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IMAGE RESTORATION

Souad Ayadi

Abstract. The main purpose of this work is to review different models used in

image restoration over time. We start with the first classic model of Tikhonov

to which progressive changes are brought in order to overcome certain defaults
and get a restored image of the best quality. It seems that the space W 1,p(x)

is a good space for image restoration according to what we have gathered from
recent work in this area.

1. Introduction

Often, some degradations affect an image during its transmission. These de-
teriorations can be deterministic related to the image acquisition modality. Image
restoration can be seen as a significant step in image processing. The quality of the
image is improved via this notion. Removing the noise or the blur or adding some
information in the image are some goals of image restoration. Mathematically, the
degradation is modeled in [4] by the following equation

(1.1) u0 = ϕu+ η

where u, u0 are respectively the original image describing a real scene and the
observed image of the same scene (which is the degraded version of u), both defined
on a bounded region Ω ⊂ R2. In equation (1.1) , η design a Gaussian white noise
while ϕ is a linear blur operator which is not necessarily invertible, even if it is
invertible its inverse is difficult to calculate numerically. To recover u from u0,
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the main idea is to construct an approximation of u with the solution of the next
problem

(1.2) inf
u

∫
Ω

|u0 − ϕu|2dx.

In the case of neglection of the noise and if u is a minimum of (1.2), then u satisfies
the following equation

(1.3) ϕ∗u0 = ϕ∗ϕu.

By the fact that ϕ is not necessarily invertible, u can be obtained from (1.3).
An ill posed problem is the problem of image restoration. The direct method

in the calculus of variations [4, 20] is the most used method in this area. Recently,
authors have introduced different and interesting approaches in image processing
[6, 10, 19, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 51, 60, 65,
91]. Besides, new approaches based on functionals with variable exponent have
emerged and have greatly contributed to image restoration [1, 8, 18, 46, 50, 57,
92]. Several papers have dealt with variable exponent spaces and one can cite for
examples [39, 45, 63, 69, 70, 85, 86, 87] and references therein. Let us recall
the important notions concerning the W 1,p(x)(Ω) spaces. Let Ω be an open subset
of RN and set

C+(Ω) := {f : f ∈ C(Ω), f(x) > 1 for all x ∈ Ω}.

For all p ∈ C+(Ω), let 1 < p− := min
x∈Ω

p(x) 6 p+ = max
x∈Ω

p(x) <∞ and

Lp(x)(Ω) =
{
u : Ω→ R is measurable and

∫
Ω

|u(x)|p(x)dx <∞
}
.

On this space the so-called Luxemburg norm is given by

|u|p(x) = inf
{
γ > 0 :

∫
Ω

∣∣∣u(x)

γ

∣∣∣p(x)

dx 6 1
}
.

The space Lp(x)(Ω) has common points with the space Lp(Ω) they are both Banach
spaces, they are reflexive if and only if 1 < p− 6 p+ < ∞. Moreover, if p+ < ∞
then continuous functions are dense. On the other hand, if 0 < |Ω| <∞ and q1(·),
q2(·) are variable exponents such that q1(x) 6 q2(x) a.e. x ∈ Ω, Then, there exists
a continuous embedding Lq2(x)(Ω) ↪→ Lq1(x)(Ω). That is the inclusion between
Lebesgue spaces also generalizes naturally.

If Lp
′(x)(Ω) is the conjugate space of Lp(x)(Ω), where 1

p(x) + 1
p′(x) = 1, then the

Hölder-type inequality says

(1.4)
∣∣∣ ∫

Ω

uvdx
∣∣∣ 6 ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v ∈ Lp

′(x)(Ω).

