , we have

(1) A ∈ LbR(B) ⇐⇒ A ⊆ lbR(B) ; (2) B ∈ UbR(A) ⇐⇒ B ⊆ ubR(A) .

Proof. For instance, by Definition 4.1, we have

A ∈ LbR(B) ⇐⇒ A×B ⊆ R ⇐⇒ ∀ x ∈ A : {x}×B ⊆ R ⇐⇒
∀ x ∈ A : {x} ∈ LbR(B) ⇐⇒ ∀ x ∈ A : x ∈ lbR(B) ⇐⇒ A ⊆ lbR(B) .

Remark 4.2. The above two theorems show that the lower and upper bound
relations are actually equivalent tools in the simple relator space (X, Y )(R) .

Now, as an immediate consequence of Theorems 4.1 and 4.2, we can also state

Corollary 4.1. For any A ⊆ X and B ⊆ Y , we have

A ⊆ lbR(B) ⇐⇒ B ⊆ ubR(A) .

Proof. By Theorems 4.2 and 4.1, it is clear that

A ⊆ lbR(B) ⇐⇒ A ∈ LbR(B) ⇐⇒ B ∈ Lb−1
R (A) ⇐⇒

B ∈ UbR(A) ⇐⇒ B ⊆ ubR(A) .

Hence, by identifying singletons with their elements, we can immediately derive

Corollary 4.2. For any A ⊆ X and B ⊆ Y , we have

(1) lbR(B) =
{
x ∈ X : B ⊆ ubR(x)

}
; (2) ubR(A) =

{
y ∈ X : A ⊆ lbR(y)

}
.

Remark 4.3. However, it is now more important to note that by defining

F (A) = ubR(A) and G (B) = lbR(B) ,
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for all A ⊆ X and B ⊆ Y , we can at once see that

F (A) ⊇ B ⇐⇒ B ⊆ ubR(A) ⇐⇒ A ⊆ lbR(B) ⇐⇒ A ⊆ G (B)

for all A ⊆ X and B ⊆ Y .

Thus, the functions F and G establish a decreasing Galois connection between
the posets P (X) and P (Y ) .

Therefore, several properties of the super relations ubR and lbR can be derived
from the extensive theory of Galois connections [9, 34, 29, 33, 22, 23, 8] .

Thus, for instance, from Corollary 4.1 we can already derive the following
theorem. However, it is frequently more convenient to apply some direct proofs.

Theorem 4.3. If B ⊆ Y , then

(1) lbR(B) ⊆ lbR(C) for all C ⊆ B ;

(2) B ⊆ ubR

(
lbR(B)

)
; (3) lbR(B) = lbR

(
ubR

(
lbR(B)

))
.

In addition to Corollary 4.2, it is also worth proving the following

Theorem 4.4. For any A ⊆ X and B ⊆ Y , we have

(1) ubR(A) =
⋂

x∈A ubR(x) ; (2) lbR(B) =
⋂

y∈B lbR(y) .

Remark 4.4. Assertion (1) can be generalized by showing that the relation
F = ubR is union-reversing in the sense that, for any A ⊆ P (X) , we have
F (

⋃
A ) =

⋂
A∈A F (A) .

Now, by Theorem 4.4 and Corollary 4.2, we can also state the following

Corollary 4.3. For any A ⊆ X and B ⊆ Y , we have

(1) ubR(A) =
⋂

x∈A R (x) ; (2) lbR(B) =
{
x ∈ X : B ⊆ R (x)

}
.

Remark 4.5. Assertion (1) can be reformulated by stating that ubR(A) =
R c [A ]c for all A ⊆ X.

5. Some further important algebraic tools

Notation 5.1. In this section, we shall already assume that R is a
relation on X.

Now, by using Definition 4.1, we may also naturally introduce the following
definition which can also be immediately generalized to relators.

Definition 5.1. For any A ⊆ X, we define

(1) minR(A) = A ∩ lbR(A) ; (2) maxR(A) = A ∩ ubR(A) ;

(3) MinR(A) = P(A) ∩ LbR(A) ; (4) MaxR(A) = P(A) ∩UbR(A) ;

(5) infR(A) = maxR

(
lbR(A)

)
; (6) supR(A) = minR

(
ubR(A)

)
;

(7) InfR(A) = MaxR

[
LbR(A)

]
; (8) SupR(A) = MinR

[
UbR(A)

]
;
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(9) A ∈ ℓR if A ∈ LbR(A) ; (10) A ∈ LR if A ⊆ lbR(A) .

By using this definition, for instance, we can prove the following theorems.

Theorem 5.1. We have

(1) MaxR = MinR−1 ; (2) SupR = InfR−1 ; (3) ℓR = ℓR−1

(4) maxR = minR−1 ; (5) supR = infR−1 ; (6) ℓR = LR .

Theorem 5.2. For any A ⊆ X, we have

(1) maxR(A) =
⋂

x∈A

(
A ∩ ubR(x)

)
; (2) maxR(A) =

{
x ∈ A : A ⊆ lbR(x)

}
.

Theorem 5.3. For any A ⊆ X, we have

(1) supR(A) = ubR(A) ∩ lbR

(
ubR(A)

)
;

(2) maxR(A) = A ∩ supR(A) ; (3) supR(A) = infR
(
ubR(A)

)
.

Proof. To prove assertion (3), note that by assertion (1) and Theorem 4.3,
and their duals, we have

supR(A) = lbR
(
ubR(A)

)
∩ ubR(A) =

lbR
(
ubR(A)

)
∩ ubR

(
lbR

(
ubR(A)

))
= infR

(
ubR(A)

)
.

Theorem 5.4. For any A ⊆ X, we have

supR(A) =
{
x ∈ X : ubR(x) = ubR(A)

}
=

{
x ∈ ubR(A) : ubR(A) ⊆ ubR(x)

}
.

Theorem 5.5. For any A ⊆ X the following assertions are equivalent :

(1) A ∈ LR ; (2) A ∈ UbR(A) ; (3) A ∈ MinR(A) ; (4) A ∈ MaxR(A) .

Corollary 5.1. For any A ⊆ X the following assertions are equivalent :

(1) ubR(A) ∈ LR ; (2) ubR(A) = supR(A) ; (3) ubR(A) ⊆ lbR

(
ubR(A)

)
.

Theorem 5.6. We have

LR =
{
minR(A) : A ⊆ X

}
=

{
maxR(A) : A ⊆ X

}
.

Theorem 5.7. If R is reflexive, then following assertions are equivalent :

(1) R is antisymmetric ; (2) card(A) ⩽ 1 if A ∈ LR ;

(3) maxR is a function ; (4) supR is a function .

Remark 5.1. The implications (1) =⇒ (3) ⇐⇒ (4) do not require the relation
R to be reflexive.

Definition 5.2. The relation R on X, or the goset X (R) , will be called

(1) inf–complete if infR(A) ̸= ∅ for all A ⊆ X;

(2) min–complete if minR(A) ̸= ∅ for all ∅ ≠ A ⊆ X.
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Remark 5.2. Thus, for instance, the set Z of all integers is min-complete, but
not inf-complete.

While, the set R = R ∪ {−∞ , +∞} of all extended real numbers is inf-
complete, but not min–complete.

Now, by letting A to be a singleton, and then a doubleton, we can obtain

Theorem 5.8. If R is min-complete, then R is reflexive and total.

Moreover, by using Theorem 5.3, we can also easily prove the following

Theorem 5.9. The following assertions are equivalent :

(1) R is inf–complete ; (2) R is sup–complete .

Proof. By Theorem 5.3, we have supR(A) = infR
(
ubR(A)

)
for all A ⊆ X.

Hence, the implication (1) =⇒ (2) immediately follows.

Remark 5.3. For several other reasonable order-theoretic completeness
properties, and their relationships, see [13] and [12] .

6. A few basic facts on increasing functions

Notation 6.1. In this section, we shall assume that f is a function
of one goset X (R) to another Y (S) .

Definition 6.1. The function f will be called increasing if, for all u, v ∈ X,

uR v =⇒ f (u)S f (v) .

Remark 6.1. Now, the function f may be briefly defined to be decreasing if
it is increasing as a function X (R) to the dual Y

(
S−1

)
of Y (S) .

Moreover, the function can, for instance, be briefly defined to be strictly increa-
sing if it is increasing as a function of X (R∖∆X ) to Y (S ∖∆Y ) .

However, to define a strict form of the relation R , instead of R ∖ ∆X , the
relation R∖R−1 can also be well-used ( See, for instance, Patrone [62] .)

The following theorem shows that the strictly increasing functions are closely
related to the injective, increasing ones.

Theorem 6.1. If R is total and S is reflexive, then the following assertions
are equivalent :

(1) f is strictly increasing ; (2) f is injective and increasing .

Remark 6.2. To prove the implication (2) =⇒ (1) we do not need any extra
conditions on the relations R and S .

While, if assertion (1) holds and f is onto Y , then to prove that f−1 is also
strictly increasing, we have to assume that R is total and S is antisymmetric.

Concerning increasing functions, we can also prove the following theorems.
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Theorem 6.2. The following assertions are equivalent :

(1) f is increasing ;

(2) f [ ubR(x) ] ⊆ ubS

(
f (x)

)
for all x ∈ X ;

(3) f [ ubR(A) ] ⊆ ubS

(
f [A ]

)
for all A ⊆ X.

Theorem 6.3. If R is reflexive, then the following assertions are equivalent :

(1) f is increasing ;

(2) f [ maxR(A) ] ⊆ ubS

(
f [A ]

)
for all A ⊆ X;

(3) f [ maxR(A) ] ⊆ maxS

(
f [A ]

)
for all A ⊆ X;

From Theorem 6.2, by using Theorem 4.3, we can immediately derive

Theorem 6.4. If f is increasing, then for any A ⊆ X, we have

lbS

(
ubS

(
f [A ]

))
⊆ lbS

(
f [ ubR(A) ]

)
.

Moreover, by using Theorems 5.3, 5.7 and 6.4, we can also prove

Theorem 6.5. If f is increasing and R and S are antisymmetric and sup–
complete, then for any A ⊆ X we have

supS

(
f [A ]

)
S f

(
supR (A)

)
.

Finally, we note that, by the results of [106] , the following theorems are also
true. Therefore, instead of ”increasing”, we may also naturally say ”continuous”.

Theorem 6.6. The following assertions are equivalent :

(1) f is increasing ;

(2) (u, v) ∈ R implies
(
f (u), f (v)

)
∈ S ;

(3) v ∈ R (u) implies f (v) ∈ S
(
f (u)

)
for all u ∈ X.

Theorem 6.7. The following assertions are equivalent :

(1) f is increasing ;

(2) f ◦R ⊆ S ◦ f , (3) R ⊆ f−1 ◦ S ◦ f ,

(4) f ◦R ◦ f−1 ⊆ S , (5) R ◦ f−1⊆ f−1◦ S .

Remark 6.3. By using the box product of relations, assertion (3) can be
reformulated in the form that R ⊆ (f ⊠ f )−1 [S ] .

However, it is now more important to note that, by using the uniform refine-
ment of relators, instead of (3), we may also write that f−1 ◦ S ◦ f ∈ {R}∗ .

Remark 6.4. Finally, we note that a relation F on the goset X (R) to a set
Y may be naturally called increasing if the associated set-valued function φF is
increasing. That is, uR v implies F (u) ⊆ F (v) for all u, v ∈ X.
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However, if F is a relation on X (R) to Y (S) , then in addition to the above
inclusion-increasingness of F , we may also define an order-increasingness of F by
requiring the implication u ∈ lbR(v) =⇒ F (u) ∈ LbS

(
F (v)

)
for all u, v ∈ X.

Thus, we can show that F is inclusion-increasing if and only if R◦F −1⊆ F −1,
or equivalently F −1 is ascending-valued. And, F is order-increasing if and only if
F ◦R ◦ F −1⊆ S , or equivalently F [R (u)] ⊆ ubS

(
F (u)

)
for all u ∈ X [106] .

7. The induced order and interior relations

Notation 7.1. In this section, we shall assume that f is a function
of a set X to a goset Y (S) .

Definition 7.1. For each u ∈ X and y ∈ Y , we define

Ordf (u) =
{
v ∈ X : f(u)S f(v)

}
and Intf (y) =

{
x ∈ X : f(x)S y

}
.

The relations Ordf and Intf will be called the natural order and the proximal
interior relations induced by f , respectively.

Remark 7.1. If F is a relation on one set X to another Y , then by using the
associated set-valued function φ

F
, we may also naturally define OrdF = Ordφ

F

and IntF = Intφ
F
.

Moreover, if U is a super relation on X to Y , then for instance, for any
B ⊆ Y , we may also naturally define intU (B) = {x ∈ X : {x} ∈ IntU (B)} .

Concerning the relations Ordf and Intf , we can easily prove the following
four theorems.

Theorem 7.1. Ordf is the largest relation on X making the function f to
be increasing.

Proof. If R is a relation on X making f to be increasing, then

v ∈ R (u) =⇒ uR v =⇒ f(u)S f(v) =⇒ v ∈ Ordf (u) ,

and thus R (u) ⊆ Ordf (u) for all u ∈ X. Therefore, R ⊆ Ordf also holds.

Theorem 7.2. The following assertions hold :

(1) Ordf is a preorder on X if S is a preorder on Y ;

(2) Ordf is a partial order on X if f is injective and S is a partial order on Y .

Theorem 7.3. If S is a preorder, then the following assertions are equivalent :

(1) f is increasing ; (2) Ordf is decreasing ; (3) Ordf is ascending valued .

Proof. For instance, if u, v ∈ X such that uR v , and assertion (1) holds,
then f (u)S f (v) . Moreover, if w ∈ Ordf (v) , then f (v)S f (w) . Hence, by
the transitivity of S , we can infer that f (u)S f (w) , and thus w ∈ Ordf (u) .
Therefore, Ordf (v) ⊆ Ordf (u) , and thus assertion (2) also holds.
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Theorem 7.4. If R is a relation on X and S is transitive, then

(1) Intf is increasing ; (2) Intf is descending valued if f is increasing .

Proof. To prove (2), note that if y ∈ Y and x ∈ Intf (y) , then f (x)S y .
Moreover, if u ∈ X such that uRx and f increasing, then f (u)S f (x) . Thus,
by the transitivity of S, we also have f (u)S y , and thus u ∈ Intf (y) . Therefore,
Intf (y) is a descending subset of X.

The next theorem show that the relations Ordf and Intf are not independent
of each other, and they are also closely related to the relations lbS and ubS .

Theorem 7.5. We have

(1) Intf = f−1 ◦ S−1 ; (2) Ordf = f−1 ◦ Int−1
f ;

(3) Intf = f−1 ◦ ub−1
S ; (4) Intf = f−1 ◦ lbS ◦∆Y .

