SHEFFER STROKE BM-ALGEBRAS AND RELATED ALGEBRAS

Tahsin Oner, Tugce Kalkan, Ahmet Hamal, and Melike Kibar

Abstract

The aim of this work is to define a Sheffer stroke BM-algebra and to study some of its features. It is indicated that the axioms of a Sheffer stroke BM-algebra are independent. The relationship between a Sheffer stroke BMalgebra and a BM-algebra is stated. By presenting fundamental notions about Sheffer stroke B-algebras, it is proved that every Sheffer stroke BM-algebra is a Sheffer stroke B-algebra. After determining 0-commutative Sheffer stroke B-algebra, a Sheffer stroke Coxeter algebra and an associative Sheffer stroke BM-algebra, the relationships between this algebraic structures are shown.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras $[\mathbf{5}, \mathbf{6}]$. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In 1983, Hu and $\mathrm{Li}[\mathbf{3 , 4} \mathbf{4}$ introduced a new class of algebras so-called BCH-algebras. They have shown that the class of BCIalgebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [11] introduced the notion of a B-algebra. C. B. Kim and H. S. Kim defined BG-algebras [7] and BM-algebras [8]. H. S. Kim, Y. H. Kim and J. Neggers [9] introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group.

The Sheffer stroke operation was originally introduced by H. M. Sheffer [19]. Since any Boolean function or operation can be stated by only this operation [10], it engages many researchers' attention. So, many researchers want to use this

[^0]operation on their studies. Also, some applications of this operation has been appeared in algebraic structures such as Sheffer stroke non-associative MV-algebras [1] and filters [14], (fuzzy) filters of Sheffer stroke BL-algebras [15], Sheffer stroke Hilbert algebras [12] and filters [13], Sheffer stroke UP-algebras [16], Sheffer stroke BG-algebras [17], Sheffer stroke BCK-algebras [18] and Sheffer operation in ortholattices [2].

After giving basic definitions and notions about a Sheffer stroke and a BMalgebra, it is defined a Sheffer stroke BM-algebra. It is stated that the axioms of a Sheffer stroke BM-algebra are independent. By presenting fundamental notions about this algebraic structure, it is denoted the connection between a Sheffer stroke BM-algebra and a BM-algebra. It is proved that every Sheffer stroke BM-algebra is a Sheffer stroke B-algebra. A 0-commutative Sheffer stroke B-algebra is determined and it is shown that 0-commutative Sheffer stroke B-algebra is a Sheffer stroke BMalgebra. It is demonstrated that a Sheffer stroke B-algebra is a Sheffer stroke BMalgebra under one condition. It is proved that an algebra $(A, \mid, 0)$ is a 0 -commutative Sheffer stroke B-algebra if and only if it is a Sheffer stroke BM-algebra. Finally, a Sheffer stroke Coxeter algebra and an associative Sheffer stroke BM-algebra are defined and the relationship between this algebraic structures are shown.

2. Preliminaries

In this part, we give the basic definitions and notions about a Sheffer stroke, a BM-algebra and related algebras.

Definition 2.1. [1] Let $\mathcal{A}=\langle A, \mid\rangle$ be a groupoid. The operation \mid is said to be Sheffer stroke if it satisfies the following conditions:
(S1) $a_{1}\left|a_{2}=a_{2}\right| a_{1}$,
(S2) $\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{2}\right)=a_{1}$,
(S3) $a_{1}\left|\left(\left(a_{2} \mid a_{3}\right) \mid\left(a_{2} \mid a_{3}\right)\right)=\left(\left(a_{1} \mid a_{2}\right) \mid\left(a_{1} \mid a_{2}\right)\right)\right| a_{3}$,
(S4) $\left(a_{1} \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)=a_{1}$.
Definition 2.2. [8] A BM-algebra is a non-empty set A with a constant 0 and a binary operation "*" satisfying the following axioms:
(BM.1) $a_{1} * 0=a_{1}$,
(BM.2) $\left(a_{3} * a_{1}\right) *\left(a_{3} * a_{2}\right)=a_{2} * a_{1}$, for all $a_{1}, a_{2}, a_{3} \in A$.

