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ON IDEALS OF THE NEARNESS RINGS

Mehmet Ali ÖZTÜRK and Esma KARAMAN

Abstract. In this paper, we introduce a different approach for algebraic
structures. Because, in the concept of ordinary algebraic structures, an al-

gebraic structure consists of a nonempty set of abstract points with one or
more binary operations, and it is required to satisfy certain axioms. But, we

can use perceptual objects (non-abstract points) on weak nearness approxima-

tion space. This is like as a real life. The problem considered in this paper is to
determine such features of ideals on weak nearness approximation space. We

defined that upper nearness ideal generated by a subset of the ring on weak

nearness approximation spaces and introduce some properties of these ideals.
In addition to this, it is defined that nearness prime and nearness maximal

ideals of the nearness rings and introduce some properties of these ideals.

1. Introduction

Set theory is very important tool especially for engineers and mathematicians.
They use set theory as a base in their studies. Researchers defined new approaches
when ordinary set theory is insufficient. Because, the real world is inherently un-
certain, imprecise and vague. Various problems in system identification involve
characteristics which are essentially non-probabilistic in nature [31]. In response
to this situation Zadeh [32] introduced fuzzy set theory as an alternative to prob-
ability theory. Then, Rough set theory, proposed by Pawlak in 1982, focused on
the uncertainty caused by indiscernible elements with different values in decision
attributes ([20]). Worldwide, there has been a rapid growth in interest in rough
set theory and its applications in recent years. In 1999, Molodtsov [5] suggested
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that these difficulties may be due to the inadequacy of the parametrization tool of
the theory. Moreover, to overcome these difficulties, Molodtsov [5] introduced the
concept of soft set as a new mathematical tool for dealing with uncertainties that
is free from the difficulties that have troubled the usual theoretical approaches.

In 2002, J. F. Peters introduced near set theory as a generalization of rough set
theory. In this theory, Peters uses the features of objects to define the nearness of
objects and consequently, the classification of our universal set with respect to the
available information of the objects. The concept of near set theory was motivated
by image analysis and inspired by a study of the perception of the nearness of fa-
miliar physical objects. Near set theory begins with the selection of probe functions
that provide a basis for describing and discerning affinities between objects in dis-
tinct perceptual granules. A probe function is a real valued function representing
a feature of physical objects such as images or behaviors of individual biological
organisms. In [23], a indiscernibility relation that depends on the features of the
objects in order to define the nearness of the objects was given. In more recent
studies, it has been accepted as a generalized approach theory to investigate the
nearness of similar non-empty sets (see [21], [22], [24], [25], and [26]).

We may be used near set theory to turn elements in algebraic structures into
concrete elements. Because, in the concept of ordinary algebraic structures, such a
structure that consists of a nonempty set of abstract points. But, this is not use-
ful for real life problems. All researchers who study algebraic structures consider
abstract elements. But, using them in our study some time is insufficient. We use
perceptual objects (non-abstract points) in near set theory. Perceptual objects have
some features such as colour, degree of maturation for an apple. The basic tool is
consideration of upper approximations of the subsets of perceptual objects in the
algebraic structures constructed on nearness approximation spaces or weak near-
ness approximation spaces. There are two important differences between ordinary
algebraic structures and nearness algebraic structures. The first one is working with
non-abstract points while the second one is considering of upper approximations of
the subsets of perceptual objects for the closeness of binary operations.

The number sets of N,Z,Q,R, and C are very useful in the field of engineering.
But, we emphasize that the elements of the sets of N,Z,Q,R and C have one and
only one property. Having just one feature is not valuable to study for us. Because,
many things has multiple features in real life. So, we must be take attention percep-
tible elements which has more than one property. Since the elements of the sets of
N,Z,Q,R and C has one and only one property, upper and lower approximation’s
and itself of these sets are equal to each other for r = n (n ∈ Z+). The sets of
N,Z,Q,R and C are algebraic structures and also nearness algebraic structures.

Many researchers defined algebraic structures in different sets such as fuzzy
set, rough set and soft set. For example, they defined fuzzy over a group as a fuzzy
group. But, nearness algebraic structures defined on a set unlike them. Therefore,
we think that nearness algebraic structure must be studied in which has property
of G ⊂ Nr(B)∗G, where G is a nearness algebraic structure (see [17]).

In 2012, İnan and Öztürk analyzed the concept of nearness groups and inves-
tigated their basic properties ( [2, 3]). After, in [4], the nearness semigroups and
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nearness rings were established and their basic properties were investigated (and
other algebraic approaches of near sets in [10],[11], [12], [13] and [30]).

Recently, Öztürk [9] has established nearness semiring theory which is a gener-
alization of semiring theory (see [1]) and has analyzed some properties of nearness
semirings and ideals. Subsequently, researchers continued studies investigating the
properties of various ideals of nearness semirings (see [14], [15], [16], [19], [27],
[28], and [29]).

The problem considered in this paper is to determine features of ideals of the
rings on weak nearness approximation space. We defined that upper nearness ideal
generated by a subset of the ring on weak nearness approximation spaces and
introduce some properties of these ideals. Besides, it is defined that nearness prime
and nearness maximal ideals of the nearness rings and introduce some properties
of these ideals.

2. Preliminaries

An object description is determined by means of a tuple of function values
Φ(x) associated with an object x ∈ X, which is a subset of an object space O.
Assume that B ⊆ F is a given set of functions representing features of sample
objects X ⊆ O. Let φi ∈ B, where φi : O → R (set of reals). In combination,
the functions representing object features provide a basis for an object description
Φ : O → RL,Φ(x) = (φ1(x), φ2(x), ..., φL(x)) a vector containing measurements
(returned values) associated with each functional value φi(x), where the description
length | Φ |= L (See [21]).

The important thing to notice is the choice of functions φi ∈ B used to describe
an object of interest. Sample objects X ⊆ O are near each if and only if the objects
have similar descriptions. Recall that each φ defines a description of an object.
Then let △φi denote △φi =| φi(x

′
) − φi(x) |, where x

′
, x ∈ O. The difference φ

leads to a description of the indiscernibility relation “ ∼B ” introduced by Peters
in [21].

