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SPECTRA AND FINE SPECTRA OF THE
GENERALIZED UPPER DIFFERENCE OPERATOR

WITH TRIPLE REPETITION ∆rs
3 OVER THE

SEQUENCE SPACE bv

Nuh Durna and Rabia Kılıç

Abstract. In this paper, we investigate the fine spectrum which is given
by Goldberg, and some spectral decompositions which are sets that do not

have to be disjointed for the generalized upper difference operator with triple
repetition ∆rs

3 over the sequence space bv. Afterwards, we generalize these

results for n > 3 (n ∈ N).

Spectral theory is a standard and useful the mathematical tool of in various
science. For example in aviation it may be determined whether the flow over a
wing is uniform or turbulent by spectral values, in structural mechanics, spectral
theory may determine whether an automobile is too noisy or whether a building will
collapse in an earthquake, etc. It also has many applications in both mathematics
and physics, including matrix theory, control theory, function theory, differential
and integral equations, complex analysis, and quantum physics. For example, in
quantum mechanics, it determines atomic energy levels and thus the frequency of
a laser or the spectral signature of a star is obtained.

Band matrices occur in many fields and applications of mathematics. For
example tridiagonal, or more general, banded matrices are used in telecomunication
system analysis, finite difference methods for solving partial differential equations,
linear recurrence systems with non-constant coeffcients, etc. Spectrum of band
operators on the sequence space have been studied in recent years. Therefore, in
this article, we examined the spectrum of the band operator. The band operator
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166 DURNA AND KILIÇ

we examined is

(0.1) ∆rs
3 x = ∆rs

3 (xn) = (rnxn + snxn+1)
∞
n=0

where rx = ry, sx = sy for x ≡ y(mod3). In this paper, we investigate the spectrum,
the fine spectrum and subdivision of the spectrum of ∆rs

3 over the sequence space
bv = {x = (xn) :

∑
n |xn − xn+1| <∞}.

1. Definitions and preliminaries

Let X and Y be the Banach spaces, and L : X → Y be a bounded linear
operator. The range of L, the domain of L are denoted R (L), D(L) respectively.
Set of all bounded linear operators on X into itself is denoted by B(X).

Let L : D (L) ⊂ X → X be a linear operator. Herein X is a complex normed
space. For L ∈ B(X), Lλ := λI − L is denoted. Herein I is the identity operator
and λ ∈ C. Then a regular value of L is λ ∈ C such that (R1) L−1

λ exists; (R2)

L−1
λ is bounded; (R3) L−1

λ is defined on a set which is dense in X. The set of all
regular values is called as the resolvent set of L and is indicated with ρ(L,X). In
C, the complement of ρ(L,X) is called as the spectrum of L and is indicated with
σ(L,X).

The spectrum σ(L,X) is the union of three disjoint sets as follows:
(1) The point spectrum σp(L,X) is the set which L−1

λ does not exist.

(2) The continuous spectrum σc(L,X) is the set which the operator L−1
λ is

defined on a dense subspace of X and is unbounded.
(3) The residual spectrum σr(L,X) is the set which the operator L−1

λ exists,
but its domain of definition (i.e. the range R(λI − L) of (λI − L)) is not dense in
X than in this case L−1

λ may be bounded or unbounded. From above definitions,
we have

(1.1) σ(L,X) = σp(L,X) ∪ σc(L,X) ∪ σr(L,X)

and

σp(L,X) ∩ σc(L,X) = ∅, σp(L,X) ∩ σr(L,X) = ∅, σr(L,X) ∩ σc(L,X) = ∅.
The spectrum σ(L,X) is also the union of three sets that are not necessarily

disjoint as follows:
(1) The defect spectrum: σδ(L,X) := {λ ∈ σ(L,X) : R(Lλ) 6= X},
(2) The compression spectrum: σco(L,X) :=

{
λ ∈ C : R(Lλ) 6= X

}
,

(3) The approximate point spectrum: σap(L,X) := {λ ∈ C :there exists a
sequence (xk) in X such that ‖xk‖ = 1 for all k ∈ N and limk→∞ ‖Lλ (xk)‖ = 0}.

The following Proposition is useful because the adjoint operator of the linear
operator takes advantage of for calculating the partition of the spectrum of the
linear operator in Banach spaces.

