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ON INNER PRODUCT OVER

A LATTICE VECTOR SPACE

DPRV Subba Rao and Rajesh Gudepu

Abstract. This paper introduces the concept of lattice valued inner prod-

uct space. A natural inner product structure for the space of n-tuples over
Boolean algebras is generalised to n-tuples over a distributive lattice with 0
and 1. A dimension theorem for orthonormal basis of a Boolean vector space
is generalised to a lattice vector space. Further, we prove that for any naturals

m,n with m < n, any set of m orthogonal unit ortho vectors in a lattice vector
space can be extended to an orthonormal basis (known in the Boolean algebra
case).

1. Introduction

As lattice matrices become useful tools in various domains like the theory
of switching circuits, graph theory, fuzzy systems, theoretical computer science,
automata theory, optimizations etc, it is natural to study the lattice vector spaces
in connection with lattice matrices. In this way the concept of a lattice vector
space (or vector space over a distributive lattice) is introduced by G. Joy and K.
V. Thomas in [2].

In comparison to usual linear algebra over fields, in this paper the notion of
inner product space of a Boolean vector space [4] is extended to inner product space
of a lattice vector space. As analogues to the Boolean-valued norm and orthogo-
nality relations for Boolean vectors [4], the lattice valued norm and orthogonality
relations for lattice vectors are introduced and studied.
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70 DORADLA AND GUDEPU

An important concept in our work is that unit ortho vector. These are lattice
vectors (vectors whose components are lattice elements) of norm one whose compo-
nents are mutually disjoint. We define an orthonormal basis of Vn(L) in the usual
way and it turns out that it must be made of unit ortho vectors. Our first main
result is that all ortho normal bases for Vn(L) have cardinality n and conversely,
any orthonormal set of unit ortho vectors with cardinality n is a basis for Vn(L).
Secondly, any orthonormal set of unit ortho vectors in Vn(L) can be extended to
an orthonormal bases for Vn(L) .

2. Preliminaries

Throughout this paper N denotes the set of non zero natural numbers, we
denote u,v,w,x,y, z etc as vectors and a, b, c, α, β etc as scalars and also zero
vector as 0 and the vector (1, 1, . . . ., 1) as 1.

We recall some basic definitions and results on lattice theory, lattice matrices
and lattice vector spaces which will be used in our sequel. For details see [1, 2, 3].

A partially ordered set (L,6) is a lattice if for all a, b ∈ L, the least upper
bound of a, b and the greatest lower bound of a, b exist in L. For any a, b ∈ L,
the least upper bound is denoted by a∨ b and the greatest lower bound is denoted
by a ∧ b (or ab), respectively. An element a ∈ L is called greatest element of L if
α 6 a, for all α ∈ L. An element b ∈ L is called least element of L if b 6 α, forall
α ∈ L. We use 1 and 0 to denote the greatest element and the least element of L,
respectively. A lattice L is a distributive lattice, if for any a, b, c ∈ L,

(1) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) hold.

Throughout this paper, unless otherwise stated, we assume that L is a distributive
lattice with the greatest element 1 and the least element 0.

A lattice vector space V over L (or simply a lattice vector space) is a system
(V,L,+, ·), where V is a non-empty set, L is a distributive lattice with 1 and 0, ’+’
is a binary operation on V called addition and ’·’ is a map

· : L× V ∋ (a,x) 7→ a · x ∈ V ,

called scalar multiplication such that the following properties hold:

(1) x+ y = y+ x,
(2) x+ (y+ z) = (x+ y) + z,
(3) there is an element 0 in V such that x+ 0 = x,
(4) x+ y = 0 if and only if x = y = 0,
(5) a · (x+ y) = a · x+ a · y,
(6) (a ∨ b) · x = a · x+ b · x,
(7) (ab)x = a · (b · x),
(8) 1 · x = x,
(9) 0 · x = 0,

for every x,y, z ∈ V and a, b ∈ L.
Throughout this paper V will denote an arbitrary vector space over a lattice

L, Vn(L) will denote the set of all n-tuples of elements of a lattice L.
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Let V be a lattice vector space and W be a subset of V . Then W is a lattice
vector subspace (or L subspace) of V , if W is itself a lattice vector space with the
same operations in V .

The L sub space W = {0} is called the trivial L subspace of V . All L sub
spaces of V other than V are call proper L subspaces of V .

Let V be a lattice vector space and S be a non-empty subset of V . Then a
vector y ∈ V is a linear combination of the vectors in S, if there exists elements
y1,y2, . . . ,yn ∈ S and a1, a2, . . . , an ∈ L such that y =

∑n
i=1 aiyi.

We define any linear combination of the empty set of vectors to be 0. Let V be an
lattice vector space and S be a subset of V . Then the span of S in V is the set of
all linear combinations of the vectors in S. We use the notations span(S) to denote
span of S in V . Here we remark that span of empty set is equal to {0}.

Let V be a lattice vector space and S be a non-empty subset of V −{0}. Then
S is said to be linearly independent, if every vector u ∈ span(S) can be expressed
uniquely as a linear combination of the elements of S. Otherwise, the set S is
said to be linearly dependent. Here uniqueness is in the following sence : for any
ai, bj ∈ L − {0} and xi,yj ∈ S with i =1,2,. . . ,m and j = 1,2,. . . , k such that∑m

i=1(aixi) =
∑k

j=1(bjyj), we have:

m = k, {a1, a2, . . . , am} = {b1, b2, . . . , bk} and {x1,x2, . . . ,xm} = {y1,y2, . . . ,yk}.
Let V be a lattice vector space and S be a subset of V . Then S is said to be

a basis for V , if S is a spanning subset of V and S is linearly independent. Here
onwards we shall call elements of a basis as basis vectors.

