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ON THE FIRST BANHATTI-SOMBOR INDEX

Zhen Lin, Ting Zhou, V. R. Kulli, and Lianying Miao

Abstract. Let dv be the degree of the vertex v in a connected graph G. The

first Banhatti-Sombor index of G is defined as

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
,

which is a new vertex-degree-based topological index introduced by Kulli. In
this paper, the mathematical relations between the first Banhatti-Sombor in-
dex and some other well-known vertex-degree-based topological indices are
established. In addition, the trees extremal with respect to the first Banhatti-

Sombor index on trees and chemical trees are characterized, respectively.

1. Introduction

LetG be a simple undirected connected graph with vertex set V (G) and edge set
E(G). The number of vertices and edges of G is called order and size, respectively.
Denote by G the complement of G. For v ∈ V (G), dv denotes the degree of vertex
v in G. The minimum and the maximum degree of G are denoted by δ(G) and
∆(G), or simply δ and ∆, respectively. A pendant vertex of G is a vertex of degree
one. A graph G is called (∆, δ)-semiregular if {du, dv} = {∆, δ} holds for all edges
uv ∈ E(G). Denote by Kn, Cn, Pn and K1, n−1 the complete graph, cycle, path
and star with n vertices, respectively.

The study of topological indices of various graph structures has been of interest
to chemists, mathematicians, and scientists from related fields due to the fact that
the topological indices play a significant role in mathematical chemistry especially
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in the QSPR/QSAR modeling. In 1975, the Randić index of a graph G introduced
by Randić [16] is the most important and widely applied. It is defined as

R(G) =
∑

uv∈E(G)

1√
dudv

.

The modified second Zagreb index of a graph G, introduced by Nikolić et al.
[15], is defined as

M∗
2 (G) =

∑
uv∈E(G)

1

dudv
.

The harmonic index and the inverse degree index of a graph G proposed by
Fajtlowicz [6] are two the older vertex-degree-based topological indices. They are
respectively defined as

H(G) =
∑

uv∈E(G)

2

du + dv
, ID(G) =

∑
uv∈E(G)

(
1

d2u
+

1

d2v

)
.

The symmetric division deg index, inverse sum indeg index and geometric-
arithmetic index of a graph G, introduced by Vukičević [20, 21, 22], Gašperov
[22] and Furtula [21], are respectively defined as

SDD(G) =
∑

uv∈E(G)

d2u + d2v
2dudv

, ISI(G) =
∑

uv∈E(G)

dudv
du + dv

,

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

The forgotten topological index, introduced by Furtula and Gutman [7], is defined
as

F (G) =
∑

uv∈E(G)

(
d2u + d2v

)
.

In 2021, the Sombor index of a graph G is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v,

which is a novel vertex-degree-based molecular structure descriptor proposed by
Gutman [8]. The investigation of the Sombor index of graphs has quickly received
much attention. In particular, Redžepović [18] showed that the Sombor index may
be used successfully on modeling thermodynamic properties of compounds due to
the fact that the Sombor index has satisfactory prediction potential in modeling
entropy and enthalpy of vaporization of alkanes. Das et al. [3], Milovanović et
al. [14] and Wang et al. [23] gave the mathematical relations between the Sombor
index and some other well-known vertex-degree-based topological indices. For other
related results, one may refer to [1, 5, 10, 13, 19] and the references therein.
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Inspired by work on Sombor index, the first Banhatti-Sombor index of a con-
nected graph G was introduced by Kulli [9] very recently and is defined as

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
.

We find that the new index has close contact with numerous well-known vertex-
degree-based topological indices. Moreover, the trees with the maximum and mini-
mum first Banhatti-Sombor index among the set of trees with n vertices are deter-
mined, respectively. In particular, the extremal values of the first Banhatti-Sombor
index for chemical trees are characterized.

2. Preliminaries

Lemma 2.1. For any edge uv ∈ E(G), d2u + d2v or 1
d2
u
+ 1

d2
v
is a constant if and

only if G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-semiregular
bipartite graph (when G is bipartite).

Lemma 2.2. For any positive real number a and b, we have

2
√
2(a2 + b2 + ab)

3(a+ b)
6
√
a2 + b2 6

√
2(a2 + b2)

a+ b

with equality if and only if a = b.