A BM-algebra is called bounded if it has the greatest element.
Definition 2.3. [11] A B-algebra is a non-empty set A with a constant 0 and a binary operation $*$ satisfying the following axioms:
(i) $a_{1} * a_{1}=0$,
(ii) $a_{1} * 0=a_{1}$,
(iii) $\left(a_{1} * a_{2}\right) * a_{3}=a_{1} *\left(a_{3} *\left(0 * a_{2}\right)\right)$,
for all $a_{1}, a_{2}, a_{3} \in A$.
Definition 2.4. [9] A Coxeter algebra is a non-empty set with a constant 0 and a binary operation " $*$ " satisfying the following axioms:
(C.1) $a_{1} * a_{1}=0$,
(C.2) $a_{1} * 0=a_{1}$,
(C.3) $\left(a_{1} * a_{2}\right) * a_{3}=a_{1} *\left(a_{2} * a_{3}\right)$,
for all $a_{1}, a_{2}, a_{3} \in A$.
Definition 2.5. [9] An algebra $(A, *, 0)$ is called a pre-Coxeter algebra if it satisfies the axioms:
(i) $a_{1} * a_{1}=0$,
(ii) $a_{1} * 0=a_{1}$,
(iii) if $a_{1} * a_{2}=0=a_{2} * a_{1}$, then $a_{1}=a_{2}$,
(iv) $a_{1} * a_{2}=a_{2} * a_{1}$,
for all $a_{1}, a_{2} \in A$.
Definition 2.6. [17] A Sheffer stroke B-algebra is an algebra $(A, \mid, 0)$ of type $(2,0)$, where A is a non-empty set, 0 is the constant in A and \mid is Sheffer stroke on A, such that the following identities are satisfied for all $a_{1}, a_{2}, a_{3} \in A$:
$(s B .1)\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
$(s B .2)\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)=\left(a_{1} \mid\left(a_{3} \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$.
Example 2.1. $[\mathbf{1 7}]$ Consider $(A, \mid, 0)$ with the following Hasse diagram, where $A=\{0, x, y, 1\}$:

Figure 1
The binary operation | on A has Cayley table as follow:

\mid	0	x	y	1
0	1	1	1	1
x	1	y	1	y
y	1	1	x	x
1	1	y	x	0

Then this structure is a Sheffer stroke B-algebra.
Definition 2.7. [17] A Sheffer stroke BG-algebra is an algebra $(A, \mid, 0)$ of type $(2,0)$ such that 0 is the constant in A and the following axioms are satisfied: $(s B G .1)\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
$(s B G .2)\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)=a_{1}\right| a_{1}$, for all $a_{1}, a_{2} \in A$.

3. Sheffer stroke BM-algebras

In this part, we define a Sheffer stroke BM-algebra and give some properties.
Definition 3.1. A Sheffer stroke BM-algebra is an algebra $(A, \mid, 0)$ of type $(2,0)$ such that 0 is the constant in A and the following axioms are satisfied:
$(s B M .1)\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$,
$(s B M .2)\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$, for all $a_{1}, a_{2}, a_{3} \in A$.

Let A be a Sheffer stroke BM-algebra, unless otherwise is indicated.
Lemma 3.1. The axioms (sBM.1) and (sBM.2) are independent.
Proof. (1) Independence of (sBM.1):
We construct an example for this axiom which is false while (sBM.2) is true. Let $\left(\{0,1\},\left.\right|_{1}\right)$ be the groupoid defined as follows:

$$
\begin{array}{c|cc}
\left.\right|_{1} & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 0 & 0
\end{array}
$$

Then $\left.\right|_{1}$ satisfies (sBM.2) but not (sBM.1) when $a_{1}=1$.
(2) Independence of (sBM.2):

We construct an example for this axiom which is false while (sBM .1) is true. Let $\left(\{0,1\},\left.\right|_{2}\right)$ be the groupoid defined as follows:

$$
\begin{array}{c|cc}
\left.\right|_{2} & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

Then $\left.\right|_{2}$ satisfies (sBM.1) but not (sBM.2) when $a_{1}=1, a_{2}=0$ and $a_{3}=1$.
Lemma 3.2. Let A be a Sheffer stroke BM-algebra. Then the following features hold for all $a_{1}, a_{2}, a_{3} \in A$:
(1) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(2) $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)=a_{1} \mid a_{1}$,
(3) $0\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$,
(4) $\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)=a_{1}\right|\left(a_{2} \mid a_{2}\right)$,
(5) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$ if and only if $a_{2}\left|\left(a_{1} \mid a_{1}\right)=0\right| 0$,
(6) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(7) $\left.a_{1}\left|\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)=0 \mid 0$,
(8) $(0 \mid 0) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(9) $a_{1}\left|\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)=a_{2}\right|\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid\right.\right.\right.$ $\left.\left.a_{3}\right)\right)$),
(10) $\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$.

Proof. (1) Substituting $\left[a_{1}:=0\right]$ and $\left[a_{2}:=0\right]$ in (sBM.2), we obtain $\left(\left(a_{3} \mid(0 \mid 0)\right) \mid\left(a_{3} \mid(0 \mid 0)\right)\right)\left|\left(a_{3} \mid(0 \mid 0)\right)=0\right|(0 \mid 0)$. From (sBM.1) and (S2), we get $a_{3}\left|\left(a_{3} \mid a_{3}\right)=0\right| 0$. Then we have $\left(a_{3} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{3} \mid\right.$ $\left.\left(a_{3} \mid a_{3}\right)\right)=0$, for all $a_{3} \in A$.
(2) Substituting $\left[a_{3}:=0\right]$ and $\left[a_{1}:=0\right]$ in (sBM.2), we obtain $((0 \mid(0 \mid 0)) \mid$ $(0 \mid(0 \mid 0)))\left|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right|(0 \mid 0)$. Applying (sBM.1) and (S2), we have $0\left|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right| a_{2}$, for all $a_{2} \in A$.
(3) Using (sBM.2) with $\left[a_{3}:=a_{1}\right]$, we get $\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid$ $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2} \mid\left(a_{1} \mid a_{1}\right)$. By using (1), we have $0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=$ $a_{2} \mid\left(a_{1} \mid a_{1}\right)$.
(4) By using (sBM.2) and (3), we obtain

