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EXISTENCE OF POSITIVE SOLUTIONS FOR
FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

Şerife Müge Ege and Fatma Serap Topal

Abstract. Solution of fractional differential equations is an emerging area of
present day research because such equations arise in various applied fields. In

this paper, by using fixed point theorems in a cone, we discuss the existence and

multiplicity of positive solutions to nonlinear fractional differential equations
with an integral boundary condition. Finally, we also give an example to

illustrate our main results.

1. Introduction

The study of fractional calculus has been used to model physical, engineering
and economic processes, notions and phenomena. Fractional differential equations
with boundary value problems, which emerge as a branch of differential equations
are encouraged by the widespread applicability of fractional derivatives. Recently,
fractional boundary value problems have attracted much more attention since there
is extensive use in the fields of physics, chemistry, aerodynamics, polymer rheol-
ogy, etc. Many papers and books on fractional calculus and fractional differential
equations have appeared [6, 10, 11].

Many people pay attention to the existence and multiplicity of solutions or pos-
itive solutions for boundary value problems of nonlinear fractional differential equa-
tions by means of some fixed-point theorems [13, 2, 5] (such as the Schauder fixed-
point theorem, the Guo-Krasnosel’skii fixed-point theorem,the Leggett-Williams
fixed-point theorem). As far as we know, there are some papers devoted to the
study of fractional differential equations with integral boundary conditions [3, 4, 1].

2010 Mathematics Subject Classification. Primary 34B15; Secondary 34B18; 34B40.
Key words and phrases. Fractional differential equation, cone theory, fixed point theorems,

Riemann-Stieltjes integral.
Communicated by Daniel A. Romano.

145



146 EGE AND TOPAL

Since the Riemann-Stieltjes integral is more general than the classical Riemann
integral, it is a very useful tool in many research areas. In the study of differen-
tial equations, boundary value problems contain not only the classical Riemann
integral boundary values, but also the Riemann-Stieltjes integral boundary values.

Riemann-Stieltjes integral
∫ 1

0
u(t)dA(t) become more significant when A is not dif-

ferentiable or A is discontinuous. However, the best of our knowledge, the study of
Riemann-Stieltjes integral boundary value problems of fractional differential equa-
tions is relatively scarce. Few researchers have studied on this class of problems.

Ahmad and Nieto [7] considered the fractional differential equation with inte-
gral boundary conditions

Dq
0+x(t) = f(t, x(t), (χx)(t)), t ∈ (0, 1)

αx(0) + βx′(0) =

∫ 1

0

q1(s)ds,

αx(1) + βx′(1) =

∫ 1

0

q2(s)ds.

In [5], He, Jia, Liu and Chen studied the existence results for a class of high
order fractional differential equation with integral boundary condition

Dα
0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1)

u(0) = u′(0) = .... = u(n−2)(0) = 0,

Dβ
0+u(1) =

∫ 1

0

Dβ
0+u(t)dA(t),

where n > 3, n− 1 < α 6 n, 0 < β 6 1.

Inspired by above works, we will consider the following fractional boundary
value problem

Dq
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1)

u′′(0) = u′′′(0) = .... = u(n−1)(0) = 0,

αu(0) + βu′(0) =

∫ 1

0

h1(s)u(s)dA(s),

γu(1)− δu′(1) =

∫ 1

0

h2(s)u(s)dA(s),

(1.1)

where n > 3, n− 1 < q 6 n,
∫ 1

0
u(t)dA(t) denotes the Riemann- Stieltjes integrals

with respect to A, in which A(t) is monotone increasing function. f : [0, 1]×R+ →
R+ continuous function and Dq

0+ is the Caputo fractional derivative.

Throughout this paper, we assume the following conditions hold:

(H1)
δ

γ
>
β

α
> 1 such that α, β, γ, δ > 0,

(H2)f ∈ C([0, 1]× [0,∞], [0,∞]),
(H3) h1, h2 ∈ C([0, 1], [0,∞]), 0 6 γv1+αv2 < α D := 1−v4−v1+v1v4−v2v3 > 0,
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where

v1 =
1

∆

∫ 1

0

[−δ + γ(1− s)]h1(s)dA(s),

v2 =
1

∆

∫ 1

0

[αs− β]h1(s)dA(s),

v3 =
1

∆

∫ 1

0

[−δ + γ(1− s)]h2(s)dA(s),

v4 =
1

∆

∫ 1

0

[αs− β]h2(s)dA(s) and ∆ = αγ − αδ − γβ.

The paper is organized as follows. In Section 2, present some background mate-
rials and preliminaries. In Section 3, we give some existence and multiplicity results
for the boundary value problem (1.1) and also an example is given to illustrate main
results.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which
are used throughout this paper. Firstly, for convenience of the reader, we give some
definitions and fundamental results of fractional calculus theory.

Definition 2.1. For a function f given on the interval [a, b], the Caputo de-
rivative of fractional order r is defined as

Drf(t) =
1

Γ(n− r)

∫ t

0

(t− s)n−r−1f (n)(s)ds, n = [r] + 1,

where [r] denotes the integer part of r.

