
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE

ISSN (p) 2303-4866, ISSN (o) 2303-4947
www.imvibl.org /JOURNALS / JOURNAL
J. Int. Math. Virtual Inst., 12(1)(2022), 87-102

DOI: 10.7251/JIMVI2201087O

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)
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Abstract. The aim of this work is to define a Sheffer stroke BM-algebra and
to study some of its features. It is indicated that the axioms of a Sheffer stroke

BM-algebra are independent. The relationship between a Sheffer stroke BM-

algebra and a BM-algebra is stated. By presenting fundamental notions about
Sheffer stroke B-algebras, it is proved that every Sheffer stroke BM-algebra

is a Sheffer stroke B-algebra. After determining 0-commutative Sheffer stroke

B-algebra, a Sheffer stroke Coxeter algebra and an associative Sheffer stroke
BM-algebra, the relationships between this algebraic structures are shown.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras [5, 6]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In 1983, Hu and Li [3, 4] introduced a new
class of algebras so-called BCH-algebras. They have shown that the class of BCI-
algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S.
Kim [11] introduced the notion of a B-algebra. C. B. Kim and H. S. Kim defined
BG-algebras [7] and BM-algebras [8]. H. S. Kim, Y. H. Kim and J. Neggers [9]
introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra
is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean
group.

The Sheffer stroke operation was originally introduced by H. M. Sheffer [19].
Since any Boolean function or operation can be stated by only this operation [10],
it engages many researchers’ attention. So, many researchers want to use this
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operation on their studies. Also, some applications of this operation has been ap-
peared in algebraic structures such as Sheffer stroke non-associative MV-algebras
[1] and filters [14], (fuzzy) filters of Sheffer stroke BL-algebras [15], Sheffer stroke
Hilbert algebras [12] and filters [13], Sheffer stroke UP-algebras [16], Sheffer stroke
BG-algebras [17], Sheffer stroke BCK-algebras [18] and Sheffer operation in ortho-
lattices [2].

After giving basic definitions and notions about a Sheffer stroke and a BM-
algebra, it is defined a Sheffer stroke BM-algebra. It is stated that the axioms of
a Sheffer stroke BM-algebra are independent. By presenting fundamental notions
about this algebraic structure, it is denoted the connection between a Sheffer stroke
BM-algebra and a BM-algebra. It is proved that every Sheffer stroke BM-algebra is
a Sheffer stroke B-algebra. A 0-commutative Sheffer stroke B-algebra is determined
and it is shown that 0-commutative Sheffer stroke B-algebra is a Sheffer stroke BM-
algebra. It is demonstrated that a Sheffer stroke B-algebra is a Sheffer stroke BM-
algebra under one condition. It is proved that an algebra (A, |, 0) is a 0-commutative
Sheffer stroke B-algebra if and only if it is a Sheffer stroke BM-algebra. Finally,
a Sheffer stroke Coxeter algebra and an associative Sheffer stroke BM-algebra are
defined and the relationship between this algebraic structures are shown.

2. Preliminaries

In this part, we give the basic definitions and notions about a Sheffer stroke, a
BM-algebra and related algebras.

Definition 2.1. [1] Let A = 〈A, |〉 be a groupoid. The operation | is said to
be Sheffer stroke if it satisfies the following conditions:

(S1) a1 | a2 = a2 | a1,
(S2) (a1 | a1) | (a1 | a2) = a1,
(S3) a1 | ((a2 | a3) | (a2 | a3)) = ((a1 | a2) | (a1 | a2)) | a3,
(S4) (a1 | ((a1 | a1) | (a2 | a2))) | (a1 | ((a1 | a1) | (a2 | a2))) = a1.

Definition 2.2. [8] A BM-algebra is a non-empty set A with a constant 0 and
a binary operation “∗” satisfying the following axioms:
(BM.1) a1 ∗ 0 = a1,
(BM.2) (a3 ∗ a1) ∗ (a3 ∗ a2) = a2 ∗ a1,
for all a1, a2, a3 ∈ A.

A BM-algebra is called bounded if it has the greatest element.

Definition 2.3. [11] A B-algebra is a non-empty set A with a constant 0 and
a binary operation ∗ satisfying the following axioms:
(i) a1 ∗ a1 = 0,
(ii) a1 ∗ 0 = a1,
(iii) (a1 ∗ a2) ∗ a3 = a1 ∗ (a3 ∗ (0 ∗ a2)),
for all a1, a2, a3 ∈ A.

Definition 2.4. [9] A Coxeter algebra is a non-empty set with a constant 0
and a binary operation “ ∗ ” satisfying the following axioms:
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(C.1) a1 ∗ a1 = 0,
(C.2) a1 ∗ 0 = a1,
(C.3) (a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3),
for all a1, a2, a3 ∈ A.