Definition 2.1. ([21]) Let x, x
′ ∈ O, B ⊆ F .

∼B= {(x, x′
) ∈ O ×O | △φi = 0 for all φi ∈ B}

is called the indiscernibility relation on O, where description length i ⩽| Φ |.

Comparing object descriptions is the basic idea in the near set approach to
object recognition. Sets of object X,X

′
are called near each other if those sets

contain the objects with at least partial matching descriptions.

Definition 2.2. ([21]) Let X,X
′ ⊆ O, B ⊆ F . Then X is called near X

′
if

there exists x ∈ X,x
′ ∈ X

′
, φi ∈ B such that x ∼φi

x
′
.

A weak nearness approximation space is a tuple (O,F ,∼Br
, Nr(B)), where

the approximation space is defined with respect to a set of perceived objects O,
set of probe functions F representing object features, ∼Br

indiscernibility rela-
tion Br defined relative to Br ⊆ B ⊆ F , and collection of partitions (families
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of neighbourhoods) Nr(B). This relation ∼Br
defines a partition of O into non-

empty, pairwise disjoint subsets that are equivalence classes denoted by [x]Br
, where

[x]Br
= {x′ ∈ O | x ∼Br

x′}. These classes form a new set called the quotient set

O⧸ ∼Br
, where O⧸ ∼Br

=
{
[x]Br

| x ∈ O
}
. In effect, each choice of probe func-

tions Br defines a partition ξO,Br
on a set of objects O, namely, ξO,Br

= O⧸ ∼Br
.

Let we consider X ⊆ O, then upper approximation of X defined by

Nr (B)
∗
X =

⋃
[x]Br

∩X ̸=∅

[x]Br

and lower approximation of X defined by

Nr (B)∗ X =
⋃

[x]Br
⊆X

[x]Br

(See [21], [11]).
The unique description of each object in the set characterize A ⊆ O which is a

set of objects.

Definition 2.3. ([10]) Let (O,F ,∼Br
, Nr, νNr

) be a nearness approximation
space and “+”and “·” binary operations defined on O. A subset R of the set of
perceptual objectsO is called a nearness ring if the following properties are satisfied:

(NR1) R is an abelian near group on O with binary operation “+”,
(NR2) R is a near semigroup on O with binary operation “·”,
(NR3) x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z) properties

hold in Nr (B)
∗
R for all x, y, z ∈ R,

If in addition:

(NR4) If x ·y = y ·x for all x, y ∈ R, then R is said to be a commutative nearness
ring.

(NR5) If Nr (B)
∗
R contains an element 1R such that 1R · x = x · 1R = x for all

x ∈ R, then R is said to be a nearness ring with identity.

Definition 2.4. ([10]) Let R be a ring on nearness approximation space and
S a nonempty subset of R. S is called subnearness ring of R, if S is a nearness ring
with binary operations “+”and “·”on nearness ring R.

Lemma 2.1. ([10]) Let R be a ring on nearness approximation space, {Si | i ∈ ∆}
a nonempty family of subnearness rings of R and Nr (B)

∗
Si groupoids. If⋂

i∈∆

(
Nr (B)

∗
Si

)
= Nr (B)

∗
(
⋂
i∈∆

Si),

then
⋂
i∈∆

Si is a subnearness ring of R.

Definition 2.5. ([10]) Let R be a ring on nearness approximation space and
I be a nonempty subset of R. I is a left (right) nearness ideal of R provided for all
x, y ∈ I and for all r ∈ R, x− y ∈ Nr (B)

∗
I, r · x ∈ Nr (B)

∗
I (x− y ∈ Nr (B)

∗
I,

x · r ∈ Nr (B)
∗
I). A nonempty set I of a nearness ring R is called a nearness ideal

of R if I is both a left and a right nearness ideal of R.
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Lemma 2.2. ([10]) Let R be a ring on nearness approximation space, {Ii | i ∈ ∆}
a nonempty family of nearness ideals of R and Nr (B)

∗
Ii groupoids with the binary

operations “+” and “·”. If⋂
i∈∆

(
Nr (B)

∗
Ii
)
= Nr (B)

∗
(
⋂
i∈∆

Ii),

then
⋂
i∈∆

Ii is a nearness ideal of R.

In [11], νNr : ℘(O)×℘(O) → [0, 1] is not needed which is overlap function when
algebraic structures are studied on the nearness approximation space (O,F ,∼Br

, Nr(B), νNr
), the following definition was given.

Definition 2.6. ([11]) Let O be a set of perceived objects, F a set of the probe
functions, ∼Br

an indiscernibility relation, and Nr(B) a collection of partitions.
Then, (O,F ,∼Br

, Nr(B)) is called a weak nearness approximation space.

Theorem 2.1. ([11]) Let (O,F ,∼Br
, Nr(B)) be a weak nearness approxima-

tion space and X,Y ⊂ O, then the following statements hold;
i) Nr (B)∗ X ⊆ X ⊆ Nr (B)

∗
X,

ii) Nr (B)
∗
(X ∪ Y ) = Nr (B)

∗
X ∪Nr (B)

∗
Y ,

iii) Nr (B)∗ (X ∩ Y ) = Nr (B)∗ X ∩Nr (B)∗ Y ,
iv) X ⊆ Y implies Nr (B)∗ X ⊆ Nr (B)∗ Y ,
v) X ⊆ Y implies Nr (B)

∗
X ⊆ Nr (B)

∗
Y ,

vi) Nr (B)∗ (X ∪ Y ) ⊇ Nr (B)∗ X ∪Nr (B)∗ Y ,
vii) Nr (B)

∗
(X ∩ Y ) ⊆ Nr (B)

∗
X ∩Nr (B)

∗
Y .