Definition 2.2. The Riemann-Liouville fractional integral of order r for a
function f is defined as

Irf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s)ds, r > 0,

where [r] denotes the integer part of r.

Lemma 2.3. Let r > 0. Then the differential equation Drx(t) = 0 has solutions

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ..., n, n = [r] + 1.

Lemma 2.4. Let r > 0. Then

Ir(Drx)(t) = x(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ..., n, n = [r] + 1.
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For finding a solution of the problem (1.1), we first consider the following
fractional differential equation

Dq
0+u(t) = −y(t), t ∈ (0, 1)

u′′(0) = u′′′(0) = .... = u(n−1)(0) = 0,

αu(0) + βu′(0) =

∫ 1

0

h1(s)u(s)dA(s),

γu(1)− δu′(1) =

∫ 1

0

h2(s)u(s)dA(s).

(2.1)

Lemma 2.5. Let n > 3 and n−1 < q 6 n. Assume y ∈ C[0, 1] and (H1) holds,
then the problem (2.1) has a unique solution u(t) given by

u(t) =

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)y(η)dηdA(s),

where

H(t, s) =
1

∆D

(
[γ(1− t)(1− v4)− δ + (αt− β)v3]h1(s)

+[γ(1− t)v2 − δ + (αt− β)(1− v1)]h2(s)

)
and

G(t, s) =
1

∆Γ(q)

{
(αt− β)(γ(1− s)q−1 − δ(q − 1)(1− s)q−2)−∆(t− s)q−1, s 6 t;

(αt− β)(γ(1− s)q−1 − δ(q − 1)(1− s)q−2), t 6 s.

Proof. According to Lemma 2.1, the general solution of fractional differential
equation (2.1) can be given as

u(t) = − 1

Γ(q)

∫ t

0

(t− s)q−1y(s)ds+ c0 + c1t+ ...+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, ..., n− 1.

Since u′′(0) = u′′′(0) = ... = u(n−1)(0) = 0, we have c2 = c3 = ... = cn−1 = 0,
so

u(t) = − 1

Γ(q)

∫ t

0

(t− s)q−1y(s)ds+ c0 + c1t,

and

u′(t) = − 1

Γ(q − 1)

∫ t

0

(t− s)q−2y(s)ds+ c1.

From the boundary conditions, we get
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αc0 + βc1 =

∫ 1

0

h1(s)u(s)dA(s)

γc0 + (γ − δ)c1 =
1

Γ(q)

∫ 1

0

(1− s)q−1y(s)ds− δ

Γ(q − 1)

∫ 1

0

(1− s)q−2y(s)ds

+

∫ 1

0

h2(s)u(s)dA(s).

Defining ∆ = αγ

(
1− δ

γ
− β

α

)
, we obtain

c0 =
1

∆

(
− γβ

Γ(q)

∫ 1

0

(1− s)q−1y(s)ds+
δβ

Γ(q − 1)

∫ 1

0

(1− s)q−2y(s)ds

+ (γ − δ)
∫ 1

0

h1(s)u(s)dA(s)− β
∫ 1

0

h2(s)u(s)dA(s)

)

and

c1 =
1

∆

(
αγ

Γ(q)

∫ 1

0

(1− s)q−1y(s)ds− αδ

Γ(q − 1)

∫ 1

0

(1− s)q−2y(s)ds

− γ

∫ 1

0

h1(s)u(s)dA(s) + α

∫ 1

0

h2(s)u(s)dA(s)

)
.

Thus, we have

u(t) = − 1

Γ(q)

∫ t

0

(t− s)q−1y(s)ds+
γ(αt− β)

∆Γ(q)

∫ 1

0

(1− s)q−1y(s)ds

− δ(αt− β)

∆Γ(q − 1)

∫ 1

0

(1− s)q−2y(s)ds+
γ(1− t)− δ

∆

∫ 1

0

h1(s)u(s)dA(s)

+
αt− β

∆

∫ 1

0

h2(s)u(s)dA(s).

Therefore, we have the form of u(t) as

u(t) =

∫ 1

0

G(t, s)y(s)ds+
γ(1− t)− δ

∆

∫ 1

0

h1(s)u(s)dA(s) +
αt− β

∆

∫ 1

0

h2(s)u(s)dA(s),

where

G(t, s) =
1

∆Γ(q)

{
(αt− β)(γ(1− s)q−1 − δ(q − 1)(1− s)q−2)−∆(t− s)q−1, s 6 t;

(αt− β)(γ(1− s)q−1 − δ(q − 1)(1− s)q−2), t 6 s.

Using the form of u(t), we get
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∫ 1

0

h1(s)u(s)dA(s) =

∫ 1

0

h1(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

+

∫ 1

0

h1(s)
γ(1− s)− δ

∆

∫ 1

0

h1(η)u(η)dA(η)dA(s)

+

∫ 1

0

h1(s)
αs− β

∆

∫ 1

0

h2(η)u(η)dA(η)dA(s)

and

∫ 1

0

h2(s)u(s)dA(s) =

∫ 1

0

h2(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

+

∫ 1

0

h2(s)
γ(1− s)− δ

∆

∫ 1

0

h1(η)u(η)dA(η)dA(s)

+

∫ 1

0

h2(s)
αs− β

∆

∫ 1

0

h2(η)u(η)dA(η)dA(s).