Definition 2.5. [9] An algebra (A, ∗, 0) is called a pre-Coxeter algebra if it
satisfies the axioms:
(i) a1 ∗ a1 = 0,
(ii) a1 ∗ 0 = a1,
(iii) if a1 ∗ a2 = 0 = a2 ∗ a1, then a1 = a2,
(iv) a1 ∗ a2 = a2 ∗ a1,
for all a1, a2 ∈ A.

Definition 2.6. [17] A Sheffer stroke B-algebra is an algebra (A, |, 0) of type
(2, 0), where A is a non-empty set, 0 is the constant in A and | is Sheffer stroke on
A, such that the following identities are satisfied for all a1, a2, a3 ∈ A:
(sB.1) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0,
(sB.2) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = (a1 | (a3 | (0 | (a2 | a2)))).

Example 2.1. [17] Consider (A, |, 0) with the following Hasse diagram, where
A = {0, x, y, 1}:

Figure 1

The binary operation | on A has Cayley table as follow:

| 0 x y 1
0 1 1 1 1
x 1 y 1 y
y 1 1 x x
1 1 y x 0

Then this structure is a Sheffer stroke B-algebra.

Definition 2.7. [17] A Sheffer stroke BG-algebra is an algebra (A, |, 0) of type
(2, 0) such that 0 is the constant in A and the following axioms are satisfied:
(sBG.1) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0 ,



90 ONER, KALKAN, HAMAL, AND KIBAR

(sBG.2) (0 | (a2 | a2)) | ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) = a1 | a1,
for all a1, a2 ∈ A.

3. Sheffer stroke BM-algebras

In this part, we define a Sheffer stroke BM-algebra and give some properties.

Definition 3.1. A Sheffer stroke BM-algebra is an algebra (A, |, 0) of type
(2, 0) such that 0 is the constant in A and the following axioms are satisfied:
(sBM.1) (a1 | (0 | 0)) | (a1 | (0 | 0)) = a1 ,
(sBM.2) ((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2)) = a2 | (a1 | a1),
for all a1, a2, a3 ∈ A.

Let A be a Sheffer stroke BM-algebra, unless otherwise is indicated.

Lemma 3.1. The axioms (sBM.1) and (sBM.2) are independent.

Proof. (1) Independence of (sBM.1):
We construct an example for this axiom which is false while (sBM.2) is true.

Let ({0, 1}, |1) be the groupoid defined as follows:

|1 0 1
0 0 1
1 0 0

Then |1 satisfies (sBM.2) but not (sBM.1) when a1 = 1.
(2) Independence of (sBM.2):

We construct an example for this axiom which is false while (sBM.1) is true.
Let ({0, 1}, |2) be the groupoid defined as follows:

|2 0 1
0 0 0
1 1 1

Then |2 satisfies (sBM.1) but not (sBM.2) when a1 = 1, a2 = 0 and a3 = 1. �

Lemma 3.2. Let A be a Sheffer stroke BM-algebra. Then the following features
hold for all a1, a2, a3 ∈ A:

(1) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0,
(2) (0 | (0 | (a1 | a1))) = a1 | a1,
(3) 0 | (a1 | (a2 | a2)) = a2 | (a1 | a1),
(4) ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | (a3 | a3)) = a1 | (a2 | a2),
(5) a1 | (a2 | a2) = 0 | 0 if and only if a2 | (a1 | a1) = 0 | 0,
(6) (a1 | (a1 | a1)) | (a1 | a1) = a1,
(7) a1 | ((a1 | (a2 | a2)) | (a2 | a2)) | ((a1 | (a2 | a2)) | (a2 | a2))) = 0 | 0,
(8) (0 | 0) | (a1 | a1) = a1,
(9) a1 | ((a2 | (a3 | a3)) | (a2 | (a3 | a3))) = a2 | ((a1 | (a3 | a3)) | (a1 | (a3 |

a3))),
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(10) ((a1 | (a1 | (a2 | a2))) | (a1 | (a1 | (a2 | a2)))) | (a2 | a2) = 0 | 0.

Proof. (1) Substituting [a1 := 0] and [a2 := 0] in (sBM.2), we obtain
((a3 | (0 | 0)) | (a3 | (0 | 0))) | (a3 | (0 | 0)) = 0 | (0 | 0). From (sBM.1)
and (S2), we get a3 | (a3 | a3) = 0 | 0. Then we have (a3 | (a3 | a3)) | (a3 |
(a3 | a3)) = 0, for all a3 ∈ A.