Proof. By the corresponding definitions, for any x ∈ X and y ∈ Y , we have

x ∈ Intf (y) ⇐⇒ f (x)S y ⇐⇒ y ∈ S
(
f (x)

)
⇐⇒ y ∈ (S ◦ f )(x) .

Therefore, Intf =
(
S ◦ f

)−1
= f−1 ◦ S−1.

Moreover, we also have

x ∈ Intf (y) ⇐⇒ f (x) ∈ lbS (y) ⇐⇒ x ∈ f−1 [ lbS (y) ] ⇐⇒
x ∈ f−1

[
lbS

(
∆Y (y)

) ]
⇐⇒ x ∈

(
f−1◦ Intf ◦ lbS ◦∆Y

)
(y) .

Therefore, assertions (4) is also true.

Remark 7.2. In this respect, it is also worth noticing that

y ∈ ubS

(
f [ Intf (y) ]

)
for all y ∈ Y . Namely, for every x ∈ Intf (y) , we have f (x)S y .

Now, we can also easily prove the following

Theorem 7.6. If R is a relation on X such that

f [ supR(A) ] ⊆ lbS

(
ubS

(
f [A ]

))
for all A ⊆ X, then

maxR

(
Intf (y)

)
= supR

(
Intf (y)

)
for all y ∈ Y .

Proof. If y ∈ Y , then by Theorem 5.3 we have

maxR
(
Intf (y)

)
⊆ supR

(
Intf (y)

)
.

Therefore, we need actually prove only the converse inclusion.

For this, note that if x ∈ supR

(
Intf (y)

)
, then by the assumed property of f

we have
f(x) ∈ f

[
supR

(
Intf (y)

)]
⊆ lbS

(
ubS

(
f [ Intf (y) ]

))
.
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Moreover, by Remark 7.2, we also have y ∈ ubS

(
f [ Intf (y) ]

)
. Therefore, we

necessarily have f(x)S y , and thus x ∈ Intf (y) . Hence, by Theorem 5.3, we can
see that

x ∈ Intf (y) ∩ supR

(
Intf (y)

)
= maxR

(
Intf (y)

)
.

Therefore, supR

(
Intf (y)

)
⊆ maxR

(
Intf (y)

)
, and thus the required equality is

also true.

Remark 7.3. Note that, by Theorem 5.3, for a subset A of the goset X (R)
we have maxR(A) = supR(A) if and only if supR(A) ⊆ A .

8. Extensive, involutive, and idempotent operations

Notation 8.1. In this and the next section, we shall assume that φ
is a function of a goset X (R) to itself.

Definition 8.1. The function φ will be called

(1) extensive if ∆X R φ ; (2) intensive if φ R∆X ;

(3) right–semi–involutive if ∆X Rφ2 ; (4) left–semi–involutive if φ2R∆X ;

(5) right–semi–idempotent if φR φ2 ; (6) left–semi–idempotent if φ2R φ .

Remark 8.1. Property (3), in detailed form, means only that ∆X (x)R φ2(x) ,
i. e. , x R φ(φ (x)) for all x ∈ X.

By using Definition 8.1, we can easily establish the following

Theorem 8.1. The following assertions hold ;

(1) φ is right-semi-idempotent if φ is extensive ;

(2) φ is right-semi-involutive if and only if φ2 is extensive ;

(3) φ is right-semi-idempotent if and only if φ | φ [X ] is extensive.

Proof. If φ is extensive, then xRφ (x) for all x ∈ X. Hence, taking u ∈ X
and writing φ (u) in place of x , we can infer that φ (u)R φ2(u) . Thus, φ is
right-semi-idempotent.

Moreover, if y ∈ φ [X ] , then there exists x ∈ X such that y = φ (x) , and
thus φ (y) = φ2(x) . Moreover, if φ is right-semi-idempotent, then φ (x)R φ2(x) ,
and thus y Rφ (y) . Therefore, the restriction φ |φ [X ] is extensive.

Remark 8.2. In addition to the above observations, it is also worth noticing
that φ is extensive with respect R if and only if φ (x) ∈ R (x) for all x ∈ X.
That is, φ is a selection function of R .

Thus, analogously to a relational reformulation of the Axiom of Choice, the
following generalization of a theorem of Bourbaki [7, p. 4] may also be considered
as a selection theorem.

Theorem 8.2. If φ is strictly increasing and R is antisymmetric and min-
complete, then φ is extensive.
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Proof. Assume on the contrary that φ is not extensive. Then, by Remark
8.2, φ is not a selection function of R . Thus,

A =
{
x ∈ X : φ (x) /∈ R (x)

}
̸= ∅ .

Therefore, by the assumed min-completeness of R , there exists a ∈ X such
that a ∈ minR(A) . Hence, by the definition of minR , we can infer that

a ∈ A and a ∈ lbR(A) ,

and thus aRx for all x ∈ A .

Now, since a ∈ A , we can also note that aRa , and thus a ∈ R (a) . Moreover,
by the definition of A , we can also note that φ (a) /∈ R (a) . Therefore, φ (a) ̸= a .
Moreover, from Theorem 5.8, we know that R is total. Thus, since aRφ (a) does
not hold, we necessarily have φ (a)R a .

Hence, by using that φ (a) ̸= a and φ is strictly increasing, we can infer
that φ

(
φ (a)

)
R φ (a) and φ

(
φ (a)

)
̸= φ (a) . Thus, by the antisymmetry of R ,

φ (a)R φ
(
φ (a)

)
cannot hold. This, shows that φ

(
φ (a)

)
/∈ R

(
φ (a)

)
, and thus

φ (a) ∈ A . Hence, by using that aRx for all x ∈ A , we can infer that aRφ (a) ,
and thus φ (a) ∈ R (a) . This contradiction shows that φ is extensive.

Remark 8.3. Note that if φ is extensive, R is antisymmetric and x is a
maximal element of X (R) in the sense that xR y implies y Rx for all y ∈ X,
then x is already a fixed point of φ in the sense that φ (x) = x .

This simple, but important fact was first explicitly stated by Brøndsted [15] .
And, fixed point theorems for extensive maps (which were sometimes also called
expansive, progressive, increasing, or inflationary) were proved by several authors.

9. Involution, projection, and closure operations

Definition 9.1. The function φ will be called

(1) involution operation if it is increasing and both left and right semi-involutive;

(2) projection operation if it is increasing and both left and right semi-idempotent;

(3) closure (interior) operation if it is an extensive (intensive) projection operation.

Remark 9.1. Moreover, φ may, for instance be called a

(1) preclosure operation if it is increasing and extensive ;

(2) semi-closure operation if it is extensive and left-semi-idempotent ;

(3) left semi-modification operation if it is increasing and left semi-idempotent .

Note that, by Theorem 8.1, an extensive operation is right-semi-idempotent.
Moreover, the corresponding interior operations can be briefly defined by using the
dual X

(
R−1

)
of X (R) .
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In connection with Definition 8.1, it is also worth mentioning if, for instance, φ
is both left and right semi-idempotent and R is antisymmetric, then φ is idempo-
tent in the sense that φ2 = φ . However, if φ is idempotent and R is not reflexive,
then φ need not be either left or right semi-idempotent.

Concerning closure operations, for instance, we can prove the following

Theorem 9.1. If φ is a closure operation, and R is antisymmetric and inf-
complete, then for any A ⊆ X we have

infR
(
φ [A ]

)
= φ

(
infR

(
φ [A ]

))
.

Proof. By the dual of Theorem 6.5, we have

infR
(
φ [A ]

)
∈ R

(
φ
(
infR(A)

))
.

Hence, by writing φ [A ] in place of A , we can see that

infR (φ [φ [A ] ] ) ∈ R
(
φ
(
infR

(
φ [A ]

)))
.

Moreover, because of the antisymmetry of R , we can note that φ is now idem-
potent. Therefore, φ [φ [A ] ] = (φ ◦ φ) [A ] = φ2 [A ] = φ [A ] . Thus, we actually
have

infR (φ [A ] ) ∈ R
(
φ
(
infR

(
φ [A ]

)))
.

Moreover, by extensivity of φ , the converse inclusion is also true. Hence, by using
the antisymmetry of R, we can see that the required equality is also true.

Remark 9.2. It can be easily seen that an operation φ on a set X is idempo-
tent if and only if φ [X ] is the family of all fixed points of φ .

Therefore, by using Theorem 9.1, we can also prove the following

Corollary 9.1. Under the conditions of Theorem 9.1, for any A ⊆ φ [X ] ,
we have

infR
(
A) = φ

(
infR(A)

)
.

Proof. Now, because of the antisymmetry of R, the operation φ is idempo-
tent. Thus, by Remark 9.2, we have φ(y) = y for all y ∈ φ [X ] . Hence, by using
the assumption A ⊆ φ [X ] , we can see that φ [A ] = A . Thus, Theorem 9.1 gives
the required equality.

Remark 9.3. Note that if φ is an extensive and left-semi-idempotent, and R
reflexive and antisymmetric, then φ [X ] is also the family of all elements x of X
which are φ–closed in the sense that φ(x)Rx .

Therefore, if in addition to the conditions of Theorem 9.1, R is reflexive, then
the assertion of Corollary 9.1 can also be expressed by stating that the infimum of
any family of φ–closed elements of X (R) is also φ–closed.

Now, instead of a counterpart of Theorem 9.1, we can only prove the following

Theorem 9.2. If φ is a closure operation, and R is transitive, antisymmetric
and sup-complete, then for any A ⊆ X we have

φ
(
supR(A)

)
= φ

(
supR

(
φ [A ]

))
.
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Proof. Define α = supR(A) and β = supR
(
φ [A ]

)
. Then, by Theorem 6.5,

we have β Rφ(α) . Hence, since φ is increasing, we can infer that φ(β)Rφ
(
φ(α)

)
.

Moreover, since φ is now idempotent, we also have φ
(
φ(α)

)
= φ(α) . Therefore,

φ(β)Rφ(α) .

On the other hand, since φ is extensive, for any x ∈ A we have xRφ(x) .
Moreover, since β ∈ ubR

(
φ [A ]

)
, we also have φ(x)Rβ . Hence, by using the

transitivity of R, we can infer that xRβ . Therefore, β ∈ ubR(A) . Now, by
using that α ∈ lbRX

(
ubX(A)

)
, we can see that αRβ . Hence, by using the in-

creasingness of φ , we can infer that φ(α)Rφ(β) . Therefore, by the antisymmetry
of R, we actually have φ(α) = φ(β) , and thus the required equality is also true.

By using this theorem, in addition to Theorem 9.1, we can only prove

Corollary 9.2. Under the conditions of Theorem 9.2, for any A ⊆ X, the
following assertions are equivalent :

(1) supR
(
φ [A ]

)
= φ

(
supR(A)

)
, (2) supR

(
φ [A ]

)
= φ

(
supR

(
φ [A ]

))
.

10. Closures and interiors in simple relator spaces

Notation 10.1. In this section, we shall assume that R is a relation
on X to Y .

Remark 10.1. However, the subsequent definitions can also be easily extended
to the more general case when R is replaced by a relator R , or even a super relator
U [67, 111] .

Definition 10.1. For any A ⊆ X , B ⊆ Y and x ∈ X, we define :

(1) A ∈ IntR(B) if R [A ] ⊆ B ; (2) A ∈ ClR(B) if R [A ] ∩ B ̸= ∅ ;

(3) x ∈ intR(B) if {x} ∈ IntR(B) ; (5) x ∈ clR(B) if {x} ∈ ClR(B) ;

(7) B ∈ ER if intR(B) ̸= ∅ ; (8) B ∈ DR if clR(B) = X .

Remark 10.2. The relations IntR and intR are called the proximal and topo-
logical interiors generated by R , respectively. While, the members of the fami-
lies, ER and DR are called the fat and dense subsets of the simple relator space
(X, Y )(R) , respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity δ
[27] and Smirnov’s strong inclusion ⋐ [77] , respectively. While, the convenient
notations ClR and IntR , and the family ER , together with its dual DR , were
first explicitly used by the present author in [79, 82, 83, 92] .

The following theorem indicates that, in a relator space, the closure of a set can
be more directly described than in a topological one. Moreover, the corresponding
closure and interior relations are equivalent tools.

Theorem 10.1. For any B ⊆ X, we have

(1) clR(B) = R−1 [B ] ;
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(2) clR(B) =
(
intR ◦ CY

)c
= X ∖ intR

(
Y ∖ B

)
;

(3) ClR(B) =
(
IntR ◦ CY

)c
= P(X) ∖ IntR

(
Y ∖ B

)
.

Remark 10.3. From assertion (2), we can at once see that

(1) clR =
(
intR

)⋆
; (2) clR =

(
intR

)c ◦ CY .

The following theorem shows that, in contrast to their equivalence, the big
closure relation is usually a more convenient tool than the big interior one.

Theorem 10.2. We have

(1) ClR−1 = Cl−1
R ; (2) IntR−1 = CY ◦ Int−1

R ◦ CX .

In an arbitrary relator space, the small closure and interior relations are usually
much weaker tools than the big ones. However, now we can also prove the following

Theorem 10.3. For any A ⊆ X and B ⊆ Y

(1) A ∈ IntR(B) ⇐⇒ A ⊆ intR(B) ;

(2) A ∈ ClR(B) ⇐⇒ A ∩ clR(B) ̸= ∅ .

Now, analogously to Corollary 4.1, we can also prove the following

Corollary 10.1. For any A ⊆ X and B ⊆ Y , we have

clR−1 (A) ⊆ B ⇐⇒ A ⊆ intR(B) .

Proof. By Theorems 10.3 and 10.2, it is clear that

clR−1 (A) ⊆ B ⇐⇒ Bc ∩ clR−1 (A) = ∅ ⇐⇒ Bc /∈ ClR−1(A) ⇐⇒
Bc /∈ Cl−1

R (A) ⇐⇒ A /∈ ClR(B
c) ⇐⇒ A ∈ ClR(Bc)c ⇐⇒

A ∈ IntR(B) ⇐⇒ A ⊆ intR(A) .

Remark 10.4. This corollary shows that the functions F and G , defined by

F (A) = clR−1 and G (B) = IntR(B)

for all A ⊆ X and B ⊆ Y , establish an increasing Galois connection between the
posets P (X) and P (Y ) .