$$
\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)
$$

$$
=\left(\left(0 \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)
$$

$$
=\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)
$$

$$
=a_{1} \mid\left(a_{2} \mid a_{2}\right)
$$

(5) It is obtained from (3) and (sBM.1).
(6) Substituting $\left[a_{2}:=\left(a_{1} \mid a_{1}\right)\right]$ in (S2), we obtain

$$
\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1} .
$$

By using (S1), we get $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$.
(7) In (S3), by substituting $\left[a_{2}:=a_{1} \mid\left(a_{2} \mid a_{2}\right)\right]$ and $\left[a_{3}:=a_{2} \mid a_{2}\right]$ and applying (S1), (S2), (S3) and (1), we obtain
$a_{1}\left|\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)$
$=a_{1} \mid\left(\left(\left(a_{2} \mid a_{2}\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(a_{2} \mid a_{2}\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)$ $=0 \mid 0$.
(8) $(0 \mid 0)\left|\left(a_{1} \mid a_{1}\right)=\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right|\left(a_{1} \mid a_{1}\right)=a_{1}$ from (1) and (6).
(9) By using (S1) and (S3), we have

$$
\begin{aligned}
a_{1} \mid\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right) & =\left(\left(\left(a_{1} \mid a_{2}\right) \mid\left(a_{1} \mid a_{2}\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \\
& =\left(\left(\left(a_{2} \mid a_{1}\right) \mid\left(a_{2} \mid a_{1}\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \\
& =a_{2} \mid\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) .
\end{aligned}
$$

(10) It is obtained from (7) and (S3).

Theorem 3.1. Let $(A, \mid, 0)$ be a Sheffer stroke BM-algebra. If we define

$$
a_{1} * a_{2}:=\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right),
$$

then $(A, *, 0)$ is a $B M$-algebra.
Proof. By using (sBM.1), (sBM.2) and (S2), we have $(B M .1): a_{1} * 0=\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$.
(BM.2) :

$$
\begin{aligned}
\left(a_{3} * a_{1}\right) *\left(a_{3} * a_{2}\right)= & \left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right. \\
& \left.\left.\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid \\
& \left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right.\right. \\
& \left.\left.\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \\
= & \left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& \mid\left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
= & \left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & a_{2} * a_{1} .
\end{aligned}
$$

Then $(A, *, 0)$ is a BM-algebra.
Theorem 3.2. Let $(A, *, 0,1)$ be a bounded BM-algebra. If we define $a_{1} \mid a_{2}:=$ $\left(a_{1} * a_{2}^{0}\right)^{0}$ and $a_{1}^{0}=1 * a_{1}$, where $a_{1} *\left(1 * a_{1}\right)=a_{1}$ and $1 *\left(1 * a_{1}\right)=a_{1}$, then $(A, \mid, 0)$ is a Sheffer stroke BM-algebra.

Proof. (sBM.1): By using (BM.1), we have

$$
\begin{aligned}
\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right) & =\left(a_{1} \mid 0^{0}\right) \mid\left(a_{1} \mid 0^{0}\right) \\
& =\left(a_{1} * 0\right)^{0} \mid\left(a_{1} * 0\right)^{0} \\
& =\left(\left(a_{1} * 0\right)^{0}\right)^{0} \\
& =a_{1} * 0 \\
& =a_{1} .
\end{aligned}
$$

(sBM.2): By using (BM.2), we obtain

$$
\begin{aligned}
\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)= & \left(\left(\left(a_{3} * a_{1}\right)^{0}\right) \mid\left(\left(a_{3} * a_{1}\right)^{0}\right)\right) \mid \\
& \left(a_{3} * a_{2}\right)^{0} \\
= & \left(\left(\left(a_{3} * a_{1}\right)^{0}\right)^{0}\right) \mid\left(a_{3} * a_{2}\right)^{0} \\
= & \left(a_{3} * a_{1}\right) \mid\left(a_{3} * a_{2}\right)^{0} \\
= & \left(\left(a_{3} * a_{1}\right) *\left(a_{3} * a_{2}\right)\right)^{0} \\
= & \left(a_{2} * a_{1}\right)^{0} \\
= & a_{2} \mid\left(a_{1} \mid a_{1}\right) .
\end{aligned}
$$

Then $(A, \mid, 0)$ is a Sheffer stroke BM-algebra.
Lemma 3.3. Let $(A, \mid, 0)$ be a Sheffer stroke B-algebra. Then the following features hold for all $a_{1}, a_{2}, a_{3} \in A$:
(1) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(2) $(0 \mid 0) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(3) $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$,
(4) $\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=a_{1}\right| a_{1}$,
(5) $a_{1}\left|\left(a_{3} \mid a_{3}\right)=a_{2}\right|\left(a_{3} \mid a_{3}\right)$ implies $a_{1}=a_{2}$,
(6) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$ implies $a_{1}=a_{2}$,
(7) $0\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(a_{2} \mid a_{2}\right)$ implies $a_{1}=a_{2}$,
(8) $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$.