Defining v1 :=
1

∆

∫ 1

0

(γ(1− s)− δ)h1(s)dA(s), v2 :=
1

∆

∫ 1

0

(αs−β)h1(s)dA(s),

v3 :=
1

∆

∫ 1

0

(γ(1− s)− δ)h2(s)dA(s) and v4 :=
1

∆

∫ 1

0

(αs− β)h2(s)dA(s), we have

∫ 1

0

h1(s)u(s)dA(s) =

∫ 1

0

h1(s)

∫ 1

0

G(s, η)y(η)dηdA(s) + v1

∫ 1

0

h1(s)u(s)dA(s)

+ v2

∫ 1

0

h2(s)u(s)dA(s),∫ 1

0

h2(s)u(s)dA(s) =

∫ 1

0

h2(s)

∫ 1

0

G(s, η)y(η)dηdA(s) + v3

∫ 1

0

h1(s)u(s)dA(s)

+ v4

∫ 1

0

h2(s)u(s)dA(s).

So, we can get the exact form of u(t) by solving following equation set:

(1− v1)

∫ 1

0

h1(s)u(s)dA(s)− v2
∫ 1

0

h2(s)u(s)dA(s)=

∫ 1

0

h1(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

−v3
∫ 1

0

h1(s)u(s)dA(s) + (1− v4)

∫ 1

0

h2(s)u(s)dA(s)=

∫ 1

0

h2(s)

∫ 1

0

G(s, η)y(η)dηdA(s).
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Defining D := 1− v4 − v1 + v1v4 − v2v3, we get∫ 1

0

h1(s)u(s)dA(s) =
1

D

(
(1− v4)

∫ 1

0

h1(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

+ v2

∫ 1

0

h2(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

)
,∫ 1

0

h2(s)u(s)dA(s) =
1

D

(
(1− v1)

∫ 1

0

h2(s)

∫ 1

0

G(s, η)y(η)dηdA(s)

+ v3

∫ 1

0

h1(s)

∫ 1

0

G(s, η)y(η)y(η)dηdA(s)

)
.

Finally, we obtain

u(t) =

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)y(η)dηdA(s),

where

H(t, s) =
1

∆D

(
[γ(1− t)(1− v4)− δ + (αt− β)v3]h1(s)

+[γ(1− t)v2 − δ + (αt− β)(1− v1)]h2(s)

)
.

�

Lemma 2.6. Let n > 3 and n − 1 < q 6 n. Assume (H1) holds, then the
Green’s function for the problem (2.1) satisfies

(2.2)

(
1− α

β
t

)
G(0, s) 6 G(t, s) 6 G(0, s).

Proof. When 0 6 t 6 s 6 1, we have

G(t, s)

G(0, s)
=

γ(αt− β)(1− s)q−1 − δ(q − 1)(αt− β)(1− s)q−2

δ(q − 1)β(1− s)q−2 − γβ(1− s)q−1

=
(αt− β)

[
γ(1− s)q−1 − δ(q − 1)(1− s)q−2

]
−β [γ(1− s)q−1 − δ(q − 1)(1− s)q−2]

= 1− α

β
t 6 1,

so G(t, s) 6 G(0, s) and G(t, s) =

(
1− α

β
t

)
G(0, s).

When 0 6 s 6 t 6 1, we have

G(t, s)

G(0, s)
=

γ(αt− β)(1− s)q−1 − δ(q − 1)(αt− β)(1− s)q−2 −∆(t− s)q−1

δ(q − 1)β(1− s)q−2 − γβ(1− s)q−1

= − ∆(t− s)q−1

δ(q − 1)β(1− s)q−2 − γβ(1− s)q−1
+ 1− α

β
t

> 1− α

β
t,
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so we can easily see that G(t, s) >

(
1− α

β
t

)
G(0, s).

When differentiate twice G(t, s) with respect to first variable, we get

∂2

∂t2

(
G(t, s)

G(0, s)

)
=

1

G(0, s)

(
−∆(q − 1)(q − 2)(t− s)q−3

)
> 0, s, t ∈ [0, 1].

So
G(t, s)

G(0, s)
has maximum value at t = s or t = 1 as follows

G(s, s)

G(0, s)
= 1− α

β
s 6 1,

G(1, s)

G(0, s)
=

γ(α− β)(1− s)q−1 − δ(q − 1)(α− β)(1− s)q−2 −∆(1− s)q−1

δ(q − 1)β(1− s)q−2 − γβ(1− s)q−1

=
γ(α− β)(1− s)− δ(q − 1)(α− β)−∆(1− s)

δ(q − 1)β − γβ(1− s)

=
(β − α) [γ(1− s)− δ(q − 1)]

β [γ(1− s)− δ(q − 1)]
− [α(γ − δ)− γβ] (1− s)
δ(q − 1)β − γβ(1− s)

= 1− α

β
+

α(γ − δ)− γβ
β [δ(q − 1)− γ(1− s)]

(1− s)

=
βδ(q − 1)− αδ(q − 1) + αδ(1− s)

β [δ(q − 1)− γ(1− s)]

=
(β − α)δ(q − 1) + αδ(1− s)
βδ(q − 1)− βγ(1− s)

.