Definition 2.7. ([30]) Let (O,F ,∼Br
, Nr(B)) be a weak nearness approxima-

tion space, G ⊆ O and “ · ” be a operation by · : G×G → Nr (B)
∗
G. G is called

a group on O, or shortly, nearness group if the following properties are satisfied:

(NG1) x · y ∈ Nr (B)
∗
G for all x, y ∈ G,

(NG2) (x · y) · z = x · (y · z) property holds in Nr (B)
∗
G for all x, y, z ∈ G,

(NG3) There exists e ∈ Nr (B)
∗
G such that x · e = x = e · x for all x ∈ G,

(NG4) There exists y ∈ G such that x · y = e = y · x for all x ∈ G.

Definition 2.8. ([30]) LetG be a nearness group such thatNr(B)
∗(
Nr(B)

∗
G
)
=

Nr (B)
∗
G and H be a non-empty subset of Nr (B)

∗
G. If the following properties

are hold, thenH is called upper nearness subgroup of G and it is denoted byH ⋞ G.
i) x · y ∈ Nr (B)

∗
H for all x, y ∈ H,

ii) x−1 ∈ H for all x ∈ H.

3. Nearness Ideal Generated by a Subset of The Nearness Rings

When Definition 2.6 is considered, Definition 2.3, Definition 2.4, Lemma 2.1,
Definition 2.5, Lemma 2.2 can be restated as follow for weak nearness approximation
space.

Definition 3.1. Let (O,F ,∼Br
, Nr(B)) be a weak nearness approximation

space, R ⊆ O and “ + ” and “ · ” operations by + : R × R → Nr (B)
∗
R, and
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· : R × R → Nr (B)
∗
R, respectively. R is called a ring on O, or shortly, nearness

ring if the following properties are satisfied:

(NR1) R is an abelian group on O with nearness binary operation “+”,
(NR2) R is a semigroup on O with nearness binary operation “·”,
(NR3) For all x, y, z ∈ R,

x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z)
properties hold in Nr (B)

∗
R.

If in addition:

(NR4) If x ·y = y ·x for all x, y ∈ R, then R is said to be a commutative nearness
ring.

(NR5) If Nr (B)
∗
R contains an element 1R such that 1R · x = x = x · 1R for all

x ∈ R, then R is said to be a nearness ring with identity.

Definition 3.2. Let R be a ring on weak nearness approximation space and
S a nonempty subset of R. S is called subnearness ring of R, if S is a nearness ring
with binary operations “+” and “·”on nearness ring R.

We will give the following lemma, which is the same proof as the proof of
Lemma 2.1.

Lemma 3.1. Let R be a ring on weak nearness approximation space, {Si | i ∈ I}
a nonempty family of subnearness rings of R. If⋂

i∈∆

(
Nr (B)

∗
Si

)
= Nr (B)

∗
(
⋂
i∈∆

Si),

then
⋂
i∈∆

Si is a subnearness ring of R.

Definition 3.3. Let R be a ring on weak nearness approximation space and
I be a nonempty subset of R. I is called a left (right) nearness ideal of R provided
x − y ∈ Nr (B)

∗
I, r · x ∈ Nr (B)

∗
I (x − y ∈ Nr (B)

∗
I, x · r ∈ Nr (B)

∗
I) for all

x, y ∈ I and for all r ∈ R, respectively. A nonempty set I of a nearness ring R is
called a nearness ideal of R if I is both a left and a right nearness ideal of R.

We will give the following Lemma, which is the same proof as the proof of
Lemma 2.2.

Lemma 3.2. Let R be a ring on weak nearness approximation space, {Ii | i ∈ ∆}
a nonempty family of nearness ideals of R. If⋂

i∈∆

(
Nr (B)

∗
Ii
)
= Nr (B)

∗
(
⋂
i∈∆

Ii),

then
⋂
i∈∆

Ii is a nearness ideal of R.

Let’s take the sets of N,Z,Q,R, and C. Since each elements of these sets has
one and only one property; these sets, upper and lower approximation’s of these
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sets are equal to each other for r = 1. In other words;

N1(B)∗N = N = N1(B)∗N
N1(B)∗Z = Z = N1(B)∗Z
N1(B)∗Q = Q = N1(B)∗Q
N1(B)∗R = R = N1(B)∗R
N1(B)∗C = C = N1(B)∗C

Then, the sets of N,Z,Q,R, and C are algebraic structures so that also nearness
algebraic structures. For example, Z is a nearness ring. In this paper, we study
nearness ring in which has property of R ⫋ Nr(B)∗R.

Definition 3.4. Let R be a nearness ring, Br ⊆ F where r ⩽| B |and B ⊆ F ,
∼Brbe a indiscernibility relation on O. Then, ∼Br is called a congruence indis-
cernibility relation on R, if x ∼Br

y, where x, y ∈ R implies x + a ∼Br
y + a,

a+ x ∼Br
a+ y, xa ∼Br

ya, and ax ∼Br
ay, for all a ∈ R.

Lemma 3.3. Let R be a nearness ring. If ∼Br
is a congruence indiscernibility

relation on R, then [x]Br
+[y]Br

⊆ [x+y]Br
and [x]Br

[y]Br
⊆ [xy]Br

for all x, y ∈ R.

Proof. Let z ∈ [x]Br
+ [y]Br

. In his case, z = a+ b; a ∈ [x]Br
, b ∈ [y]Br

. From
here x ∼Br a,and y ∼Br b, and so, we have x + y ∼Br a + y, and a + y ∼Br a + b
by hypothesis. Thus, x + y ∼Br a + b ⇒ z = a + b ∈ [x + y]Br . Similarly,
[x]Br

[y]Br
⊆ [xy]Br

is obtained. □

Let R be a nearness ring. Let X + Y = {x + y | x ∈ X and y ∈ Y } and
XY = {

∑
finite

xiyi | xi ∈ X and yi ∈ Y }, where subsets X and Y of R.