Moreover, if f1, f2 and f3 : Ω → (1,∞) are Lipschitz continuous functions such
that

1

f1(x)
+

1

f2(x)
+

1

f3(x)
= 1
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and for any functions u1 ∈ Lf1(x)(Ω), u2 ∈ Lf2(x)(Ω), u3 ∈ Lf3(x)(Ω), the following
inequality is the generalized Hölder-type

(1.5)
∣∣∣ ∫

Ω

u1u2u3 dx
∣∣∣ 6 ( 1

f−1
+

1

f2
− +

1

f3
−

)
|u1|f1(x)|u2|f2(x)|u3|f3(x).

Inequalities (1.5) and (1.4) are both due to Orlicz in his paper [63].
The modular which is an important tool when we deal with the generalized

Lebesgue spaces is defined by ρp(x) : Lp(x)(Ω)→ R such that

ρp(x)(u) :=

∫
Ω

|u|p(x)dx.

Proposition 1.1. ([58]) For all u, v ∈ Lp(x)(Ω), we have

(1) |u|p(x) < 1 (resp. = 1, > 1)⇔ ρp(x)(u) < 1 (resp. = 1, > 1).

(2) min(|u|p
−

p(x), |u|
p+

p(x)) 6 ρp(x)(u) 6 max(|u|p
−

p(x), |u|
p+

p(x)).

(3) ρp(x)(u− v)→ 0⇔ |u− v|p(x) → 0.

Proposition 1.2. ([24]) Let p and q be measurable functions such that p ∈
L∞(Ω), and 1 6 p(x)q(x) 6∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

min(|u|p
+

p(x)q(x), |u|
p−

p(x)q(x)) 6 ||u|
p(x)|q(x) 6 max(|u|p

−

p(x)q(x), |u|
p+

p(x)q(x)).

The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
.

It is equipped with the norm

‖u‖1,p(x) := |u|p(x) + |∇u|p(x).

Note that Lp(x)(Ω) and W 1,p(x)(Ω), equipped respectively with the above norms,
are separable, reflexive and uniformly convex Banach spaces.

In this work, we will present the evolution of image restoration. It is clear
that the evolution is done in the sense of correcting the defects resulting from the
previous model and overcome them, or in the sense of giving new techniques that
restore the image in better manner and with the minimum flaws.

Literature survey

Let us consider the image restoration problem. As we mentioned in the intro-
duction we seek to find a minimizer u for the problem

(1.6) inf
u

∫
Ω

|u0 − ϕu|2dx.

The classical way to solve such ill posed problems is to add a regularization term
to the energy. In 1977, Tikhonov and Arsenin [78] proposed the first regularization
term in literature for image restoration and studied the related problem

(1.7) inf
u

(
1

2

∫
Ω

|u0 − ϕu|2dx + τ

∫
Ω

|∇u|2dx
)
, τ > 0
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where τ is positive number which is selected to equilibrate between the regular-
ization and data fidelity terms. The associated Euler-Lagrange equation is linear
and the L2 norm of the gradient in energy (1.7) allows to remove the noise but
unfortunately it penalizes too much the edges which are no longer preserved, so the
obtained image does not contain noise but it is very blurry.

Figure 1. Restoration of the noisy “Borel building” image (addi-
tive Gaussian noise) edges are lost.

The Laplacian does not lead to a good restoration of the degraded image, given
that it is a very strong smoothing operator which penalize too much the edges. For
these reasons, the obtained image is very blurry. The anisotropic diffusion proposed
in [66, 83] as an alternative to solve this problem, allowed to preserve details in
the image but edges are still blurred.