Proving
(β − α)δ(q − 1) + αδ(1− s)
βδ(q − 1)− βγ(1− s)

6 1, we assume that this is not true. In other

words, let
(β − α)δ(q − 1) + αδ(1− s)
βδ(q − 1)− βγ(1− s)

> 1.

Since 0 < 1− s < 1, q − 1 > 1, δ > γ and δ(q − 1) > γ(1− s), we get

(β − α)δ(q − 1) + αδ(1− s) > βδ(q − 1− βγ(1− s)),
(q − 1) [δ(β − α)− βδ] > −(αδ + βγ)(1− s)

−(q − 1)αδ > −(αδ + βγ)(1− s)

q − 1 <

(
1 +

βγ

αδ

)
(1− s)

1− s > 1

s < 0,

which is a contradiction.
Thus we get

G(t, s)

G(0, s)
6 1,
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so the result that G(0, s) > G(t, s) >

(
1− α

β
t

)
G(0, s) also holds while s 6 t. �

Lemma 2.7. Let ξ ∈
[
0,

1

2

]
, we have

min
t∈[ξ,1−ξ]

H(t, s) > ξ max
t∈[0,1]

H(t, s).

Proof. From the definition of H(t, s), we know that

H(t, s) =
1

∆D
([−δ + γ(1− t)(1− v4) + (αt− β)v3]h1(s)

+ [−δ + γ(1− t)v2 + (−β + αt)(1− v1)]h2(s))

=
1

∆D
([αv3 − γ(1− v4)]h1(s) + [α(1− v1)− γv2]h2(s)) t

+
1

∆D
([(−δ + γ)(1− v4)− βv3]h1(s) + [−δ + γv2 − β(1− v1)]h2(s)) .

If we denote p(s) :=
1

∆D
([αv3 − γ(1− v4)]h1(s) + [α(1− v1)− γv2]h2(s)) and

q(s) :=
1

∆D
([(γ − δ)(1− v4)− βv3]h1(s) + [−δ + γv2 − β(1− v1)]h2(s)), we get

H(t, s) = p(s)t+ q(s).

When p(s) < 0 with 0 < [αv3 − γ(1− v4)]h1(s) < [γv2 − α(1− v1)]h2(s),
due to monotonicity of H(t, s), maximum value of H(t, s) is H(0, s) = q(s) and
minimum value is H(1, s) = p(s) + q(s).
Since

[(−δ + γ)(1− v4)− βv3] = (−δ + γ)

(
1− 1

∆

∫ 1

0

(αs− β)h2(s)dA(s)

)
− β

∆

∫ 1

0

[−δ + γ(1− s)]h2(s)dA(s)

= −δ + γ − 1

∆

∫ 1

0

[−δαs+ δβ + αγs− γβ − δβ

+ γβ − γβs]h2(s)dA(s)

= −δ + γ − 1

∆

∫ 1

0

[α(γ − δ)s− γβs]h2(s)dA(s) < 0,

we get q(s) > 0 and

p(s) + q(s) =
1

∆D
([αv3 − γ(1− v4) + (−δ + γ)(1− v4)− βv3]h1(s)

+ [α(1− v1)− γv2 + γv2γv2 − δ − β(1− v1)]h2(s))

=
1

∆D
([(α− β)v3 − δ(1− v4)]h1(s) + [(α− β)(1− v1)− δ]h2(s))

> 0.
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So,

mint∈[ξ,1−ξ]H(t, s)

maxt∈[0,1]H(t, s)
=

H(1− ξ, s)
H(0, s)

=
(1− ξ)p(s) + q(s)

q(s)

=
(1− ξ)p(s)

q(s)
+ 1

> ξ.

When p(s) < 0 with [αv3 − γ(1 − v4)]h1(s) < 0 < [γv2 − α(1 − v1)]h2(s),
minimum value of H(t, s) is H(1, s) and

H(1, s) =
1

∆D
([αv3 − γ(1− v4) + (γ − δ)(1− v4)− βv3]h1(s)

+ [α(1− v1)− γv2 + (αv2 − δ − β(1− v1))]) .

=
1

∆D
([(α− β)v3 − δ(1− v4)]h1(s)

+ [(α− β)(1− v1)− δ]h2(s))

> 0.

Therefore, min
ξ<t<1−ξ

H(t, s) > ξ max
06t61

H(t, s).

On the other hand, when p(s) > 0, that is

[αv3 − γ(1− v4)]h1(s) > [γv2 − α(1− v1)]h2(s) > 0,

then min06t61H(t, s) = H(0, s) > 0. So, we have

minξ6t61−ξH(t, s)

max06t61H(t, s)
=
H(ξ, s)

H(1, s)
=
ξp(s) + q(s)

p(s) + q(s)
> ξ.

�

The following fixed point theorems are fundamental and important to the proof
of our main results.

Theorem 2.8. [12] Let E = (E, ‖ . ‖) be a Banach space, A be a closed convex
subset of E and T be a continuous map of A into a compact subset of A. Then T
has a fixed point.