Proof. (1) Substituting $\left[a_{2}:=\left(a_{1} \mid a_{1}\right)\right]$ in (S2), we obtain $\left(a_{1} \mid a_{1}\right) \mid$ $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}$. Then $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$ from (S1).
(2) $(0 \mid 0)\left|\left(a_{1} \mid a_{1}\right)=\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right|\left(a_{1} \mid a_{1}\right)=a_{1}$ from (1), (S2) and (sB.1).
(3) By using (S1), (S2) and (2),

$$
\begin{aligned}
\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)= & \left((0 \mid 0) \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid((0 \mid 0) \mid \\
& \left.\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
= & \left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right) \\
= & a_{1} .
\end{aligned}
$$

(4) Substituting $a_{3}=\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$ in (sB.2) and by using (3), (sB.1) and (S2), we obtain
$\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$
$=a_{1} \mid\left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)$
$=a_{1} \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=a_{1} \mid(0 \mid 0)$
$=a_{1} \mid a_{1}$.
(5) If $a_{1}\left|\left(a_{3} \mid a_{3}\right)=a_{2}\right|\left(a_{3} \mid a_{3}\right)$, then
$\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid a_{3}\right)\right)=\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\right.\right.$ $\left.\left.\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid a_{3}\right)\right)$. From (4), we get $a_{1}\left|a_{1}=a_{2}\right| a_{2}$. By (S2), $a_{1}=a_{2}$.
(6) Since $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$ and by using (5), (sB.1) and (S2), we have

$$
a_{1}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|\left(a_{2} \mid a_{2}\right)
$$

Then, we get $a_{1}=a_{2}$.
(7) If $0\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(a_{2} \mid a_{2}\right)$, then

$$
\begin{aligned}
0 \mid 0 & =\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \\
& =\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid(0 \mid 0) \\
& =a_{1} \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
& =a_{1} \mid\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& =\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid(0 \mid 0) \\
& =\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right),
\end{aligned}
$$

from (sB.1), (sB.2), (S2) and (3). Therefore, $a_{1}=a_{2}$ from (6).
(8) For any $a_{1} \in A$,

$$
\begin{aligned}
0 \mid\left(a_{1} \mid a_{1}\right) & =\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid(0 \mid 0) \\
& =0 \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right),
\end{aligned}
$$

from (sB.2), (S2) and (3). Then $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$ from (7).

Theorem 3.3. $(A, \mid, 0)$ is a Sheffer stroke B-algebra if and only if it satisfies the axioms:
(i) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(ii) $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$,
(iii) $\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)=a_{1}\right|\left(a_{2} \mid a_{2}\right)$, for any $a_{1}, a_{2}, a_{3} \in A$.

Proof. (\Rightarrow) Suppose that A is a Sheffer stroke B-algebra. Then

- (i) is obtained from ($s B .1$).
- (ii) is obtained from Lemma 3.3 (8).
- (iii) By using (sB.1), (sB.2), (S2) and Lemma 3.3 (3) we obtain

$$
\begin{aligned}
\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)= & \left(a_{1} \mid\left(\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \\
= & a_{1} \mid\left(a_{2} \mid\left(\left(\left(0 \mid\left(a_{3} \mid a_{3}\right)\right) \mid\right.\right.\right. \\
& \left.\left(0 \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid\right.\right. \\
& \left.\left.\left.\left.a_{3}\right)\right)\right)\right) \\
= & a_{1} \mid\left(a_{2} \mid(0 \mid 0)\right) \\
= & a_{1} \mid\left(a_{2} \mid a_{2}\right) .
\end{aligned}
$$

$\Leftarrow(s B .1)$: It is ontained from (i).
In (iii), substituting $\left[a_{3}:=a_{2}\right]$ and $\left[a_{2}:=0\right.$], we have

$$
\begin{aligned}
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) & =a_{1} \mid(0 \mid 0) \\
& =a_{1} \mid a_{1} .
\end{aligned}
$$

(sB.2) By using (iii), we get

$$
\begin{aligned}
a_{1} \mid\left(a_{3} \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)= & \left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right. \\
& \left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \\
& \mid\left(a_{3} \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
= & \left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right) .
\end{aligned}
$$

Theorem 3.4. Every Sheffer stroke BM-algebra is a Sheffer stroke B-algebra.
Proof. It is obtained from Lemma 3.2 (1), (2), (4) and Theorem 3.3.
Remark 3.1. The converse of Theorem 3.4 does not hold in general. In Example 2.1, $(A, \mid, 0)$ is a Sheffer stroke B-algebra but not a Sheffer stroke BM-algebra. Since $((x \mid(0 \mid 0)) \mid(x \mid(0 \mid 0)))|(x \mid(y \mid y))=1 \neq x=y|(0 \mid 0)$.

Proposition 3.1. If $(A, \mid, 0)$ is a Sheffer stroke BM-algebra, then

$$
\begin{gathered}
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(a_{3} \mid a_{3}\right)=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right| \\
\left(a_{2} \mid a_{2}\right),
\end{gathered}
$$

for any $a_{1}, a_{2}, a_{3} \in A$.