To overcome this phenomenon, the idea cited in [4] was to use of the Lp norm
of the gradient in the energy (1.7) and decrease p so that we preserve as much as
possible the edges in the restored image. Among the first works that have been
done in this direction [73, 74], who suggested to use the L1 norm of the gradient
of u, also named the total variation. We point out that an extensive studies have
been done on the TV subjects. We cite for examples (e.g., [2, 14]) and many TV
models were proposed. TV-based regularisation, TV-based diffusion, TV-based
denoising are the most first topic studied in the literature. It has been proven that
total variation approach is a very effective tool for image restoration especially in
preserving edges. Rudin, Osher, and Fatemi [73] proposed the so-called TV-based
regularization in the case p = 1 where they consider the problem

(1.8) inf
u

(
1

2

∫
Ω

|u0 − ϕu|2dx + τ

∫
Ω

|∇u|dx
)
, τ > 0

Assuming Neumann boundary conditions, the Euler- Lagrange equation is

(1.9) ϕ∗ (ϕu− u0)− τ∇.
(
∇u
|∇u|

)
= 0
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Figure 2. Result with half-quadratic minimization noise is re-
moved, while discontinuities are retained.

Note that at point where∇u = 0, equation (1.9) is not defined and the standard

way to avoid this discontinuity is to replace |∇u| in (1.9) by
√
|∇u|2 + δ which gives

(1.10) ϕ∗ (ϕu− u0)− τ∇.

(
∇u√
|∇u|2 + δ

)
= 0

with δ a small positive number. The main difficulty in solving (1.10) is the lin-

earization of the highly nonlinear term −τ∇.

(
∇u√
|∇u|2 + δ

)
. In practice, a large

literature is devoted to the numerical study of (1.10)(e.g., [71, 88]), moreover au-
thors proved that TV regularisation can very well remove noise and preserve sharp
edges at the same time. However, this approach is criticized for the loss of contrast
in the restored image.

Numerical methods have been used to solve this problem. In [73] authors used
the gradient descent method to solve the parabolic equation ut = ϕ∗ (ϕu− u0) −

τ∇.
(
∇u
|∇u|

)
with the constraint u = u0 but this method is slowly convergent. An

alternative approach called ”lagged diffusivity fixed point iteration” denoted by FP
was proposed by C. R. Vogel and M. E. Oman in [82] to solve ( 1.9), which consist
to consider the following equation

(1.11) ϕ∗
(
ϕun+1 − u0

)
− τ∇.

(
∇un+1

|∇un|

)
= 0 with u0 = u0.

unfortunately, even if this method is robust it is only linearly convergent. In [79]
authors presented a better linearization technique which is globbly convergent and

consists to introduce a new variable θ =
∇u
|∇u|

and then consider the equivalent
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system

(1.12)

{
ϕ∗ (ϕu− u0)− τ∇.θ = 0

θ|∇u| − ∇u = 0

Figure 3. Primal-dual method denoising

An interesting adaptive total variation model was given by D. M. Strong and
T. F. Chan in [75] where a control factor ν(x) was introduced to slow the diffusion
at likely edges. That is to study the following minimization problem

(1.13) J(u) =
1

2

∫
Ω

|u0 − ϕu|2dx + τ

∫
Ω

ν(x)|∇u|dx, τ > 0

Figure 4. adaptive total variation denoising

The TV-based denoising is an approach defined in term of an optimization
problem, and acts in two sense: reduce noise and preserve edges in an the restored
image. According to [66, 67, 68], TVD approach has connections to the anisotropic
diffusion with partial differential equations. Even if the total variation has achieved
great success in image denoising but it has some disadvantages: flat region of
the restored image may contain staircasing or blockly artifacts created artificially,
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textures tend to be too much smoothed and the contrast of the restored image may
be lost [8, 14, 22, 62, 72, 82, 84, 90]. Due to properties of the space BV (Ω)
of functions of bounded variation allowing discontinuities which are necessary for
edges construction it is natural to study existence of slutions of some problems in
this space. In this direction, authors in [5, 80] studied a general version of problem
(1.8) where they considered the energy