(2) Substituting [a3 := 0] and [a1 := 0] in (sBM.2), we obtain ((0 | (0 | 0)) |
(0 | (0 | 0))) | (0 | (a2 | a2)) = a2 | (0 | 0). Applying (sBM.1) and (S2),
we have 0 | (0 | (a2 | a2)) = a2 | a2, for all a2 ∈ A.

(3) Using (sBM.2) with [a3 := a1], we get ((a1 | (a1 | a1)) | (a1 | (a1 | a1))) |
(a1 | (a2 | a2)) = a2 | (a1 | a1). By using (1), we have 0 | (a1 | (a2 | a2)) =
a2 | (a1 | a1).

(4) By using (sBM.2) and (3), we obtain
((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | (a3 | a3))

= ((0 | (a3 | (a1 | a1))) | (0 | (a3 | (a1 | a1)))) | (0 | (a3 | (a2 | a2)))
= ((a3 | (a2 | a2)) | (a3 | (a2 | a2))) | (a3 | (a1 | a1))
= a1 | (a2 | a2).

(5) It is obtained from (3) and (sBM.1).
(6) Substituting [a2 := (a1 | a1)] in (S2), we obtain

(a1 | a1) | (a1 | (a1 | a1)) = a1.

By using (S1), we get (a1 | (a1 | a1)) | (a1 | a1) = a1.
(7) In (S3), by substituting [a2 := a1 | (a2 | a2)] and [a3 := a2 | a2] and

applying (S1), (S2), (S3) and (1), we obtain
a1 | ((a1 | (a2 | a2)) | (a2 | a2)) | ((a1 | (a2 | a2)) | (a2 | a2))
= a1 | (((a2 | a2) | (a1 | (a2 | a2))) | ((a2 | a2) | (a1 | (a2 | a2))))
= ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a1 | (a2 | a2))
= (a1 | (a2 | a2)) | ((a1 | (a2 | a2)) | (a1 | (a2 | a2)))
= 0 | 0.

(8) (0 | 0) | (a1 | a1) = (a1 | (a1 | a1)) | (a1 | a1) = a1 from (1) and (6).
(9) By using (S1) and (S3), we have

a1 | ((a2 | (a3 | a3)) | (a2 | (a3 | a3))) = (((a1 | a2) | (a1 | a2)) | (a3 | a3))

= (((a2 | a1) | (a2 | a1)) | (a3 | a3))

= a2 | ((a1 | (a3 | a3)) | (a1 | (a3 | a3))).

(10) It is obtained from (7) and (S3).
�

Theorem 3.1. Let (A, |, 0) be a Sheffer stroke BM-algebra. If we define

a1 ∗ a2 := (a1 | (a2 | a2)) | (a1 | (a2 | a2)),

then (A, ∗, 0) is a BM-algebra.

Proof. By using (sBM.1), (sBM.2) and (S2) , we have
(BM.1) : a1 ∗ 0 = (a1 | (0 | 0)) | (a1 | (0 | 0)) = a1.
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(BM.2) :

(a3 ∗ a1) ∗ (a3 ∗ a2) = (((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | ((a3 | (a2 | a2)) |
(a3 | (a2 | a2)) | (a3 | (a2 | a2)) | (a3 | (a2 | a2)))) |
(((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | ((a3 | (a2 | a2))

| (a3 | (a2 | a2)) | (a3 | (a2 | a2)) | (a3 | (a2 | a2))))

= (((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2)))

| (((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2)))

= (a2 | (a1 | a1)) | (a2 | (a1 | a1))

= a2 ∗ a1.
Then (A, ∗, 0) is a BM-algebra. �

Theorem 3.2. Let (A, ∗, 0, 1) be a bounded BM-algebra. If we define a1 | a2 :=
(a1 ∗a02)0 and a01 = 1∗a1, where a1 ∗ (1∗a1) = a1 and 1∗ (1∗a1) = a1, then (A, |, 0)
is a Sheffer stroke BM-algebra.

Proof. (sBM.1): By using (BM.1), we have

(a1 | (0 | 0)) | (a1 | (0 | 0)) = (a1 | 00) | (a1 | 00)

= (a1 ∗ 0)0 | (a1 ∗ 0)0

= ((a1 ∗ 0)0)0

= a1 ∗ 0

= a1.

(sBM.2): By using (BM.2), we obtain

((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2)) = (((a3 ∗ a1)0) | ((a3 ∗ a1)0)) |
(a3 ∗ a2)0

= (((a3 ∗ a1)0)0) | (a3 ∗ a2)0

= (a3 ∗ a1) | (a3 ∗ a2)0

= ((a3 ∗ a1) ∗ (a3 ∗ a2))0

= (a2 ∗ a1)0

= a2 | (a1 | a1).