Proof. By Theorem 3.4, (sBM.2), (sB.2), Lemma 3.2 (3), we get
$\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)$
$=\left(\left(\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)$
$=\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(0 \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)$
$=\left(\left(0 \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)$
$=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)$.

Lemma 3.4. If $(A, \mid, 0)$ is a Sheffer stroke B-algebra, then $0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=$ $a_{2} \mid\left(a_{1} \mid a_{1}\right)$, for any $a_{1}, a_{2} \in A$.

Definition 3.2. A Sheffer stroke B-algebra $(A, \mid, 0)$ is said to be 0 -commutative if $a_{1}\left|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$, for any $a_{1}, a_{2} \in A$.

THEOREM 3.5. If $(A, \mid, 0)$ is a 0 -commutative Sheffer stroke B-algebra, then A is a Sheffer stroke BM-algebra.

Proof. (sBM.1) : Since $(A, \mid, 0)$ is a Sheffer stroke B-algebra, $\left(a_{1} \mid(0 \mid 0)\right) \mid$ $\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$ from Lemma 3.3 (3), i.e., (sBM.1) holds.
($s B M .2$) : By using Lemma 3.4, Definition 3.2, (S2), Theorem 3.3 (ii) and (iii), we obtain
$\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(0 \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)$
$=\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right)$
$=\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)$
$=a_{2} \mid\left(a_{1} \mid a_{1}\right)$.
Thus $(A, \mid, 0)$ is a Sheffer stroke BM-algebra.
Remark 3.2. Let $(A, \mid, 0)$ be a Sheffer stroke B-algebra with $a_{1} \mid\left(a_{2} \mid a_{2}\right)=$ $a_{2} \mid\left(a_{1} \mid a_{1}\right)$, for any $a_{1}, a_{2} \in A$. Then A is a Sheffer stroke BM-algebra.

Proof. Since $a_{1}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$ for any $a_{1}, a_{2} \in A$, we obtain

$$
\begin{aligned}
a_{1} \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) & =a_{1} \mid\left(a_{2} \mid(0 \mid 0)\right) \\
& =a_{1} \mid\left(a_{2} \mid a_{2}\right) \\
& =a_{2} \mid\left(a_{1} \mid a_{1}\right) \\
& =a_{2} \mid\left(a_{1} \mid(0 \mid 0)\right) \\
& =a_{2} \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right),
\end{aligned}
$$

for any $a_{1}, a_{2} \in A$. Thus $(A, \mid, 0)$ is a 0 -commutative Sheffer stroke B-algebra. Hence $(A, \mid, 0)$ is a Sheffer stroke BM-algebra by Theorem 3.5.

Proposition 3.2. An algebra $(A, \mid, 0)$ is a 0 -commutative Sheffer stroke B algebra if and only if it satisfies the following axioms:
(i) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(ii) $a_{2}\left|\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$,
(iii) $\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)=a_{1}\right|\left(a_{2} \mid a_{2}\right)$,
for any $a_{1}, a_{2}, a_{3} \in A$.

Theorem 3.6. Let $(A, \mid, 0)$ be a Sheffer stroke BM-algebra. Then A is a 0 commutative Sheffer stroke B-algebra.

Proof. Let A be a Sheffer stroke BM-algebra. Then, by Theorem 3.4, it is a Sheffer stroke B-algebra. From Theorem 3.3, we obtain that it satisfies Proposition 3.2 (i) and (iii). Substituting $\left[a_{1}:=0\right]$ in (sBM.2), we get $\left(\left(a_{3} \mid(0 \mid 0)\right) \mid\left(a_{3} \mid(0 \mid\right.\right.$ $0)$)) $\mid\left(a_{3}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|(0 \mid 0)\right.$.
By using (sBM.1), we have $a_{3}\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right| a_{2}$, for any $a_{2}, a_{3} \in A$. Then Proposition 3.2 (ii) holds in A. Therefore, A is a 0 -commutative Sheffer stroke B-algebra.

Corollary 3.1. An algebra $(A, \mid, 0)$ is a 0 -commutative Sheffer stroke B algebra if and only if it is a Sheffer stroke BM-algebra.

Theorem 3.7. Let $(A, \mid, 0)$ be a Sheffer stroke BM-algebra. Then the following features hold for $a_{1}, a_{2}, a_{3}, a_{4} \in A$:
(i) $a_{1}\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right| a_{2}$,
(ii) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$ implies $a_{1}=a_{2}$,
(iii) $a_{1}\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)=a_{3}\right|\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)$,
(iv) $\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{4} \mid a_{4}\right)\right)=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid\right.\right.\right.$
$\left.\left.\left.a_{3}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{4} \mid a_{4}\right)\right)$,
(v) $\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=a_{1}\right| a_{1}$.