(1.14) J(u) =
1

2

∫
Ω

|u0 − ϕu|2dx + τ

∫
Ω

ψ(|∇u|)dx, τ > 0

Imposing some conditions on ψ, so that the smoothing is the same in all direc-
tion in places where the gradient is low and at the same time control the smoothing
in the neighborhood of contours in order to preserve them. Authors in [4] calcu-
lated the relaxed functional of (1.14) in the BV ∗w and then use direct method of
the calculus of variations to proof that the relaxed problem has a unique solution
and then deduce existence of a unique solution for the original problem. Let recall
that BV ∗w denote the space of functions of bounded variation endowed with weak
topology. G. Aubert and P. Kornprobst claim [4], that in certain situations it is
necessary to propose more adapted functional spaces than BV (Ω) due to the the
staircase effect resulting from the minimization of the total variation, and also for
the reason that naturel images are not totaly described by BV (Ω) functions [42].
Later on, the energy (1.14) have been used by L. Tang, Z. Fang in [77] to over-
come the phenomenon of loss of contrast in the restored image. In the framework
of TV, they proposed a forward-backward diffusion model called TV-FBD, based
on variation methode and backward diffusion. There main result in [77] was the
combination between the TV energy and the energy (1.14). In other words, they
consider the energy

(1.15) T (u) = λ

∫
Ω

|∇u|dx+
1

2

∫
Ω

|u0−ϕu|2dx + τ

∫
Ω

ψ(|∇u|)dx, τ > 0, λ > 0

Using the two-step spliting (TSS), they split the given problem (1.15) into two
sub-problems

(1.16) min
u

(
1

2

∫
Ω

|u0 − ϕu|2dx + λ

∫
Ω

|∇u|dx
)
, λ > 0

and

(1.17) min
u

(
τ

∫
Ω

ψ(|∇u|)dx
)
, τ > 0

then, by using the two problems alternatively, they succeeded in removing noise,
simultaneously preserving contrast. But with this model textures are not well
recovered, that is what lead authors to focus there research on how to incorporate
texture representation in there model to improved it.

In fact, the idea of combined two energies comes a bit far back to Chambolle
and Lions [14] who proposed to combin isotropic energy with TV-based diffusion
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Figure 5. Left: noisy image, middle: denoised image with the
proposed model, right: denoised image with TV model

energy and looked for minimizers of the energy

(1.18) min
u∈BV (Ω)

(
1

2τ

∫
|∇u|6τ

|∇u|2dx +

∫
|∇u|>τ

|∇u| − τ

2
dx

)
, τ > 0

This model is effective for images where homogeneous regions are separted by dis-
tinct edges,they are well restored, but it is sensitive to the threshold τ for nonuni-
form and highly degraded. For this reason a good flexibility in the choice of the
direction and the speed of flow is suggested.

Othors proposed in [1] a similar model model which is a combination of fast
growth with respect to low gradient and low growth when the gradient is large.
They proved the existence of a minimizer in some Orlicz space for the following
energie.

(1.19)

min
u

(∫
|∇u|61

B (x, |∇u|) dx +

∫
|∇u|>1

A (|∇u|) dx+
τ

2

∫
Ω

|u0 − ϕu|2dx

)
, τ > 0

where A(s) = s logt(1 + s), and B(x, s) is an increasing C2 function for almost
everywhere x ∈ Ω. It was proven numericaly that when t is close to 0 the restored
image is well improved.

Figure 6. Left: noisy image, middle: denoised image with the
proposed model (t = 1), right: denoised image with the proposed
model (t = 0.00000001)
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It seems that the model given in [8] can be considered as a model which com-
bines two energies because it reaps both the advantages of isotropic and TV- diffu-
sion, even if it is not written as a sum of these two energies. The proposed model
is