Theorem 2.9. [8] Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E be a cone
in E. Suppose that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2.
Suppose further that T : P ∩ (Ω2 r Ω1) → P is a completely continuous operator
such that either
(1) ‖Tu‖ 6 ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂Ω2, or
(2) ‖Tu‖ > ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ 6 ‖u‖ for u ∈ P ∩ ∂Ω2 holds.

Then T has a fixed point in P ∩ (Ω2 r Ω1).
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Define the sets Pc := {u ∈ P :‖ u ‖< c} and P (α, a, b) := {u ∈ P : a 6
α(u), ‖ u ‖6 b} where a, b, c > 0 and α on P is a nonnegative functional.

Theorem 2.10. [9] Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E a cone of E
and c > 0 a constant. Suppose that there exists a nonnegative continuous concave
functional α on P with α(u) 6‖ u ‖ for u ∈ P c and let T : P c → P c be a completely
continuous map. Assume that there exist a, b, c, d with 0 < a < b < d 6 c such that
(S1) {u ∈ P (α, b, d) : α(u) > b} 6= ∅ and α(Tu) > b for all u ∈ P (α, b, d);
(S2) ‖ Tu ‖< a for all u ∈ P a;
(S3) α(Tu) > b for all u ∈ P (α, b, c) with ‖ Tu ‖> d.

Then T has at least three fixed points u1, u2, u3 ∈ P such that ‖ u1 ‖<
a, α(u2) > b, ‖ u3 ‖> a and α(u3) < b.

3. Existence of positive solutions

Let us define M := max{|H(t, s)| : t, s ∈ [0, 1]}. Let the Banach space B =
C[0, 1] be equipped with the norm ‖u‖ = max06t61 |u(t)| for u ∈ B. We now define
a mapping T : C[0, 1]→ C[0, 1] by

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s).

Theorem 3.1. Let (H1)-(H3) hold. If R > 0 satisfies

Qβ(δq − γ)(1 +M (A(1)−A(0)))

Γ(q + 1)(γβ + αδ − αγ)
6 R

where Q > 0 satisfies Q > max‖u‖6R |f(t, u(t))|, for t ∈ [0, 1] then the problem
(1.1) has a solution u(t).

Proof. Let P1 = {u ∈ B : ‖u‖ 6 R}. We still apply Schauder’s fixed point
theorem. The solutions of problem (1.1) are the fixed points of the operator T.
A standard argument guarantees that T : P1 → B is continuous. Next we show
T (P1) ⊂ P1.
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For u ∈ P1, we obtain

|Tu(t)| = |
∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)|

6
∫ 1

0

|G(t, s)||f(s, u(s))|ds+

∫ 1

0

|H(t, s)|
∫ 1

0

|G(s, η)||f(η, u(η))|dηdA(s)

6
∫ 1

0

G(0, s)Qds+

∫ 1

0

M

∫ 1

0

G(0, η)QdηdA(s)

= Q

∫ 1

0

1

(γβ + αδ − αγ)Γ(q)

[
−γβ(1− s)q−1 + δ(q − 1)β(1− s)q−2

]
ds

+
MQ (A(1)−A(0))

(γβ + αδ − αγ)Γ(q)

∫ 1

0

[
−γβ(1− η)q−1 + δ(q − 1)β(1− η)q−2

]
dη

=
Q

(γβ + αδ − αγ)Γ(q)

(
γβ

(1− s)q

q
|10 − δ(q − 1)β

(1− s)q−1

q − 1
|10
)

+
MQ (A(1)−A(0))

(γβ + αδ − αγ)Γ(q)

(
γβ

(1− η)q

q
|10 − δ(q − 1)β

(1− η)q−1

q − 1
|10
)

=
Q

(γβ + αδ − αγ)Γ(q)

β(δq − γ)

q
+

MQ (A(1)−A(0))

(γβ + αδ − αγ)Γ(q)

β(δq − γ)

q

=
Qβ(δq − γ)

Γ(q + 1)(γβ + αδ − αγ)
(1 +M (A(1)−A(0))) 6 R,

for all t ∈ [0, 1].
This implies that ‖Tu‖ 6 R. A standard argument, by Arzela-Ascoli theorem,

guarantees that T : P1 → P1 is a compact operator. Hence T has a fixed point
u ∈ P1 by Theorem 2.1. �

We also assume throughout this section that f0 := limu→0+
f(t, u)

u
and f∞ :=

limu→∞
f(t, u)

u
exist uniformly in the extended reals. The case f0 = 0, f∞ = ∞

is called the superlinear and the case f0 = ∞, f∞ = 0 is called sublinear case. To
prove our result, we will use the Theorem 2.2. �

Theorem 3.2. Let (H1)-(H3) hold. If either the superlinear case or the sub-
linear case holds, the problem (1.1) has a positive solution.

Proof. Let we define a cone P2 in B by

P2 = {u ∈ B : u(t) > 0 and min
t∈[ξ,1−ξ]

u(t) > ξ‖u‖}.