Lemma 3.4. Let R be a nearness ring and ∼Br
be a congruence indiscernibility

relation on R. The following properties hold:
i) If X,Y ⊆ R, then (Nr (B)

∗
X) + (Nr (B)

∗
Y ) ⊆ Nr (B)

∗
(X + Y ),

ii) If X,Y ⊆ R, then (Nr (B)
∗
X)(Nr (B)

∗
Y ) ⊆ Nr (B)

∗
(XY ),

Proof. i) Let x ∈ Nr (B)
∗
X+Nr (B)

∗
Y . We have x = a+b; a ∈ Nr (B)

∗
X, b ∈

Nr (B)
∗
Y . a ∈ Nr (B)

∗
X ⇒ [a]Br

∩X ̸= ∅ ⇒ ∃y ∈ [a]Br
∩X ⇒ y ∈ [a]Br

and
y ∈ X. Likewise, b ∈ Nr (B)

∗
Y ⇒ [b]Br

∩ Y ̸= ∅ ⇒ ∃z ∈ [b]Br
∩ Y ⇒ z ∈ [b]Br

and z ∈ Y. Since w = y + z ∈ [a]Br + [b]Br ⊆ [a + b]Br , we get w ∈ [a + b]Br and
w ∈ X + Y. Thus, w ∈ [a + b]Br ∩ (X + Y ) ⇒ [a + b]Br ∩ (X + Y ) ̸= ∅, and so
a+ b = x ∈ Nr (B)

∗
(X + Y ).

ii) Let x ∈ (Nr (B)
∗
X)(Nr (B)

∗
Y ). Then x =

∑
i=1

aibi, where ai ∈ Nr (B)
∗
X

and bi ∈ Nr (B)
∗
Y , 1 ⩽ i ⩽ n. Thus, [ai]Br

∩ X ̸= ∅ and [bi]Br
∩ Y ̸= ∅. So,

there exists elements xi ∈ [ai]Br
, xi ∈ X and yi ∈ [bi]Br

, yi ∈ Y , 1 ⩽ i ⩽ n.
Therefore, xiyi ∈ [ai]Br

[bi]Br
⊆ [aibi]Br

, 1 ⩽ i ⩽ n by Lemma 3.3. Hence, we get∑
i=1

xiyi ∈ [
∑
i=1

aibi]Br = [x]Br and
∑

xiyi
i=1

∈ XY . In this case, [x]Br ∩ (XY ) ̸= ∅,

which implies that x ∈ Nr (B)
∗
(XY ). □
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Definition 3.5. Let R be a nearness ring, Br ⊆ F , where r ⩽| B |and B ⊆ F ,
∼Br

be a indiscernibility relation on O. Then, ∼Br
is called a complete congruence

indiscernibility relation on R, if [x]Br + [y]Br = [x+ y]Br and [x]Br [y]Br = [xy]Br

for all x, y ∈ R.

We will give the following Theorem, which is the same proof as the proof of
Lemma 3.4.

Theorem 3.1. Let R be a nearness ring, ∼Brbe a complete congruence indis-
cernibility relation on R, and X,Y be two non-empty subsets of R. The following
properties hold:

i) Nr (B)
∗
X +Nr (B)

∗
Y = Nr (B)

∗
(X + Y ),

ii) (Nr (B)
∗
X)(Nr (B)

∗
Y ) = Nr (B)

∗
(XY ).

Definition 3.6. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)
=

Nr (B)
∗
R and S be a non-empty subset of Nr (B)

∗
R. If the following properties

are hold, then S is called upper subnearness ring of R.
i) x− y ∈ Nr (B)

∗
S for all x, y ∈ S,

ii) x · y ∈ Nr (B)
∗
S for all x, y ∈ S.

Definition 3.7. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)
=

Nr (B)
∗
R and A be a nonempty subset of Nr (B)

∗
R. If the following properties

are hold, then A is called left (right) upper nearness ideal of R.
i) x− y ∈ Nr (B)

∗
A for all x, y ∈ A,

ii) r ·x ∈ Nr (B)
∗
A ( x ·r ∈ Nr (B)

∗
A) for all x ∈ A and for all r ∈ Nr (B)

∗
R.

A nonempty set A of Nr (B)
∗
R is called upper nearness ideal of R if A is both

left upper and right upper nearness ideal of R.

Theorem 3.2. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)

=

Nr (B)
∗
R and {Ai | i ∈ I} be a family of all upper nearness ideals of R. If⋂

i∈I

(
Nr (B)

∗
Ai

)
= Nr (B)

∗
(
⋂
i∈I

Ai),

then
⋂
i∈I

Ai is upper nearness ideal of R.

Proof. It is similar to the proof of Lemma 2.2. □

Definition 3.8. Let R be a nearness ring such that Nr (B)
∗ (

Nr (B)
∗
R
)
=

Nr (B)
∗
R and {Ai | i ∈ I} be a family of all upper nearness ideals of R that contain

X. If ⋂
i∈I

(
Nr (B)

∗
Ai

)
= Nr (B)

∗
(
⋂
i∈I

Ai),

then
⋂
i∈I

Ai is called upper nearness ideal generated by the set X and it is denoted

by ⟨X⟩. The elements of X is called the generators of upper nearness ideal ⟨X⟩.

If X = {x1, x2, · · · , xn}, then ⟨X⟩ = ⟨x1, x2, · · · , xn⟩. In this case, it is called
finitely generated by X. If ⟨X⟩ = {a}, then ⟨X⟩ = ⟨a⟩ is called the principal upper
nearness ideal generated by a.



ON IDEALS OF THE NEARNESS RINGS 189

Theorem 3.3. Let R be a nearness ring such that Nr (B)
∗
(Nr (B)

∗
R) =

Nr (B)
∗
R, a ∈ Nr (B)

∗
R, and Nr (B)

∗
R satisfies associative and distributive prop-

erty.
i) If Nr (B)

∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩, then

⟨a⟩ = {na+ ra+ as+
∑m

i=1 riαiasi | r, s, ri, si ∈ Nr (B)
∗
R;n ∈ Z,m ∈ Z+},

ii) If Nr (B)
∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩ and R is a nearness ring with iden-

tity, then

⟨a⟩ =

{
m∑
i=1

riasi | ri, si ∈ Nr (B)
∗
R,m ∈ Z+

}
.

Proof. i) Let

T = {na+ ra+ as+
∑m

i=1 riasi | r, s, ri, si ∈ Nr (B)
∗
R;n ∈ Z,m ∈ Z+}.

Firstly, we prove that T is upper nearness ideal of R.