Proof. (i) By using (sBM.1) and (sBM.2), we get

$$
\begin{aligned}
a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) & =\left(\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \\
& =a_{2} \mid(0 \mid 0) \\
& =a_{2} \mid a_{2}
\end{aligned}
$$

(ii) Let $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$. By using (S2), (i) and (sBM.1), we obtain

$$
\begin{aligned}
a_{1} & =\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right) \\
& =\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& =\left(a_{2} \mid a_{2}\right) \mid\left(a_{2} \mid a_{2}\right) \\
& =a_{2} .
\end{aligned}
$$

(iii) By using (i) and Proposition 3.1, we obtain

$$
\begin{aligned}
a_{1} \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)= & \left(\left(a_{2} \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid \\
& \left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \\
= & \left(\left(a_{2} \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \mid \\
& \left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & \left(\left(a_{3} \mid a_{3}\right) \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & a_{3} \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) .
\end{aligned}
$$

(iv) From (iii), we have

$$
\begin{aligned}
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{4} \mid a_{4}\right)\right)= & a_{4} \mid\left(a_{3} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
= & a_{4} \mid\left(a_{2} \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \\
= & \left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\right.\right. \\
& \left.\left.\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{4} \mid a_{4}\right)\right) .
\end{aligned}
$$

(v) It is obtained from (iv), Lemma 3.2 (1) and (sBM.1).

Definition 3.3. A Sheffer stroke BM-algebra $(A, \mid, 0)$ is said to be associative if it satisfies

$$
a_{1}\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)=\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right|\left(a_{3} \mid a_{3}\right),
$$

for all $a_{1}, a_{2}, a_{3} \in A$.
Definition 3.4. A Sheffer stroke Coxeter algebra is a non-empty set with a constant 0 satisfying the following axioms:
$(s C .1)\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)=0$,
$(s C .2)\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(a_{3} \mid a_{3}\right)=a_{1}\right|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)$,
for all $a_{1}, a_{2}, a_{3} \in A$.
Proposition 3.3. Let $(A, \mid, 0)$ is a Sheffer stroke Coxeter algebra. Then
(i) $\left(\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right)=a_{1}$,
(ii) $0\left|\left(a_{1} \mid a_{1}\right)=a_{1}\right| a_{1}$,
(iii) $\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\left|\left(a_{2} \mid a_{2}\right)=a_{1}\right| a_{1}$,
(iv) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$,
for any $a_{1}, a_{2} \in A$.
Proof. Substituting $\left[a_{2}:=\left(a_{1} \mid a_{1}\right)\right.$] in (S2), we obtain $\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid\left(a_{1} \mid\right.\right.$ $\left.\left.a_{1}\right)\right)=a_{1}$. Then $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$ from (S1). (0|0) | $\left(a_{1} \mid a_{1}\right)=\left(a_{1} \mid\right.$ $\left.\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$ from (S2) and (sC.1).
(i) By using (S1), (S2),

$$
\begin{aligned}
\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)= & \left((0 \mid 0) \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left((0 \mid 0) \mid\left(\left(a_{1} \mid a_{1}\right) \mid\right.\right. \\
& \left.\left.\left(a_{1} \mid a_{1}\right)\right)\right) \\
= & \left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right) \\
= & a_{1} .
\end{aligned}
$$

(ii) By using (sC.1), (sC.2) and (i), we have

$$
\begin{aligned}
0 \mid\left(a_{1} \mid a_{1}\right) & =\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right) \\
& =a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \\
& =a_{1} \mid(0 \mid 0) \\
& =a_{1} \mid a_{1} .
\end{aligned}
$$

(iii) By using (i), (ii), (sC.1), (sC.2), (S1), we obtain

$$
\begin{aligned}
a_{1} \mid a_{1}= & 0 \mid\left(a_{1} \mid a_{1}\right) \\
= & \left(\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\right.\right. \\
& \left.\left.\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right) \\
= & \left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\right. \\
& \left.\left(a_{1} \mid a_{1}\right)\right) \\
= & \left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
= & \left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid(0 \mid 0)\right) \\
= & \left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right) .
\end{aligned}
$$

(iv) By using (i), (iii), (sC.1), (sC.2), we get

$$
\begin{aligned}
a_{2} \mid\left(a_{1} \mid a_{1}\right)= & \left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\right. \\
& \left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right) \\
= & \left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & \left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid(0 \mid 0) \\
= & a_{1} \mid\left(a_{2} \mid a_{2}\right) .
\end{aligned}
$$

Theorem 3.8. Every Sheffer stroke Coxeter-algebra is a Sheffer stroke BMalgebra.

Proof. It is enough to show that the axiom (sBM.2) holds in A. By using (sC.2), (S2), Proposition 3.3 (iii) and (iv), we obtain
$\left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right.$
$=\left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right.$
$=\left(\left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)$
$=\left(\left(\left(a_{3} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right)$
$=a_{1} \mid\left(a_{2} \mid a_{2}\right)$
$=a_{2} \mid\left(a_{1} \mid a_{1}\right)$.

Proposition 3.4. Every associative Sheffer stroke BM-algebra is a Sheffer stroke Coxeter algebra.