Then (A, |, 0) is a Sheffer stroke BM-algebra. �

Lemma 3.3. Let (A, |, 0) be a Sheffer stroke B-algebra. Then the following
features hold for all a1, a2, a3 ∈ A:

(1) (a1 | (a1 | a1)) | (a1 | a1) = a1,
(2) (0 | 0) | (a1 | a1) = a1,
(3) (a1 | (0 | 0)) | (a1 | (0 | 0)) = a1,
(4) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2)) = a1 | a1,
(5) a1 | (a3 | a3) = a2 | (a3 | a3) implies a1 = a2,
(6) a1 | (a2 | a2) = 0 | 0 implies a1 = a2,
(7) 0 | (a1 | a1) = 0 | (a2 | a2) implies a1 = a2,
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(8) 0 | (0 | (a1 | a1)) = a1 | a1.

Proof. (1) Substituting [a2 := (a1 | a1)] in (S2), we obtain (a1 | a1) |
(a1 | (a1 | a1)) = a1. Then (a1 | (a1 | a1)) | (a1 | a1) = a1 from (S1).

(2) (0 | 0) | (a1 | a1) = (a1 | (a1 | a1)) | (a1 | a1) = a1 from (1), (S2) and
(sB.1).

(3) By using (S1), (S2) and (2),

(a1 | (0 | 0)) | (a1 | (0 | 0)) = ((0 | 0) | ((a1 | a1) | (a1 | a1))) | ((0 | 0) |
((a1 | a1) | (a1 | a1)))

= (a1 | a1) | (a1 | a1)

= a1.

(4) Substituting a3 = (0 | (a2 | a2)) | (0 | (a2 | a2)) in (sB.2) and by using
(3), (sB.1) and (S2), we obtain
((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2))
= a1 | (((0 | (a2 | a2)) | (0 | (a2 | a2))) | (0 | (a2 | a2)))
= a1 | ((0 | (a2 | a2)) | ((0 | (a2 | a2)) | (0 | (a2 | a2))))
= a1 | (0 | 0)
= a1 | a1.

(5) If a1 | (a3 | a3) = a2 | (a3 | a3), then
((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (0 | (a3 | a3)) = ((a2 | (a3 | a3)) | (a2 |
(a3 | a3))) | (0 | (a3 | a3)). From (4), we get a1 | a1 = a2 | a2. By (S2),
a1 = a2.

(6) Since a1 | (a2 | a2) = 0 | 0 and by using (5), (sB.1) and (S2), we have

a1 | (a2 | a2) = a2 | (a2 | a2)

Then, we get a1 = a2.
(7) If 0 | (a1 | a1) = 0 | (a2 | a2), then

0 | 0 = (a1 | (a1 | a1))

= ((a1 | (a1 | a1)) | (a1 | (a1 | a1))) | (0 | 0)

= a1 | (0 | (0 | (a1 | a1)))

= a1 | (0 | (0 | (a2 | a2)))

= ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | 0)

= (a1 | (a2 | a2)),

from (sB.1), (sB.2), (S2) and (3). Therefore, a1 = a2 from (6).
(8) For any a1 ∈ A,

0 | (a1 | a1) = ((0 | (a1 | a1)) | (0 | (a1 | a1))) | (0 | 0)

= 0 | (0 | (0 | (a1 | a1))),

from (sB.2), (S2) and (3). Then 0 | (0 | (a1 | a1)) = a1 | a1 from (7).
�

Theorem 3.3. (A, |, 0) is a Sheffer stroke B-algebra if and only if it satisfies
the axioms:
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(i) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0,
(ii) 0 | (0 | (a1 | a1)) = a1 | a1,
(iii) ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | (a3 | a3)) = a1 | (a2 | a2),
for any a1, a2, a3 ∈ A.

Proof. (⇒) Suppose that A is a Sheffer stroke B-algebra. Then
• (i) is obtained from (sB.1).
• (ii) is obtained from Lemma 3.3 (8).
• (iii) By using (sB.1), (sB.2), (S2) and Lemma 3.3 (3) we obtain

((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | (a3 | a3)) = (a1 | (((a2 | (a3 | a3)) | (a2 |
(a3 | a3))) | (0 | (a3 | a3))))

= a1 | (a2 | (((0 | (a3 | a3)) |
(0 | (a3 | a3))) | (0 | (a3 |
a3))))

= a1 | (a2 | (0 | 0))

= a1 | (a2 | a2).

⇐ (sB.1): It is ontained from (i).
In (iii), substituting [a3 := a2] and [a2 := 0], we have

((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2)) = a1 | (0 | 0)

= a1 | a1.