3. The Inner product space Vn(L)

In this section, we extend the concept of inner product over a Boolean algebra
[4] to inner product over a lattice vector space and we show that if L is a finite
distributive lattice with 0 and 1, then any orthonormal basis for Vn(L), the lattice
vector space of n - tuples over L, has cardinality n.

Definition 3.1. Let V be a lattice vector space. An inner product on V is a
function <,>: V × V → L which satisfy

(1) < x,x > > 0, for all x ∈ V and < x,x > = 0 iff x = 0V ;
(2) < x+ y, z > = < x, z > ∨ < y, z >, for all x,y, z ∈ V ;
(3) < αx,y > = α < x,y >, for all x,y ∈ V and α ∈ L;
(4) < y,x > = < x,y >, for all x,y ∈ V .

Definition 3.2. A lattice vector space V together with an inner product <,>
is called a lattice inner product space and is denoted by (V,<,>).

Example 3.1. Let V = Vn(L) = {x ∈ V |x = (x1, x2, . . . xn)} be the set of
all n-tuples. By defining ”+” on V as

(x1, x2, . . . xn) + (y1, y2, . . . yn) = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn)

and scalar multiplication ”·” on V as

a(x1, x2, . . . xn) = (ax1, ax2, . . . , axn),
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Vn(L) forms a vector space over L. For any x,y ∈ V , defining by < x,y >= xTy
or < x,y >= yTx, the structure (Vn(L), <,>) forms a lattice inner product space.

Example 3.2. Let V = Mn(L) = {(aij)n×n | aij ∈ L} be the set of all n× n
matrices. By defining ”+” on V as

(aij)n×n + (bij)n×n = (aij ∨ bij)n×n

and scalar multiplication ”·” on V as

α(aij)n×n = (αaij)n×n,

the structure Mn(L) forms a lattice vector space over L. For any A,B ∈ V , let

us define < A,B > = Tr(ABT ) or < A,B > = Tr(BAT ). Then the system
(Mn(L), <,>) forms an inner product space.

Definition 3.3. A lattice vector space V over a distributive lattice L with 0
and 1 is said to be a normed vector space if there exist a mapping ∥ · ∥ : V → L
satisfying:

(1) ∥x∥ > 0 and ∥x∥ = 0 if and only if x = 0 and
(2) ∥ax∥ = a∥x∥ for all x ∈ V and a ∈ L.

Proposition 3.1. A lattice inner product space becomes a normed vector space
by defining ∥x∥ = < x,x >

Proof. Let V be a lattice inner product space. In order to prove V is normed, for
any x ∈ V and a ∈ L, we need to show

(i) ∥x∥ > 0, for all x ∈ V and ∥x∥ = 0 iff x = 0 and
(ii). ∥ax∥ = a∥x∥, for all a ∈ L and for all x ∈ V .

(i) follows from the definition of inner product.

(ii) For a ∈ L, x ∈ V , we have

∥ax∥ =< ax, ax >

= (a ∧ a) < x,x >

= a < x,x >

= a∥x∥.

�

Remark 3.1. By Proposition 3.1, Example 3.1 and Example 3.2 are normed
lattice vector spaces.

Definition 3.4. Let V be an inner product space and x,y ∈ V . Then x is
said to be orthogonal (or perpendicular) to y if < x,y > = 0.

Definition 3.5. Let V be a normed lattice vector space. An element x ∈ V
is said to be a unit vector if ∥x∥ = 1.

Definition 3.6. A subsetM of V is called an orthogonal set if distinct elements
in M are mutually orthogonal.
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Definition 3.7. A subsetM of V is called an orthonormal set ifM is orthogonal
and each vector in M has norm 1.

Definition 3.8. A vector x = (x1, x2, . . . xn) in Vn(L) is said to be an or-
thovector if xixj = 0, for all i, j ∈ {1, 2, . . . , n} and i ̸= j.

We now give some properties of the norm in the normed space Vn(L).

Theorem 3.1. Let x,y ∈ Vn(L). Then
(i) ∥x+ y∥ = ∥x∥ ∨ ∥y∥.
(ii) < x,y > 6 ∥x∥∥y∥.
(iii) If x and y are orthovectors and ∥x∥ = ∥y∥ then < x,y > = ∥x∥∥y∥ if

and only if x = y.

Proof. (i). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be any two
vectors in Vn(L). Then we have

∥x+ y∥ = ∨n
i=1(xi ∨ yi)

= (∨n
i=1xi) ∨ (∨n

i=1yi)

= ∥x∥ ∨ ∥y∥

(ii). Consider

< x,y > = ∨n
i=1xiyi

6 ∨n
i,j=1xiyj

= (∨n
i=1xi)(∨n

i=1yi)

= ∥x∥∥y∥.