0R = 0Za+ 0Ma+ a0M +

m∑
i=1

ria0R.

Then, T ̸= ∅. Let x, y ∈ T .

x = na+ ra+ as+
∑m

i=1 riasi; r, s, ri, si ∈ Nr (B)
∗
R, n ∈ Z,m ∈ Z+,

y = n′a+ r′a+ as+
∑t

i=1 r
′
ias

′
i; r

′, s′, r′i, s
′
i ∈ Nr (B)

∗
R, n′ ∈ Z, t ∈ Z+.

Now, show that x− y ∈ Nr (B)
∗
T .

x− y = na+ ra+ as+

m∑
i=1

riasi − (n′a+ r′a+ as′ +

t∑
i=1

r′ias
′
i)

= na+ ra+ as+

m∑
i=1

riasi − n′a− r′a− as′ −
t∑

i=1

r′ias
′
i

= na+ ra+ as− n′a− r′a− as′ +

m∑
i=1

riasi −
t∑

i=1

r′ias
′
i

= (n− n′)a+ (r − r′)a+ a(s− s′) +

m+t∑
i=1

r′′i as
′′
i

= n′′a+ r′′a+ as′′ +

m+t∑
i=1

r′′i as
′′
i .
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Hence, x− y ∈ T . From Theorem 2.1.(i), x− y ∈ Nr (B)
∗
T . Next, we prove that

kx (xk) ∈ Nr (B)
∗
T for all x ∈ K and k ∈ Nr (B)

∗
R.

kx = k(na+ ra+ as+

m∑
i=1

riasi)

= k (na) + k (ra) + k (as) + k(

m∑
i=1

riasi)

= k (a+ a+ · · ·+ a) + (kr)a+ kas+

m∑
i=1

k (riasi)

= ka+ ka+ · · ·+ ka+ (kr)a+ kas+

m∑
i=1

(kri)asi

= ka+ ka+ · · ·+ ka+ r′a+ kas+

m∑
i=1

r′iasi

= r′′a+
m+1∑
i=1

r′′i as
′′
i

= 0Za+ r′′a+ a0R +

m+1∑
i=1

r′′i as
′′
i .

Then, kx ∈ T . Afterwards, kx ∈ Nr (B)
∗
T by Theorem 2.1.(i). Similarly, xk ∈

Nr (B)
∗
T .

Now, we show that T = ⟨a⟩. By definition of principal ideal,

(3.1) ⟨a⟩ =
⋂
i∈I

Ai; a ∈ Ai, Ai is upper nearness ideal of R, ∀i ∈ I.

Let x ∈ ⟨a⟩. From here, x ∈
⋂
i∈I

Ai . So, ∀i ∈ I, x ∈ Ai. On the other hand,

a = 1Za+ 0Ra+ a0R +
∑m

i=1 ria0R; 0R, ri ∈ Nr (B)
∗
R, 1Z ∈ Z,m ∈ Z+.

From here, a ∈ T . By 3.1, T is one of Ai’s that contains a. Hence, x ∈ T . In this
case,

(3.2) ⟨a⟩ ⊆ T .

On the other hand, let x ∈ T . Therefore,

x = na+ ra+ as+
∑m

i=1 riasi; r, s, ri, si ∈ Nr (B)
∗
R,n ∈ Z,m ∈ Z+.

By 3.1, we have a ∈ ⟨a⟩. Then, we get x ∈ ⟨a⟩ by the hypothesis. Hence,

(3.3) T ⊆ ⟨a⟩ .

Thus, from 3.2 and 3.3, ⟨a⟩ = T .
ii) Let D =

{∑m
i=1 riasi | ri, si ∈ Nr (B)

∗
R,m ∈ Z+

}
. By using (i), we have

⟨a⟩ = {na+ ra+ as+
∑m

i=1 riasi | r, s, ri, si ∈ Nr (B)
∗
R;n ∈ Z;m ∈ Z+}.
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For x ∈ ⟨a⟩ and since R is nearness ring with identity;

x = na+ ra+ as+

m∑
i=1

riasi

= a+ a+ · · ·+ a+ ra+ as+

m∑
i=1

riasi

= 1Ra1R + 1Ra1R + · · ·+ 1Ra1R + ra1R + 1Ras+

m∑
i=1

riasi

= 1Ra1R + 1Ra1R + · · ·+ 1Ra1R + ra1R + 1Ras+ r1as1 + · · ·+ rmasm

= r1as1 + r2as2 + · · ·+ rnasn + rn+1asn+1 + rn+2asn+2 + · · ·+ rn+m+2asn+m+2

=

n+m+2∑
i=1

riasi.

Therefore, x ∈ T , and so we get ⟨a⟩ = T . □

Definition 3.9. Let R be a nearness ring. Let C(R) := {c ∈ R | cr = rc for
all r ∈ R}. C(R) is called nearness center of R.

Definition 3.10. Let R be a nearness ring such that Nr (B)
∗
(Nr (B)

∗
R) =

Nr (B)
∗
R. Let C(Nr (B)

∗
R) := {c ∈ Nr (B)

∗
R | cr = rc for all r ∈ Nr (B)

∗
R}.

C(Nr (B)
∗
R) is called upper nearness center of R.

C(R) ( resp. C(Nr (B)
∗
R) ) is easily seen to be a subnearness ring (resp.

upper subnearness ring) of R, but may not be a nearness ideal (resp. upper nearness
ideal).