Actually, Corollaries 4.1 and 10.1 can be more easily proved directly. Moreover,
they can be derived from each other. Namely, we can also prove the following

Theorem 10.4. We have

(1) LbR =
(
ClRc

)c
= IntRc ◦ CY ; (2) lbR =

(
clRc

)c
= intRc ◦ CY .
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Proof. By the corresponding definitions, for any A ⊆ X and B ⊆ Y we
have

A ∈ LbR(B) ⇐⇒ A×B ⊆ R ⇐⇒ ∀ (a, b) ∈ A×B : (a, b) /∈ Rc ⇐⇒
∀ a ∈ A : ∀ b ∈ B : b /∈ Rc(a) ⇐⇒ Rc [A ] ∩ B = ∅ ⇐⇒

A /∈ ClRc (B) ⇐⇒ A ∈ ClRc (B)c ⇐⇒ A ∈
(
ClRc

)c
(B) .

Therefore, LbR(B) = ClcRc (B) for all B ⊆ Y , and thus the first part of assertion
(1) is true. The second part of it now immediate by Theorem 10.1.

Now, by using Theorem 10.1 and Definition 10.1, we can also easily establish

Theorem 10.5. We have

(1) DR =
{
B ⊆ Y : X = R−1 [B ]

}
;

(2) ER =
⋃

x∈X UR (x) , where UR (x) = int−1
R (x) .

Remark 10.5. Note that thus

UR (x) = int−1
R (x) =

{
B ⊆ Y : x ∈ intR(B)

}
is just the family of all neighbourhoods of the point x of X in Y .

The following theorem shows that the families of fat and dense sets are also
equivalent tools.

Theorem 10.6. We have

(1) DR =
{
D ⊆ Y : Dc /∈ ER

}
;

(2) DR =
{
D ⊆ Y : ∀ E ∈ ER : E ∩D ̸= ∅

}
.

Remark 10.6. By using Theorem 10.4, we can see that LR = P (Y )∖DRc .

11. Some further important topological tools

Notation 11.1. In this section, we shall already assume that R is a
relation on X.

Now, by using Definition 10.1, we may also naturally introduce the following
definition which can also be immediately generalized to relators.

Definition 11.1. For any A ⊆ X, we define :

(1) A ∈ τ
R

if A ∈ IntR(A) ; (2) A ∈ τ-
R

if Ac /∈ ClR(A) ;

(3) A ∈ TR if A ⊆ intR(A) ; (4) A ∈ FR if clR(A) ⊆ A ;

(5) A ∈ NR if clR(A) /∈ ER ; (6) A ∈ MR if intR(A) ∈ DR .

Remark 11.1. The members of the families, τ
R
, TR and NR are called the

proximally open, topologically open and rare (or nowhere dense) subsets of the
simple relator space X (R) , respectively.
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The families τ
R

and τ-
R

were first explicitly used by the present author in [82,
83] . While, the practical notation τ-

R
has been suggested by J. Kurdics who first

noticed that connectedness is a particular case of well-chainedness [42, 44, 61] .

By using Definition 11.1 and the corresponding results of Section 10, we can
easily establish the following two theorems.

Theorem 11.1. We have

(1) τ-
R
= τ

R−1 ; (2) τ-
R
=

{
A ⊆ X : Ac ∈ τ

R

}
;

(3) FR =
{
A ⊆ X : Ac ∈ TR

}
; (4) MR =

{
A ⊆ X : Ac ∈ NR

}
.

Theorem 11.2. We have

(1) τ
R
= TR ; (2) TR ∖ {∅} ⊆ ER ; (3) DR ∩ FR ⊆ {X} .

Hint. By Theorem 10.3, for any A ⊆ X, we have

A ∈ τ
R

⇐⇒ A ∈ IntR(A) ⇐⇒ A ⊆ intR(A) ⇐⇒ A ∈ TR .

Thus, assertion (1) is true.

However, if R is a relator on X, then we can only prove that τR ⊆ TR .

Remark 11.2. From assertion (3), by using global complementations, we can

infer that FR ⊆
(
DR

)c ∪ {X} and DR ⊆
(
FR

)c ∪ {X} .

However, it is now more important to note that we also have the following

Theorem 11.3. For any A ⊆ X we have

(1) P (A) ∩
(
TR ∖ {∅}

)
̸= ∅ implies A ∈ ER ;

(2)
⋃

TR ∩ P (A) ⊆ intR(A) ; (3) P
[
τ
R
∩ P (A)

]
⊆ IntR(A) .

Remark 11.3. The fat sets are frequently more important tools than the open
ones. Namely, for instance, TR and ER are just the families of all ascending and
residual subsets of the goset X (R) , respectively.

This fact, stressed first by the third author in [81] , can also be well seen from

Example 11.1. If in particular X = R and

R (x) = {x− 1 } ∪ [x , +∞ [

for all x ∈ X, then R is a reflexive relation on X such that TR = { ∅ , X } , but
ER is quite a large family.

Remark 11.4. However, if R is a preorder relation on X, then the converses
of the assertions (1)–(3) of Theorem 11.3 can also be proved. Therefore, in this
case, the family TR is also a quite powerful tool.
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12. Increasingly normal and regular functions of gosets

Notation 12.1. In this and the next four sections, we shall assume
that

(a) X (R) and Y (S) are gosets ;

(b) φ is a function of X to itself ;

(c) f is a function of X to Y ; (d) g is a function of Y to X.

In [96, 94] , by extending the ideas of Ore [56] , Schmidt [75, p. 209] ,
Blyth and Janowitz [9, p. 11] , and Pataki [60] on Galois connections, residuated
mappings, and operation-increasing structures, we have used the following

Definition 12.1. We say that the function f is

(1) increasingly g–normal if for all x ∈ X and y ∈ Y we have

f (x)S y ⇐⇒ x R g (y) ;

(2) increasingly φ–regular if for all u, v ∈ X we have

f (u)S f (v) ⇐⇒ u R φ (v) .

Remark 12.1. Now, the function f may, for instance, be naturally called
increasingly normal if it is increasingly g–normal for some function g .

And, the function f may, for instance, be naturally called uniquely increasingly
normal if there exists a unique function g

f
such that f is increasingly g

f
–normal.

Later, we shall see that the increasingly normal functions are usually increasing.
Therefore, the function f may, for instance, be naturally called decreasingly normal
if it is increasing normal as a function of X (R) to Y

(
S−1

)
.

To clarify the relationship between normal and regular functions, we can easily
prove the following two theorems.

Theorem 12.1. If f is increasingly g–normal and φ = g ◦ f , then f is
increasingly φ–regular.

Theorem 12.2. If f is increasingly φ–regular, f is onto Y , and φ = g ◦ f ,
then f is increasingly g–normal.

Proof. Suppose that x ∈ X and y ∈ Y . Then, since Y = f [X ] , there
exists v ∈ X such that y = f(v) .

Now, we can easily see that

f (x)S y ⇐⇒ f (x)S f (v) ⇐⇒ x R φ(v) ⇐⇒
x R (g ◦ f )(v) ⇐⇒ x R g

(
f (v)

)
⇐⇒ x R g(y) .

Therefore, f is increasingly g–normal.
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Remark 12.2. From Theorem 12.1, we can see that several properties of the
increasingly normal functions can be immediately derived from those of the increas-
ingly regular ones. Therefore, the latter ones have to studied before the former ones.

Moreover, from Theorem 12.2, we can feel that the increasing regular functions
are still less general objects than the increasingly normal ones. Later, we shall see
that they are usually strictly between closure operations and increasingly normal
functions.

By using Definition 12.1, we can also easily prove the following three theorems.

Theorem 12.3. If f is an increasingly g–normal function of X (R) to Y (S),
then g is an increasingly f–normal function of Y (S−1) to X (R−1) .

Proof. By the corresponding definitions, for any y ∈ Y and x ∈ X, we have

y S−1 f (x) ⇐⇒ f (x)S y ⇐⇒ x R g (y) ⇐⇒ g (y)R−1 x .

Therefore, the required assertion is true.

Remark 12.3. Thus, the properties of the functions g and f ◦ g can, in
principle, be immediately derived from those of f and g ◦ f . However, it may
sometimes be more convenient to apply some direct proofs.

Theorem 12.4. If f is an increasingly g–normal function of X (R) to Y (S)
and h is an increasingly k–normal function of Y (S) to a further goset Z (T ) ,
then h ◦ f is an increasingly g ◦ k–normal function of X (R) to Z (T ) .

Proof. By the corresponding definitions, for any x ∈ X and z ∈ Z , we have

(h ◦ f )(x)T z ⇐⇒ h
(
f (x)

)
T z ⇐⇒

f (x)S k (z) ⇐⇒ z R g
(
k (z)

)
⇐⇒ z R (g ◦ k)(z) .

Therefore, the required assertion is true.

Remark 12.4. Hence, we can see that the family of all increasingly normal
functions of X (R) to itself, with composition, forms a monoid (semigroup with
identity).

Unfortunately, an analogue of Theorems 12.3 and cannot be proved for increa-
singly regular functions. Moreover, an analogue of Theorem 12.4 is not also true
for decreasingly normal functions.

Theorem 12.5. If f is increasingly regular and R and S are preorders, then
the family of all functions φ of X to itself such that f is φ-regular is also a
semigroup with respect to composition.

Proof. If f is increasingly φ–regular and ψ–regular, then by Definition 12.1
for any u, v ∈ X, we have

uR (ψ ◦ φ)(v) ⇐⇒ u R ψ
(
φ(v)

)
⇐⇒ f (u)S f

(
φ (v)

)
⇐⇒ f (u)S (f ◦ φ)(v).

Moreover, by the forthcoming Theorem 13.1, we have

(f ◦ φ)(v)S f (v) and f (v)S (f ◦ φ)(v) .
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Hence, by using the transitivity of S, we can infer that

u R (ψ ◦ φ)(v) ⇐⇒ f (u)S f (v) .

Therefore, f is also increasingly (ψ ◦ φ–regular.

Remark 12.5. Note that f is increasingly ∆X–regular if and only if, for any
u, v ∈ X, we have u R v ⇐⇒ f (u)S f (v) .

While, a function f of X (R) to itself is increasingly ∆X–normal if and only
if, for any u, v ∈ X, we have uR v ⇐⇒ f (u)R v .

13. Some basic properties of increasingly regular and normal functions

The following theorems have been proved in some former papers [96, 107, 1] .
Therefore, most of the proofs will be omitted.

Theorem 13.1. If f is increasingly φ–regular, R is a preorder and S is
reflexive, then

(1) φ is extensive ; (2) f is increasing ; (3) f ◦φ S f and f S f ◦φ .

Remark 13.1. If in addition S is antisymmetric, then instead of assertion (3)
we may simply write f = f ◦ φ .

Theorem 13.2. If R is a preorder, then the following assertions are equi-
valent :

(1) φ is a closure operation ; (2) φ is increasingly φ–regular ;

(3) there exists an increasingly φ–regular function h of X (R) to a proset Z (T ) .

Hint. If assertion (3) holds, then by Theorem 13.1, φ is extensive and h ◦
φ T h . Hence, we can infer that h ◦ φ2 T h ◦ φ . Therefore, by the transitivity of
T , we also have h ◦ φ2 T h . Thus, for any u ∈ X, we have h

(
φ2(u)

)
T h (u) .

Hence, by using the increasing φ–regularity of h , we can infer that φ2(u)R φ (u) .
Therefore, φ2R φ . Moreover, since φ is extensive, we also have φ R φ2 .

On the other hand, if u, v ∈ X such that u R v , then Theorem 13.1 we also
have h (u)T h (v) and h

(
φ (u)

)
T h (u) . Therefore, by the transitivity of T , we

also have h
(
φ (u)

)
T h (v) . Hence, by using the increasing φ–regularity of h , we

can already infer that φ (u)R φ (v) . Therefore, φ is increasing, and thus assertion
(1) also holds.

Remark 13.2. Thus, in the case of prosets, inreasingly regular functions are
natural generalizations of closure operations. Moreover, all closure operations can
be obtained from increasingly regular functions.

From Theorem 13.2, by using the corresponding definitions, we can easily derive

Corollary 13.1. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly φ–regular ;

(2) φ is a closure operation and Ordφ = Ordf .
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Hint. If Ordφ = Ordf holds, then by Definition 7.1, for any u, v ∈ X, we
have φ (u)R φ (v) ⇐⇒ f (u)S f (v) .

Moreover, if φ is a closure operation on X, then by Theorem 13.2, for any
u, v ∈ X, we have φ (u)R φ(v) ⇐⇒ u R φ (v) .

Therefore, in contrast to the implication (1) =⇒ (2), the converse implication
(2) =⇒ (1) does not need any particular property of S .

Theorem 13.3. If f is g–normal and R and S are preorders, then

(1) f and g are increasing ;

(2) g ◦ f is a closure operation ; (3) f ◦ g is an interior operation ;

(4) f ◦ g ◦ f S f and f S f ◦ g ◦ f ; (5) g ◦ f ◦ g S g and g S g ◦ f ◦ g .

Remark 13.3. If in addition R and S are antisymmetric, then we can we can
simply state that that

f = f ◦ g ◦ f and g = g ◦ f ◦ g .

By using these equalities, we can easily prove that

g [Y ] = Fix (g ◦ f ) and f [X ] = Fix (f ◦ g) .

Namely, if for instance x ∈ g [Y ] , then there exists y ∈ Y such that x = g (y) .
Therefore,

(g ◦ f )(x) = g
(
f (x)

)
= g

(
f
(
g (y)

))
= ( g ◦ f ◦ g )(y) = g (y) = x ,

and thus g [Y ] ⊆ Fix (g ◦ f ) .

Theorem 13.4. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly g–normal ;

(2) f and g are increasing, g ◦ f is extensive and f ◦ g is intensive.

Remark 13.4. This theorem shows that the recent definition of Galois con-
nections [22, p. 155] , suggested by Schmidt [75, p. 209] , is equivalent to the old
one given by Ore [56] .

Theorem 13.5. If R is a preorder, then the following assertions are equiva-
lent :

(1) φ is an involution operation ; (2) φ is increasingly φ–normal .

Hint. If assertion (1) holds, then φ is increasing and

u R φ
(
φ (u)

)
and φ

(
φ (v)

)
R v

for all u, v ∈ X. Hence, by using the increasingness of φ and the transitivity of
R, we can see that

φ (u)R v =⇒ φ
(
φ (u)

)
R φ (v) =⇒ u Rφ (v)
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and

uR φ (v) =⇒ φ (u)R φ
(
φ (v)

)
=⇒ φ (u)R v .

Thus, assertion (2) also holds.

Remark 13.5. Thus, if R is a preorder, then every involution operation on
X (R) can be obtained from increasingly normal functions.

14. Some very particular properties of increasingly regular and normal
functions

Theorem 14.1. If f is increasingly φ–regular and R and S are partial
orders, then the following assertions are equivalent :

(1) φ = ∆X ; (2) f is injective .