Proof. It is obtained from Lemma 3.2 (1) and Definition 3.3.
Theorem 3.9. Let $(A, \mid, 0)$ be an algebra of type $(2,0)$ satisfying
(i) $\left(a_{1}\left|\left(a_{1} \mid a_{1}\right)\right|\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)=0\right.\right.$,
(ii) $\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(a_{3} \mid a_{3}\right)=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right|$ $\left(a_{2} \mid a_{2}\right)$.
Then the following statements are equivalent:
(a) A satisfies (sBG.2),
(b) $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$, for all $a_{1} \in A$,
(c) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$ implies $a_{1}=a_{2}$ for all $a_{1}, a_{2} \in A$,
(d) A is a Sheffer stroke BM-algebra.

Proof. $(a) \Rightarrow(b)$: By using $(s B G .2),\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\right.\right.$
$\left.\left.\left(a_{1} \mid a_{1}\right)\right)\right)=a_{1} \mid a_{1}$. Hence $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}$ from (i) and (S1).
$(b) \Rightarrow(c)$: Let $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$. By using $(b),(i)$ and (ii), we obtain

$$
\begin{aligned}
a_{1} \mid a_{1} & =0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \\
& =0 \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \\
& =0 \mid\left(\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right. \\
& =0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \\
& =a_{2} \mid a_{2} .
\end{aligned}
$$

By ($S 2$), we get $a_{1}=a_{2}$.
$(c) \Rightarrow(d):(s B M .2):$ By using (i) and (ii),
$\left(\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)$
$=\left(\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=0 \mid 0$.
By (c),

$$
\begin{equation*}
\left(\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)=a_{2} . \tag{3.1}
\end{equation*}
$$

By using the equation (3.1) and (ii),
$\left(\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)$
$=a_{2} \mid\left(a_{1} \mid a_{1}\right)$.
(sBM.1): By using the equation (3.1) and (i), we get

$$
\begin{aligned}
\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right) & =\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \\
& =a_{1} .
\end{aligned}
$$

Therefore, A is a Sheffer stroke BM-algebra.
$(d) \Rightarrow(a)$: Let A be a Sheffer stroke BM-algebra. By Theorem 3.7 (v), A satisfies (sBG.2).

Theorem 3.10. Let $(A, \mid, 0)$ be an algebra of type $(2,0)$. Then the following statements are equivalent:
(i) A is a Sheffer stroke BM-algebra.
(ii) A is a Sheffer stroke BG-algebra with condition

$$
\begin{gathered}
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \left\lvert\, \begin{array}{c}
\left(a_{3} \mid a_{3}\right)=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid \\
\left(a_{2} \mid a_{2}\right) .
\end{array}\right.
\end{gathered}
$$

Proof. $(i) \Rightarrow(i i)$: It is obtained from Lemma 3.2 (1), Proposition 3.1 and Theorem 3.7 (v).
$(i i) \Rightarrow(i)$: It is obtained from Theorem 3.9.

Theorem 3.11. Every Sheffer stroke Coxeter algebra is a 0-commutative Sheffer stroke B-algebra.

Proof. It is obtained from Theorem 3.6 and Theorem 3.8.
Theorem 3.12. Let $(A, \mid, 0)$ be a Sheffer stroke BM-algebra with $0 \mid\left(a_{1} \mid a_{1}\right)=$ $a_{1} \mid a_{1}$, for all $a_{1} \in A$. Then A is a Sheffer stroke Coxeter algebra.

Proof. It is enough to show (sC.2). By using Proposition 3.1, Theorem 3.4, Definition 2.6 and (sB.2), we have

$$
\begin{aligned}
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)= & \left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid \\
& \left(a_{2} \mid a_{2}\right) \\
= & a_{1} \mid\left(a_{2} \mid\left(0 \mid\left(a_{3} \mid a_{3}\right)\right)\right) \\
= & a_{1} \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) .
\end{aligned}
$$

Therefore, A is a Sheffer stroke Coxeter algebra.
Corollary 3.2. An algebra $(A, \mid, 0)$ is a Sheffer stroke Coxeter algebra if and only if A is a Sheffer stroke BM-algebra with $0\left|\left(a_{1} \mid a_{1}\right)=a_{1}\right| a_{1}$, for all $a_{1} \in A$.

Definition 3.5. An algebra $(A, \mid, 0)$ is called a Sheffer stroke pre-Coxeter algebra if it satisfies the axioms:
(i) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(ii) If $a_{1}\left|\left(a_{2} \mid a_{2}\right)=0\right| 0=a_{2} \mid\left(a_{1} \mid a_{1}\right)$, then $a_{1}=a_{2}$,
(iii) $a_{1}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$,
for all $a_{1}, a_{2} \in A$.
Theorem 3.13. Every Sheffer stroke BM-algebra A with $0\left|\left(a_{1} \mid a_{1}\right)=a_{1}\right| a_{1}$ is a Sheffer stroke pre-Coxeter algebra.