Theorem 3.4. Let R be a nearness ring such that Nr (B)
∗
(Nr (B)

∗
R) =

Nr (B)
∗
R, C(Nr (B)

∗
R) be upper nearness center of R, X be a non-empty subset

of Nr (B)
∗
R, a ∈ Nr (B)

∗
R, and Nr (B)

∗
R satisfies associative and distributive

property.
i) If Nr (B)

∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩ and a ∈ C(Nr (B)

∗
R), then

⟨a⟩ =
{
na+ ra | r ∈ Nr (B)

∗
R,n ∈ Z

}
,

ii) (Nr (B)
∗
R)a =

{
ra | r ∈ Nr (B)

∗
R
}
(a(Nr (B)

∗
R) =

{
ar | r ∈ Nr (B)

∗
R
}
)

is a left (right) upper nearness ideal of R. If R is a nearness ring with identity,
Nr (B)

∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩, and a ∈ C(Nr (B)

∗
R), then (Nr (B)

∗
R)a =

⟨a⟩ = a(Nr (B)
∗
R),

iii) If R is a nearness ring with identity, Nr (B)
∗
(Nr (B)

∗ ⟨X⟩) = Nr (B)
∗ ⟨X⟩,

and X ⊂ C(Nr (B)
∗
R), then

⟨X⟩ =

{
n∑

i=1

riai | ri ∈ Nr (B)
∗
R, ai ∈ X, n ∈ Z+

}
.
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Proof. i) Let I =
{
na+ ra | r ∈ Nr (B)

∗
R, n ∈ Z

}
. From Theorem 3.3.(i),

⟨a⟩ =

{
na+ ra+ as+

m∑
i=1

riasi | r, s, ri, si ∈ Nr (B)
∗
R, n ∈ Z, m ∈ Z+

}
.

If a ∈ C(Nr (B)
∗
R), then ar = ra for all r ∈ Nr (B)

∗
R. So,

x = na+ ra+ as+

m∑
i=1

riasi

= na+ ra+ sa+

m∑
i=1

risia

= na+ (r + s+

m∑
i=1

risi)a

= na+ r
′
a, r

′

and x ∈ I. Hence, we get that I = ⟨a⟩.
ii) We prove that (Nr (B)

∗
R)a =

{
ra ∈ Nr (B)

∗
R | r ∈ Nr (B)

∗
R
}

is left

upper nearness ideal of R. Let x, y ∈ (Nr (B)
∗
R)a. Then, there exists ele-

ments r1, r2 ∈ Nr (B)
∗
R such that x = r1a, y = r2a. In this case, x − y =

r1a − r2a = (r1 − r2)a ∈ (Nr (B)
∗
R)a by the hypothesis. From Theorem 2.1.(i),

x− y ∈ Nr (B)
∗
((Nr (B)

∗
R)a).

Let x ∈ (Nr (B)
∗
R)a and r ∈ Nr (B)

∗
R. we have x = r1a such that r1 ∈

Nr (B)
∗
R. Hence, rx = r(r1a) = (rr1)a is obtained. From the hypothesis,

since rr1 ∈ Nr (B)
∗
R, we get rx ∈ (Nr (B)

∗
R)a. From Theorem 2.1.(i), rx ∈

Nr (B)
∗
((Nr (B)

∗
R)a). Thus, (Nr (B)

∗
R)a is left upper nearness ideal of R.

Now, since Nr (B)
∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩ and a ∈ C(Nr (B)

∗
R), we

get ⟨a⟩ = {na+ ra | n ∈ Z, r ∈ R} from (i). From here, x ∈ (Nr (B)
∗
R)a and

x = ra, r ∈ Nr (B)
∗
R. Thus, we get x = 0Za+ ra ∈ ⟨a⟩ , and so

(3.4) (Nr (B)
∗
R)a ⊆ ⟨a⟩

is obtained. Let x ∈ ⟨a⟩. Then, x = na + ra;n ∈ Z, r ∈ Nr (B)
∗
R. In this case,

since R is with identity and Nr (B)
∗
(Nr (B)

∗
R) = Nr (B)

∗
R,

x = a+ a+ · · ·+ a+ ra

= 1Ra+ 1Ra+ · · ·+ 1Ra+ ra

= (1R + 1R + · · ·+ 1R + r) a

= r′a.

Thus, we obtain x = r′a ∈ (Nr (B)
∗
R)a, and so

(3.5) ⟨a⟩ ⊆ (Nr (B)
∗
R)a.

Hence, from 3.4 and 3.5, ⟨a⟩ = (Nr (B)
∗
R)a. Similarly, it can be shown that

a(Nr (B)
∗
R) = ⟨a⟩. Thus, (Nr (B)

∗
R)a = ⟨a⟩ = a(Nr (B)

∗
R).
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iii) Let R has an identity and X ⊆ C(Nr (B)
∗
R). Then, we take

T =

{
n∑

i=1

riai | ri ∈ Nr (B)
∗
R, ai ∈ X,n ∈ Z+

}
.

Firstly, we show that T is upper nearness ideal of R. For all x, y ∈ T

x =
∑n

i=1 riai, y =
∑n

′

i=1 r
′

ia
′

i; ri, r
′

i ∈ Nr (B)
∗
R; ai, a

′

i ∈ X; n, n
′ ∈ Z+. Thus,

x− y =

n∑
i=1

riai −
n
′∑

i=1

r
′

ia
′

i

= (r1a1 + r2a2 + · · ·+ rnan)−
(
r
′

1a
′

1 + r
′

2a
′

2 + · · ·+ r
′

n′a
′

n′

)
= r1a1 + r2a2 + · · ·+ rnan − r

′

1a
′

1 − r
′

2a
′

2 − · · · − r
′

n′a
′

n′

= r1a1 + r2a2 + · · ·+ rnan + rn+1an+1 + rn+2an+2 + · · ·+ rn+n′an+n′

=

n+n
′∑

i=1

riai.

Then, x − y ∈ T . From Theorem 2.1.(i), we have x − y ∈ Nr(B)∗T , i.e. (T,+) ⋞
(R,+).

Let x ∈ T and s ∈ Nr (B)
∗
R. x =

∑n
i=1 riai; ri ∈ Nr (B)

∗
R, ai ∈ X, n ∈ Z+.

xs =

(
n∑

i=1

riai

)
s =

n∑
i=1

riais =

n∑
i=1

(ris)ai; ris ∈ Nr (B)
∗
R, ai ∈ X,n ∈ Z+.

sx = s

(
n∑

i=1

riai

)
=

n∑
i=1

(sri)ai; sri ∈ Nr (B)
∗
R, , ai ∈ X,n ∈ Z+.

From Theorem 2.1.(i), xs, sx ∈ Nr(B)∗T . Hence, T is upper nearness ideal of R.
Now, we show that T = ⟨X⟩.