(sB.2) By using (iii), we get

a1 | (a3 | (0 | (a2 | a2))) = ((((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2))) |
(((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2))))

| (a3 | (0 | (a2 | a2)))

= ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3).

�

Theorem 3.4. Every Sheffer stroke BM-algebra is a Sheffer stroke B-algebra.

Proof. It is obtained from Lemma 3.2 (1), (2), (4) and Theorem 3.3. �

Remark 3.1. The converse of Theorem 3.4 does not hold in general. In Exam-
ple 2.1, (A, |, 0) is a Sheffer stroke B-algebra but not a Sheffer stroke BM-algebra.
Since ((x | (0 | 0)) | (x | (0 | 0))) | (x | (y | y)) = 1 6= x = y | (0 | 0).

Proposition 3.1. If (A, |, 0) is a Sheffer stroke BM-algebra, then

((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) |
(a2 | a2),

for any a1, a2, a3 ∈ A.
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Proof. By Theorem 3.4, (sBM.2), (sB.2), Lemma 3.2 (3), we get
((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3)

= ((((a3 | (a2 | a2)) | (a3 | (a2 | a2))) | (a3 | (a1 | a1))) | (((a3 | (a2 | a2)) | (a3 | (a2 |
a2))) | (a3 | (a1 | a1)))) | (a3 | a3)

= ((a3 | (a2 | a2)) | (a3 | (a2 | a2))) | (a3 | (0 | (a3 | (a1 | a1))))
= ((0 | (a3 | (a1 | a1))) | (0 | (a3 | (a1 | a1)))) | (a2 | a2)
= ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | a2).

�

Lemma 3.4. If (A, |, 0) is a Sheffer stroke B-algebra, then 0 | (a1 | (a2 | a2)) =
a2 | (a1 | a1), for any a1, a2 ∈ A.

Definition 3.2. A Sheffer stroke B-algebra (A, |, 0) is said to be 0-commutative
if a1 | (0 | (a2 | a2)) = a2 | (0 | (a1 | a1)), for any a1, a2 ∈ A.

Theorem 3.5. If (A, |, 0) is a 0-commutative Sheffer stroke B-algebra, then A
is a Sheffer stroke BM-algebra.

Proof. (sBM.1) : Since (A, |, 0) is a Sheffer stroke B-algebra, (a1 | (0 | 0)) |
(a1 | (0 | 0)) = a1 from Lemma 3.3 (3), i.e., (sBM.1) holds.
(sBM.2) : By using Lemma 3.4, Definition 3.2, (S2), Theorem 3.3 (ii) and (iii), we
obtain

((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2))
= ((0 | (a1 | (a3 | a3))) | (0 | (a1 | (a3 | a3)))) | (0 | (a2 | (a3 | a3)))
= ((a2 | (a3 | a3)) | (a2 | (a3 | a3))) | (0 | (0 | (a1 | (a3 | a3))))
= ((a2 | (a3 | a3)) | (a2 | (a3 | a3))) | (a1 | (a3 | a3))
= a2 | (a1 | a1).

Thus (A, |, 0) is a Sheffer stroke BM-algebra. �

Remark 3.2. Let (A, |, 0) be a Sheffer stroke B-algebra with a1 | (a2 | a2) =
a2 | (a1 | a1), for any a1, a2 ∈ A. Then A is a Sheffer stroke BM-algebra.

Proof. Since a1 | (a2 | a2) = a2 | (a1 | a1) for any a1, a2 ∈ A, we obtain

a1 | (0 | (a2 | a2)) = a1 | (a2 | (0 | 0))

= a1 | (a2 | a2)

= a2 | (a1 | a1)

= a2 | (a1 | (0 | 0))

= a2 | (0 | (a1 | a1)),

for any a1, a2 ∈ A. Thus (A, |, 0) is a 0-commutative Sheffer stroke B-algebra.
Hence (A, |, 0) is a Sheffer stroke BM-algebra by Theorem 3.5. �

Proposition 3.2. An algebra (A, |, 0) is a 0-commutative Sheffer stroke B-
algebra if and only if it satisfies the following axioms:
(i) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0,
(ii) a2 | (a2 | (a1 | a1)) = a1 | a1,
(iii) ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) | (a2 | (a3 | a3)) = a1 | (a2 | a2),
for any a1, a2, a3 ∈ A.
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Theorem 3.6. Let (A, |, 0) be a Sheffer stroke BM-algebra. Then A is a 0-
commutative Sheffer stroke B-algebra.