(iii). Let x and y be orthovectors with ∥x∥=∥y∥ and suppose that < x,y >
= ∥x∥∥∥y∥. Then we have < x,y > = ∥x∥ and < x,y > = ∥y∥. Considering
< x,y > = ∥x∥ we have ∨n

i=1xiyi = ∨n
i=1xi. Now multiplying this equation

with xj on both sides we obtain xjyj = xj , for all j. Similarly, by considering
< x,y >= ∥y∥, we obtain xjyj = yj for all j. Hence x = y. �

Remark 3.2. Note that the condition ∥x∥ = ∥y∥ in the last statement of the
Theorem 3.1 is necessary. If we let x = (x1, 0, 0, . . . , 0) and y = (y1, 0, 0, . . . , 0)
with x1, y1 ∈ L and x1 ̸= y1 then x,y are orthovectors of different norms and we
can see that < x,y > = ∥x∥∥y∥. Also the condition that x,y are ortho vectors
is necessary since x = (1, x1) and y = (1, y1), for x1, y1 ∈ L with x1 ̸= y1 then
∥x∥ = ∥y∥=1 and < x,y > = 1.

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. If x and y are unit orthovectors then < x,y > =1 if and
only if x = y.

Towards the main result we now see that a basis must be made of unit vectors.

Lemma 3.1. The basis vectors of Vn(L) are unit vectors.
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Proof. Let S be a basis of Vn(L). We first see that S does not contain 0, zero
element of Vn(L). Suppose 0 ∈ S. Since 1∈ Vn(L) and S is a basis of Vn(L). We
have 1=

∑n
i=1 aixi, ai ∈ L,xi ∈ S. If a1, a2, . . . , an are all distinct from 0, then

1 can also be written as linear combination of 0,x1,x2, . . . ,xn. In any case 1 has
two distinct linear combinations of elements of S. Which is a contradiction. Hence
S does not contain 0.

Now let u ∈ S then u = 1.u which is a linear combination of elements of S.
On the other hand ∥u∥u =< u,u > u = (∨n

i=1ui)u = u. If ∥u∥ ≠ 1, then 1.u and
∥u∥u are two distinct linear combinations for u, a contradiction to the fact that S
is a basis. Hence ∥u∥ = 1. �

Lemma 3.2. An orthonormal set in Vn(L) is a linearly independent set.

Proof. Let S be an orthonormal set in Vn(L). To see that every element in
Vn(L) can be uniquely written as a linear combination of elements of S. For this,

suppose e ∈ Vn(L) and e =
∑n

i=1 aixi =
∑k

i=1 bjyj , where xi,yj ∈ S, ai, bj ∈
L − {0}, i=1 . . . n, j=1. . . k. If possible, for some j, yj /∈ {x1,x2, . . . ,xn}, j ∈
{1, 2, . . . , k}. We have bj= < e,yj >, j= 1. . . k. For any j, consider bj =<

e,yj >=< yj , e >=< yj ,
∑m

i=1 aixi >= ∨m
i=1ai < yj ,xi > = 0. But for all

j, bj is non-zero. A contradiction arises. Hence {y1,y2, . . . ,yk} is contained in
{x1,x2, . . . ,xm}. The reverse inclusion is obtained by symmetry. Then for each
i = 1 . . . n there exist j ∈ {1, 2, . . . , k} such that ai =< e,xi >=< e,yj >= bj .
which concludes the proof. �

We now define the following:

Definition 3.9. A subset S of Vn(L) is said to be an orthonormal basis of
Vn(L) if S is an orthonormal and spanning subset of Vn(L).

Remark 3.3. By Lemma 3.2, it follows that an orthonormal basis is a spanning
set and linearly independent. Hence an orthonormal basis is a basis of Vn(L). In
general lattice vector spaces the converse is not true i.e., a basis of a lattice vector
space need not be an orthonormal basis. For example, consider L = {0, a, b, c, d, 1}
where the Hasse diagram of L is shown below:

Figure 1

Now consider the lattice vector space

V = {α(a, b, d) + β(0, d, c) + γ(0, 0, b) : α, β, γ ∈ L}.
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For this Lattice vector space, the set B = {(a,b,d), (0,d,c), (0,0,b)} forms a basis
but not orthogonal.

Remark 3.4. For any natural n, Vn(L) has at least one orthonormal basis. For
example (see [4]), the canonical (or) standard basis of Vn(L) is defined as the basis
{δ1, δ2, . . . , δn} with δ1 = (1, 0, . . . , 0), δ2 = (0, 1, . . . , 0), . . ., δn = (0, 0, . . . , 1).

One more example is the following:

Example 3.3. ([4]) Let x = (x1, x2, . . . , xn) be a unit orthovector. Let ei =
(xi, xi+1, . . . , xn, x1, x2, . . . , xi−1) for all i = 1, 2, . . . , n. Then {e1, e2, . . . , en} is an
orthonormal subset of Vn(L). Further, for each i the standerd basis vector δi can
be written as follows: δi = xie1 +xi+1e2 + . . .+xi−1en. Therefore,{e1, e2, . . . , en}
is a spanning set and hence an orthonormal basis for Vn(L).

Remark 3.5. Linear independence in Vn(L) is not an easy concept. Instead
the concept of orthogonality can be used as a substitute. In fact, latter on, we
shall see that the concept of a basis, i.e.,a linearly independent spanning subset, is
identical to the concept of orthonormal basis.

The natural maps for our structure are:

Definition 3.10. A mapping T : V → U of a lattice vector space V into a
lattice vector space U is said to be linear if

T (ax+ y) = aT (x) + T (y),

for all a ∈ L and x,y ∈ V .