⟨X⟩ =
⋂
i∈I

Ai, X ⊆ Ai, Ai’s are upper nearness ideals of R.

Let x ∈ T . Then, x =
∑n

i=1 riai; ri ∈ R, ai ∈ X ⊂ Ai, n ∈ Z+. Since Ai’s are
upper nearness ideals of R, x ∈

⋂
i∈I

Ai = ⟨X⟩ and so,

(3.6) T ⊆ ⟨X⟩ .

y ∈ X ⇒ y = 1Ry ⇒ y ∈ T ⇒ X ⊆ T . Since ⟨X⟩ =
⋂
i∈I

Ai, X ⊆ Ai and Ai’s are

upper nearness ideals of R, T is one of the nearness ideal of R that contains X.
Because of

⋂
i∈I

Ai ⊆ Ai, ⟨X⟩ =
⋂
i∈I

Ai ⊆ T . Hence,

(3.7) ⟨X⟩ ⊆ T .

Hence, from 3.6 and 3.7, we get that ⟨X⟩ = T . □
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Definition 3.11. Let R be nearness ring and A, B and P are upper nearness
ideals of R. P is called a prime upper nearness ideal of R if A · B ⊆ Nr(B)∗P
implies that either A ⊆ Nr(B)∗P or B ⊆ Nr(B)∗P .

In other words, let R be nearness ring and P be upper nearness ideal of R.
P is called a prime upper nearness ideal of R if ab ∈ Nr(B)∗P implies that either
a ∈ Nr(B)∗P or b ∈ Nr(B)∗P for a, b ∈ Nr(B)∗R.

Theorem 3.5. Let R be a nearness ring such that Nr (B)
∗
(Nr (B)

∗
R) =

Nr (B)
∗
R, ∼Br

be a conqruence indiscernibility relation on Nr (B)
∗
R, P be up-

per nearness ideal of R such that Nr (B)
∗
(Nr (B)

∗
P ) = Nr (B)

∗
P , and Nr (B)

∗
R

satisfies associative and distributive property. Then, the following conditions are
equivalent to each other.

i) P is a prime upper nearness ideal.

ii) If a, b ∈ Nr (B)
∗
R such that a(Nr (B)

∗
R)b ⊆ Nr(B)∗P , then a ∈ Nr(B)∗P

or b ∈ Nr(B)∗P .

iii) If ⟨a⟩ and ⟨b⟩ are principal upper nearness ideals of R such that ⟨a⟩⟨b⟩ ⊆
Nr(B)∗P , Nr(B)

∗
(Nr(B)

∗⟨a⟩) = Nr(B)
∗ ⟨a⟩ and Nr(B)

∗
(Nr (B)

∗⟨b⟩) = Nr (B)
∗⟨b⟩,

then a ∈ Nr(B)∗P or b ∈ Nr(B)∗P .

iv) If U and V be upper nearness ideals of R such that UV ⊆ Nr(B)∗P , then
U ⊆ Nr(B)∗P or V ⊆ Nr(B)∗P .

Proof. We first prove that (i) =⇒ (ii). Let P be prime upper nearness
ideal and a, b ∈ Nr (B)

∗
R such that a(Nr (B)

∗
R)b ⊆ Nr(B)∗P . Then, since

Nr (B)
∗
(Nr (B)

∗
P ) = Nr (B)

∗
P , we have (Nr (B)

∗
R)a(Nr (B)

∗
R)b(Nr (B)

∗
R)

⊆ Nr(B)∗P .
On the other hand, from Lemma 3.4.(ii), we have that (Nr (B)

∗
R)(Nr (B)

∗
R) ⊆

Nr (B)
∗
(RR). SinceR is a nearness ring such thatNr (B)

∗
(Nr (B)

∗
R) = Nr (B)

∗
R

and RR ⊆ Nr (B)
∗
R, we get Nr (B)

∗
(RR) ⊆ Nr (B)

∗
(Nr (B)

∗
R)) = Nr (B)

∗
R

by Theorem 2.1.(v). Therefore, we obtain that (Nr (B)
∗
R)(Nr (B)

∗
R) ⊆Nr (B)

∗
R.

In this case, we have
((Nr (B)

∗
R)a(Nr (B)

∗
R))((Nr (B)

∗
R)b(Nr (B)

∗
R))

⊆ (Nr (B)
∗
R)a(Nr (B)

∗
R)b(Nr (B)

∗
R)

⊆ Nr(B)∗P .
Since (Nr (B)

∗
R)a(Nr (B)

∗
R) and (Nr (B)

∗
R)b(Nr (B)

∗
R) are upper nearness

ideals ofR, we get (Nr (B)
∗
R)a(Nr (B)

∗
R) ⊆ Nr(B)∗P or b(Nr (B)

∗
R) ⊆ Nr(B)∗P

by the hypothesis.
Suppose that (Nr (B)

∗
R)a(Nr (B)

∗
R) ⊆ Nr(B)∗P . Let A = ⟨a⟩ such that

Nr (B)
∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩. Thus, A3 ⊆ (Nr (B)

∗
R)a(Nr (B)

∗
R) ⊆

Nr(B)∗P ⇒ A2 ⊆ Nr(B)∗P or A ⊆ Nr(B)∗P . If A2 ⊆ Nr(B)∗P , then AA ⊆
Nr(B)∗P , again using (i), we have A ⊆ Nr(B)∗P and a ∈ Nr(B)∗P .
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If (Nr (B)
∗
R)b(Nr (B)

∗
R) ⊆ Nr(B)∗P , then similarly, it follows that b ∈

Nr(B)∗P .
We show that (ii) =⇒ (iii). Let us next assume the truth of (ii) and ⟨a⟩ ⟨b⟩ ⊆

Nr(B)∗P , where Nr (B)
∗
(Nr (B)

∗ ⟨a⟩) = Nr (B)
∗ ⟨a⟩, and Nr (B)

∗
(Nr (B)

∗ ⟨b⟩) =
Nr (B)