Proof. Let A be a Sheffer stroke BM-algebra. Then, by Theorem 3.4, it is a
Sheffer stroke B-algebra. From Theorem 3.3, we obtain that it satisfies Proposition
3.2 (i) and (iii). Substituting [a1 := 0] in (sBM.2), we get ((a3 | (0 | 0)) | (a3 | (0 |
0))) | (a3 | (a2 | a2) = a2 | (0 | 0).
By using (sBM.1), we have a3 | (a3 | (a2 | a2)) = a2 | a2, for any a2, a3 ∈ A. Then
Proposition 3.2 (ii) holds in A. Therefore, A is a 0-commutative Sheffer stroke
B-algebra. �

Corollary 3.1. An algebra (A, |, 0) is a 0-commutative Sheffer stroke B-
algebra if and only if it is a Sheffer stroke BM-algebra.

Theorem 3.7. Let (A, |, 0) be a Sheffer stroke BM-algebra. Then the following
features hold for a1, a2, a3, a4 ∈ A:
(i) a1 | (a1 | (a2 | a2)) = a2 | a2,
(ii) a1 | (a2 | a2) = 0 | 0 implies a1 = a2,
(iii) a1 | (a2 | (a3 | a3)) = a3 | (a2 | (a1 | a1)),
(iv) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | (a4 | a4)) = ((a1 | (a3 | a3)) | (a1 | (a3 |
a3))) | (a2 | (a4 | a4)),
(v) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | (a2 | a2)) = a1 | a1.

Proof. (i) By using (sBM.1) and (sBM.2), we get

a1 | (a1 | (a2 | a2)) = ((a1 | (0 | 0)) | (a1 | (0 | 0))) | (a1 | (a2 | a2))

= a2 | (0 | 0)

= a2 | a2.

(ii) Let a1 | (a2 | a2) = 0 | 0. By using (S2), (i) and (sBM.1), we obtain

a1 = (a1 | (0 | 0)) | (a1 | (0 | 0))

= (a1 | (a1 | (a2 | a2))) | (a1 | (a1 | (a2 | a2)))

= (a2 | a2) | (a2 | a2)

= a2.

(iii) By using (i) and Proposition 3.1, we obtain

a1 | (a2 | (a3 | a3)) = ((a2 | (a2 | (a1 | a1))) | (a2 | (a2 | (a1 | a1)))) |
(a2 | (a3 | a3))

= ((a2 | (a2 | (a3 | a3))) | (a2 | (a2 | (a3 | a3)))) |
(a2 | (a1 | a1))

= ((a3 | a3) | (a3 | a3)) | (a2 | (a1 | a1))

= a3 | (a2 | (a1 | a1)).
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(iv) From (iii), we have

((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | (a4 | a4)) = a4 | (a3 | (a1 | (a2 | a2)))

= a4 | (a2 | (a1 | (a3 | a3)))

= ((a1 | (a3 | a3)) | (a1 |
(a3 | a3))) | (a2 | (a4 | a4)).

(v) It is obtained from (iv), Lemma 3.2 (1) and (sBM.1). �

Definition 3.3. A Sheffer stroke BM-algebra (A, |, 0) is said to be associative
if it satisfies

a1 | (a2 | (a3 | a3)) = ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3),

for all a1, a2, a3 ∈ A.

Definition 3.4. A Sheffer stroke Coxeter algebra is a non-empty set with a
constant 0 satisfying the following axioms:
(sC.1) ((a1 | (a1 | a1)) | (a1 | (a1 | a1))) = 0,
(sC.2) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = a1 | (a2 | (a3 | a3)),
for all a1, a2, a3 ∈ A.

Proposition 3.3. Let (A, |, 0) is a Sheffer stroke Coxeter algebra. Then
(i) ((a1 | (0 | 0)) | (a1 | (0 | 0))) = a1,
(ii) 0 | (a1 | a1) = a1 | a1,
(iii) ((a2 | (a1 | a1)) | (a2 | (a1 | a1))) | (a2 | a2) = a1 | a1,
(iv) a1 | (a2 | a2) = a2 | (a1 | a1),
for any a1, a2 ∈ A.

Proof. Substituting [a2 := (a1 | a1)] in (S2), we obtain (a1 | a1) | (a1 | (a1 |
a1)) = a1. Then (a1 | (a1 | a1)) | (a1 | a1) = a1 from (S1). (0 | 0) | (a1 | a1) = (a1 |
(a1 | a1)) | (a1 | a1) = a1 from (S2) and (sC.1).
(i) By using (S1), (S2),

(a1 | (0 | 0)) | (a1 | (0 | 0)) = ((0 | 0) | ((a1 | a1) | (a1 | a1))) | ((0 | 0) | ((a1 | a1) |
(a1 | a1)))

= (a1 | a1) | (a1 | a1)

= a1.