Proof. We must show that (ii) and (iii) hold in A. Assume that $a_{1} \mid\left(a_{2} \mid\right.$ $\left.a_{2}\right)=0\left|0=a_{2}\right|\left(a_{1} \mid a_{1}\right)$. By using (sBM.1), (sBM.2) and (S2),

$$
\begin{aligned}
a_{1} \mid a_{1} & =a_{1} \mid(0 \mid 0) \\
& =\left(\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \\
& =a_{2} \mid(0 \mid 0) \\
& =a_{2} \mid a_{2}
\end{aligned}
$$

From $(S 2), a_{1}=a_{2}$, for all $a_{1}, a_{2} \in A$. It follows from Theorem 3.12 and Proposition 3.3 (iv), that $a_{1}\left|\left(a_{2} \mid a_{2}\right)=a_{2}\right|\left(a_{1} \mid a_{1}\right)$, for any $a_{1}, a_{2} \in A$.

4. Conclusion

In this study, a Sheffer stroke BM-algebra, a (0-commutative) Sheffer stroke Balgebra and a Sheffer stroke (pre)- Coxeter algebra are investigated. By presenting definitions of Sheffer stroke and BM-algebra, a Sheffer stroke BM-algebra is introduced and related concepts are given. Then it is shown that a Sheffer stroke BMalgebra is a BM-algebra if $a_{1} * a_{2}:=\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)$, and also that a bounded BM-algebra is a Sheffer stroke BM-algebra where $a_{1} \mid a_{2}:=\left(a_{1} * a_{2}^{0}\right)^{0}$, for
any elements a_{1} and a_{2}. A Sheffer stroke B-algebra is given. It is shown that every Sheffer stroke BM-algebra is a Sheffer stroke B-algebra. Then, 0 -commutative Sheffer stroke B-algebra is identified and it is proved that an algebra $(A, \mid, 0)$ is a 0-commutative Sheffer stroke B-algebra if and only if it is a Sheffer stroke BMalgebra. Finally, a Sheffer stroke Coxeter algebra and an associative Sheffer stroke BM-algebra are defined and the relationship between this algebraic structures are shown.

Figure 2

References

1. I. Chajda, R. Halaš and H. Länger, Operations and Structures Derived from Non-Associative MV-Algebras. Soft Comput., 23(12)(2019), 3935-3944.
2. I. Chajda, Sheffer operation in ortholattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 44(1)(2005), 19-23.
3. Q. P. Hu and X. Li, On BCH-algebras. Math. Semin. Notes, 11(1983), 313-320.
4. Q. P. Hu and X. Li, On proper BCH-algebras. Math. Jap., 30(1985), 659-661.
5. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras. Math. Jap., 23(1978), 1-26.
6. K. Iséki, On BCI-algebras. Math. Semin. Notes, 8(1980), 125-130.
7. C. B. Kim and H. S. Kim, On BG-algebras. Demonstr. Math., 41(3)(2008), 497-505.
8. C. B. Kim and H. S. Kim, On BM-algebras. Sci. Math. Jpn., 63(2006), 421-427.
9. H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting. Honam Math. J., 26(4)(2004), 471-481.
10. W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra. J. Autom. Reasoning,, 29(1)(2002), 1-16.
11. J. Neggers and H. S. Kim, On B-algebras. Mat. Vesn., 54(2002), 21-29.
12. T. Oner, T. Katican and A. Borumand Saeid. Relation Between Sheffer stroke operation and Hilbert algebras, Categ. Gen. Algebr. Struct. Appl., 14(1)(2021), 245-268.
13. T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras. J. Intell. Fuzzy Syst., 40(1)(2021), 759-772.
14. T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras. An. Ştiint. Univ. Ovidius Constanta, Ser. Mat., 29(1)(2021), 143-164.
15. T. Oner, T. Katican and A. Borumand Saeid, (Fuzzy) filters of Sheffer stroke BL-algebras. Kragujevac J. Math., 47(1) (2023), 39-55.
16. T. Oner, T. Katican and A. Borumand Saeid, On Sheffer stroke UP-algebras. Discuss. Math., Gen. Algebra Appl., 41(2)(2021), 381-394.
17. T. Oner, T. Kalkan and N. Kircali Gursoy, Sheffer stroke BG-algebras. International Journal of Maps in Mathematics, 4(1)(2021), 27-30.
18. T. Oner, T. Kalkan and A. Borumand Saeid, Class of Sheffer stroke BCK-algebras. An. Ştiint. Univ. Ovidius Constanta, Ser. Mat., 30(1)(2022), 247-269.
19. H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants. Trans. Am. Math. Soc., 14(4)(1913), 481-488.

Received by editors 28.2.2022; Revised version 15.5.2022; Available online 25.5.2022.
Tahsin Oner, Department of Mathematics, Ege University, Izmir, Turkey
Email address: tahsin.oner@ege.edu.tr
Tugce Kalkan, Department of Mathematics, Ege University, Izmir, Turkey
Email address: tugcekalkan92@gmail.com
Ahmet Hamal, Department of Mathematics, Ege University, Izmir, Turkey Email address: ahmet.hamal@ege.edu.tr

Melike Kibar, Department of Mathematics, Ege University, Izmir, Turkey
Email address: melikekibar28@outlook.com

[^0]: 2010 Mathematics Subject Classification. Primary 03G25; Secondary 03G10.
 Key words and phrases. BM-algebra, Sheffer stroke, B-algebra, 0-commutative.
 Communicated by Dusko Bogdanic.