Proposition 1.1 ([1], Proposition 1.3). The spectra and subspectra of an op-
erator L ∈ B(X) and its adjoint L∗ ∈ B(X∗) are related by the following relations:
(a) σ(L∗, X∗) = σ(L,X),
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(b) σc(L
∗, X∗) ⊆ σap(L,X),

(c) σap(L
∗, X∗) = σδ(L,X),

(d) σδ(L
∗, X∗) = σap(L,X),

(e) σp(L
∗, X∗) = σco(L,X),

(f) σco(L
∗, X∗) ⊇ σp(L,X),

(g) σ(L,X) = σap(L,X) ∪ σp(L∗, X∗) = σp(L,X) ∪ σap(L∗, X∗).

Goldberg’s classification of spectrum
If L ∈ B(X), then there are three cases for R(L):

(I) R(L) = X, (II) R(L) 6= R(L) = X, (III) R(L) 6= X
and three cases for L−1:

(1) L−1 exists and continuous, (2) L−1 exists but discontinuous, (3) L−1 does
not exist.

If these cases are combined in all possible ways, nine different states are created.
These are labelled by: I1, I2, I3, II1, II2 , II3, III1, III2, III3 (see [2]).

σ(L,X) can be divided into subdivisions I2σ(L,X) = ∅, I3σ(L,X), II2σ(L,X),
II3σ(L,X), III1σ(L,X), III2σ(L,X), III3σ(L,X). For example, if T = λI − L
is in a given state, II3 (say), then we write λ ∈ II3σ(L,X).

By the definitions given above and the introduction, the following table can be
written

1 2 3

L−1
λ exists L−1

λ exists L−1
λ

and is bounded and is unbounded does not exists

λ ∈ σp(L,X)
I R(λI − L) = X λ ∈ ρ(L,X) – λ ∈ σap(L,X)

λ ∈ σc(L,X) λ ∈ σp(L,X)

II R(λI − L) = X λ ∈ ρ(L,X) λ ∈ σap(L,X) λ ∈ σap(L,X)
λ ∈ σδ(L,X) λ ∈ σδ(L,X)

λ ∈ σr(L,X) λ ∈ σr(L,X) λ ∈ σp(L,X)

III R(λI − L) 6= X λ ∈ σδ(L,X) λ ∈ σap(L,X) λ ∈ σap(L,X)
λ ∈ σδ(L,X) λ ∈ σδ(L,X)

λ ∈ σco(L,X) λ ∈ σco(L,X) λ ∈ σco(L,X)

Table 1

By w, we denote the space of all sequences. Well-known examples of Banach
sequence spaces are the spaces `∞, c, c0 and bv of bounded, convergent, null and
bounded variation sequences, respectively. Also by `p, bvp we denote the spaces of
all p−absolutely summable sequences and p−bounded variation sequences, respec-
tively.

In this paper, we focus on sequence space

bv =

{
x = (xn) :

∑
n

|xn − xn+1| <∞

}
.
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An equivalent norm on the sequence space bv is
∑
n |xn − xn−1| . The dual space

bv∗ of bv is norm isomorphic to the Banach space

bs =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ <∞
}
.

The spectrum and fine spectrum of bounded linear operators on certain se-
quence spaces have been studied by many researchers. Here are some articles that
have been studied on the spectrum of linear operators on bv and bvp: In [3], Okutoyi
examined on the spectrum of C1 on bv. In [4], Yıldırım studied on the spectrum of
the Rhaly operators on bv. In [5], on the spectrum of the generalized difference op-
erator B(r, s) over the sequence spaces `1 and bv was examined by Furkan et. al. In
[6], Akhmedov and Başar studied the fine spectra of the difference operator ∆ over
the sequence space bvp (1 6 p < ∞). In [7], Bilgiç and Furkan calculated the fine
spectrum of the generalized difference operator B (r, s) over the sequence spaces `p
and bvp (1 6 p < ∞). In [8], the spectrum of the operator D (r, 0, 0, s) over the
sequence spaces `p and bvp was examined by Paul and Tripathy. In [9], Sawano and
El-Shabrawy examined the fine spectra of the discrete generalized Cesàro operator
on Banach sequence spaces.

2. Fine spectrum

The matrix representation corresponding to our operator is as follows:

(2.1) ∆rs
3 =



r0 s0 0 0 0 0 0 0 0 · · ·
0 r1 s1 0 0 0 0 0 0 · · ·
0 0 r2 s2 0 0 0 0 0 · · ·
0 0 0 r0 s0 0 0 0 0 · · ·
0 0 0 0 r1 s1 0 0 0 · · ·
0 0 0 0 0 r2 s2 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


(s0, s1, s2 6= 0).

As can be seen, this matrix is a triple repeating upper triangular band matrix.
In this section, we going to calculate the fine spectra of the matrix ∆rs

3 .