Note 3.2. If T is linear, then T (0) = 0.

Definition 3.11. A mapping T : V → U of a lattice vector space V into
a lattice vector space U is said to be a linear isomorphism if T is linear and a
bijection.

Definition 3.12. A linear mapping T : V → V on a lattice vector space V is
said to be a linear operator on V .

Definition 3.13. A linear mapping T : V → U of a lattice vector space V
into a lattice vector space U is said to be invertible if there is a linear mapping
S : U → V such that T ◦ S = IU and S ◦ T = IV , where ◦ is the composition of
mappings and IV , IU are identity operators on V , U respectively.

Note 3.3. A linear mapping T : V → U on a lattice vector space V into a
lattice vector space U has inverse if and only if T is a bijection. For any invertible
linear mapping the inverse mapping is a unique operator which is denoted by T−1.

We shall denote the direct product of n copies of L by Ln and it is a distributive
lattice with 0 and 1. The elements of Ln are the same as the elements of Vn(L), but
the algebraic structures are different in fact Ln is a lattice and Vn(L) is a lattice
vector space.

Lemma 3.3. If T : Vn(L) → Vm(L) is a linear isomorphism between lattice
vector spaces, then T : Ln → Lm is an isomorphism between lattices.
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Proof. Suppose T : Vn(L) → Vm(L) is a linear isomorphism then T−1 :
Vm(L) → Vn(L) is also a linear mapping. As sets we have Vk(L) = Lk, for any
natural k. We now show that T : Ln → Lm is an isomorphism between lattices.
For this, we first see that T preserve the supremum in Ln. For, let x,y ∈ Ln. Since
T is linear we have T (x+y) = T (1 ·x+y) = 1 ·T (x)+T (y) = T (x)+T (y) but ”+”
in Vn(L) is same as ”∨” in Ln. Therefore T (x∨y) = T (x)∨T (y). Since T−1 is also
linear operator with the same argument we have T−1(x ∨ y) = T−1(x) ∨ T−1(y).
Secondly, we see that any operator S on Vn(L) preserves the order on Ln. For,
u,v ∈ Ln and u 6 v implies u ∨ v = v. Now S(u) ∨ S(v) = S(u ∨ v) = S(v)
consequently S(u) 6 S(v). Therefore any linear operator preserves the order on
Ln. From these facts we have x 6 y iff T (x) 6 T (y). Also, we can easily see
that T preserves the infimum and T (0) = 0, T (1) = 1. Therefore T is a lattice
homomorphism. Thus T : Ln → Lm is an isomorphism. �

Remark 3.6. The converse of the Lemma 3.3 does not hold, namely if T :
Ln → Lm is a lattice automorphism, T : Vn(L) → Vm(L) need not be linear. For
example consider the lattice L = {0, a, b, 1} whose diagrammatical representation
is as follows:

Figure 2

Consider the lattice L2 (The direct product of L and L) Define S : L → L by
S(0) = 0, S(a) = b, S(b) = a, S(1) = 1. Then S : L → L is an automorphism
on L. By defining T : L2 → L2 as T (α, β) = (S(α), S(β)), for all α, β ∈ L, T is
an automorphism on L2 and T is not linear on V2(L). For, consider T (a(1, 0)) =
T (a, 0) = (S(a), S(0)) = (b, 0) and aT (1, 0) = a(S(1), S(0)) = a(1, 0) = (a, 0).
Therefore T (a(1, 0)) ̸= aT (1, 0). Hence T is not linear.

Theorem 3.4. If L is a finite distributive lattice with 0 and 1 then any or-
thonormal basis for Vn(L) has cardinality n.

Proof. Let {e1, e2, . . . , em} be an orthonormal basis for Vn(L). Define T :
Vn(L) → Vm(L) by T (x) = (< x, e1 >,< x, e2 >, . . . , < x, em >). Then T is linear
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and bijective from Vn(L) onto Vm(L). By Lemma 3.3 we have T : Ln → Lm is an
isomorphism between lattices. Hence m = n since L is finite. �

Remark 3.7. We shall show in the next section that this results holds for any
distributive lattice L with 0 and 1

Definition 3.14. An orhonormal subset S of a lattice vector space V is said
to be a unit ortho set, if all of its elements are unit orthovectors.

4. The Dimension Theorem

In this section, we show that any orthonormal basis of Vn(L) has cardinality
n. Conversely we show that any unit ortho orthogonal subset with cardinality n is
a basis for Vn(L).

We shall use the following notations: Given a subset S = {x1,x2, . . . ,xm} of
m vectors in Vn(L), we use the notation xj = (x1j , x2j , . . . , xnj) with xij ∈ L, i
= 1 to n and j = 1 to m. Thus a set S = {x1,x2, . . . ,xm} can be regarded as a
matrix [xij ]n×m whose columns are the elements of the set. We shall denote this
matrix by S.

We first prove that orthonormal bases possess a duality property.

Theorem 4.1. Let S= {x1,x2, . . . ,xm} be an orthonormal subset of Vn(L).
Then S is an orthonormal basis for Vn(L) if and only if the set S∗ of columns of
(xji)m×n is an orthonormal subset of Vm(L).