(ii) By using (sC.1), (sC.2) and (i), we have

0 | (a1 | a1) = ((a1 | (a1 | a1)) | (a1 | (a1 | a1))) | (a1 | a1)

= a1 | (a1 | (a1 | a1))

= a1 | (0 | 0)

= a1 | a1.
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(iii) By using (i), (ii), (sC.1), (sC.2), (S1), we obtain

a1 | a1 = 0 | (a1 | a1)

= (((a2 | (a1 | a1)) | ((a2 | (a1 | a1)) | (a2 | (a1 | a1)))) | ((a2 | (a1 | a1)) |
((a2 | (a1 | a1)) | (a2 | (a1 | a1))))) | (a1 | a1)

= ((a2 | (a1 | a1)) | (a2 | (a1 | a1))) | (((a2 | (a1 | a1)) | (a2 | (a1 | a1))) |
(a1 | a1))

= ((a2 | (a1 | a1)) | (a2 | (a1 | a1))) | (a2 | (a1 | (a1 | a1)))

= ((a2 | (a1 | a1)) | (a2 | (a1 | a1))) | (a2 | (0 | 0))

= ((a2 | (a1 | a1)) | (a2 | (a1 | a1))) | (a2 | a2).

(iv) By using (i), (iii), (sC.1), (sC.2), we get

a2 | (a1 | a1) = ((((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a1 | a1)) |
(((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a1 | a1))) | (a1 | a1)

= ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a1 | (a1 | a1))

= ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (0 | 0)

= a1 | (a2 | a2).

�

Theorem 3.8. Every Sheffer stroke Coxeter-algebra is a Sheffer stroke BM-
algebra.

Proof. It is enough to show that the axiom (sBM.2) holds in A. By using
(sC.2), (S2), Proposition 3.3 (iii) and (iv), we obtain

(((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2))
= (((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a2 | (a3 | a3))
= ((((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a2 | a2)) | (((a3 | (a1 | a1)) | (a3 | (a1 |
a1))) | (a2 | a2))) | (a3 | a3)
= (((a3 | (a1 | (a2 | a2))) | (a3 | (a1 | (a2 | a2)))) | (a3 | a3))
= a1 | (a2 | a2)
= a2 | (a1 | a1).

�

Proposition 3.4. Every associative Sheffer stroke BM-algebra is a Sheffer
stroke Coxeter algebra.

Proof. It is obtained from Lemma 3.2 (1) and Definition 3.3. �

Theorem 3.9. Let (A, |, 0) be an algebra of type (2, 0) satisfying
(i) (a1 | (a1 | a1) | (a1 | (a1 | a1) = 0 ,
(ii) ((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) |
(a2 | a2).
Then the following statements are equivalent:
(a) A satisfies (sBG.2),
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(b) 0 | (0 | (a1 | a1)) = a1 | a1, for all a1 ∈ A,
(c) a1 | (a2 | a2) = 0 | 0 implies a1 = a2 for all a1, a2 ∈ A,
(d) A is a Sheffer stroke BM-algebra.

Proof. (a) ⇒ (b): By using (sBG.2), (0 | (a1 | a1)) | ((a1 | (a1 | a1)) | (a1 |
(a1 | a1))) = a1 | a1. Hence 0 | (0 | (a1 | a1)) = a1 | a1 from (i) and (S1).
(b)⇒ (c): Let a1 | (a2 | a2) = 0 | 0. By using (b), (i) and (ii), we obtain

a1 | a1 = 0 | (0 | (a1 | a1))

= 0 | (((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a1 | a1))

= 0 | (((a1 | (a1 | a1)) | (a1 | (a1 | a1))) | (a2 | a2)

= 0 | (0 | (a2 | a2))

= a2 | a2.

By (S2), we get a1 = a2.
(c)⇒ (d): (sBM.2): By using (i) and (ii),
((a3 | (a3 | (a2 | a2))) | (a3 | (a3 | (a2 | a2)))) | (a2 | a2)
= ((a3 | (a2 | a2)) | (a3 | (a2 | a2))) | (a3 | (a2 | a2))
= 0 | 0.
By (c),

(3.1) ((a3 | (a3 | (a2 | a2))) | (a3 | (a3 | (a2 | a2)))) = a2.

By using the equation (3.1) and (ii),
((a3 | (a1 | a1)) | (a3 | (a1 | a1))) | (a3 | (a2 | a2))
= ((a3 | (a3 | (a2 | a2))) | (a3 | (a3 | (a2 | a2)))) | (a1 | a1)
= a2 | (a1 | a1).
(sBM.1): By using the equation (3.1) and (i), we get

(a1 | (0 | 0)) | (a1 | (0 | 0)) = ((a1 | (a1 | (a1 | a1))) | (a1 | (a1 | (a1 | a1))))

= a1.