(1.20) min
u

(1

2

∫
Ω

|u0 − ϕu|2dx +

∫
Ω

∣∣∣∇u∣∣∣p(|∇u|)dx)
where lim

z→0
p(z) = 2, lim

z→∞
p(z) = 1, and p is monotonically decreasing. To capture

edges, the W 1,1(Ω) space is used (the model acts as TV-bassed diffusion) and to
reconstruct flat region, the space W 1,2(Ω) is used (isotropic diffusion), in the other
regions they dealed with the space W 1,p(Ω), p ∈ (1, 2) . It is a very well model to
reduce staircasing effect, but as long as they did not have sufficient mathematical
tools, the mathematical study of this problem remains difficult. Y.Che, S. Levine
and M. Rao were the first authors who introduced functional with variable exponent
in image restoration. They established the existence of a unique pseudosolution for
the partial differential equation with variable exponent that they have proposed in
[18]. Moreover, they prsented experimental results to illustrate the effectiveness
of the given model in image restoration. The model combines between a total
variation (TV)-based regularization and Gaussian smoothing and the exponent
was well choosen allowing the model to be an exelent tool for image restoration,
denoising and enhancement.

The proposed energy was

(1.21) min
u∈BV (Ω)∩L2(Ω)

∫
Ω

ψ (s,Du) +
τ

2
(u0 − u)

2
ds

(1.22) ψ (s, t) =


1

α(s)
|t|α(s), |t| 6 µ

|t| − µα(s)− µα(s)

α(s)
, |t| > µ

with µ > 0, 1 < α(s) 6 2, and

(1.23) p(s) =

{
α(s), |∇u| < µ

1, |∇u| > µ

for

(1.24) α(s) = 1 +
1

1 + k|∇Gσ ∗ u0(s)|2

where k > 0, and Gσ the Gaussian filter. Under some additional assumptions and
by using certain adequate mathematical tools they proved that a weak solution of
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Figure 7. Top row: original piecewise smooth image and
edge map, image + noise and edge map.Bottom three rows:
First column from left: reconstructions with thresholds µ =
30, 50, 70,respectively (1000 iterations). Second column: corre-
sponding edge maps. Third column: reconstruction using TV-
based diffusion only (2000 iterations) and the proposed model with
thresholds µ = 30, 100,respectively (1000 iterations). Fourth col-
umn: corresponding edge maps

the proposed problem satisfies the following equations

∂u

∂t
− |∇u|p(x)−2

[
(p(x)− 1) ∆u+ (2− p(x)) |∇u|div

(
∇u
|∇u|

)
+∇p.∇u log |∇u|

]
+τ (u− u0) = 0, in Ω× [0, T ]

∂u

∂n
= 0 in ∂Ω× [0, T ]

u(0) = u0.

Experimental results have confirmed that the strengths of this model is its way to
act to accommodate the local information. Near edges the total variation is used
and in uniform regions the model is isotropic, while in the other regions it acts as
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a Gaussian filter or total variation diffusion. Furthermore, the dependence of the
anisotropic diffusion in ambiguous regions on the strength of the gradient enssures
the no influence at the threshold.

Later on, F. Li, Z. Li and L. Pi [54] improved the model in [18] by weakining
its formulation and changing the space of minimizers, they worked in W 1,p(x)(Ω)
instead of BV (Ω). They have proposed the following minimization problem

(1.25) min
u∈W 1,p(x)(Ω)∩L2(Ω)

∫
Ω

( 1

p(x)
|∇u|p(x) dx+

τ

2

∫
Ω

(u0 − u)
2
dx
)

(1.26)

p(x) = 1 + α(x),

α(x) = 1 +
1

1 + k|∇Gσ ∗ u0(x)|2

Where k > 0, σ > 0, τ > 0. Meanwhile, the new model is more flexible than (1.21)
since it does not involve the threshold µ. According to (1.26), p(x) can tends to 1
but not equal to 1 in region where gradient is large. When p(x) → 1 edges will
be preserved, if p(x) → 2 the model approximates isotropic smoothing, and when
1 < p(x) < 2, the diffusion is adjusted. Authors lefted existence of minimizers in

Figure 8. Comparison of the proposed model and the ROF
model. (a) A part of Lena image; (b) the noisy image; (c) the
restoration result by the ROF model; and (d) the restoration re-
sult by the proposed model.