Lemma 2.3. ([17]) If ai > 0, bi > 0, p > 0, i = 1, 2, . . . , n, then the following
inequality holds:

n∑
i=1

ap+1
i

bpi
>

(
n∑

i=1

ai

)p+1

(
n∑

i=1

bi

)p

with equality if and only if a1

b1
= a2

b2
= · · · = an

bn
.

Lemma 2.4. ([4]) Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers such that
q 6 ai

bi
6 Q and ai ̸= 0 for i = 1, 2, . . . , n. Then there holds

n∑
i=1

b2i +Qq
n∑

i=1

a2i 6 (Q+ q)
n∑

i=1

aibi

with equality if and only if bi = qai or bi = Qai for at least one i, i = 1, 2, . . . , n.

Lemma 2.5. ([2]) If a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) are sequences of
real numbers and c = (c1, c2, . . . , cn), d = (d1, d2, . . . , dn) are nonnegative, then

n∑
i=1

di

n∑
i=1

cia
2
i +

n∑
i=1

ci

n∑
i=1

dib
2
i > 2

n∑
i=1

ciai

n∑
i=1

dibi

with equality if and only if a = b = (k, k, . . . , k) is a constant sequence for positive
ci and di, i = 1, 2, . . . , n.
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Lemma 2.6. ([12]) Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers such
that a 6 ai 6 A and b 6 bi 6 B for i = 1, 2, . . . , n. Then there holds∣∣∣∣∣ 1n

n∑
i=1

aibi −
1

n

n∑
i=1

ai
1

n

n∑
i=1

bi

∣∣∣∣∣ 6 1

n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
(A− a)(B − b),

where ⌊x⌋ denotes the integer part of x.

3. On relations between the first Banhatti-Sombor index and other
degree-based indices

3.1. Bounds in terms of order, size and degree.

Theorem 3.1. Let G be a connected graph of order n and size m with the
minimum degree δ. Then

n√
2
6 BSO(G) 6

√
2m

δ

with equality if and only if G is a regular graph.

Proof. Note that

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6

∑
uv∈E(G)

√
1

δ2
+

1

δ2
=

√
2m

δ

with equality if and only if du = δ for any vertex u, that is, G is a regular graph.
By the Cauchy-Schwarz inequality, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
>

∑
uv∈E(G)

1√
2

(
1

du
+

1

dv

)
=

1√
2
n

with equality if and only if du = dv for any edge uv, that is, G is a regular graph. �
Corollary 3.1. Let G be a regular connected graph with n vertices. Then

BSO(G) =
n√
2
.

Remark 3.1. This implies that BSO(G) does not increase with the increase
of the number of edges of G. Clearly, BSO(Kn) = BSO(Cn).

Corollary 3.2. Let Un be a unicyclic graph with n vertices. Then

BSO(Un) >
n√
2

with equality if and only if G ∼= Cn.

Corollary 3.3. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

√
2n 6 BSO(G) +BSO(G) 6

√
2

(
m

δ
+

n(n− 1)− 2m

2(n− 1−∆)

)
with equality if and only if G is a regular graph.
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Corollary 3.4. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

n√
2
6 BSO(G) 6 n∆√

2δ

with equality if and only if G is a regular graph.

Proof. Since 2m 6 n∆, we have the proof. �

Theorem 3.2. Let G be a connected graph of order n and size m with the
maximum degree ∆. Then

BSO(G) 6 n−m(2−
√
2)

1

∆

with equality if and only if G is a regular graph.

Proof. Without loss of generality, we suppose that du > dv. Then we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6

∑
uv∈E(G)

(
1

dv
+ (

√
2− 1)

1

du

)

6
∑

uv∈E(G)

(
1

dv
+

1

du

)
+m(

√
2− 2)

1

∆
= n−m(2−

√
2)

1

∆

with equality if and only if G is a regular graph. �

Corollary 3.5. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

√
2n 6 BSO(G) +BSO(G) 6 2n− (2−

√
2)

(
m

∆
+

n(n− 1)− 2m

2(n− 1− δ)

)
with equality if and only if G is a regular graph.

3.2. Bounds in terms of the Randić index, the modified second Za-
greb index and the inverse degree index.

Theorem 3.3. Let G be a connected graph with the maximum degree ∆. Then
√
2R(G) 6 BSO(G) 6

√
2∆M∗

2 (G)

with equality if and only if G is a regular graph.