It is easy to check that P2 is a cone of nonnegative functions in C[0, 1]. We
now show that T : P2 → P2. First note that u ∈ P2 implies Tu(t) > 0 on [0, 1] and
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min
ξ6t61−ξ

Tu(t) =

∫ 1

0

min
ξ6t61−ξ

G(t, s)f(s, u(s))ds

+

∫ 1

0

min
ξ6t61−ξ

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

> min
ξ6t61−ξ

(
1− α

β
t

)∫ 1

0

G(0, s)f(s, u(s))ds

+

∫ 1

0

ξ max
06t61

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

> ξ

∫ 1

0

max
06t61

G(t, s)f(s, u(s))ds

+ ξ

∫ 1

0

max
06t61

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

> ξ max
06t61

|Tu(t)| = ξ‖Tu‖.

Hence Tu ∈ P2 and so T : P2 → P2 which is what we want. Therefore T is com-
pletely continuous.

Assume now that we are in the superlinear case f0 = 0 and f∞ =∞.

Since lim
u→0+

f(t, u)

u
= 0 uniformly on [0, 1], we may choose r > 0 such that

f(t, u) 6 τu, 0 6 u 6 r, 0 6 t 6 1

where τ :=

[
β(δq − γ)(1 +M (A(1)−A(0)))

(γβ + αδ − αγ)Γ(q + 1)

]−1
.

Then if Ω1 is the ball in B centered at the origin with radius r and if u ∈ P2

⋂
∂Ω1

then we have

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

6
∫ 1

0

G(0, s)f(s, u(s))ds+

∫ 1

0

M

∫ 1

0

G(0, η)f(η, u(η))dηdA(s)

6
β(δq − γ)

(γβ + αδ − αγ)Γ(q)q

(∫ 1

0

τu(s)ds+M (A(1)−A(0))

∫ 1

0

τu(η)dη

)
6

β(δq − γ)

(γβ + αδ − αγ)Γ(q + 1)
rτ(1 +M (A(1)−A(0))) = r = ‖u‖,

and so ‖Tu‖ 6 ‖u‖ for all u ∈ P2

⋂
∂Ω1.
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Next we use the assumption lim
u→∞

f(t, u)

u
= ∞ uniformly on [0, 1]. Let t0 ∈

[ξ, 1− ξ] and let

µ :=

[
ξ

∫ 1−ξ

ξ

G(t0, s)ds

(
1 +

∫ 1−ξ

ξ

H(t0, s)dA(s)

)]−1
.

Then there is r such that f(t, u) > µu, u > r. If we define r̂ := max{2r, r
ξ
} and

Ω2 := {u ∈ B : ‖u‖ < r̂} for u ∈ P2

⋂
∂Ω2, we have minξ6t61−ξ u(t) > ξ‖u‖ =

ξr̂ > r.
Therefore, for all t ∈ [ξ, 1−ξ] we have f(t, u(t)) > µu(t) > µξr̂ = µξ‖u‖. Hence

we get

Tu(t0) =

∫ 1

0

G(t0, s)f(s, u(s))ds+

∫ 1

0

H(t0, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

>
∫ 1−ξ

ξ

G(t0, s)f(s, u(s))ds

+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(s, η)f(η, u(η))dηdA(s)

> µξ‖u‖

(∫ 1−ξ

ξ

G(t0, s)ds+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(t0, η)dηdA(s)

)

= µξ‖u‖
∫ 1−ξ

ξ

G(t0, s)ds

(
1 +

∫ 1−ξ

ξ

H(t0, s)dA(s)

)
= ‖u‖ = r̂,

and so ‖Tu‖ > ‖u‖ for all u ∈ P2

⋂
∂Ω2.

Consequently, by part (i) of Theorem 2.2, it follows that T has a fixed point
in P2

⋂
(Ω2\Ω1) and this implies that the problem (1.1) has a positive solution.

The sublinear case can be proven similarly. �

Theorem 3.3. Let (H1)-(H3) hold. Also assume

(H5) limu→0+
f(t, u)

u
= +∞, limu→+∞

f(t, u)

u
= +∞ for t ∈ [0, 1],

(H6) There exists constant ρ such that f(t, u) 6 Nρ for t ∈ [0, 1], where N 6 τ
and τ is given as in the proof of Theorem 3.2.

Then the problem (1.1) has at least two positive solutions u1 and u2 such that
0 < ‖u1‖ 6 ρ < ‖u2‖.

Proof. Since lim
u→0+

f(t, u)

u
= +∞, there exists ρ∗ ∈ (0, ρ1) such that f(t, u) >

µ1u for 0 6 u 6 ρ∗ and 0 < t < 1, where µ1 > µ, here µ is given in the proof
Theorem 3.2
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Set Ω1 = {u ∈ B : ‖u‖ < ρ∗}. For u ∈ P
⋂
∂Ω1 and t0 ∈ [ξ, 1− ξ], we have

Tu(t0) =

∫ 1

0

G(t0, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

>
∫ 1−ξ

ξ

G(t0, s)f(s, u(s))ds

+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(s, η)f(η, u(η))dηdA(s)

> µ1ρ∗

(∫ 1−ξ

ξ

G(t0, s)ds+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(t0, η)dηdA(s)

)

= µ1ρ∗

∫ 1−ξ

ξ

G(t0, s)ds

(
1 +

∫ 1−ξ

ξ

H(t0, s)dA(s)

)
> ρ∗ = ‖u‖,

and so ‖Tu‖ > ‖u‖, for all u ∈ P2

⋂
∂Ω1.