Proof. Suppose S = {x1,x2, . . . ,xm} be an orthonormal basis of Vn(L),
where xj = (x1j , x2j , . . . , xnj) with xij ∈ L, i = 1 . . . n and j = 1 . . .m. Let
S∗ = {x∗

1,x
∗
2, . . . ,x

∗
n}, where x∗

i = (xi1, xi2, . . . , xim), for i = 1 . . . n. We will
show that the set S∗ = {x∗

1,x
∗
2, . . . ,x

∗
n} is an orthonormal subset of Vm(L). Since

S = {x1,x2, . . . ,xm} is an orthonormal basis of Vn(L) there exist elements a1, a2,
. . ., am ∈ L such that δ1 = a1x1 + a2x2 + . . . + amxm, where δ1 = (1, 0, 0, . . . , 0).
which implies for i ̸= 1 we have ∨m

i=1ajxij =0, consequently for i ̸= 1, ajxij =
0, j = 1 . . .m. On the other hand, ∨m

i=1ajx1j = 1 and x1kx1j = 0 for j ̸= k, so
that we have ajx1j = x1j , for all j = 1 . . .m. It follows that ∨m

i=1ajx1j = ∨m
i=1x1j

= 1. Again from the established fact for i ̸= 1, ajxij = 0 we have ajx1jxij =
0,i ̸= 1. Thus x1jxij = 0,i ̸= 1. Now by replacing δ1 with δk for k ∈ {2, . . . , n} we
can observe similarly that ∨m

i=1xkj = 1 and xkjxij = 0, i ̸= k, for all j = 1 . . .m.
Hence, the set of columns of (xji)m×n is an orthonormal subset of Vm(L).

Conversely, suppose S∗ is an orthonormal subset of Vm(L). We prove that S is
an orthonormal basis for Vn(L). For this it is enough to prove that S is spanning
subset of Vn(L). Since S∗ is an orthonormal subset of Vm(L) we have ∨m

i=1xij = 1
and xkjxij = 0,i ̸= k, for all j = 1 . . .m which gives ∨m

i=1xijxkj = δik, for all i, k =
1,2, . . . n. where δik= 1 if i = k and 0 if i ̸= k which further gives δk = ∨m

j=1xkjxj ,
for all k = 1 . . . n. Since δk’s are standard basis vectors of Vn(L), xj ’s are basis
vectors for Vn(L). Consequently S is a spanning subset of Vn(L). Therefore S is
orthonormal basis for Vn(L). �

The following corollary is an immediate consequence of the Theorem 4.1.
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Corollary 4.1. An orthonormal basis of Vn(L) is a unit ortho set.

Corollary 4.2. If an orthogonal unit ortho subset of Vn(L) has exactly n
elements then it is a basis.

Proof. Suppose S = {x1,x2, . . . ,xn} is a unit ortho orthonormal subset of
Vn(L), where xi = (x1i, x2i, . . . , xni) with xij ∈ L, i, j = 1 to n. In order to prove
S is basis of Vn(L) it is enough to prove S is an orthonormal basis of Vn(L). So, in
view of Theorem 4.1 it suffices to prove that S∗ is an orthonormal subset of Vn(L).
For this, since each xi is a unit orthovector we have

∨m
i=1xik = 1 and xikxjk = 0, i ̸= j, for all k = 1 . . . n (1)

and since S is orthonormal subset of Vn(L) we have

∨m
j=1xji = 1 and xkixkj = 0, i ̸= j, for all k = 1 . . . n. (2).

Now from (1) and (2), it follows ∨m
j=1xij = 1 and xikxjk = 0, i ̸= j, for all i, k = 1

to n. So, S∗ is orthonormal subset of Vn(L). Hence S is a basis of Vn(L). �

Remark 4.1. By symmetry, we can restate Theorem 4.1 as “S is orthonormal
basis of Vn(L) if and only if S∗ is orthonormal basis of Vm(L)”. We call S∗ is the
dual basis for S.

Example 4.1. Here we give an example of construction of dual basis. Let L
= {0,a1,a2,a3,a4,a5,1} be the lattice whose Hasse diagram is as follows:

Figure 3

In L we have aiaj = 0, for i, j with i ̸= j in {1,2,3} and a1∨a2∨a3=1. Consider
the following matrix:

A =

 a1 a2 a3
a3 a1 a2
a2 a3 a1
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then the columns of the matrix A form an orthonormal set of V3(L), and the
columns of the matrix A∗ form an orthonormal set of V3(L). By theorem 4.1 the
columns of Matrix A form an orthonormal basis for V3(L). Similarly, the columns
of A∗ form an orthonormal basis for V3(L). Therefore the columns of the matrix A
form an orthonormal basis for V3(L) and the columns of A∗ form the corresponding
dual basis.

We now prove an important theorem concerning the construction of unit or-
thovectors.

Theorem 4.2. Let n >1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
be two unit orthovectors in Vn(L). Then x is orthogonal to y if and only if there
exists a unit orthovector z = (z1, z2, . . . , zn−1) in Vn−1(L) such that yi = zi(x1 ∨
x2 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . xn) for i=1 to n− 1. If x is orthogonal y then we can
always choose z with zi = ynxi ∨ yi for i=1 . . . n− 1.