the case p = 1 as an open question. The answer of this question was given by
P.Harjulehto, P.Hästö,V. Latvala and O. Toivanen, in there paper [46], where they
have used the notion of Γ− convergence for the proof of existence results in the
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space BV (.)(Ω) ∩ Ls(Ω) for the problem

inf
u∈BV (.)(Ω)

(
ϑ∈BV (.)(Ω)u+ τ

∫
Ω

|u− u0|s dx
)

with

BV (.)(Ω) :=
{
u ∈ BV (Ω) ∩W 1,p(.)(Ω\X)

}
, where X := {x ∈ Ω : p(x) = 1} .

ϑBV (.)(Ω)u = ‖∇u‖X∩A +

∫
A\X
|∇u|p(x) dx

for every A ⊂ Ω, τ > 0, u0 ∈ Ls(Ω). In a recent paper [92], authors gave some
remarks on the model in [18]. According to there opinion, as there are no arguments
which explain the choice of p(x) in the previous model, then if the continuity of
p(x) is neglected, more general models with variable exponent can be constructed
for image denoising. In particular, the restored image will have a better quality
if p(x) is constructed as an appropriate piecewise constant function the quality of
the restored image is better. Unfortunately, the discontinuity of p(x) lead to the
indesired Lavrentiev phenomenon.

We point out that the presented models performs very well for denoising of im-
ages, while preserving edges. But, smaller details, such as textures are destroyed.
We also recall that in all these models the authors focused on improving the regu-
larity term. Following [64, 81], the restored image is formed from two component:
cartoon information and texture information , the term u0 − u represents the tex-
ture or noise information. This very interesting description associated to Meyer
results [59] allowed researchers to overcome the drawback of loss of texture in the
restored image. In fact, Meyer proposed a new minimization method by replacing
the L2 norm of (u0 − u) by a weaker norm more appropriate to represent textured
or oscillatory patterns.

(1.27) min
u

(∫
Ω

|∇u| dx + τ‖u0 − u‖∗
)

But, due to the forme of the norm ‖‖∗, the Euler-Lagrange equation with respect
to u cannot be expressed directly and consequently the Problem (1.27) cannot be
solved directly. In [81], L. Vese and S. Osher have poposed a practical approxima-
tion to the Problem (1.27) to overcome the above difficulty.
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In [64], an other model used the H−1 norm to measure fidelity term. That is
to minimize the following energy

(1.28) min
u

(∫
Ω

|∇u| dx + τ‖u0 − u‖2H−1

)
τ > 0, ‖‖H−1(Ω) =

∫
Ω
|∇∆−1(.)|2 dx. In [44], authors used Galerkin’s method to

establish existence and uniqueness of weak solutions in a suitable Sobolev spaces
for the problem

(1.29) min
u

(∫
Ω

g(x)

p(x)
|∇u|p(x) dx + τ‖u0 − u‖2H−1

)
with τ > 0, u0 ∈ L2(Ω), g(x) =

1

1 + k1|∇Gσ1
∗ u0|2

, k1 > 0, σ1 > 0,

p(x) = 1 +
1

1 + k2|∇Gσ2
∗ u0|2

, k2 > 0, σ2 > 0. The effectiveness of the model

(1.29) in image restoration was shown by numerical experimental resultats.
However, in some cases the image may be not smooth enough it’s why authors

in [56] allowed the observed image to be an integrable function, and seeked to solve
the Problem (1.29) in a more extensive space. They supposed that u0 ∈ L1(Ω), and
succeeded to establish existence of renormalized solutions which are more suitable
than weak solutions.