Since lim
u→∞

f(t, u)

u
= +∞, there exists ρ∗ > ρ such that f(t, u) > µ2u for u > ρ∗

where µ2 > µ > µξ, here µ is given in the proof Theorem 3.2.
Set Ω2 = {u ∈ B : ‖u‖ < ρ∗}. For any u ∈ P

⋂
∂Ω2, we get

Tu(t0) =

∫ 1

0

G(t0, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

>
∫ 1−ξ

ξ

G(t0, s)f(s, u(s))ds

+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(s, η), f(η, u(η))dηdA(s)

> µ2ρ
∗

(∫ 1−ξ

ξ

G(t0, s)ds+

∫ 1−ξ

ξ

H(t0, s)

∫ 1−ξ

ξ

G(t0, η), dηdA(s)

)

= µ2ρ
∗
∫ 1−ξ

ξ

G(t0, s)ds

(
1 +

∫ 1−ξ

ξ

H(t0, s)dA(s)

)
> ρ∗ = ‖u‖,
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which yields ‖Tu‖ > ‖u‖ for all u ∈ P2

⋂
∂Ω2. Let Ω3 = {u ∈ B : ‖u‖ < ρ}.

For y ∈ P2

⋂
∂Ω3 from (H6), we obtain

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

6
∫ 1

0

G(t, s)Nρds+

∫
H(t, s)

∫ 1

0

G(s, η)NρdηdA(s)

6 Nρ

(∫ 1

0

G(0, s)ds+

∫ 1

0

M

∫ 1

0

G(0, η)dηdA(s)

)
6

Nρβ(δq − γ)

(γβ + αδ − αγ)Γ(q + 1)
(1 +M (A(1)−A(0)))

6 τρτ−1

= ρ = ‖u‖,

which yields ‖Tu‖ 6 ‖u‖ for all u ∈ P2

⋂
∂Ω3.

Hence, since ρ∗ 6 ρ < ρ∗, it follows from Theorem 2.2 that T has a fixed point
u1 in P2

⋂
(Ω3rΩ1) and a fixed point u2 in P2

⋂
(Ω2rΩ3). Note both are positive

solutions of the problem (1.1) satisfying 0 < ‖u1‖ 6 ρ < ‖u2‖. �

We also assume

α(u) = mint∈[ξ,1−ξ]|u(t)|.

Theorem 3.4. Let (H1)-(H3) hold and also there exist constants A,B,C,D
with 0 < A < B < C = D such that the following conditions hold:
(H7) f(t, u) < KA for all (t, u) ∈ [0, 1]× [0, A],
(H8) f(t, u) > LB for all (t, u)) ∈ [ξ, 1− ξ]× [B,C],
(H9) f(t, u) 6 KC for all (t, u) ∈ [0, 1]× [0, C],

where K 6 τ , L > µ such that τ and µ are numbers given as in the proof of
Theorem 3.2.

Then the problem (1.1) has at least three positive solutions u1, u2 and u3 such
that
max
06t61

|u(t)| < A, B < min
t∈[ξ,1−ξ]

|u2(t)| < max
t∈[0,1]

|u2(t| 6 C, A < max
06t61

|u3(t)| 6 C

and min
ξ6t61−ξ

|u3(t)| < B.
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Proof. Let y ∈ PC = {u ∈ P : ‖u‖ 6 C}, then ‖y‖ 6 C. If (H9) hold, then
we get

‖Tu‖ = max
06t61

|Tu(t)|

= max
06t61

|
∫ 1

0

G(t, s)f(s, u(s))ds+

∫ 1

0

H(t, s)

∫ 1

0

G(t, η)f(η, u(η))dηdA(s)|

6
∫ 1

0

G(0, s)KCds+

∫ 1

0

M

∫ 1

0

G(0, η)KCdηdA(s)|

6 τC
1

(γβ + αδ − αγ)Γ(q + 1)
β(δq − γ) +

MτC (A(1)−A(0))

γβ + αδ − αγ
β(δq − γ)

=
τCβ(δq − γ)

γβ + αδ − αγ
(1 +M (A(1)−A(0))) = C.

In the same way, we can show that if (H7) hold, then TPA ⊂ PA. Hence condition
(S2) of Theorem 2.3 is satisfied.

To show the condition (S1) of Theorem 2.3, we choose u0(t) =
B + C

2
for t ∈

[0, 1]. It is easy to see that u0 ∈ P , ‖u0‖ =
B + C

2
6 C and α(u0) =

B + C

2
< B.