Proof. Let x and y be any two orthogonal unit orthovectors.
Now we construct a unit orthovector z = (z1, z2, . . . , zn) in Vn−1(L) zi =

ynxi ∨ yi for i=1 to n− 1 as follows: zi = ynxi ∨ yi for i=1 . . . n− 1.
For 1 6 i, j 6 n− 1, i ̸= j, consider zizj = [ynxi ∨ yi][ynxj ∨ yj ] = 0.
Consider

∨n−1
i=1 zi = ∨n−1

i=1 ynxi ∨ yi

= [ynx1 ∨ y1] ∨ . . . [ynxn−1 ∨ yn−1]

= yn(x1 ∨ x2 ∨ . . . ∨ xn−1) ∨ (y1 ∨ y2 ∨ . . . ∨ yn−1) ∨ 0

= yn(x1 ∨ x2 ∨ . . . ∨ xn−1) ∨ (y1 ∨ y2 ∨ . . . ∨ yn−1) ∨ xnyn

= yn(x1 ∨ x2 ∨ . . . ∨ xn) ∨ (y1 ∨ y2 ∨ . . . ∨ yn−1)

= y1 ∨ y2 ∨ . . . ∨ yn = 1.

Therefore z is a unit orthovector. Now we will show that z has the desired property.
For, consider

zi(x1 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . ∨ xn) = [ynxi ∨ yi][(x1 ∨ . . . ∨ xi−1 ∨ xi+1 ∨ . . . xn)]

= 0 ∨ yi(x1 ∨ . . . ∨ xi−1 ∨ xi+1 . . . ∨ xn)

= yi(xi ∨ yi(x1 ∨ . . . ∨ xi−1 ∨ xi+1 . . . ∨ xn))

= yi(x1 ∨ . . . ∨ xn)

= yi, i ∈ {1, 2, . . . , n− 1}.
Conversely, suppose there is a unit ortho vector z in Vn−1(L) such that yi =

zi(x1 ∨ . . .∨ xi−1 ∨ xi+1 ∨ . . . xn), i=1. . . n− 1. We show that x is orthogonal to y.
Multiplying with xi, i=1. . . n− 1, on both sides of the equation yi = zi(x1 ∨ . . . ∨
xi−1 ∨ xi+1 ∨ . . . xn) we obtain xiyi=0, i =1 . . . n− 1. Consider xnyn = 1.xnyn =
(z1∨z2∨ . . .∨zn−1).xnyn = 0. Therefore xiyi = 0, i=1 . . . n. Hence x is orthogonal
to y. �

Lemma 4.1. The cardinality of an orthogonal unit ortho set of Vn(L) is at most
n.
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Proof. Suppose S = {x1,x2, . . . ,xm}, where xi = (x1i, x2i, . . . , xni), for all
i= 1 . . .m is an orthogonal unit ortho set in Vn(L). We have to prove that m 6 n.
We prove this theorem by induction on n. For n = 1, the only othonormal set is {1}.
So, the result holds trivially. Now assume that the result is true for some n = k.
Let S = {x1,x2, . . . ,xm}, where xi = (x1i, x2i, . . . , x(k+1)i), for all i= 1 . . .m is an
orthogonal unit ortho set in Vk+1(L). Then the matrix corresponding to S is S =
[xij ](k+1)×m. Now by Theorem 4.2 for each j = 2, 3, . . . ,m there exists a unit ortho
vector zi = (z1i, z2i, . . . , zki) in Vk(L) such that xij = zij(x11 ∨ x21 ∨ . . .∨ x(i−1)1 ∨
x(i+1)1∨ . . .∨x(k+1)1) for all i = 1 . . . k+1 and j = 2 . . .m. Let j, l ∈ {2, 3, . . . ,m}
with j ̸= l and i ∈ {1, 2, 3, . . . , k+1}. Again by theorem 4.5 zij = xi1x(k+1)j ∨ xij .

Clearly ∨k
i=1zij = ∨k

i=1xij =1.consider zijzil = [xi1xnj ∨ xij ][xi1xnl ∨ xil] = 0.
Similarly, we can have zikzjk = 0, for all i ̸= j. Therefore the set {z2, z3, . . . , zm}
is an orhogonal unit orthovector set in Vk(L). Then by induction hypothesis, we
have m− 1 6 k. Therefore m 6 n. �

We now prove the main result of this section:

Theorem 4.3. The cardinality of an orthonormal basis of Vn(L) is n.

Proof. We prove this theorem by induction on n. The result is trivial for n
= 1. Assume the result is true for some n = k. Suppose S is an orthonormal basis
for Vk+1(L). Then by Corollary 4.1, S is a unit ortho set. Consequently, by Lemma
4.1, the cardinality of S is less than or equal to k+ 1. Let us say the cardinality of
S is m. Therefore m 6 k+1. Suppose if possible m < k+1. Then by Theorem 4.1
and Remark 4.1 we have S∗ is an orthonormal basis for Vm(L). Since m < k + 1,
we have m 6 k. Then by induction hyopothesis we have the cardinality S∗ = m.
But by construction the cardinality of S∗ is k + 1. A contradiction. Hence the
cardinality of S is k + 1. Thus, if S is an orthonormal basis for Vn(L) then the
cardinality of S is n. �

Theorem 4.3 and Corollary 4.2 together gives the following result:

Corollary 4.3. An orthogonal unit ortho set S is a basis for Vn(L) if and
only if the cardinality of S is n.

We now see that any orthogonal unit ortho subset S of Vn(L) can be extended
to an orthonormal basis for Vn(L).