Proof. By Theorem 13.1 and the antisymmetry of S, for any x ∈ X, we
have f

(
φ (x)

)
= f (x) . Hence, if assertion (2) holds, we can infer that φ (x) =

x = ∆X (x) . Thus, assertion (1) also holds.

To prove the converse implication, suppose now that u, v ∈ X such that f (u) =
f (v) . Then, by the reflexivity of S, we also have f (u)S f (v) and f (v)S f (u) .
Hence, by using the increasing φ–regularity of f , we can infer that uRφ (v) and
v Rφ(u) . Hence, if assertion (1) holds, then we can infer that uR v and v Ru .
Thus, by the antisymmetry of R, we also have u = v . Therefore, assertion (2)
also holds.

Remark 14.1. By the corresponding definitions, f is increasing if and only if
f is increasingly left ∆X–regular.

Theorem 14.2. If f is increasingly g–normal, and R and S are partial
orders, then the following assertions are equivalent :

(1) f is injective ; (2) g ◦ f = ∆X ; (3) g is onto X.

Proof. By Theorem 12.1, the function f is g◦f–regular. Hence, by Theorem
14.1, we can see that assertions (1) and (2) are equivalent.

Moreover, by Theorem 13.3 and the antisymmetry of R , we have

g
(
f
(
g(y)

))
(x) = g (y)

for all y ∈ Y . Hence, if assertion (3) holds, i. e. , g [Y ] = X, then we can infer
that

g
(
f (x)

)
= x

for all x ∈ X. Therefore, assertion (2) also holds.

Conversely, if assertion (2) holds, then we can at once see that

X = ∆X [X ] = g
[
f [X ]

]
⊆ g [Y ] .

Therefore, X = g [Y ] , and thus assertion (3) also holds.

From this theorem, by using Theorem 12.3, we can immediately derive
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Corollary 14.1. If f is g–normal, and R and S are partial orders, then
the following assertions are equivalent :

(1) f is onto Y ; (2) f ◦ g = ∆Y ; (3) g is injective .

Now, by Theorem 13.2 and Corollary 14.1, we can also state the following

Corollary 14.2. If f is g–normal, injective and onto Y , and R and S are
partial orders, then g = f−1 .

Remark 14.2. Thus, if f is g–normal, then g may be considered as a certain
generalized inverse function of f .

Moreover, we can also easily prove the following two theorems.

Theorem 14.3. If f is increasingly g–normal, R and S are partial orders,

(a) φ = g ◦ f , Z = φ [X ] , N = R |Z , h = f |Z ;

(b) ψ = f ◦ g , W = ψ [Y ] , M = S |W , k = g |W ;

then

(1) Z (N) and W (M) are subposets of X (R) and Y (S) , respectively ;

(3) h is an injective, increasing function of Z (N) onto W (M) such that k = h−1.

Proof. It is clear that Z and W are subsets of X and Y , respectively, and
thus assertion (1) is true.

Moreover, if z ∈ Z , then there exists x ∈ X such that z = φ (z) , and thus
z = (g ◦ f )(x) . Hence, we can see that

h (z) = f (z) = f
(
(g ◦ f )(x)

)
= (f ◦ g)

(
f (x)

)
= ψ

(
f (x)

)
∈ ψ [Y ] = W .

Therefore, h is a function of Z to W . Quite similarly, we can also see that k
is a function of W to Z . Hence, it is clear that h is an increasingly k–normal
function of Z (N) to W (M) . Thus, by Theorem 13.3, the functions h and k are
increasing.

Furthermore, if z ∈ Z , then by choosing x ∈ X such that z = φ (x) and
using Theorem 13.3, we can see that

(k ◦ h)(z) = k
(
h (z)

)
= g

(
f (z)

)
= g

(
f
(
φ(x)

))
= g

(
f
(
(g ◦ f )(x)

))
=(

g ◦ ( f ◦ g ◦ f )
)
(x) = (g ◦ f )(x) = φ (x) = z = ∆Z (z) .

Therefore, k◦h = ∆Z . Moreover, quite similarly, we can also see that h◦k = ∆W .
Hence, it is clear that assertion (2) is also true.

Theorem 14.4. If φ is a closure operation on X (R) , R is a preorder,

Z = φ [X ] and T = R ∩ Z 2 ,

then φ is an increasingly ∆Z–normal function of X (R) onto Z (T ) such that
φ = ∆Z ◦ φ .
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Proof. From Theorem 13.2, we can see that φ is an increasingly φ–regular
function of X (R) to itself. That is, for any u, v ∈ X we have

φ (u)R φ (v) ⇐⇒ u R φ (v) .

Hence, since Z = φ [X ] and φ (u), φ (v) ∈ Z , we can see that φ is a φ–regular
function of X (R) onto Z (T ) . Now, since φ = ∆Z ◦ φ , by Theorem 12.2 we can
see that the required assertion is also true.

Remark 14.3. Thus, if R is a preorder, then every closure operation on X (R)
can also be obtained from increasingly normal functions.

15. Characterizations of normal and regular functions

The following theorems have also been proved in our former papers [96, 107,
1] . Therefore, most of the proofs will again be omitted.

Theorem 15.1. The following assertions are equivalent :

(1) f is an increasingly g–normal , (2) Intf (y) = lb
(
g(y)

)
for all y ∈ Y .

Hint. If assertion (1) holds, then for any x ∈ X and y ∈ Y , we have

x ∈ lb
(
g (y)

)
⇐⇒ xR g (y) ⇐⇒ f (x)S y ⇐⇒ x ∈ Intf (y) .

Therefore, assertion (2) also holds.

Corollary 15.1. If f is increasingly g–normal and R is reflexive, then for
any y ∈ Y we have

g(y) ∈ max
(
Intf (y)

)
.

Proof. By the reflexivity of R and Theorem 15.1, for any y ∈ Y , we evidently
have g (y) ∈ lb

(
g (y)

)
= Intf (y) .

Moreover, from the inclusion Intf (y) ⊆ lb
(
g(y)

)
, by using Corollary 4.1, we

can infer that {g (y)} ⊆ ub
(
Intf (y)

)
, and thus g (y) ∈ ub

(
Intf (y)

)
.

Thus, by Definition 5.1, the required assertion is also true.

Remark 15.1. If in addition R is antisymmetric, then by Theorem 5.7 we may
write g(y) = max

(
Intf (y)

)
in the above corollary.

Therefore, by Corollary 15.1 and Theorem 5.7, we can also state

Corollary 15.2. If f is increasingly normal and R is reflexive and anti-
symmetric, then f is uniquely increasingly normal.

However, it is now more important to note that, by using our former results,
we can also prove the following

Theorem 15.2. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly g–normal ;

(2) f is increasing and g (y) ∈ max
(
Intf (y)

)
for all y ∈ Y .
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Proof. If assertion (1) holds, then by Theorems 12.1 and 13.1, and Corollary
15.1 we can see that assertion (2) also holds even if S is only reflexive.

To prove the converse implication, suppose now that assertion (2) holds, and
x ∈ X and y ∈ Y . Then, by the definition of maximum, we have

g (y) ∈ Intf (y) , and thus f
(
g (y)

)
S y .

Moreover, we also have g (y) ∈ ub
(
Intf (y)

)
. Hence, we can already see that

f (x)S y =⇒ x ∈ Intf (y) =⇒ x R g (y) .

Moreover, by using the increasigness of f and the transitivity of S , we can also
see that

x R g (y) =⇒ f (x)S f
(
g (y)

)
=⇒ f (x)S y .

Thus, assertion (1) also holds even if R is arbitrary and S is transitive.

Remark 15.2. From Theorems 15.1 and 15.2, by using Theorem 13.5, we can
immediately derive some useful characterizations of involution operations.

Moreover, from Theorem 15.2, by the Axiom of Choice, we can derive

Corollary 15.3. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly g–normal ;

(2) f is increasing and max
(
Intf (y)

)
̸= ∅ for all y ∈ Y .

Hence, we can easily derive the the following

Corollary 15.4. If R and S are preorders, and X (R) is max-complete,
then the following assertions are equivalent :

(1) f is increasingly normal ;

(2) f is increasing and f [X ] is cofinal in Y
(
S−1

)
.

Thus, in particular, we can also state the following

Corollary 15.5. If R and S are preorders, X (R) is max–complete and f
is onto Y , then the following assertions are equivalent :

(1) f is increasing ; (2) f is increasingly normal .

Now, analogously to the previous results, we can also easily establish the follo-
wing two theorems and their corollaries.

Theorem 15.3. The following assertions are equivalent :

(1) f is increasingly φ–regular ;

(2) Intf
(
f (x)

)
= lb

(
φ(x)

)
for all x ∈ X.

Corollary 15.6. If f is increasingly φ–regular and R is reflexive, then for
any x ∈ X we have

φ (x) ∈ max
(
Intf

(
f (x)

))
.
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Remark 15.3. If in addition R is antisymmetric, then by Theorem 5.7 we may
write φ (x) = max

(
Intf

(
f (x)

))
in the above corollary.

Corollary 15.7. If f is increasingly regular and R is reflexive and antisym-
metric, then f is uniquely increasingly regular.

Theorem 15.4. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly φ–regular ;

(2) f is increasing and φ (x) ∈ max
(
Intf

(
f (x)

))
for all x ∈ X.

Remark 15.4. From Theorems 15.3 and 15.4, by using Theorem 13.2, we can
immediately derive some useful characterizations of closure operations.

Corollary 15.8. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly regular ;

(2) f is increasing and max
(
Intf

(
f (x)

))
̸= ∅ for all x ∈ X.

Corollary 15.9. If R and S are preorders and f is onto Y , then the
following assertions are equivalent :

(1) f is increasingly regular ; (2) f is increasingly normal .

Proof. If assertion (1) holds, then by Corollary 15.8 max
(
Intf

(
f (x)

))
̸= ∅

for all x ∈ X. Hence, since Y = f [X ] , we can infer that max
(
Intf (y)

)
̸= ∅ for

all y ∈ Y . Therefore, by Corollary 15.3, assertion (2) also holds.

Moreover, by Theorem 12.1, the converse implication (2) =⇒ (1) is always
true.

16. Supremum properties of normal and regular functions

The following theorems have also been proved in our former papers [96, 107,
1] . Therefore, most of the proofs will again be omitted.

Theorem 16.1. If f is increasingly normal, then for any A ⊆ X we have

f
[
lb
(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
.

Proof. If y ∈ f
[
lb
(
ub(A)

) ]
, then there exists x ∈ lb

(
ub(A)

)
such that

y = f (x) . Moreover, if b ∈ ub
(
f [A ]

)
, then for any a ∈ A we have f (a)S b .

Hence, by using that f is increasingly h–normal, for some function h of Y to X ,
we can infer that aRh (b) . Therefore, h (b) ∈ ub (A) , and thus by x ∈ lb

(
ub(A)

)
we have xRh (b) . Hence, by using that f is increasingly h–normal, we can infer
that f (x)S b , and thus y S b . Therefore, y ∈ lb

(
ub

(
f [A ]

))
also holds.

Corollary 16.1. If f is increasingly normal, then for any y ∈ Y we have

max
(
Intf (y)

)
= sup

(
Intf (y)

)
.



166 Á. SZÁZ

Proof. By Theorems 5.3 and 16.1, we have

f
[
sup(A)

]
= f

[
ub(A) ∩ lb

(
ub(A)

) ]
⊆ f

[
lb
(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
.

for all A ⊆ X. Therefore, Theorem 7.6 can be applied.

Now, by using our former results, we can also prove the following

Theorem 16.2. If R and S are preorders and X (R) is sup–complete, then
the following assertions are equivalent :

(1) f is increasingly normal ;

(2) f [ sup (A) ] ⊆ sup
(
f [A ]

)
for all A ⊆ X;

(3) f is increasing and sup
(
Intf (y)

)
⊆ Intf (y)

)
for all y ∈ Y ;

(4) f is increasing and max
(
Intf (y)

)
= sup

(
Intf (y)

)
for all y ∈ Y ;

(5) f is increasing and f
[
sup (A)

]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X;

(6) f is increasing and f
[
lb
(
ub(A)

) ]
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X.

Hint. If assertion (1) holds, then from Theorem 13.3 we know that f is
increasing. Moreover, by using Theorems 5.3, 6.2 and 16.1 we can see that

f
[
sup(A)

]
= f

[
ub(A) ∩ lb

(
ub(A)

) ]
⊆ f

[
ub(A)

]
∩ f

[
lb
(
ub(A)

) ]
⊆ ub

(
f [A ]

)
∩ lb

(
ub

(
f [A ]

))
= sup

(
f [A ]

)
.

Therefore, assertion (2) also holds even if X (R) is not assumed to be sup-complete.

While, if assertion (2) holds, then then by using Theorem 5.3 we can see that

f [ max(A) ] ⊆ f [ sup(A) ] ⊆ sup
(
f [A ]

)
⊆ ub

(
f [A ]

)
for all A ⊆ X. Thus, by Theorem 6.3, f is increasing.

Moreover, by Theorem 5.3, we can also note that

f [ sup(A) ] ⊆ sup
(
f [A ]

)
⊆ lb

(
ub

(
f [A ]

))
for all A ⊆ X . Hence, by using Theorem 7.6 and the sup-completeness of X (R)
we can already infer that

max
(
Intf (y)

)
= sup

(
Intf (y)

)
̸= ∅

for all y ∈ Y . Thus, by Corollary 15.3, assertion (1) also holds.

Remark 16.1. If in addition both R and S are antisymmetric, then instead of
assertion (2) we may simply write that f

(
sup (A)

)
= sup

(
f [A ]

)
for all A ⊆ X.

Analogously, to Theorem 16.2, we can also prove the following

Theorem 16.3. If R and S are preorders, X (R) is a sup–complete and f
is onto Y , then the following assertions are equivalent :

(1) f is regular ;

(2) f [ sup (A) ] ⊆ sup
(
f [A ]

)
for all A ⊆ X;
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(3) f is increasing and sup
(
Intf

(
f (x)

))
⊆ Intf

(
f (x)

)
for all x ∈ X.

(4) f is increasing and max
(
Intf

(
f (x)

))
= sup

(
Intf

(
f (x)

))
for all x ∈ X.

Remark 16.2. In this theorem, we may also write Ord−1
f (x) in place of

Intf
(
f (x)

)
.

From Theorem 16.3, by using Theorem 13.2, we can immediately derive

Corollary 16.2. If X (R) is a sup–complete proset and φ is onto X, then
the following assertions are equivalent :

(1) φ is a closure operation ; (2) φ [ sup (A) ] ⊆ sup
(
φ [A ]

)
for all A ⊆ X.

Remark 16.3. If in addition R is antisymmetrics, then instead of assertion
(2) we may simply write that φ

(
sup (A)

)
= sup

(
φ [A ]

)
for all A ⊆ X.