Lemma 2.1 (Stieglitz and Tietz [10]). The matrix A = (ank) gives rise to a
bounded linear operator T ∈ (bv; bv) from bv to itself if and only if

(i)
∞∑
k=1

ank <∞, for each n,

(ii) sup
N>0

∞∑
n=1

∣∣∣∣ N∑
k=0

(ank − an−1,k)

∣∣∣∣ <∞,

Theorem 2.1. ∆rs
3 : bv → bv is a bounded linear operator.

Proof. (i) It is clear.

(ii) Let BNn =
N∑
k=0

(ank − an−1,k) and if we calculate Bn then we have
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BN1 =

N∑
k=0

(a1k − a0k) = (0− r0) + (r1 − s0) + (r1 − 0) + (0− 0) + · · ·+ 0 + · · ·

BN2 =

N∑
k=0

(a2k − a1k) = (0− 0) + (0− r1) + (r2 − s1) + (s2 − 0) + (0− 0) + · · ·+ 0 + · · ·

...

BNn =

N∑
k=0

(ank − an−1,k) = (0− 0) + · · ·+ (0− 0)︸ ︷︷ ︸
(n−1) times

+ (0− rn−1) + (rn − sn−1)

+ (sn − 0) + (0 + 0) + · · ·

Therefore we get

BNn =


0 , N 6 n− 1

−rn−1 , N = n− 1
−rn−1 + rn − sn−1 , N = n

rn + sn − (rn−1 + sn−1) , N > n+ 1

.

Since
∞∑
n=1

∣∣BNn ∣∣ =

{
|r0| , N = 0

|r0 + s0| . N > 0
,

we have

sup
N>0

∞∑
n=1

∣∣∣∣∣
N∑
k=0

(ank − an−1,k)

∣∣∣∣∣ = sup
N>0

∞∑
n=1

∣∣BNn ∣∣ = max {|r0 + s0| , |r0|} .

So the conditions of the Lemma 2.1 are satisfied and it is a bounded linear operator.
�

Lemma 2.2 (Golberg [2, p.59]). T has a dense range if and only if T ∗ is 1-1.

Lemma 2.3 (Golberg [2, p.60]). T has a bounded inverse if and only if T ∗ is
onto.

Throughout this work, for convenience, we will denote the set

{λ ∈ C : |λ− r0| |λ− r1| |λ− r2| 6 |s0| |s1| |s2|}

with M . Thus, we will denote the boundary and interior of the set M with ∂M
and M̊ respectively.

Theorem 2.2. σp(∆
rs
3 , bv) = M̊ .
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Proof. Let λ be an eigenvalue of the operator ∆rs
3 . Then there exists h 6=

θ = (0, 0, 0, ...) in bv such that ∆rs
3 h = λh. Then for xn :=

λ− rn
sn

we obtain h3n = tnh0,
h3n+1 = x0t

nh0,
h3n+2 = x0x1t

nh0,
, n > 0

where t = x0x1x2. Thus we get

|h3k+i − h3k+i+1| = |Di| |t|k |h0| , i = 0, 2

where

Dr :=

 1− x0 , i = 0
x0 − x0x1 , i = 1

x0x1 − x0x1x2 , i = 2

Hereby we have

∞∑
n=1

|hn − hn+1| =
∞∑
k=0

|h3k+r − h3k+r+1| = |Dr| |h0|
∞∑
k=0

|t|k .

Since Dr |h0|
∞∑
k=0

|t|k is convergent if and only if |t| < 1, h = (hn) ∈ bv is convergent

if and only if |λ− r0| |λ− r1| |λ− r2| < |s0| |s1| |s2| and so σp(∆
rs
3 , bv) = M̊ . �

If T : bv 7−→ bv is a bounded linear operator represented with a matrix A, then
it is known that the adjoint operator T ∗ : bv∗ 7−→ bv∗ of T operator is represented
by

A∗ =


χ̄ v0 − χ̄ v1 − χ̄ v2 − χ̄ · · ·
u0 a00 − u0 a10 − u0 a20 − u0 · · ·
u1 a01 − u1 a11 − u1 a21 − u1 · · ·
u2 a02 − u2 a12 − u2 a22 − u2 · · ·
...

...
...

...
. . .


where

un = lim
m→∞

am,n , vn =
∞∑
m=0

an,m

and

χ̄ = lim
n→∞

vn.

The dual space bv∗ of bv is norm isomorphic to the Banach space

bs :=

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ <∞
}
.