Therefore, A is a Sheffer stroke BM-algebra.
(d)⇒ (a): Let A be a Sheffer stroke BM-algebra. By Theorem 3.7 (v), A satisfies
(sBG.2). �

Theorem 3.10. Let (A, |, 0) be an algebra of type (2, 0). Then the following
statements are equivalent:
(i) A is a Sheffer stroke BM-algebra.
(ii) A is a Sheffer stroke BG-algebra with condition

((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) |
(a2 | a2).

Proof. (i) ⇒ (ii): It is obtained from Lemma 3.2 (1), Proposition 3.1 and
Theorem 3.7 (v).
(ii)⇒ (i): It is obtained from Theorem 3.9. �
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Theorem 3.11. Every Sheffer stroke Coxeter algebra is a 0-commutative Shef-
fer stroke B-algebra.

Proof. It is obtained from Theorem 3.6 and Theorem 3.8. �

Theorem 3.12. Let (A, |, 0) be a Sheffer stroke BM-algebra with 0 | (a1 | a1) =
a1 | a1, for all a1 ∈ A. Then A is a Sheffer stroke Coxeter algebra.

Proof. It is enough to show (sC.2). By using Proposition 3.1, Theorem 3.4,
Definition 2.6 and (sB.2), we have

((a1 | (a2 | a2)) | (a1 | (a2 | a2))) | (a3 | a3) = ((a1 | (a3 | a3)) | (a1 | (a3 | a3))) |
(a2 | a2)

= a1 | (a2 | (0 | (a3 | a3)))

= a1 | (a2 | (a3 | a3)).

Therefore, A is a Sheffer stroke Coxeter algebra. �

Corollary 3.2. An algebra (A, |, 0) is a Sheffer stroke Coxeter algebra if and
only if A is a Sheffer stroke BM-algebra with 0 | (a1 | a1) = a1 | a1, for all a1 ∈ A.

Definition 3.5. An algebra (A, |, 0) is called a Sheffer stroke pre-Coxeter al-
gebra if it satisfies the axioms:
(i) (a1 | (a1 | a1)) | (a1 | (a1 | a1)) = 0,
(ii) If a1 | (a2 | a2) = 0 | 0 = a2 | (a1 | a1), then a1 = a2,
(iii) a1 | (a2 | a2) = a2 | (a1 | a1),
for all a1, a2 ∈ A.

Theorem 3.13. Every Sheffer stroke BM-algebra A with 0 | (a1 | a1) = a1 | a1
is a Sheffer stroke pre-Coxeter algebra.

Proof. We must show that (ii) and (iii) hold in A. Assume that a1 | (a2 |
a2) = 0 | 0 = a2 | (a1 | a1). By using (sBM.1), (sBM.2) and (S2),

a1 | a1 = a1 | (0 | 0)

= ((a1 | (0 | 0)) | (a1 | (0 | 0))) | (a1 | (a2 | a2))

= a2 | (0 | 0)

= a2 | a2.
From (S2), a1 = a2, for all a1, a2 ∈ A. It follows from Theorem 3.12 and Proposition
3.3 (iv), that a1 | (a2 | a2) = a2 | (a1 | a1), for any a1, a2 ∈ A. �

4. Conclusion

In this study, a Sheffer stroke BM-algebra, a (0-commutative) Sheffer stroke B-
algebra and a Sheffer stroke (pre)- Coxeter algebra are investigated. By presenting
definitions of Sheffer stroke and BM-algebra, a Sheffer stroke BM-algebra is intro-
duced and related concepts are given. Then it is shown that a Sheffer stroke BM-
algebra is a BM-algebra if a1 ∗a2 := (a1 | (a2 | a2)) | (a1 | (a2 | a2)), and also that a
bounded BM-algebra is a Sheffer stroke BM-algebra where a1 | a2 := (a1 ∗ a02)0, for
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any elements a1 and a2. A Sheffer stroke B-algebra is given. It is shown that ev-
ery Sheffer stroke BM-algebra is a Sheffer stroke B-algebra. Then, 0-commutative
Sheffer stroke B-algebra is identified and it is proved that an algebra (A, |, 0) is
a 0-commutative Sheffer stroke B-algebra if and only if it is a Sheffer stroke BM-
algebra. Finally, a Sheffer stroke Coxeter algebra and an associative Sheffer stroke
BM-algebra are defined and the relationship between this algebraic structures are
shown.

Figure 2
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