17. Relational characterizations of increasingly normal and regular
functions

Analogously to Theorem 6.7, we can also prove the following

Theorem 17.1. The following assertions are equivalent :

(1) f is increasingly g–normal ;

(2) S ◦ f = g−1◦R ; (3) g ◦ S ◦ f ⊆ R and g−1◦ R ◦ f−1 ⊆ S .

Proof. For any x ∈ X and y ∈ Y , the following assertions are equivalent :

f(x)S y ⇐⇒ xR g(y) ,

y ∈ S
(
f(x)

)
⇐⇒ g(y) ∈ R (x) ,

y ∈ S
(
f(x)

)
⇐⇒ y ∈ g−1 [R(x) ] ,

S
(
f(x)

)
= g−1 [R(x) ](

S ◦ f
)
(x) =

(
g−1◦R

)
(x) .

Therefore, by Definition 12.1, assertions (1) and (2) are equivalent.

Moreover, for instance, by using the inclusions f ◦ f−1 ⊆ ∆Y and ∆X ⊆
f−1◦ f , we can also see that

g−1◦R ⊆ S ◦ f =⇒ g−1◦R ◦ f−1 ⊆ S ◦ f ◦ f−1 =⇒
g−1◦R ◦ f−1 ⊆ S ◦∆Y =⇒ g−1◦ R ◦ f−1 ⊆ S

and

g−1◦ R ◦ f−1 ⊆ S =⇒ g−1◦ R ◦ f−1 ◦ f ⊆ S ◦ f =⇒
g−1◦ R ◦∆X ⊆ S ◦ f =⇒ g−1◦R ⊆ S ◦ f .

Therefore, g−1◦R ⊆ S ◦ f ⇐⇒ g−1◦R ◦ f−1 ⊆ S , and thus the second halves
of assertions (2) and (3) are equivalent.
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Moreover, by using Theorem 15.2, we can also prove the following

Theorem 17.2. If R and S are preorders, then the following assertions are
equivalent :

(1) f is increasingly g–normal ;

(2) f ◦ R ⊆ S ◦ f and g ⊆ (S ◦ f )−1 ∖ R c ◦ (S ◦ f )−1.

Proof. By Theorem 15.2, assertion (1) is equivalent to the statement that

(a) f is increasing and g (y) ∈ max
(
Intf (y)

)
for all y ∈ Y .

Moreover, from Theorem 6.7, we can see that

(b) f is increasing if and only if f ◦ R ⊆ S ◦ f .

Furthermore, from Theorem 7.5 and Remark 4.5, we can see that Intf = (S ◦ f )−1

and

max (A) = A ∩ ub (A) = A ∩R c [A ]c = A∖ R c [A ]

for all A ⊆ X.

Therefore, for any y ∈ Y , we have

g (y) ∈ max
(
Intf (y)

)
⇐⇒

g (y) ∈ (S ◦ f )−1(y)∖ R c
[
(S ◦ f )−1(y)

]
⇐⇒

g (y) ∈ (S ◦ f )−1(y)∖
(
R c ◦ (S ◦ f )−1

)
(y) ⇐⇒

g (y) ∈
(
(S ◦ f )−1 ∖ R c ◦ (S ◦ f )−1

)
(y) .

Thus, assertions (1) and (2) are equivalent.

Remark 17.1. From Theorems 17.1 and 17.2, by using Theorem 13.5, we can
immediately derive some useful characterizations of involution operations.

Moreover, from Theorem 17.1 we can easily derive the following

Theorem 17.3. The following assertions are equivalent :

(1) f is increasingly normal ;

(2) for each y ∈ Y , there exists x ∈ X such that f−1 [S−1(y) ] = R−1(x) .

Hint. If assertion (2) holds, then by the Axiom of Choice there exists a func-
tion k of Y to X such that

f−1 [S−1 ] = R−1
(
k (y)

)
.

Hence, we can infer that

f−1 ◦ S−1 = R−1 ◦ k , and thus S ◦ f = k−1 ◦R .

Therefore, by Theorem 17.1, f is increasingly k–normal, and thus assertion (1)
also holds.
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Now, analogously to the above three theorems, we can also prove the following
three theorems.

Theorem 17.4. The following assertions are equivalent :

(1) f is increasingly φ–regular ;

(2) φ−1◦R = f−1◦S ◦f ; (3) f ◦φ−1◦R ⊆ S ◦f and φ◦f−1◦S ◦f ⊆ R .

Hint. For any u, v ∈ X, the following assertions are equivalent :

f(u)S f(v) ⇐⇒ uRφ(v) ,

f(v) ∈ S
(
f(u)

)
⇐⇒ φ(v) ∈ R(u) ,

v ∈ f−1
[
S
(
f(u)

) ]
⇐⇒ v ∈ φ−1 [R(u) ] ,

f−1
[
S
(
f(u)

) ]
= φ−1 [R(u) ](

f−1◦ S ◦ f
)
(u) =

(
φ−1◦R

)
(u) .

Therefore, by Definition 12.1, assertion (1) and (2) are equivalent.

Remark 17.2. In addition to assertion (3), we can also prove that

f ◦ φ−1◦ R ⊆ S ◦ f ⇐⇒ φ−1◦ R ◦ f−1 ⊆ f−1◦ S .

Theorem 17.5. The following assertions are equivalent :

(1) f is increasingly φ–regular ;

(2) f ◦ R ⊆ S ◦ f and φ ⊆ (S ◦ f )−1 ◦ f ∖ R c ◦ (S ◦ f )−1 ◦ f .

Remark 17.3. From Theorems 17.4 and 17.5, by using Theorem 13.2, we can
immediately derive some useful characterizations of closure operations.

Theorem 17.6. The following assertions are equivalent :

(1) f is increasingly regular ;

(2) for each x ∈ X, there exists u ∈ X such that f−1 [S−1
(
f (x)

)
] = R−1(u) .

Remark 17.4. From the results of this section, by using some basic theorems
on the box product of relations [98], we can easily derive some further characteri-
zations of increasingly normal and reqular functions.

18. Increasingly normal and regular functions of power sets

Notation 18.1. In this and the next two sections, we shall assume
that

(a) X and Y are sets ;

(b) Φ is a function of P (X) to itself ;

(c) F is a function of P (X) to P (Y ) and G is a function of P (Y )
to P (X) .
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Remark 18.1. Here, instead of corelations (functions of power sets to power
sets), it would also be more convenient to consider super relations (ordinary rela-
tions on power sets to sets) [1] .

However, our former definitions and results on normal and regular functions
can be more directly applied to corelations. For instance, by specializing Definition
12.1, we may naturally use the following

Definition 18.1. We say that the function F is

(1) increasingly G–normal if for all A ⊆ X and B ⊆ Y we have

F (A) ⊆ B ⇐⇒ A ⊆ G (B) ;

(2) increasingly Φ–regular if for all A1 , A2 ⊆ X we have

F (A1) ⊆ F (A2) ⇐⇒ A1 ⊆ Φ (A2) .

Now, by identifying singletons with their elements, we may also introduce

Definition 18.2. For the function F , we define a two functions GF and ΦF

such that
GF (B) =

{
x ∈ X : F (x) ⊆ B

}
for all B ⊆ Y , and

ΦF (A) =
{
x ∈ X : F (x) ⊆ F (A)

}
for all A ⊆ X.

Remark 18.2. By the corresponding definitions, for any x ∈ X and B ⊆ Y ,
we have

x ∈ GF (B) ⇐⇒ F
(
{x}

)
⊆ B ⇐⇒ {x} ∈ IntF (B) ⇐⇒ x ∈ intF (B) .

Thus, by the usual identification of relations with set-valued functions, we can
actually state that GF = intF .

Moreover, for any A ⊆ X, we can also note that

ΦF (A) = GF

(
F (A)

)
= intF

(
F (A)

)
.

Therefore, we have ΦF = GF , and we can actually also state that ΦF = intF ◦F .

However, our present notation GF is more convenient for

Theorem 18.1. If F is increasingly G–normal, then G = GF .

Proof. By the corresponding definitios, for any x ∈ X and B ⊆ Y , we have

x ∈ GF (B) ⇐⇒ F
(
{x}

)
⊆ B ⇐⇒ {x} ⊆ G (B) ⇐⇒ x ∈ G (B) .

Therefore, GF (B) = G (B) for all B ⊆ Y , and thus GF = G .

Thus, in particular, we can also state the following three corollaries.

Corollary 18.1. There exists at most one function G of P (Y ) to P(X)
such that F is increasingly G–normal.
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Corollary 18.2. If F is increasingly normal, then G = GF is the unique
function of P (Y ) to P(X) such that F is increasingly G–normal.

Corollary 18.3. The following assertions are equivalent :

(1) F is increasingly normal ; (2) F is increasingly GF –normal.

By using the definition of GF , we can also easily prove the following

Theorem 18.2. The function GF is increasing.

Proof. If B1 ⊆ B2 ⊆ Y , then

x ∈ GF (B1) =⇒ F (x) ⊆ B1 =⇒ F (x) ⊆ B2 =⇒ x ∈ GF (B2) .

Therefore, GF (B1) ⊆ GF (B2) .

Remark 18.3. Hence, we can infer that the inverse of the relation associated
with GF is ascending valued.

However, it is now more important to note that, by identifying singletons with
their elements, we can also prove the following

Theorem 18.3. If X is a goset, then the following assertions are equivalent :

(1) F |X is increasing ; (2) GF is descending valued .

Proof. Suppose that B ⊆ Y , x ∈ GF (B) and u ⩽ x . Then, if assertion
(1) holds, then we also have F (u) ⊆ F (x) . Moreover, since x ∈ GF (B) , we also
have F (x) ⊆ B . Hence, we can infer that F (u) ⊆ B , and thus u ∈ FG(B) . This
shows that GF (B) is a descending subset of X, and thus assertion (2) also holds.

To prove the converse implication, suppose now that x1 , x2 ∈ X such that
x1 ⩽ x2 . Then, because of F (x2) ⊆ F (x2) , we have x2 ∈ GF

(
F (x2)

)
. Hence,

if assertion (2) holds, and thus GF

(
F (x2)

)
is a descending subset of X , we can

infer that x1 ∈ GF

(
F (x2)

)
, and thus F (x1) ⊆ F (x2) . Thus, assertion (1) also

holds.

19. Characterizations of increasingly normal set-functions

From Theorem 15.1, by using Corollary 18.1, we can immediately derive

Theorem 19.1. The following assertions assertions are equivalent :

(1) F is increasingly normal ;

(2) IntF (B) = P
(
GF (B)

)
for all B ⊆ Y .

Proof. By Corollary 18.3 and Theorem 15.1, assertion (1) is equivalent to the
statement that :

(a) IntF (B) = lb
(
GF (B)

)
for all B ⊆ Y .

Moreover, by the corresponding definitions, for any A ⊆ X and B ⊆ Y , we have

A ∈ lb
(
GF (B)

)
⇐⇒ A ⊆ GF (B) ⇐⇒ A ∈ P

(
GF (B)

)
,
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and thus lb
(
GF (y)

)
= P

(
GF (y)

)
.

Therefore, statement (a) is equivalent to assertion (2), and thus assertions (1)
and (2) are also equivalent.

From the above theorem, by using Theorems 13.3 and 7.4, we can easily derive

Corollary 19.1. The following assertions are equivalent :

(1) F is increasingly normal ;

(2) F is increasing and GF (B) ∈ IntF (B) for all B ⊆ Y .

Proof. From Theorems 13.3 and 19.1, we can see that (1) =⇒ (2). Therefore,
we need actually prove the converse implication.

For this, note that if F is increasing, then by Theorem 7.4 the relation IntF
is descending valued. Therefore, for any B ⊆ Y ,

GF (B) ∈ IntF (B) =⇒ P
(
GF (B)

)
⊆ IntF (B) .

Moreover, if F is increasing, we can also see that

A ∈ IntF (B) =⇒ F (A) ⊆ B =⇒ ∀ x ∈ A : F (x) ⊆ B =⇒
∀ x ∈ A : x ∈ GF (B) =⇒ A ⊆ GF (B) =⇒ A ∈ P

(
GF (B)

)
.

and thus IntF (B) ⊆ P
(
GF (B)

)
. Therefore, if F is increasing, then

GF (B) ∈ IntF (B) =⇒ IntF (B) = P
(
GF (B)

)
.

Thus, Theorem 19.1 can be used to see that (2) =⇒ (1) .

Remark 19.1. Note that if B ⊆ Y , then by Remark 18.2, we have GF (B) =
intF (B) .

Therefore, for any x ∈ X, we have

x ∈ GF (B) ⇐⇒ x ∈ intF (B) ⇐⇒ {x} ∈ IntF (B) .

Thus, the inclusion GF (B) ⊆
⋃

IntF (B) is always true.

However, it is now more important to note that, by using Theorems 15.2 and
16.2 and Corollary 18.3, we can also prove the following two theorems.

Theorem 19.2. The the following assertions are equivalent :

(1) F is increasingly normal ;

(2) F is increasing and max
(
IntF (B)

)
̸= ∅ for all B ⊆ Y ;

(3) F is increasing and GF (B) = max
(
IntF (B)

)
for all B ⊆ Y ,

(4) F is increasing and GF (B) ∈ IntF (B) ⊆ P
(
GF (B)

)
for all B ⊆ Y ;

(5) F is increasing and GF (B) =
⋃

IntF (B) ∈ IntF (B) for all B ⊆ Y .
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Hint. To prove the equivalence of assertions (3)–(5), note that

GF (B) = max
(
IntF (B)

)
⇐⇒ GF (B) ∈ IntF (B) , GF (B) ∈ ub

(
IntF (B)) .

Moreover, we also have

GF (B) ∈ ub
(
IntF (B)

)
⇐⇒ ∀ A ∈ IntF (B) : A ⊆ GF (B) ⇐⇒

IntF (B) ⊆ P
(
GF (B)

)
⇐⇒

⋃
IntF (B) ⊆ GF (B) ⇐⇒

⋃
IntF (B) = GF (B).

Theorem 19.3. The the following assertions are equivalent :

(1) F is increasingly normal ;

(2) F (
⋃

A ) =
⋃
F [A ] for all A ⊆ P(X) ;

(3) F is increasing and
⋃

IntF (B) ∈ IntF (B) for all B ⊆ Y ,

(4) F is increasing and F (
⋃

A ) ∈ P (
⋃
F [A ] ) for all A ⊆ P(X) ;

(5) F is increasing and F
[
P
(⋃

A
)]

∈ P (
⋃
F [A ] ) for all A ⊆ P(X) .