In this section, we will take rn + sn = rn+1 + sn+1 = c, c is a constant, for
(∆rs

3 )
∗

to exist, herein rx = ry, sx = sy, x ≡ y (mod3) .

Theorem 2.3. σp((∆
rs
3 )
∗
, bv∗ ∼= bs) = ∅.
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Proof. Let λ be an eigenvalue of the operator (∆rs
3 )
∗

that is to say there
exists h 6= θ = (0, 0, 0, ...) in bs such that (∆rs

3 )
∗
h = λh.

Then, we obtain

(2.2) ch0 = λh0

(2.3) r0h1 = λh1

(2.4) s0h1 + r1h2 = λh2

(2.5) s1h2 + r2h3 = λh3

(2.6) s2h3 + r0h4 = λh4

...

(2.7) snhn+1 + rn+1hn+1 = λhn+1

...

Then if h0 6= 0, then from (2.2) λ = c and from (2.3) r0 = c. Also since c = r0 + s0

we get s0 = 0 and this is a contradiction so h0 = 0. Suppose that hm be the first
non-zero of the sequence (hn) in this case if we take n = m−1 in (2.5) then λ = rm
for

sm−1hm−1 + rmhm = λhm

if we take n = m in (2.7) since λ = rm we have

smhm + rm+1hm+1 = rmhm+1

hence

(2.8) hm+1 =

(
sm+1

rm − rm+1

)
hm

if we take n = m+ 1 in (2.7) and since λ = rm

(2.9) hm+2 =

(
sm+1

rm − rm+2

)
hm+1

and if we take n = m+ 2 in (2.7) and since λ = rm we get

sm+2hm+2 + rm+3hm+3 = rmhm+3

and since rx = ry, sx = sy, x ≡ y (mod3), we have sm+2hm+2 = 0 which implies
hm+2 = 0 as sm+2 6= 0. Therefore hm+1 = 0 from (2.9) then hm = 0 from (2.8), a
contradiction. Hereby, σp((∆

rs
3 )
∗
, bv∗ ∼= bs) = ∅. �

Theorem 2.4. σr(∆
rs
3 , bv) = ∅.

Proof. Owing to σr(A, bv) = σp(A
∗, bs)\σp(A, bv), required result is given us

by Theorems 2.2 and 2.3. �
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Lemma 2.4.

n∑
m=1

(
3m+t∑
i=0

figmi

)
=

2∑
i=0

fi

(
n∑

m=1

gmi

)
+

n∑
i=1

f3i+t

(
n∑

m=i

gm,3i+t

)
, t = 0, 1, 2

herein (fk) and (gnk) are real numbers.

Proof. It is clear. �

Theorem 2.5. σc (∆rs
3 , bv) = ∂M and σ (∆rs

3 , bv) = M.

Proof. Let k = (kn) ∈ bs be such that (∆rs
3 − λI)∗h = k for some h = (hn).

Then we get following system of linear equations:

(c− λ)h0 = k0

(r0 − λ)h1 = k1

s0h1 + (r1 − λ)h2 = k2

...

s2h3n + (r0 − λ)h3n+1 = k3n+1

s0h3n+1 + (r1 − λ)h3n+2 = k3n+2

s1h3n+2 + (r2 − λ)h3n+3 = k3n+3

...

where n > 0. Solving above equations, for t = 0, 1, 2;n = 1, 2, . . ., we have

h3n+t =
1

rt+2 − λ

[
3n+t∑
m=1

(−1)3n+t−mkm

3n+t−m−1∏
v=0

s3n+t+1−ν

r3n+t+1−ν − λ

]
.

Herein rx = ry, sx = sy for x ≡ y(mod3). Therefore we get∣∣∣∣∣
3n+t∑
m=0

hk

∣∣∣∣∣ = |h0 + h1 + h2 + h3 + · · ·+ h3n+t|

=

∣∣∣∣∣h0 + h1 + h2 +

n∑
m=1

h3m+t

∣∣∣∣∣
6 |h0 + h1 + h2|

+

∣∣∣∣∣
n∑

m=1

1

at+2 − λ

[
3m+t∑
i=0

(−1)3m+t−iki

3m+t−i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

]∣∣∣∣∣
6 |h0 + h1 + h2|

+
2

max
l=0

∣∣∣∣ 1

al − λ

∣∣∣∣
∣∣∣∣∣
n∑

m=1

3m+t∑
i=0

(−1)3m+t−iki

3m+t−i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

∣∣∣∣∣
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Thus the inequality is gotten;∣∣∣∣∣
3n+t∑
k=0

fk

∣∣∣∣∣ 6 |h0 + h1 + h2|

+
2

max
l=0

∣∣∣∣ 1

al − λ

∣∣∣∣
∣∣∣∣∣
n∑

m=1

3m+t∑
i=0

(−1)3m+t−iki

3m+t−i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

∣∣∣∣∣(2.10)