We shall use the following concept:

Definition 4.1. A subset M ⊆ Vn(L) is called a subspace if it is generated by
an othonormal set S = {x1,x2, . . . ,xm}. i.e., M = {

∑m
i=1 aixi/a1, a2, . . . am ∈ L}.

Any orthonormal set S generating M is called an orthonormal basis for M.

Remark 4.2. We remark that we do not require orthonormal basis of sunb-
spaces to be unit ortho sets. In fact a subspace may not contain any orthogonal
unit ortho basis. For example refer [4]. Thus we will some times use:

Definition 4.2. A subspace with a orthogonal unit ortho basis is called a unit
ortho subspace.
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We now concern on linear maps between two sub spaces.

Definition 4.3. A linear map T : M → N between two subspaces M and N of
Vn(L) and Vm(L) respectively, is called an isometry if < T (x), T (y) >=< x,y >,
for all x,y ∈ M.

Lemma 4.2. Let M ⊆ Vn(L) and N ⊆ Vm(L) be two subspaces. Let T : M → N
be a linear map, then:

(a) The following conditions are equivalent:
(i) T is isometry,
(ii) There exists a orthonormal basis S = {e1, e2, . . . ek} of M such that

{Tei i = 1 . . . k} is an orthonormal set of N.
(iii) For every orthonormal set S = {e1, . . . ek} of M, the set {Te1, . . . , Tek} is

orthonormal set of N.
(b) If T : M → N is an isometry, then T is injective.

Proof. (a) Sketch of the proof: (i) =⇒ (iii) =⇒ (ii) =⇒ (i).
(i) implies (iii) and (iii) implies (ii) are obvious.
We show the implication (ii) =⇒ (i). Suppose S = {e1, . . . ek} is an orthonormal

basis of M such that {Te1, . . . , Tek} is an orthonormal subset of N. Let x,y ∈ M.

Then we have x =
∑k

i=1 xiei and y =
∑k

i=1 yiei with xi, yi ∈ L for i = 1 . . . n.
Consider

< T (x), T (y) > =< T (
k∑

i=1

xiei), T (
k∑

i=1

yiei) >

=< ∨k
i=1T (xiei),∨k

j=1T (yjej) > (since T is linear)

= ∨k
i,j=1 < xiT (ei), yjT (ej) > (by inner product property)

= ∨k
i,j=1xiyj < T (ei), T (ej) >

= ∨k
i=1xiyi

=< x,y >

(b) Suppose T is an isometry and suppose T (x) = T (y), for x,y ∈ M. Consider

xi =< x, ei >

=< T (x), T (ei) >

=< T (y), T (ei) >

=< y, ei >

= yi

for all i. Hence x = y. Therefore T is injective. �

Definition 4.4. Let M and N be two subspaces of Vm(L) and Vn(L) respec-
tively. A surjective isometry T : M → N is called an isomorphism, and in this case
M and N are said to be isomorphic subspaces.
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Remark 4.3. (a) The inverse of an isomorphism is an isomorphism, and the
composition of two isomorphisms is again an isomorphism. Hence isomorphism is
an equivalence relation.

(b) Isomorphisms map orthonormal bases to orthonormal bases: if {x1, x2, . . .,
xn} is an orthonormal basis for a subspace M and T : M → N is an isomorphism
then {Tx1, Tx2, . . . , Txn} is an orthonormal set since T is an isometry by Lemma
4.2. Moreover, if v ∈ N then there exists u ∈ M such that T (u) = v. since
u =

∑n
i=1 uixi for some u1, u2, . . . , un ∈ L we conclude that v =

∑n
i=1 uiT (xi).

Hence {T (x1), T (x2), . . . T (xn)} is an orthonormal spanning subset of N, hence a
basis of N.

Theorem 4.4. If M is a subspace of Vn(L) then there exists m ∈ N and an
isomorphism T : M → Vm(L) such T map unit orthovectors to unit orthovectors,
and if M is a unit ortho subspace then T and T−1 map unit orthovectors to unit
orthovectors.

Proof. Suppose M is a subspace of Vn(L). Then there exists an orthonormal
subset {e1, e2, . . . em} which generates M. We show that M is isomorphic to Vm(L).
Consider the standard basis {δ1, δ2, . . . δm} for Vm(L). Define T : M → Vm(L)
such that T (x) = (< x, e1 >,< x, e2 >, . . . , < x, em >). Clearly T is well de-
fined and linear. Consider T (ei) = (< ei, e1 >,< ei, e2 >, . . . , < ei, em >) =
(0, 0, . . . , 1, 0, . . . , 0) = δi. Therefore there exists an orthonormal set of Vm(L).
Then by Lemma 4.13 (???), T is isometry.