Hint. To derive this theorem from Theorem 16.2, note that if A ⊆ P (X) ,
then for any B ⊆ X, we have

B ∈ ub (A) ⇐⇒ ∀ A ∈ A : A ⊆ B ⇐⇒
⋃

A ⊆ B ,

and thus

ub (A) = P−1
(⋃

A
)

and
⋂

ub (A) =
⋃

A .

Moreover, for any C ⊆ X, we have

C ∈ lb
(
ub (A)

)
⇐⇒ ∀ B ∈ ub (A) : C ⊆ B ⇐⇒

C ⊆
⋂

ub (A) ⇐⇒ C ⊆
⋃

A ⇐⇒ C ∈ P
(⋃

A
)
,

and thus

lb
(
ub (A)

)
= P

(⋃
A
)
.

Therefore,

sup (A) = max
(
ub (A)

)
= ub (A)∩ lb

(
ub (A)

)
= P−1

(⋃
A
)
∩ P

(⋃
A
)
=

⋃
A .

Now, by using our former results, we can also easily prove the following

Theorem 19.4. The following assertions are equivalent :

(1) F is increasingly normal ;

(2) F (A) =
⋃

x∈A F (x) for all A ⊆ X;

(3) there exists a relation R on X to Y such that, for all A ⊆ X, we have

F (A) = clR−1 (A) .
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Proof. From Theorems 19.3 and [99, Theorem 3] , we can see that

(1) ⇐⇒ F is union-preserving ⇐⇒ (2) .

Moreover, if assertion (3) holds and G (B) = intR(B) for all B ⊆ Y , then from
Corollary 10.1 we can see that F is increasingly G–normal. Thus, in particular
assertion (1) also holds.

Furthermore, if assertion (2) holds, then defining a relation R on X to Y such
that R (x) = F (x) for all x ∈ X, we can at once see that

F (A) = F (A) =
⋃

x∈A F (x) =
⋃

x∈A R (x) = R [A ] = clR−1 (A)

for all A ⊆ X . Thus, assertion (3) also holds.

Remark 19.2. If R is as in assertion (3), then we necessarily have

R (x) = R [ {x} ] = clR−1

(
{x}

)
= F

(
{x}

)
= F (x)

for all x ∈ X. Therefore, the relation R is uniquely determined by F .

20. Normality properties of complement and dual set-functions

Definition 20.1. For the function F , the functions F c and F ⋆ , defined by

F c(A) = F (A)c and F ⋆(A) = F (Ac)c

for all A ⊆ X, will be called the complement and dual of F .

Remark 20.1. Hence, we can at once see that

F c = CY ◦ F and F ⋆ = F c ◦ CX .

Thus, in contrast to c , the operation ∗ not only involutive, but also increasing.

Moreover, to illustrate the appropriateness of Definition 20.1, we can state

Example 20.1. If R is a relation on X to Y and

FR(B) = clR(B)

for all B ⊆ Y , then by Theorem 10.1 we can see that

F ⋆
R (B) = FR(Bc)c = clR(Bc)c = intR(B)

for all B ⊆ Y .

Now, by using Definition 20.1, we can also easily prove the following

Theorem 20.1. The following assertions are equivalent :

(1) F c is increasingly G c–normal ;

(2) G ◦ CY is increasingly F ◦ CX–normal .

Proof. By the corresponding definitions, the following assertions are equiva-
lent :

(a) F c(A) ⊆ B ⇐⇒ A ⊆ Gc(B) for all A ⊆ X and B ⊆ Y ;

(b) F (A)c ⊆ B ⇐⇒ A ⊆ G (B)c) for all A ⊆ X and B ⊆ Y ;
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(c) B c ⊆ F (A) ⇐⇒ G (B) ⊆ Ac for all A ⊆ X and B ⊆ Y ;

(d) B ⊆ F (Ac) ⇐⇒ G (Bc) ⊆ A for all A ⊆ X and B ⊆ Y ;

(e) B ⊆ (F ◦ CX)(A) ⇐⇒ (G ◦ CY )(B) ⊆ A for all A ⊆ X and B ⊆ Y .

Moreover, by Definition 18.1, assertion (1) is equivalent to assertion (a), and as-
sertion (2) is equivalent to assertion (e). Thus, assertions (1) and (2) are also
equivalent.

From this theorem, by writing Gc in place of G, we can immediately derive

Corollary 20.1. The following assertions are equivalent :

(1) F c is increasingly G–normal ; (2) G⋆ is increasingly F ◦ CX–normal .

Moreover, from Theorem 20.1, by writing F c and Gc in place of F and G,
respectively, we can also derive the following

Theorem 20.2. The following assertions are equivalent :

(1) F is increasingly G–normal ; (2) G⋆ is increasingly F ⋆–normal .

Proof. By using Theorem 20.1, we can see that

(1) ⇐⇒ (F c)c is increasingly (G c)c–normal ⇐⇒
Gc ◦ CY is increasingly F c ◦ CX–normal ⇐⇒ (2) .

From this theorem, by writing F ⋆ in place of F , we can immediately derive

Corollary 20.2. The following assertions are equivalent :

(1) F ⋆ is increasingly G–normal ; (2) G⋆ is increasingly F–normal .

Moreover, from Theorem 20.2, by writing F ⋆ and G⋆ in place of F and G,
respectively, we can also derive the following

Theorem 20.3. The following assertions are equivalent :

(1) G is increasingly F–normal ; (2) F ⋆ is increasingly G⋆–normal .

Hence, by writing F ⋆ in place of F , we can immediately derive

Corollary 20.3. The following assertions are equivalent :

(1) G is F ⋆–normal ; (2) F is G⋆–normal .

Finally, we note that by using Theorem 20.1, we can also prove the following

Theorem 20.4. The following assertions are equivalent :

(1) F is decreasingly G–normal ;

(2) F c is increasingly G ◦ CY –normal ;

(3) Gc is increasingly F ◦ CX–normal .
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Proof. By the corresponding definitions, the following assertions are equiva-
lent :

(a) B ⊆ F (A) ⇐⇒ A ⊆ G (B) for all A ⊆ X and B ⊆ Y ;

(b) F (A)c ⊆ Bc ⇐⇒ A ⊆ G (B) for all A ⊆ X and B ⊆ Y ;

(c) F c(A) ⊆ Bc ⇐⇒ A ⊆ (G ◦ CY ) (Bc) for all A ⊆ X and B ⊆ Y ;

(d) F c(A) ⊆ B ⇐⇒ A ⊆ (G ◦ CY ) (B) for all A ⊆ X and B ⊆ Y .

Hence, since assertion assertion (1) is to assertion (a), and assertion (d) is equivalent
assertion (2), we can see that assertions (1) and (2) are equivalent.

Moreover, from Theorem 20.1, by writing G⋆ in place of G , we can see that
assertion (2) and (3) are also equivalent.

Remark 20.2. To obtain some more instructive reformulations of the corres-
ponding results of this section, we can use that F c = CY ◦ F and Gc = CX ◦ G .

21. Increasingly normal and regular functions of two variables

Notation 21.1. In this section, we shall assume that

(a) X (R) and Y (S) are gosets ;

(b) Φ is a function of X×Z to X for some set Z ;

(c) F is a function of X×Z to Y ; (d) G is a function of Z×Y to X.

Remark 21.1. An important case will be when

Φ (x, z) = G
(
z , F (x, z)

)
for all x ∈ X and z ∈ Z .

Now, analogously to Definition 12.1, we may also naturally introduce

Definition 21.1. We say that the function F is

(1) increasingly G–normal if for all x ∈ X, y ∈ Y and z ∈ Z we have

F (x, z) S y ⇐⇒ x R G (z, y) ;

(2) increasingly Φ–regular if for all u, v ∈ X and z ∈ Z we have

F (u, z) S F (u, z) ⇐⇒ u R Φ (v, z) .

Remark 21.2. Thus, the function F may, for instance, be naturally called
increasingly normal if it is increasingly G–normal for some function G .

And, the function F may, for instance, be naturally called uniquely increa-
singly normal if there exists a unique function G

F
such that F is increasingly

G
F
–normal.

Moreover, the function F may, for instance, be naturally called decreasingly
normal if it is increasing normal as a function of X (R)× Z to Y

(
S−1

)
.
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The study of increasingly normal and regular functions of two variables can be
easily traced back to that of those functions of one variable by using the following

Definition 21.2. For any x ∈ X, y ∈ Y and z ∈ Z , we define

fz (x) = F (x, z) , gz(y) = G (z, y) and φz (x) = Φ (x, z) .

Remark 21.3. Thus, if Φ is as in Remark 21.1, then we have

φz (x) = Φ (x, z) = G
(
z , F (x, z)

)
= G

(
z , fz (x)

)
= gz

(
fz (x)

)
= (gz ◦ fz )(x)

for all x ∈ X, y ∈ Y and z ∈ Z . Therefore, φz = gz ◦ fz for all z ∈ Z .

Now, as a useful consequence of our former definitions, we can easily establish

Theorem 21.1. The following assertions are true :

(1) F is increasingly G–normal if and only if fz is increasingly gz–normal for
all z ∈ Z ;

(2) F is increasingly Φ–regular if and only if fz is increasingly φz–regular for
all z ∈ Z .

Proof. For instance, if F is increasingly G–normal, then for any x ∈ X,
y ∈ Y and z ∈ Z , we have

fz (x) S y ⇐⇒ F (x, z) S y ⇐⇒ x R G (z, y) ⇐⇒ x R gz (y) .

Therefore, for any z ∈ Z, the function fz is increasingly gz–normal.

Now, by using this theorem, from our former results on increasingly normal
and regular functions of one variable we can easily derive several statements for
those functions of two variables.

Theorem 21.2. If F is increasingly G–normal and Φ is as in Remark 21.1,
then F is increasingly Φ–regular.

Theorem 21.3. If F is increasingly Φ–regular, Y = F [X×{z} ] for all
z ∈ Z , and Φ is as in Remark 21.1, then F is increasingly G–normal.

Proof. By Theorem 21.1, for each z ∈ Z , the function fz is φz–regular
and onto Y . Moreover, by Remark 21.3, we have φz = gz ◦ fz . Therefore, by
Theorem 12.2, the function fz is increasingly gz–normal. Thus, by Theorem 21.1,
the required assertion is also true.

Theorem 21.4. If F is increasingly normal (regular) and R is reflexive and
antisymmetric, then F is uniquely increasingly normal (regular).

Proof. For instance, if F is increasingly G–normal, then by Theorem 21.1 ,
for each z ∈ Z , the function fz is increasingly gz–normal. Thus, by Corollary
15.1 and Remark 15.1, we have

G (z, y) = gz (y) = max
(
Intfz (y)

)
=

max
( {

x ∈ X : fz (x) S y
} )

= max
( {

x ∈ X : F (x, z) S y
} )

for all x ∈ X, y ∈ Y and z ∈ Z . Thus, G is uniquely determined by F .
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Remark 21.4. Because of the above theorems, to illustrate the appropriateness
of our present definitions, it is enough to provide some important examples only
for normal functions of two variables.

22. Illustrating examples for normal functions of two variables

Notation 22.1. In this section, we shall assume that U is a relator
on X to Y .

Example 22.1. For all A ⊆ X, B ⊆ Y and U ∈ U , define

F (A , U ) = cl U−1(A) and G (U , B ) = intU (B) .

Then, F is a uniquely increasingly G–normal function of P (X)(⊆) × U to
P (Y )(⊆) .

To prove this, note that, by Corollary 10.1, we have

F (A , U ) ⊆ B ⇐⇒ cl U−1(A) ⊆ B ⇐⇒ A ⊆ intU (B) ⇐⇒ A ⊆ G (U , B )

for all A ⊆ X, B ⊆ Y and U ∈ U . Therefore, the function F is increasingly
G–normal. Moreover, by Theorem 21.4, it is also uniquely increasingly normal.

Remark 22.1. The
(
clU−1 , intU

)
increasing Galois connection can be used

to unify several particular theorems on relational inclusions [103] .

Remark 22.2. If in particular U is a function of X to Y , then by the usual
identification of singletons with their elements, for any x ∈ X and B ⊆ Y , we
have

x ∈ intU (B) ⇐⇒ U (x) ∈ B ⇐⇒ x ∈ U−1 [B ] ⇐⇒ x ∈ clU (B) .

Therefore, in this very particular case, the equality

intU (B) = clU (B) , and thus G (U , B ) = clU (B)

also holds for all B ⊆ Y .

Therefore, if U is a function of X to Y , then for any A ⊆ X and B ⊆ Y ,
we have not only

U [A ] ⊆ B ⇐⇒ A ⊆ U−1 [Bc ]c , but also U [A ] ⊆ B ⇐⇒ A ⊆ U−1 [B ] .

Of course, the latter equivalence can be more easily proved directly, without
using the induced closures and interiors. However, the use of these basic tools puts
this equivalence also a better perspective.

From Example 22.1, by using Theorems 21.1 and 20.2, we can also derive

Example 22.2. For all A ⊆ X, B ⊆ Y and U ∈ U , define

F (B, U ) = cl U (B) and G (U , A ) = intU−1(A) .

Then, F is a uniquely increasingly G–normal function of P (Y )(⊆) × U to
P (X)(⊆) .

From Example 22.1, by Theorem 21.1, we can see that, for any U ∈ U ,
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(a) f
U−1 is increasingly g

U−1–normal .

Hence, by using Theorem 20.2, we can infer that

(b) g ⋆
U−1

is increasingly f ⋆
U−1

–normal.

Moreover, by using Definition 20.1 and Theorem 10.1, we can see that

g ⋆

U−1
(B) = g

U−1 (B
c)c = intU (B

c)c = clU (B) = f
U
(B)

and
f ⋆

U−1
(A) = f

U−1 (A
c)c = clU−1(Ac)c = intU−1 (A) = g

U
(A)

for all B ⊆ Y and A ⊆ X. Therefore,

g ⋆

U−1
= f

U
and f ⋆

U−1
= g

U
,

and thus

(c) f
U

is increasingly g
U
–normal.

Therefore, by Theorem 21.1, we can also state that F is increasingly G–normal.
Moreover, by Theorem 21.4, it is also uniquely increasingly normal.

However, it is now more important to note that we can also state the following

Example 22.3. For all A ⊆ X, B ⊆ Y and U ∈ U , define

F (A, U ) = ubU (A) and G (U , B ) = lbU (B) .

Then, F is a uniquely decreasingly G–normal function of P (X)(⊆) × U to
P (Y )(⊆) .