In Lemma 2.4 if we take fi = ki and gmi = (−1)3m+t−i
3m+t−i−1∏

ν=0

b3m+t+1−ν

a3m+t+1−ν − λ
then we have ∣∣∣∣∣

n∑
m=1

3m+t∑
i=0

(−1)3m+t−iki

3m+t−i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

∣∣∣∣∣
=

∣∣∣∣∣
2∑
i=0

ki

(
n∑

m=1

(−1)3m+t−i
3m+t−i−1∏

ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

)

+

n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3i
3m−3i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

)∣∣∣∣∣
6

∣∣∣∣∣
2∑
i=0

ki

(
n∑

m=1

(−1)3m+t−i
3m+t−i−1∏

ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3i
3m−3i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

)∣∣∣∣∣
Also since both

3m+t−i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ
= weu

3m−(i+t), t = 0, 1, 2 where we, e =

0, 1, 2 constant, moreover

while t = 0,


w0 = 1

w1 = b1
(a1−λ)

w2=
b1b0

(a1−λ)(a0−λ)

, while t = 1,


w0 = b2

(a2−λ)

w1 = b2b1
(a2−λ)(a1−λ)

w2=
b0b1b2

(a0−λ)(a1−λ)(a2−λ)

and while

t = 2,


w0 = b0b2

(a0−λ)(a1−λ)

w1 = b0b1b2
(a0−λ)(a1−λ)(a2−λ)

w2=
b20b1b2

(a0−λ)2(a1−λ)(a2−λ)

and setting

u =

(
s2s1s0

(r2 − λ) (r1 − λ) (r0 − λ)

)1/3

. Therefore the multiplication become

3m−3i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ
= u3m−3i, the last equation turns into the sum

|we|

∣∣∣∣∣
2∑
i=0

ki

(
n∑

m=1

(−1)3m+t−iu3m−(i+t)

)∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3iu3m−3i

)∣∣∣∣∣ .
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Now the consider only the sum

∣∣∣∣ n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3iu3m−3i

)∣∣∣∣. Then

∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3iu3m−3i

)∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−u)3k−3i

)∣∣∣∣∣
from now on (−u)

3
= z so∣∣∣∣∣

n∑
i=1

k3i+t

(
n∑

m=i

(−u)3m−3i

)∣∣∣∣∣ =

∣∣∣∣ 1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+t (1− z)n−i+1

∣∣∣∣∣
6

∣∣∣∣ 1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+t

∣∣∣∣∣+

∣∣∣∣ 1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+tz
n−i+1

∣∣∣∣∣ .
Hence

(2.11)

∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3iu3m−3i

)∣∣∣∣∣ 6
∣∣∣∣ 1

1− z

∣∣∣∣ ‖k‖bs+∣∣∣∣ zn+1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+tz
−i

∣∣∣∣∣
as long as ai = k3i+t, bi = z−i and apply Abel’s partial summation formula to sum
n∑
i=1

k3i+tz
−i =

n∑
i=1

k3i+t

zi
, now that sn =

n∑
i=0

k3i+t, ∆bi =
r − 1

ri+1
we obtain

n∑
i=1

k3i+t

zi
=

1

zn

n∑
i=1

k3i+t +

n−1∑
i=1

z − 1

zi+1

i∑
m=0

k3m+t.

Thus∣∣∣∣ zn+1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+t (z)
−i

∣∣∣∣∣ =

∣∣∣∣ zn+1

1− z

∣∣∣∣
∣∣∣∣∣ 1

zn

n∑
i=1

k3i+t +

n−1∑
i=1

z − 1

zi+1

i∑
m=0

k3m+t

∣∣∣∣∣
6

∣∣∣∣ z

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+t

∣∣∣∣∣+

∣∣∣∣ (z − 1) zn

1− z

∣∣∣∣
∣∣∣∣∣
n−1∑
i=1

1

zi

i∑
m=0

k3m+t

∣∣∣∣∣
6

∣∣∣∣ z

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+t

∣∣∣∣∣+

∣∣∣∣ (z − 1) zn

1− z

∣∣∣∣ n−1∑
i=1

1

|z|i

∣∣∣∣∣
i∑

m=0

k3m+t

∣∣∣∣∣
6

∣∣∣∣ z

1− z

∣∣∣∣ ‖k‖bs +

∣∣∣∣ (z − 1) zn

1− z

∣∣∣∣ ‖k‖bs n−1∑
i=1

1

|z|i
(2.12)

and we get

(2.13)