That is u0 ∈ P (α,B,D) and we have B 6 u(t) 6 C for t ∈ [ξ, 1− ξ]. By (H8) and
Lemma 2.4, we have

α(Tu) = min
ξ6t61−ξ

|Tu(t)|

>
∫ 1

0

min
ξ6t61−ξ

G(t, s)f(s, y(s))ds

+

∫ 1

0

min
ξ6t61−ξ

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

>
∫ 1

0

min
ξ6t61−ξ

(
1− α

β
t

)
G(0, s)f(s, y(s))ds

+

∫ 1

0

ξ max
06t61

H(t, s)

∫ 1

0

G(s, η)f(η, u(η))dηdA(s)

> ξ

(∫ 1

0

max
06t61

G(t, s)f(s, y(s))ds

+

∫ 1

0

max
06t61

H(t, s)

∫ 1

0

max
06t61

G(s, η)f(η, u(η))dηdA(s)

)
> ξ

(∫ 1−ξ

ξ

max
06t61

G(t, s)LBds

+

∫ 1−ξ

ξ

max
06t61

H(t, s)

∫ 1

0

max
06t61

G(s, η)LBdηdA(s)

)
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> ξµB

∫ 1−ξ

ξ

max
06t61

G(t, s)ds

(
1 +

∫ 1−ξ

ξ

max
06t61

H(t, s)dA(s)

)
= B.

Hence condition (S1) of Theorem 2.3 is satisfied. Since D = C, then condition (S1)
implies condition (S3) of Theorem 2.3.

To sum up, all the hypothesis of Theorem 2.3 are satisfied. The proof is com-
pleted. �

To illustrate our main results, we give the following example.

Example 3.5. We consider the fractional boundary value problem

D
9
2

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1)
u′′(0) = u′′′(0) = uiv(0) = 0,

u(0) + 2u′(0) =

∫ 1

0

s2u(s)dA(s),

u(1)− 3u′(1) =

∫ 1

0

su(s)dA(s),

(3.1)

where A(s) = s2 + 1.
By direct calculation, we have ∆ = −4, v1 = 7

20 , v2 = 3
20 , v3 = 11

24 , v4 = 5
24 ,M

∼=
2, 32 and τ ∼= 2, 43. So, we can easily see that 0 < γv1 + αv2 = 1

2 < 1,

D = 1 − v4 − v1 + v1v4 − v2v3 ∼= 0, 32 > 0 and also δ
γ >

β
α > 1. Thus the

hypotheses (H1) and (H3) are hold.

1. Consider f(t, u) = sinu
t2+1 for t ∈ [0, 1]. The condition (H2) is satisfied for the

function f . Since f(t, u) 6 u for t ∈ [0, 1], we get max‖u‖6R|f(t, u(t))| 6 R and
also we choose Q = R. Thus the inequality,

Q2
(
3 9
2 − 1

)
(1 + 2, 32(2− 1))

Γ
(
9
2 + 1

)
4

6 R

is satisfied for R = 1. Then the problem (3.1) has a solution u(t) by Theorem 3.1.

2. Consider f(t, u) = u
3
2 + u2

√
u2+1

for t ∈ [0, 1]. The condition (H2) is satisfied

for the function f . Since f0 = 0 and f∞ = ∞, we see that the superlinear case
holds. Thus the problem (3.1) has a positive solution by Theorem 3.2.

3. Consider f(t, u) =
√
u + u4 for t ∈ [0, 1]. The condition (H2) is satisfied

for the function f . Since limu→0
f(t,u)
u = ∞ and limu→∞

f(t,u)
u = ∞, then the

condition (H5) holds. Also, choosing ρ = 1, we can easily see that the inequality

f(t, u) =
√
u+ u4 6

√
ρ+ ρ4 = 2 6 1N

is satisfied with N = 2 6 τ = 2, 43, where u 6 ρ, then the problem (3.1) has at
least two solutions such that 0 < ‖u1‖ 6 1 < ‖u2‖, by Theorem 3.3.
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[2] Z.B. Bai and H.S. Lü, Positive solutions of boundary value problems of nonlinear fractional

differential equation, J. Math. Anal. Appl., 311 (2005), 495-505.

[3] A. Cabada, S. Dimitrijevic, T. Tomovic, and S. Aleksic, The existence of a positive solution
for nonlinear fractional differential equations with integral boundary value conditions, Math.

Methods Appl. Sci., 40(6) (2016), 1880-1891.

[4] A. Cabada and Z. Hamdi, Nonlinear fractional differential equations with integral boundary
value conditions, Appl. Math. Comput., 228 (2014), 251-257.

[5] J. He, M. Jia, X. Liu, and H. Chen, Existence of positive solutions for a high order fractional

differential equation integral boundary value problem with sign nonlinearity, Advances in
Difference Equations, 49 (2018), 1-17.

[6] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Publishing Co.,
Singapore, (2000).

[7] T. Jankowski, Positive solutions to fractional differential equations involving Stieltjes integral

conditions, Appl. Math. Comput., 241 (2014), 200-213.
[8] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations Arm-

strong, Trans. Pergamon: Elmsford (1964).

[9] R.W. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear operators on
ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

[10] I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering, Aca-

demic Press, New York, (1999).
[11] J. Sabatier, O.P. Agrawal, and J.A. Tenreiro Machado, Advances in Fractional Calculus,

Springer, (2007).

[12] D.R. Smart, Fixed Point Theorems, Cambridge University Press Cambridge (1974).
[13] W. Zhong and W. Lin, Nonlocal and multiple-point boundary value problem for fractional

differential equations, Comput. Math. Appl., 59(3) (2010), 1345-1351.

Received by editors 16.9.2021; Revised version 3.6.2022; Available online 15.6.2022.
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