Recently, based on the work of Yaroslavsky [89], some new process of denois-
ing models have been developed for image restoration. These are nonlocal meth-
ods which allawed to remove noise, preserve edges and take care of fine details ,
structures and textures. Nonlocal methods are based on the similarities between
neighboring or overlapping patches in an image. Later, authors introduced non-
local operators [40, 41], in a systematical study for nonlocal image processing.
The minimization problem which can be considered in the general frame work of
nonlocal variational problems
(1.30)

min
u

(
1

2p

∫
Ω

∫
Ω

ϕ(x, y)
∣∣u(y)−u(x)

∣∣pdµ(x)dµ(y)+τ

∫
Ω

∫
Ω

ψ
(∣∣u(x)− u0(x)

∣∣) dµ(x)

)
where ϕ is the weight function, 1 < p < ∞, µ is a probablity mesure and τ is
a fidelity parameter. A nonlocal p− Laplacian deblurring and denoising images

model [52, 3]. was proposed in the case ψ(s) =
s2

2
. That is to look for minimizers

for
(1.31)

min
u

(
1

2p

∫
Ω

∫
Ω

ϕ(x, y)
∣∣u(y)− u(x)

∣∣pdµ(x)dµ(y) +
τ

2

∫
Ω

∫
Ω

∣∣u(x)− u0(x)
∣∣2dµ(x)

)
F. Karami, K. Sadik, and L. Ziad, in there recent work [48] proposed a new

faster denoising process where they have combined between nonlocal imge denoising
approch and the variable exponent p(x)−Laplacian. The resulting model inherts
the power of the nonlocal approch in preseving texture and fine details. Moreover,
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Figure 9. (a) Original image. (b) the noisy image . (c) Image
restored using the new method. (d) Image restored using the TV
model

the variable exponent enables fast convergence to the solution. The idea was to
minimize
(1.32)

min
u

(
1

2p

∫
Ω

∫
Ω

ϕ(x, y)

2p(x, y)

∣∣u(y)−u(x)
∣∣p(x,y)

dµ(x)dµ(y)+
τ

2

∫
Ω

∫
Ω

∣∣u(x)−u0(x)
∣∣2dµ(x)

)

Authors used semi group’s theory to prove existence and uniqueness of solution for
the Problem (1.33). The model was tested and its efficiency in reducing time of
convergence was proven.
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Figure 10. Left: the noisy image, middel Image restored using
p(x)−Lplacian model, right: Image restored using the proposed
model

Figure 11. LPL and NLPL image resoration

Figure 12. NLPL and NLPxL image resoration
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Inspired by [48] and Meyer’s comments [59] and related works regarding the
fidelity term, authors in [49] considered the Problem (1.33) with an appropriate
fidelity term. That is to seek minimizers for the following energy

(1.33)

min
u

(
1

2p

∫
Ω

∫
Ω

ϕ(x, y)

2p(x, y)

∣∣u(y)−u(x)
∣∣p(x,y)

dµ(x)dµ(y)+
τ

q

∫
Ω

∫
Ω

∣∣u(x)−u0(x)
∣∣qdµ(x)

)
where 1 < q 6 2. This model is more powerful than the others since it satisfies three
properties at the same time, the variable exponent hepls in reducing the execution
time, besides, the nonlocal approch and the weaker norm allow the preservation
of textures and small details. The given model was tested and numerical simula-
tions have proved the efficiency of the model in removing noise, preserving edges,
moreover, the model handels better repetitive structures and textures in a reduce
time.

Figure 13. First row: image corrupted by Gaussian noise with
zero mean and variance σ = 25. Second row: restored images with
the proposed model
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Authors have compared the new proposed model to some others models.

Figure 14. Left: noisy Barbara image, middle: restored image
by TV with L1− fidelity term, right: restored by the proposed
model

Conclusion

According to various presented works , the old idea to restor an image by adding
some regularization term has changed. The fidelity term act also on the quality
of the restored image. Moreover, nonlocal methods involving p(x)−Laplacian are
more efficient. We wonder what would be the quality of the restored image when
we combine the nonlocal methods with the p(x)−laplacian associated to the norm
H−1 in fidelity and L1 data.
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