∣∣∣∣ zn+1

1− z

∣∣∣∣
∣∣∣∣∣
n∑
i=1

k3i+tz
−i

∣∣∣∣∣ 6
[

1 + (z − 1)
|z|n−1 − 1

|z| − 1

] ∣∣∣∣ z

1− z

∣∣∣∣ ‖k‖bs .
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Replacing (2.13) in (2.11),we have∣∣∣∣∣
n∑
i=1

k3i+t

n∑
m=i

(−1)3m−3iz3m−3i

∣∣∣∣∣ 6
∣∣∣∣ 1

1− z

∣∣∣∣ ‖k‖bs
+

[
1 + (z − 1)

|z|n−1 − 1

|z| − 1

] ∣∣∣∣ z

1− z

∣∣∣∣ ‖k‖bs .(2.14)

Replacing (2.14) in (2.12), we have∣∣∣∣∣
n∑
i=1

k3i+t

(
n∑

m=i

(−1)3m−3i
3m−3i−1∏
ν=0

s3m+t+1−ν

r3m+t+1−ν − λ

)∣∣∣∣∣
6

[
1 + |z|+ (z − 1) |z| |z|

n−1 − 1

|z| − 1

] ∣∣∣∣ 1

1− z

∣∣∣∣ ‖z‖bs .(2.15)

Finally replacing (2.15) in (2.10), we get∣∣∣∣∣
3n+t∑
m=0

hm

∣∣∣∣∣ 6 |h0 + h1 + h2|

+
2

max
l=0

∣∣∣∣ 1

al − λ

∣∣∣∣
{∣∣∣∣∣

2∑
i=0

ki

(
n∑

m=1

(−1)3m+t−i
3m+t−i−1∏

ν=0

s3m+t−ν

r3m+t−ν − λ

)∣∣∣∣∣
+

[
1 + |z|+ (z − 1) |z| |z|

n−1 − 1

|z| − 1

] ∣∣∣∣ 1

1− z

∣∣∣∣ ‖k‖bs
}
.

Since k = (kn) ∈ bs, h = (hn) ∈ bs if |u| =

∣∣∣∣ s2s1s0

(r2 − λ)(r1 − λ)(r0 − λ)

∣∣∣∣1/3 < 1.

Consequently, if for λ ∈ C, |r2 − λ| |r1 − λ| |r0 − λ| > |s2| |s1| |s0|, then (hn) ∈ bs.
Hereby, the operator (∆rs

3 − λI)∗ is onto if |λ− r0| |λ− r1| |λ− r2| > |s0| |s1| |s2|.
Then by Lemma 2.3, ∆rs

3 − λI has a bounded inverse if
|λ− r0| |λ− r1| |λ− r2| > |s0| |s1| |s2|. Therefore,

σc(∆
rs
3 , bv) ⊆ {λ ∈ C : |λ− r0| |λ− r1| |λ− r2| 6 |s0| |s1| |s2|} .

Owing to σ(L,X) is the disjoint union of σp(L,X), σr(L,X) and σc(L,X), thence

σ(∆rs
3 , bv) ⊆ {λ ∈ C : |λ− r0| |λ− r1| |λ− r2| 6 |s0| |s1| |s2|} .

By Theorem 2.2, we have

{λ ∈ C : |λ− r0| |λ− r1| |λ− r2| < |s0| |s1| |s2|} = σp (∆rs
3 , bv) ⊂ σ(∆rs

3 , bv).

Since, σ(L,X) is closed and hence,

{λ ∈ C : |λ− r0| |λ− r1| |λ− r2| < |s0| |s1| |s2|} ⊂ σ(∆rs
3 , bv) = σ(∆rs

3 , bv)

and

{λ ∈ C : |λ− r0| |λ− r1| |λ− r2| 6 |s0| |s1| |s2|} ⊂ σ(U (r0, r1, r2; s0, s1, s2) , bv).

Therefore, σ(∆rs
3 , bv) = M and so σc(∆

rs
3 , bv) = ∂M. �
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3. Subdivision of the spectrum

The articles in section 2, deal with spectrum decomposition described by Gold-
berg. In this section, the subdivision of the spectrum, which is also examined in
[11]-[21] will be examined. For this, r0 = r1 = r0 = r and s0 = s1 = s0 = s must
be taken in our operator.