To prove this, note that, by Corollary 4.1, we have

F (A, U ) ⊇ B ⇐⇒ ubU (A) ⊇ B ⇐⇒ A ⊆ lbU (A) ⇐⇒ A ⊆ G (U , B )

for all A ⊆ X, B ⊆ Y and U ∈ U . Thus, F is an increasingly G–normal
function of P (X)(⊆) to P (X)(⊇) . Moreover, by Theorem 21.4, it is also uniquely
increasingly normal. Thus, the required assertion is also true.

Remark 22.3. The
(
ubU , lbU

)
decreasing Galois connection can be used to

construct the Dedekind–MacNeille completions of posets [22, 72] .

Remark 22.4. This decreasing Galois connection is not independent of the
former increasing one

(
clU−1 , intU

)
.

Namely, by Theorems 4.1 and 10.4, we have

ubU = lbU−1 and lbU = cl cU c = intU ◦ CY .

From Example 22.2, by using Theorems 21.1 and 20.4, we can easily derive the
following two further examples.

Example 22.4. For all A ⊆ X, B ⊆ Y and U ∈ U , define

F (U , A ) = ubU (A)c and G (U , B ) = lbU (Bc) .

Then, F is a uniquely increasingly G–normal function of P (X)(⊆)× U to
P (Y )(⊆) .
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Example 22.5. For all A ⊆ X, B ⊆ Y and U ∈ U , define

F (U , B ) = lbU (B)c and G (U , A ) = ubU (Ac) .

Then, F is a uniquely increasingly G–normal function of P (Y )(⊆)× U to
P (X)(⊆) .

Remark 22.5. However, it is now more important to note that if F and G
are as in Notation 21.1, then by using the plausible notations

x ∗ z = F (x, z) and z • y = G (z, y) ,

the increasing G–normality of the function F can be expressed in the form that

(x ∗ z) S y ⇐⇒ x R (z • y)

for all x ∈ X, y ∈ Y and z ∈ Z .

Therefore, Definition 21.1 can be used to provide some reasonable generaliza-
tions of the residuated algebraic structures of Bonzio and Chajda [10] , for instance.

23. An interesting, preordered bigroupoid

Because of Remark 22.5, we may naturally consider the following

Notation 23.1. In this and the next two sections, we shall assume
that

(a) X (⩽) is a proset ;

(b) X (∗) and X (•) are groupoids ;

(c) for all x, y, z ∈ X, we have

x ∗ z ⩽ y ⇐⇒ x ⩽ z • y .

Remark 23.1. In this case, we shall say that the structure X ( ∗, •, ⩽) is an
increasingly normal, preordered bigroupoid.

To provide a more direct motivation for the above assumptions, we shall show
that if in particular X (∗, ⩽) is a preordered group and z • y = y ∗ z−1 for all
y, z ∈ X, then assumption (c) also holds.

Thus, our present notion of an increasingly normal, preordered bigroupoid is a
natural generalization of that of a preordered group.

Remark 23.2. Under assumptions (a)–(c), by defining

fz (x) = x ∗ z and gz (y) = z • y
and

φz (x) = (gz ◦ fz )(x) = gz
(
fz(x)

)
= gz

(
x ∗ z) = z • (x ∗ z)

for all x, y, z ∈ X, we can see that fz , gz and φz are functions of X (⩽) to
itself, for each z ∈ X, such that :

(1) fz is increasingly gz–normal ; (2) fz is increasingly φz–regular .
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Therefore, by using our former results on regular and normal functions, we can
easily establish several basic properties of the structure X ( ∗, •, ⩽) .

For instance, from the corresponding results of Sections 12–16, by using Remark
23.1, we can easily derive the following theorems, and also their certain duals.

Theorem 23.1. For each x1 , x2 , z ∈ X,

(1) x1 ⩽ x2 implies x1 ∗ z ⩽ x2 ∗ z ;

(2) x1 ⩽ x2 implies z • x1 ⩽ z • x2 ;

(3) x1 ∗ z ⩽ x2 ∗ z if and only if z • (x1 ∗ z) ⩽ z • (x2 ∗ z) .

Proof. By Theorem 13.3, the functions fz and gz are is increasing. Thus,
assertions (1) and (2) are true.

Moreover, from Corollary 13.1, we can see that Ordfz = Ordφz . Therefore,
for any x1 , x2 ∈ X, we have

fz(x1) ⩽ fz(x2) ⇐⇒ φz(x1) ⩽ φz(x2) .

Thus, assertion (3) is also true.

Theorem 23.2. For each x, y, z ∈ X, we have

(1) x ⩽ z • (x ∗ z) ; (2) (z • y) ∗ z ⩽ y ;

(3)
(
z • (x ∗ z)

)
∗ z ⩽ x ∗ z and x ∗ z ⩽

(
z • (x ∗ z)

)
∗ z .

Proof. By Theorem 13.3, we also have x ⩽ φz(x) ,

fz
(
φz(x)

)
⩽ fz(x) and fz(x) ⩽ fz

(
φz(x)

)
.

Thus, assertions (1) and (3) are true. Assertion (2) also follows from Theorem 13.3.
Moreover, it is also immediate from the inequality z • y ⩽ z • y by property (c).

Theorem 23.3. For each y, z ∈ X, we have

(1) z • y ∈ max
( {

x ∈ X : x ∗ z ⩽ y
} )

;

(2)
{
x ∈ X : x ∗ z ⩽ y

}
=

{
x ∈ X : x ⩽ z • y

}
.

Proof. By Theorems 15.2 and 15.1, we have

gz(y) ∈ max
(
Intfz (y)

)
and Intfz (y) = lb

(
gz(y)

)
.

Hence, by using that

Intfz (y) =
{
x ∈ X : fz(x) ⩽ y

}
and lb

(
gz(y)

)
=

{
x ∈ X : x ⩽ gz(y)

}
,

we can see that assertions (1) and (2) are true.

Remark 23.3. If in particular X (⩽) is a poset, then in assertion (1) the
equality also holds.

Therefore, in this particular case, the operation • is uniquely determined by
the operation ∗ .
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Theorem 23.4. If X (⩽) is a poset, then for each z ∈ X, the following
assertions are equivalent :

(1) X = z •X ;

(2) x = z • (x ∗ z) for all x ∈ X;

(3) x1 ∗ z = x2 ∗ z implies x1 = x2 for all x1 , x2 ∈ X.

Proof. By Theorem 14.2, the following assertions are equivalent :

(a) X = gz [X ] ;

(b) x = φz(x) for all x ∈ X;

(c) fz(x1) = fz(x1) implies x1 = x2 .

Hence, since

gz [A ] =
{
gz(y) : y ∈ A

}
= { z • y : y ∈ A

}
= z •A ,

for all A ⊆ X, we can see that assertions (1)–(3) are also equivalent.

Theorem 23.5. For each z ∈ X, we have

(1) lb
(
ub (A)

)
∗ z ⊆ lb

(
ub

( {
x ∗ z : x ∈ A

}))
for all A ⊆ X;

(2) max
({
x ∈ X : x ∗ z ⩽ y

})
= sup

({
x ∈ X : x ∗ z ⩽ y

})
for all y ∈ X.

Proof. By Theorem 16.1 and its corollary, we have

(a) fz
[
lb
(
ub(A)

) ]
⊆ lb

(
ub

(
fz [A ]

))
for all A ⊆ X;

(b) max
(
Intfz (y)

)
= sup

(
Intfz (y)

)
for all y ∈ X.

Hence, by using that

fz [A ] =
{
fz(x) : x ∈ A

}
=

{
x ∗ z : x ∈ A

}
= A ∗ z

and Intfz (y) = {x ∈ X : x ∗ z ⩽ y } , we can see that assertions (1) and (2) are
true.

Remark 23.4. If X (⩽) is sup–complete, then by Theorem 16.2, we can see
that, for each z ∈ X and A ⊆ X,

sup (A) ∗ z ⊆ sup (A ∗ z ) .

If in particular X (⩽) is poset then the equality also holds.

24. Some further theorems on increasingly normal bigroupoids

Theorem 24.1. If 1 is a left identity of X (∗) , then for any x, y ∈ X we
have

x ⩽ y ⇐⇒ 1 ⩽ x • y .
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Proof. By the corresponding definitions, we have

x ⩽ y ⇐⇒ 1 ∗ x ⩽ y ⇐⇒ 1 ⩽ x • y .

Corollary 24.1. If 1 is a left identity of X (∗) , then for any x, y ∈ X we
have

(1) 1 ⩽ 1 • 1 ; (1) 1 ⩽ x • x ;

(3) x ⩽ 1 ⇐⇒ 1 ⩽ x • 1 ; (4) 1 ⩽ y ⇐⇒ 1 ⩽ 1 • y .

Theorem 24.2. If 1 is a left identity of X (∗) , then for any x, y, z ∈ X

(1) x ⩽ 1 =⇒ x ⩽ y • y =⇒ x ∗ y ⩽ y ;

(2) 1 ⩽ x • y and z ⩽ 1 =⇒ x ∗ z ⩽ y =⇒ x ⩽ z • y if ∗ is commutative .

Proof. By Corollary 24.1, we have 1 ⩽ y • y . Hence, if x ⩽ 1 , then by using
the transitivity of ⩽ , we can infer x ⩽ y • y . This implies x ∗ y ⩽ y , and thus
assertion (1) is true.

Moreover, by Theorems 24.1 and 23.1,

1 ⩽ x • y =⇒ x ⩽ y =⇒ x ∗ z ⩽ y ∗ z ,

and

z ⩽ 1 =⇒ z ∗ y ⩽ 1 ∗ y =⇒ z ∗ y ⩽ y =⇒ y ∗ z ⩽ y

if ∗ is commutative. Hence, by using the transitivity of ⩽ , we can infer that
x ∗ z ⩽ y . This implies x ⩽ z • y , and thus assertion (2) is also true.

Remark 24.1. If X (⩽) is a poset and 1 is a left identity of X (∗) such that
x ⩽ 1 for all x ∈ X, then by Theorem 24.1, for any x, y ∈ X, we have

x ⩽ y ⇐⇒ x • y = 1 .

Theorem 24.3. If 1 is a right identity of X (∗) , then for any x, y ∈ X we
have

x ⩽ y ⇐⇒ x ⩽ 1 • y .

Proof. By the corresponding definitions, we have

x ⩽ y ⇐⇒ x ∗ 1 ⩽ y ⇐⇒ x ⩽ 1 • y .

Corollary 24.2. If 1 is a right identity of X (∗) , then for any x, y ∈ X we
have

(2) 1 ⩽ 1 • 1 ; (1) x ⩽ 1 • x ;

(3) x ⩽ 1 ⇐⇒ x ⩽ 1 • 1 ; (4) 1 ⩽ y ⇐⇒ 1 ⩽ 1 • y .

Theorem 24.4. If 1 is a right identity of X (∗) , then for any x, y, z ∈ X

(1) 1 • x ⩽ 1 =⇒ 1 ⩽ x ;

(2) x ⩽ 1 • y and z ⩽ 1 =⇒ x ∗ z ⩽ y =⇒ x ⩽ z • y if ∗ is commutative .
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Proof. By Corollary 24.2, we have x ⩽ 1 • x . Hence, if 1 • x ⩽ 1 , then by
using the transitivity of ⩽ , we can infer 1 ⩽ x . Therefore, assertion (1) is true.

Moreover, by Theorems 24.3 and 23.1,

x ⩽ 1 • y =⇒ x ⩽ y =⇒ x ∗ z ⩽ y ∗ z ,
and

z ⩽ 1 =⇒ z ∗ y ⩽ 1 ∗ y =⇒ y ∗ z ⩽ y ∗ 1 =⇒ y ∗ z ⩽ y

if ∗ is commutative. Hence, by using the transitivity of ⩽ , we can infer that
x ∗ z ⩽ y . This implies that x ⩽ z • y , and thus assertion (2) is also true.

Theorem 24.5. If 1, x, x−1 ∈ X such that x−1 ∗x = 1 , then for any y ∈ X
we have

1 ⩽ y ⇐⇒ x−1 ⩽ x • y .

Proof. By the corresponding assumptions, we have

1 ⩽ y ⇐⇒ x−1 ∗ x ⩽ y ⇐⇒ x−1 ⩽ x • y .

Corollary 24.3. Under the assumptions of Theorem 24.5, x−1 ⩽ x • 1 .

Corollary 24.4. If X (⩽) is a poset, then under the assumptions of Theorem
24.5, for any y ∈ X with y ⩽ 1 , we have y = 1 ⇐⇒ x−1 ⩽ x • y .

Theorem 24.6. If 1, x, x−1 ∈ X such that x∗x−1 = 1 , then for any y ∈ X

1 ⩽ y ⇐⇒ x ⩽ x−1 • y .

Proof. By the corresponding assumptions, we have

1 ⩽ y ⇐⇒ x ∗ x−1 ⩽ y ⇐⇒ x ⩽ x−1 • y .

Corollary 24.5. Under the assumptions of Theorem 24.6, x ⩽ x−1 • 1 .

Corollary 24.6. If X (⩽) is a poset, then under the assumptions of Theorem
24.6, for any y ∈ X with y ⩽ 1 , we have y = 1 ⇐⇒ x ⩽ x−1 • y .

Theorem 24.7. If x is an idempotent of X (∗) , then for any y ∈ X we have

x ⩽ y ⇐⇒ x ⩽ x • y .

Proof. By the corresponding definitions, we have

x ⩽ y ⇐⇒ x ∗ x ⩽ y ⇐⇒ x ⩽ x • y .

Corollary 24.7. If x is an idempotent of X (∗) , then x ⩽ x • x .

Theorem 24.8. If 0 is a left zero of X (∗) , then for any x, y ∈ X we have

0 ⩽ y ⇐⇒ 0 ⩽ x • y

Proof. By the corresponding definitions, we have

0 ⩽ y ⇐⇒ 0 ∗ x ⩽ y ⇐⇒ 0 ⩽ x • y .

Corollary 24.8. If 0 is a left zero of X (∗) , then for any x, y ∈ X we have

(1) 0 ⩽ 0 • 0 ; (2) 0 ⩽ x • 0 ; (3) 0 ⩽ y ⇐⇒ 0 ⩽ 0 • y .
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Theorem 24.9. If 0 is a right zero of X (∗) , then for any x, y ∈ X we have

0 ⩽ y ⇐⇒ 0 ⩽ x • y

Proof. By the corresponding definitions, we have

0 ⩽ y ⇐⇒ x ∗ 0 ⩽ y ⇐⇒ x ⩽ 0 • y .

Corollary 24.9. If 0 is a right zero of X (∗) , then for any x, y ∈ X we
have

(1) 0 ⩽ 0 • 0 ; (2) x ⩽ 0 • 0 ; (3) 0 ⩽ y ⇐⇒ 0 ⩽ 0 • y .

Remark 24.2. Note that only a very few statements needed the reflexivity and
the transitivity of the relation ⩽ .