To show T is onto. Let u ∈ Vm(L) then u = (u1, u2, . . . , um), ui ∈ L. Let
x =

∑m
i=1 uiei which belongs to M. Consider

T (x) = (< x, e1 >,< x, e2 >, . . . , < x, em >)

= (<
m∑
i=1

uiei, e1 >,<
m∑
i=1

uiei, e2 >, . . . , <
m∑
i=1

uiei, em >)

= (u1, u2, . . . , um)

= u

Therefore T is surjective and isometry and hence T is an isomorphism.
Next, we see that T preserves unit orthovectors. Let x ∈ M be a unit orthovec-

tor. Let {δ1, δ2, . . . , δn} be the standard orthonormal basis for Vn(L). Consider
< x, ei > = < x,

∑n
r=1 < ei, δr > δr > = ∨n

r=1 < ei, δr >< x, δr >, for all i = 1
. . . n. Hence for i ̸= j and i, j = 1, . . . ,m we have

< x, ei >< x, ej > = (∨n
r=1 < ei, δr >< x, δr >)(∨n

s=1 < ej , δs < x, δs >)

= ∨n
r,s=1 < ei, δr >< x, δr >< ej , δs >< x, δs >

= ∨n
r=1 < ei, δr >< x, δr >< ej , δr >

6 ∨n
r=1 < ei, δr >< ej , δr >

=< ei, ej >

= 0
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Consider

∨n
i=1 < x, ei > = ∨n

i=1 <
m∑
i=1

xiei, ei >

= ∨n
i=1xi

= 1.

Therefore T (x) is unit orthovector.
Suppose M is a unit ortho subspace. Then M has a orthogonal unit ortho basis

{e1, e2, . . . , em}. We show that T−1 : Vm(L) → M preserves unit orthovectors.
Let (u1, u2, . . . , um) ∈ Vm(L) be a unit orthovector. Since T : M → Vm(L) is
surjective, there exist v = (v1, v2, . . . , vm) ∈ M such that T (v) = (u1, u2, . . . , um).
Which implies (< v, e1 >,< v, e2 >, . . . , < v, em >) = (u1, u2, . . . , um). Which
further implies < v, ej >= uj , for all j= 1 . . .m. Now we show that v is a
unit orthovector. Since uiuj = 0 we have < v, ei >< v, ej >= 0, for i ̸= j.
Consequently, <

∑m
i=1 viei, ei ><

∑m
i=1 viei, ej >= 0, for i ̸= j. Hence vivj = 0 ,

for i ̸= j. Consider

∨n
i=1vi = ∨n

i=1 <
m∑
i=1

viei, ei >

= ∨n
i=1 < v, ei >

= ∨n
i=1ui

= 1.

Therefore v is a unit orthovector. �
Corollary 4.4. Any two orthonormal bases of a subspace M of Vn(L) have

same cardinality.

Proof. Let X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,yk} be two orthonor-
mal bases of subspace M. By Theorem 4.4, there exist an isomorphism T : M →
Vm(L) and an isomorphism S : M → Vk(L). By the same theorem we have
S−1 : Vk(L) → M is isomorphism. Therefore T ◦ S−1 : Vk(L) → Vm(L) is an
isomorphism and T ◦ S−1 maps orthonormal basis to orthonormal basis. Hence
m = n. �

Remark 4.4. We call the common cardinality of orthonormal basis for a sub-
space M the dimension of M . It follows from Theorem 4.4 that if M has dimension
m then M is isomorphic to Vm(L).

Definition 4.5. For x ∈ Vn(L), we define x⊥ = {y ∈ Vn(L)/ < x,y >= 0}.

Proposition 4.1. If x ∈ Vn(L) is a unit orthovector then x⊥ is a unit ortho
subspace of Vn(L) of dimension (n− 1).

Proof. Let x ∈ Vn(L). As in Example 3.3 we can extend the unit orthovector
x to an orthonormal basis {x = e1, e2, . . . , en} of Vn(L). If < y,x >= 0 then we
have < y, e1 > = 0 if and only if y1 = 0, where y =

∑n
i=1 yiei . Hence it follows

that x⊥ = {
∑n

i=2 yiei/y2, . . . , yn ∈ L,<
∑n

i=2 yiei,x >= 0} is the subspace of
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Vn(L) generated by the orthogonal unit ortho set {e2, . . . , en} of Vn(L). Thus the
cardinality of x⊥ is (n− 1). �

We now prove our main theorem

Theorem 4.5. If S = {x1,x2, . . . ,xm} is a orthogonal unit ortho set in Vn(L)
with m < n then S can be extended to an orthonormal basis for Vn(L).

Proof. We prove this theorem by using induction on n. The result is trivial for
n=1. Assume the result is true for some n. Let S = {x1,x2, . . . ,xm}, where m < n,
is an orthogonal unit ortho set in Vn+1(L). We now see that S can be extended to
an orthonormal basis of Vn+1(L). By Proposition 4.1 and Theorem 4.4 there exist
an isomorphism T : x⊥

1 → Vn(L) such that T and T−1 preserve the unit orthovec-
tors. Moreover {x2,x3, . . . ,xm} ⊆ x⊥

1 . Let yi ∈ Vn(L) such that T (xi) = yi,
for i = 2, 3, . . .m. Then by Lemma 4.2, {y2,y3, . . . ,ym} is an orthonormal set in
Vn(L) of cardinaliy m − 1 < n. Then by induction hypothesis, there exist unit
orthovectors ym+1,ym+2, . . . ,yn+1 such that {y2,y3, . . . ,yn+1} is an orthonormal
basis for Vn(L). By Theorem 4.4, {T−1(y2), T

−1(y3), . . . , T
−1(yn+1)} is an orthog-

onal unit ortho set Vn+1(L), which is a basis for x⊥
1 . Since xi = T−1(yi) , for all i =

2 . . .m, we conclude by Corollary 4.2, that {x1, T
−1(y2), T

−1(y3), . . . , T
−1(yn+1)}

is an othonormal basis Vn+1(L) which extends S. �
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