∗ ⟨b⟩ for a, b ∈ Nr (B)
∗
R. In this case, if ⟨a⟩ ⟨b⟩ ⊆ Nr(B)∗P , it prove easily

that a(Nr (B)
∗
R)b ⊆ ⟨a⟩ ⟨b⟩ ⊆ Nr(B)∗P and thus a ∈ Nr(B)∗P or b ∈ Nr(B)∗P

from (ii).
We now proceed to show that (iii) =⇒ (iv). Suppose that U and V are upper

nearness ideals of R such that UV ⊆ Nr(B)∗P . Let us assume that U ⊈ Nr(B)∗P ,
and UV ⊆ Nr(B)∗P . Then, there exists an element u such that u ∈ U and
u /∈ Nr(B)∗P . Let v ∈ V . Since ⟨u⟩ ⟨v⟩ ⊆ UV + (Nr (B)

∗
R)UV ⊆ Nr(B)∗P and

u /∈ Nr(B)∗P , property (iii) implies that v ∈ Nr(B)∗P and so, V ⊆ Nr(B)∗P .
Lastly, we prove that (iv) =⇒ (i). Let U, V be upper nearness ideals of R and

UV ⊆ Nr(B)∗P . Therefore, we have U ⊆ Nr(B)∗P or V ⊆ Nr(B)∗P from (iv).
Thus, from Definition 3.11, P is prime upper nearness ideal. □

Definition 3.12. Let R be nearness ring and A, B and P are nearness ideals
of R. P is called a prime nearness ideal of R if A ·B ⊆ Nr(B)∗P implies that either
A ⊆ Nr(B)∗P or B ⊆ Nr(B)∗P .

In other words, let R be nearness ring and P be nearness ideal of R. P is called
a prime nearness ideal of R if ab ∈ Nr(B)∗P implies that either a ∈ Nr(B)∗P or
b ∈ Nr(B)∗P for any a, b ∈ R.

Definition 3.13. Let R be a nearness ring and A be a nearness ideal of R.
Then A is called a maximal nearness ideal of R if R ̸= A and there does not exist
any nearness ideal B of R such that A ⊂ B ⊂ R.

Example 3.1. Let O = {x, y, z, p, r, s, t} be a set of perceptual objects for
r = 1, B = {φ1, φ2} ⊆ F be a set of probe functions. Let R = {z, p, t} ⊂ O. Probe
functions’ values

φ1 : O → V1 = {α1, α2, α3, α4, α5},
φ2 : O → V2 = {α2, α3, α5, α7},

are presented in Table 1.

x y z p r s t
φ1 α1 α2 α3 α3 α2 α4 α5

φ2 α2 α3 α5 α5 α7 α2 α3

Table 1
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Now, we find the near equivalence classes according to the indiscernibility re-
lation ∼Br

of elements in O:

[x]φ1
= {x

′
∈ O | φ1(x

′
) = φ1(x) = α1} = {x}

[y]φ1
= {x

′
∈ O | φ1(x

′
) = φ1(y) = α2} = {y, r}

= [r]φ1
,

[z]φ1
= {x

′
∈ O | φ1(x

′
) = φ1(z) = α3} = {z, p} = [p]φ1

,

[s]φ1
= {x

′
∈ O | φ1(x

′
) = φ1(s) = α4} = {s},

[t]φ1
= {x

′
∈ O | φ1(x

′
) = φ1(t) = α5} = {t}.

Then, we have that ξφ1
=
{
[x]φ1

, [y]φ1
, [z]φ1

, [s]φ1
, [t]φ1

}
.

[x]φ2
= {x

′
∈ O | φ2(x

′
) = φ2(x) = α2} = {x, s}

= [s]φ2
,

[y]φ2
= {x

′
∈ O | φ

2
(x

′
) = φ

2
(y) = α3} = {y, t}

= [t]φ2
,

[z]φ2
= {x

′
∈ O | φ2(x

′
) = φ2(z) = α5} = {z, p}

= [p]φ2
,

[r]φ2
= {x

′
∈ O | φ2(x

′
) = φ2(r) = α7} = {r}.

We attain that ξφ2
=
{
[x]φ2

, [y]φ2
, [z]φ2

, [r]φ2

}
. Consequently, a set of partitions

of O is Nr (B) = {ξφ1
, ξφ2

} for r = 1. Hence,

N1 (B)
∗
R =

⋃
[x]φi

∩R ̸=∅

[x]φi

= [z]φ1
∪ [t]φ1

∪ [y]φ2
∪ [z]φ2

= {y, z, p, t}.

Taking operation tables for R in Table 2 and Table 3.

+ z p t
z y t p
p t y z
t p z y

Table 2

· z p t
z y z z
p y p p
t y t t

Table 3
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In this case, (R,+, ·) is a nearness ring. Let take A = {p, t} is subset of R. A is
nearness ideal of R and there does not exist any ideal B such that A ⊂ B ⊂ R.
Hence, A is maximal ideal of R.

Example 3.2. ⟨3⟩ is a maximal nearness ideal, but ⟨4⟩ is not a maximal near-
ness ideal in Z. Since, ⟨4⟩ ⫋ ⟨2⟩ ⫋ Z.

Theorem 3.6. Let R be commutative nearness ring with identity, ∼Br
be a

conqruence indiscernibility relation on R and A be a nearness ideal of R such that
Nr (B)

∗
(Nr (B)

∗
A) = Nr (B)

∗
A. If A is maximal nearness ideal, then A is prime

nearness ideal.

Proof. We show that a ∈ A or b ∈ B for a, b ∈ R and r ∈ R when arb ∈
Nr(B)∗A. Since R is commutative, aR = {ax | x ∈ R} is nearness ideal of R. If
a /∈ A, then A + aR = {m+ ax | m ∈ A, x ∈ R} is nearness ideal of R. Since
A ⫋ A+aR and A is maximal nearness ideal, R = A+aR. Since R has an identity,
there are elements m ∈ A and x ∈ R so that 1 = m + ax. 1 = m + ax ⇒ b =
mb+ axb ∈ Nr(B)∗A. Hence, from Definition 3.12, A is prime nearness ideal. □
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