25. Some consequences of the commutativity and associativity of ∗

Theorem 25.1. If X (∗) is commutative, then for any x, y ∈ X we have

x ⩽ y • (y ∗ x) .

Proof. By the corresponding assumptions, it is clear that

x ∗ y = y ∗ x =⇒ x ∗ y ⩽ y ∗ x =⇒ x ⩽ y • (y ∗ x) ,
and thus the required assertion is true.

Theorem 25.2. If X (∗) is a semigroup, then for any x, y, z, w ∈ X we
have

(1) x ∗ y ⩽ z • w ⇐⇒ x ⩽ (y ∗ z) • w ;

(2) x • (y • z) ⩽ (x ∗ y) • z ; (3) (x ∗ y) • z ⩽ x • (y • z) .

Proof. By the corresponding assumptions, we have

x ∗ y ⩽ z • w ⇐⇒ (x ∗ y) ∗ z ⩽ w ⇐⇒ x ∗ (y ∗ z) ⩽ w ⇐⇒ x ⩽ (y ∗ z) • w .
Thus, assertion (1) is true.

Because of the reflexivity of ⩽ , we have

x • (y • z) ⩽ x • (y • z) .
Hence, by using assumption (c) in Notation 23.1, we can infer that(

x • (y • z)
)
∗ x ⩽ y • z , and thus also

((
x • (y • z)

)
∗ x

)
∗ y ⩽ z .

Hence, by using the corresponding assumptions, we can infer that(
x • (y • z)

)
∗ (x ∗ y) ⩽ z , and thus also x • (y • z) ⩽ (x ∗ y) • z .

Therefore, assertion (2) is also true.

On the other hand, by assertion (2) in Theorem 23.2 and the associativity of
∗ , we have(

(x ∗ y) • z
)
∗ (x ∗ y) ⩽ z , and thus also

((
(x ∗ y) • z

)
∗ x

)
∗ y ⩽ z .



186 Á. SZÁZ

Hence, by using assumption (c) in Notation 23.1, we can infer that(
(x ∗ y) • z

)
∗ x ⩽ y • z , and thus also (x ∗ y) • z ⩽ x • (y • z) .

Therefore, assertion (3) is also true.

Corollary 25.1. If X (∗) is a commutative semigroup, then for any x, y, z ∈
X we have

x • (y • z) ⩽ y • (x • z) .

Proof. By using assertion (2) in Theorem 25.2 and the commutativity of ∗ ,
we can see that

x • (y • z) ⩽ (x ∗ y) • z = (y ∗ x) • z ⩽ y • (x • z) .
Therefore, by the transitivity of ⩽ , the required inequality is also true.

Theorem 25.3. If X (⩽) is a poset, then the following assertions are equiva-
lent :

(1) X (∗) is a semigroup ;

(2) (x ∗ y) • z = x • (y • z) for all x, y, z ∈ X.

Proof. If assertion (1) holds, then by assertions (2) and (3) in Theorem 25.2
and the antisymmetry of ⩽ , we can at once see that assertion (2) also holds.
Therefore, we need only prove the converse implication.

For this, note that if assertion (2) holds, then by Remark 23.2 we have

gx∗y(z) = (x ∗ y) • z = x • (y • z) = x • gy (z) = gx
(
gy (z)

)
= (gx ◦ gy )(z)

for all x, y, z ∈ X, and thus
gx∗y = gx ◦ gy

for all x, y ∈ X.

Moreover, by Remark 23.2 and Theorem 12.3, we can see that, for any x, y ∈
X,

(a) gx is increasingly fx–normal ;

(b) gy is increasingly fy–normal ; (c) gx∗y increasingly fx∗y–normal ;

as functions of X (⩾) to itself.

On the other hand, from assertions (a) and (b), by using Theorem 12.4, we can
infer that

(d) gx∗y = gx ◦ gy is increasingly fy ◦ fx–normal,

as a function of X (⩾) to itself ;

Therefore, by Corollary 15.2, we necessarily have

fx∗y = fy ◦ fx
for all x, y ∈ X, and thus also

fx∗y(z) = (fy ◦ fx)(z) = fy
(
fx(z)

)
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for all x, y, z ∈ X. Hence, by using Remark 23.1, we can infer that

z ∗ (x ∗ y) = fx∗y (z) = fy
(
fx(z)

)
= fy (z ∗ x) = (z ∗ x) ∗ y

for all x, y, z ∈ X. Thus, assertion (1) also holds.

Remark 25.1. Note that the implication (1) =⇒ (2) can also be proved by
using a similar argument.

However, it would now be more important to give a shorter direct proof for the
implication (2) =⇒ (1) too.

Theorem 25.4. If X (⩽) is a poset and X (∗) is a semigroup such that

(1) X (∗) has a right identity 1 ;

(2) each x ∈ X has a right inverse x−1 in X (∗) ;

then for any y, z ∈ X we have

z • y = y ∗ z−1 .

Proof. By assertion (1) in Theorem 23.1 and the corresponding assumptions,
for any x, y, z ∈ X,

x ∗ z ⩽ y =⇒ (x ∗ z) ∗ z−1 ⩽ y ∗ z−1 =⇒
x ∗ (z ∗ z−1) ⩽ y ∗ z−1 =⇒ x ∗ 1 ⩽ y ∗ z−1 =⇒ x ⩽ y ∗ z−1 .

Moreover, by using that

z−1 ∗ z =
(
z−1 ∗ z

)
∗ 1 = (z−1 ∗ z) ∗

(
z−1 ∗

(
z−1

)−1
)
=(

z−1 ∗
(
z ∗ z−1

))
∗
(
z−1

)−1
=

(
z−1 ∗ 1

)
∗
(
z−1

)−1
= z−1 ∗

(
z−1

)−1
= 1 ,

we can also see that

x ⩽ y ∗ z−1 =⇒ x ∗ z ⩽
(
y ∗ z−1

)
∗ z =⇒

x ∗ z ⩽ y ∗
(
z−1 ∗ z

)
=⇒ x ∗ z ⩽ y ∗ 1 =⇒ x ∗ z ⩽ y .

Therefore, we actually have

x ∗ z ⩽ y ⇐⇒ x ⩽ y ∗ z−1 .

Hence, by using Remark 23.2 and Corollary 15.2, we can infer that z•y = y∗z−1 .

Remark 25.2. If X (∗) is a semigroup such that assumptions (1) and (2) hold,
then X (∗) is actually a group [76, p. 6] .

Namely, if z ∈ X, then addition to z−1 ∗ z = 1 we also have

1 ∗ z =
(
z ∗ z−1

)
∗ z = z ∗

(
z−1 ∗ z

)
= z ∗ 1 = z .
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26. Illustrating examples for increasingly normal bigroupoids

In addition to Theorem 25.4, we can also easily establish the following

Example 26.1. Suppose that X (⩽) is a goset and X (∗) is a semigroup such
that

(1 X (∗) has a right identity 1 ;

(2) each x ∈ X has a right inverse x−1 in X (∗) ;

(3) x1 ⩽ x2 implies x1 ∗ y ⩽ x1 ∗ y for all x1 , x2 , y ∈ X .

For any y, z ∈ Z , define

z • y = y ∗ z−1 .

Then, X (∗, •, ⩽) is an increasingly normal, generalized ordered bigroupoid.

Namely, by the above assumptios, for any x, y, z ∈ X

x ∗ z ⩽ y =⇒ (x ∗ z) ∗ z−1 ⩽ y ∗ z−1 =⇒ x ∗
(
z ∗ z−1

)
⩽ y ∗ z−1 =⇒

x ∗ 1 ⩽ y ∗ z−1 =⇒ x ⩽ y ∗ z−1 . =⇒ x ⩽ z • y .

Moreover, by using the former observation that z−1 ∗ z = 1 , we can also see that

x ⩽ z • y =⇒ x ⩽ y ∗ z−1 =⇒ x ∗ z ⩽
(
y ∗ z−1

)
∗ z =⇒

x ∗ z ⩽ y ∗
(
z−1 ∗ z

)
=⇒ x ∗ z ⩽ y ∗ 1 =⇒ x ∗ z ⩽ y .

Therefore, the equivalence x ∗ z ⩽ y ⇐⇒ x ⩽ z • y also holds.

Remark 26.1. The operation • has several useful additional properties. How-
ever, of course, it need not be either commutative or associative even if the operation
∗ is commutative.

To see this, for instance, take X = ] 0 , +∞ [ , with the usual multiplication
and inequality. Moreover, for all y, z ∈ X, define

z • y = y · z−1.

Then, we have

x • 1 = 1 · x−1 = x−1 and 1 • x = x · 1−1 = x · 1 = x

for all x ∈ X. Therefore, for instance, 2 • 1 = 2−1 and 1 • 2 = 2 , and thus
2 • 1 ̸= 1 • 2 .

Moreover, for instance, we have

2 • (3 • 1) = 2 • 3−1= 3−1 · 2−1

and

(2 • 3) • 1 =
(
2 • 3)−1=

(
3 · 2−1

)−1
= 2 · 3−1,

and thus 2 • (3 • 1) ̸= (2 • 3) • 1 .
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Example 26.2. Suppose that X (∗) is a groupoid. For all A, B, C ⊆ X,
define

A ∗ C = { a ∗ c : a ∈ A , c ∈ C
}

and C •B =
{
x ∈ X : x ∗ C ⊆ B

}
.

Then, P (X)(∗, •,⊆) is an increasingly normal, partially ordered bigroupoid.

To prove this, for all A, C ⊆ X, define

FC (A) = A ∗ C and GC (B) = C •B

Then, for any A, C ⊆ X we have

FC (A) = A ∗ C =
⋃

x∈A x ∗ C =
⋃

x∈A FC (x) .

Thus, by Theorem 19.4 and Corollary 18.3, the function FC is increasingly GFC
–

normal.

Moreover, by Definition 18.2, for any B, C ⊆ X, we have

GFC
(B) =

{
x ∈ X : FC (x) ⊆ B

}
=

{
x ∈ X : x ∗ C ⊆ B

}
= GC (B) .

Therefore, GFC
= GC , and thus FC is also increasingly GC–normal. That is, for

any A, B, C ⊆ X, we have

A ∗ C ⊆ B ⇐⇒ FC (A) ⊆ B ⇐⇒ A ⊆ GC (B) ⇐⇒ A ⊆ C •B .

Example 26.3. Suppose that X is a set. For all A, B, C ⊆ X, define

A ∗ C = A ∩ C and C •B = B ∪ C c .

Then, P (X)(∗, •,⊆) is an increasingly normal, partially ordered bigroupoid.

To prove this, for all A, C ⊆ X, define

FC (A) = A ∗ C and GC (B) = C •B

Then, for any A, C ⊆ X, we have

FC (A) = A ∩ C =
(⋃

x∈A {x}
)
∩ C =

⋃
x∈A

(
{x} ∩ C ) =

⋃
x∈A FC (x) .

Thus, by Theorem 19.4 and Corollary 18.3, the function FC is increasinglyGFC
–

normal.

Moreover, by Definition 18.2, for any B, C ⊆ X, we have

GFC
(B) =

{
x ∈ X : FC (x) ⊆ B

}
={

x ∈ X : {x} ∩ C ⊆ B
}
= (C ∩B) ∪ C c = B ∪ C c = GC (B) .

Namely, we have B = X ∩ B = (C ∪ C c) ∩ B = (C ∩ B) ∪ (C c ∩ B) , and thus
also B ∪ C c = (C ∩B) ∪

(
(C c ∩ B) ∪ C c

)
= (C ∩B) ∪ C c .

Therefore, GFC
= GC , and thus FC is also increasingly GC–normal. That

is, for any A, B, C ⊆ X, we have

A ∗ C ⊆ B ⇐⇒ FC (A) ⊆ B ⇐⇒ A ⊆ GC (B) ⇐⇒ A ⊆ C •B .
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Example 26.4. Suppose that X is a set. For all R, S, T ⊆ X 2, define

R ∗ T = T ◦R and T •B =
(
S c ∗ T −1

)c
.

Then, P (X 2)(∗, •,⊆) is an increasingly normal, partially ordered bigroupoid.

To prove this, by using Theorem 10.1 and Corollary 10.1, we can note that, for
any x ∈ X,

(R ∗ T )(x) ⊆ S (x) ⇐⇒ (T ◦R)(x) ⊆ S (x) ⇐⇒ T [R (x) ] ⊆ S (x) ⇐⇒
clT −1

(
R (x)

)
⊆ S (x) ⇐⇒ R (x) ⊆ intT

(
S (x)

)
⇐⇒

R (x) ⊆ clT
(
S (x)c

)c ⇐⇒ R (x) ⊆ T −1[S (x)c ]c ⇐⇒

R (x) ⊆
(
T −1 ◦ S c

)c
(x) ⇐⇒ R (x) ⊆

(
S ∗ T −1

)c
(x) .

Therefore,

R ∗ T ⊆ S ⇐⇒ R ⊆
(
S ∗ T −1

)c ⇐⇒ R ⊆ T • S .
Thus, the required assertion is also true.

Remark 26.2. By taking T ⊆ X 2 and defining

FT (R) = R ∗ T and GT = T • S
for all R, S ⊆ X 2 , we can note that

GFT
(S) =

{
(x, y) ∈ X 2 : FT (x, y) ⊆ S

}
=

{
(x, y) ∈ X 2 : T ◦{(x, y)} ⊆ S

}
for all S ⊆ X 2 , and moreover FT is increasingly GT –normal.

Therefore, the equality(
S c ∗ T −1

)c
= T • S = GT (S) = GFT

(S) =
{
(x, y) ∈ X 2 : T ◦ {(x, y)} ⊆ S

}
has to be true.

To prove it directly, by our former computations, it is enough to show only
that y ∈ intT

(
S (x)

)
⇐⇒ T (y) ⊆ S (x) ⇐⇒ T ◦ {(x, y)} ⊆ S

for all x, y ∈ X.
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16. S. Buglyó and Á. Száz, A more important Galois connection between distance functions and

inequality relations, Sci. Ser. A Math. Sci. (N.S.) 18 (2009), 17–38.
17. I. Chajda and H. Länger, Groupoids corresponding to relational systems, Miskolc Math. Notes

17 (2016), 111–118.

18. I. Chajda and H. Länger, Residuated operators in complemented posets, 2018.
19. I. Chajda and H. Länger, Residuation in finite posets, Math. Slovaca 71 (2021), 807–820.

20. I. Chajda and H. Länger, Sheffer operation in relational systems, Soft Computing, 2021.
21. S. Cobzas, Ekeland, Takahashi and Caristi principles in quas–metric spaces, Topology Appl.

265 (2019), 1–22.

22. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University
Press, Cambridge, 2002.
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