Lemma 3.1.
∞∑
n=1

(
n−1∑
m=1

fngm

)
=

∞∑
m=1

( ∞∑
n=1+m

fngm

)

where (fn) and (bm) are positive real numbers.

Proof. It is clear. �

Theorem 3.1. If |λ− r| < |s|, then λ ∈ I3σ(∆rs
3 , bv).

Proof. Assume that |λ− r| < |s| and hereby from Theorem 2.2,
λ ∈ σp(∆rs

3 , bv). So, λ satisfies Golberg’s condition 3. We should show that ∆rs
3 −λI

is onto when |λ− r| < |s| .
Let k = (kn) ∈ bv be such that (∆rs

3 − λI)h = k for h = (hn). Then,

(r − λ)hm + shm+1 = km , m > 0

Calculating hm, we get

(3.1) hn =
1

s

n∑
m=1

km−1

(
λ− r
s

)n−m
+ h0

(
λ− r
s

)n
, n = 1, 2, 3, . . .

We have to show that h = (hm) ∈ bv. Setting q :=

∣∣∣∣λ− rs
∣∣∣∣.

|hn − hn+1| =

∣∣∣∣∣1s
n∑

m=1

km−1q
n−m + h0q

n − 1

s

n+1∑
m=1

km−1q
n+1−m − h0q

n+1

∣∣∣∣∣
=

∣∣∣∣∣qn (1− q)
s

n∑
m=1

km−1q
−m + h0

(
qn − qn+1

)
− 1

s
kn

∣∣∣∣∣
If we take ak =

1

qm
, bk = km−1 and apply Abel’s partial summation formula to

sum
n∑

m=1

km−1

qm
, we obtain

n∑
m=1

km−1

qm
=

qn − 1

qn (q − 1)
kn−1 +

n−1∑
m=1

qm − 1

qm (q − 1)
(km−1 − km)
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since sn =
n∑

m=1

(
1
q

)m
, ∆bk = km−1 − km. Thus we have

|hn − hn+1| =
∣∣∣∣ 1s (−qn + 1) kn−1 +

−qn

s

n−1∑
m=1

qm−1
qm

(km−1 − km) + h0

(
qn − qn+1

)
− 1

s
kn

∣∣∣∣ ,
|hn − hn+1|=

∣∣∣∣−qn

s
kn−1 +

1
s
(kn−1 − kn) +

−qn

s

n−1∑
m=1

qm−1
qm

(km−1 − km) + h0

(
qn − qn+1

)∣∣∣∣ .
Then we get
∞∑

n=1

|hn − hn+1|=
∞∑

n=1

∣∣∣∣−qn

s
kn−1+

1
s
(kn−1 − kn)+

−qn

s

n−1∑
m=1

qm−1
qm

(km−1 − km) + h0

(
qn − qn+1

)∣∣∣∣
6
∞∑

n=1

∣∣∣−qn

s
kn−1

∣∣∣+ 1
s

∞∑
n=1

n |(kn−1 − kn)|+
∣∣− 1

s

∣∣ ∞∑
n=1

∣∣∣∣n−1∑
m=1

qn qm−1
qm

(km−1 − km)

∣∣∣∣
+
∞∑

n=1

∣∣h0

(
qn − qn+1

)∣∣
6
∞∑

n=1

∣∣∣−qn

s
kn−1

∣∣∣+ 1
s

∞∑
n=1

|(kn−1 − kn)|+
∣∣− 1

s

∣∣ ∞∑
n=1

n−1∑
m=1

|q|n |q
m−1|
|q|m |km−1 − km|

+
∞∑

n=1

∣∣h0

(
qn − qn+1

)∣∣ .
We consider only the sum

∞∑
n=1

n−1∑
m=1
|q|n |q

m−1|
|q|m |km−1 − km|. If we take an = |q|n,

bm =
|qm − 1|
|q|m

|km−1 − km| and from lemma 3.1

∞∑
n=1

n−1∑
m=1

|q|n |q
m − 1|
|q|m

|km−1 − km| =

∞∑
m=1

|qm − 1|
|q|m

|km−1 − km|
∞∑

n=m+1

|q|n

= |q| 1− |q|
n

1− |q|

∞∑
m=1

|qm − 1| |km−1 − km|

therefore,

∞∑
n=1

|q|n
n−1∑
m=1

|qm − 1|
|q|m

|km−1 − km| 6 2 |q| 1− |q|
n

1− |q|
‖km‖bv

since ∣∣qk − 1
∣∣ 6 |q|k + 1 < 2 for |r| < 1

thus we have, (kn) sequence is bounded and h0 is constant. Since |q| < 1 the

series,
∞∑
n=1

∣∣∣∣−qns kn−1

∣∣∣∣ and the series
∞∑
n=1

∣∣h0

(
qn − qn+1

)∣∣ is convergent. Thus since

k = (kn) ∈ bv, λ ∈ σp(∆rs
3 , bv) imply that the series

∞∑
n=1
|hn − hn+1| is convergent.

Hence, (hn) ∈ bv if |λ− r| < |s|. Hereby, ∆rs
3 − λI is onto. So, λ ∈ I. Hence the

required result is gotten. �

Corollary 3.1. III1σ(∆rs
3 , bv) = III2σ(∆rs

3 , bv) = ∅.
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Proof. σr(L,X) = III1σ(L,X) ∪ III2σ(L,X) in Table 1 and Theorem 2.4
gives the desired result where r0 = r1 = r0 = r and s0 = s1 = s0 = s. �

Corollary 3.2. II3σ(∆rs
3 ), bv) = III3σ(∆rs

3 , bv) = ∅.
Proof. σp(L,X) = I3σ(L,X) ∪ II3σ(L,X) ∪ III3σ(L,X) in Table 1 and

Theorem 2.2 and Theorem 3.1 gives the desired result where r0 = r1 = r0 = r and
s0 = s1 = s0 = s. �

Theorem 3.2. (a) σap(∆
rs
3 , bv) = {λ ∈ C : |λ− r| 6 |s|},

(b) σδ(∆
rs
3 , bv) = {λ ∈ C : |λ− r| = |s|},

(c) σco(∆
rs
3 , bv) = ∅.

Proof. (a) In Table 1, we get

σap(L,X) = σ(L,X)\III1σ (L,X) .

And so σap(∆
rs
3 , bv) = {λ ∈ C : |λ− r| 6 |s|} from Corollary 3.1.

(b) In Table 1, we get

σδ(L,X) = σ (L,X)\I3σ(L,X) .

So using Theorem 2.5 and 3.1 with r0 = r1 = r0 = r and s0 = s1 = s0 = s, the
desired result is gotten.

(c) From Proposition 1.1 (e), we get

σp(L
∗, X∗) = σco(L,X).

Using Theorem 2.3 with r0 = r1 = r0 = r and s0 = s1 = s0 = s, the desired result
is gotten. �

Corollary 3.3. (a) σap((∆
rs
3 )
∗
, bv∗ ∼= bs) = {λ ∈ C : |λ− r| = |s|} ,

(b) σδ((∆
rs
3 )
∗
, bv∗ ∼= bs) = {λ ∈ C : |λ− r| 6 |s|}.

Proof. By Proposition 1.1 (c) and (d), we obtain

σap((∆
rs
3 )
∗
, bv∗ ∼= bs) = σδ(∆

rs
3 , bv)

and
σδ((∆

rs
3 )
∗
, bv∗ ∼= bs) = σap(∆

rs
3 , bv).

from Theorem 3.2 (a) and (b) with r0 = r1 = r0 = r and s0 = s1 = s0 = s the
required results are gotten. �

4. Results

We can generalize our operator

∆rs
n =



r0 s0 0 0 0 0 0 0 0 · · ·
0 r1 s1 0 0 0 0 0 0 · · ·

0 0
. . . s2

. . . 0 0 0 0 · · ·
0 0 0 rn−1 sn−1 0 0 0 0 · · ·
0 0 0 0 r0 s0 0 0 0 · · ·
0 0 0 0 0 r1 s1 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


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where s0, s1, . . . , sn−1 6= 0.
One can get parallel all our results obtained in the before section as follows.

Theorem 4.1. The following results for ∆rs
n are ensured where

R =

{
λ ∈ C :

n−1∏
k=0

∣∣∣∣λ− rksk

∣∣∣∣ 6 1

}
,

R̊ be the interior of the set R and ∂R be the boundary of the set R

(1) σp(∆
rs
n , bv) = R̊,

(2) σp((∆
rs
n )
∗
, bv∗ ∼= bs) = ∅,

(3) σr(∆
rs
n , bv) = ∅,

(4) σc(∆
rs
n , bv) = ∂R,

(5) σ(∆rs
n , bv) = R.
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[18] B. C. Tripathy and R. Das, Fine spectrum of the upper triangular matrix U(r, 0, 0, s) over

the squence spaces c0 and c, Proyecciones J. Math., 37(1), (2018), 85–101.
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