Proof. By the arithmetic geometric inequality, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
>

∑
uv∈E(G)

√
2

dudv
=

√
2R(G)

with equality if and only if du = dv for any edge uv, that is, G is a regular graph.
It is easy to see that

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6

∑
uv∈E(G)

√
2∆2

dudv
=

√
2∆M∗

2 (G)
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with equality if and only if du = dv = ∆ for any edge uv, that is, G is a regular
graph. �

Theorem 3.4. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then

BSO(G) 6
√
mID(G)

with equality if and only if G is a regular graph (when G is non-bipartite) or G is
a (∆, δ)-semiregular bipartite graph (when G is bipartite).

Proof. By the Cauchy-Schwarz inequality, we have

BSO(G) =
∑

uv∈E(G)

1 ·

√
1

d2u
+

1

d2v

6
√√√√ ∑

uv∈E(G)

12
∑

uv∈E(G)

(
1

d2u
+

1

d2v

)
=

√
mID(G)

with equality if and only if 1
d2
u
+ 1

d2
v
is a constant for any edge uv in a connected

graph G. By Lemma 2.1, G is a regular graph (when G is non-bipartite) or G is a
(∆, δ)-semiregular bipartite graph (when G is bipartite). �

3.3. Bounds in terms of the harmonic index, the symmetric division
deg index and the modified second Zagreb index.

Theorem 3.5. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then

√
2H(G) 6 BSO(G) 6 1√

2

(
∆

δ
+

δ

∆

)
H(G)

with equality if and only if G is a regular graph.

Proof. By Lemma 2.2, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6

∑
uv∈E(G)

√
2
(

dv

du
+ du

dv

)
du + dv

6
∑

uv∈E(G)

1√
2

(
∆

δ
+

δ

∆

)
2

du + dv
=

1√
2

(
∆

δ
+

δ

∆

)
H(G)

with equality if and only if du = dv for any edge uv, that is, G is a regular graph.
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By Lemma 2.2, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
>

∑
uv∈E(G)

2
√
2
(

dv

du
+ du

dv
+ 1
)

3(du + dv)

>
∑

uv∈E(G)

2
√
2(2 + 1)

3(du + dv)
=

√
2H(G)

with equality if and only if du = dv for any edge uv, that is, G is a regular graph. �

Theorem 3.6. Let G be a connected graph with the maximum degree ∆ and
the minimum degree δ. Then

2
√
2

3∆
SDD(G) +

√
2

3
H(G) 6 BSO(G) 6

√
2

δ
SDD(G)

with equality if and only if G is a regular graph.

Proof. By Lemma 2.2, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6

∑
uv∈E(G)

√
2
(

dv

du
+ du

dv

)
du + dv

6
∑

uv∈E(G)

√
2
(

dv

du
+ du

dv

)
δ + δ

=

√
2

δ
SDD(G)

with equality if and only if du = dv = δ for any edge uv, that is, G is a regular
graph.

By Lemma 2.2, we have

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v

>
∑

uv∈E(G)

2
√
2
(

dv

du
+ du

dv
+ 1
)

3(du + dv)

=
∑

uv∈E(G)

2
√
2
(

dv

du
+ du

dv

)
3(du + dv)

+
∑

uv∈E(G)

2
√
2

3(du + dv)

=
2
√
2

3∆
SDD(G) +

√
2

3
H(G)

with equality if and only if du = dv = ∆ for any edge uv, that is, G is a regular
graph. �

Theorem 3.7. Let G be a connected graph with n vertices. Then

BSO(G) 6
√

2M∗
2 (G)SDD(G)
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with equality if and only if G is a regular graph (when G is non-bipartite) or G is
a (∆, δ)-semiregular bipartite graph (when G is bipartite).

Proof. Let p = 1, ai =
√

1
d2
u
+ 1

d2
v
and bi = 1

dudv
in Lemma 2.3. Then we

have ( ∑
uv∈E(G)

√
1
d2
u
+ 1

d2
v

)2

∑
uv∈E(G)

1
dudv

6
∑

uv∈E(G)

1
d2
u
+ 1

d2
v

1
dudv

=
∑

uv∈E(G)

(
dv
du

+
du
dv

)
,

that is,

BSO(G) 6
√

2M∗
2 (G)SDD(G)

with equality if and only if
√
d2u + d2v is a constant for any edge uv in G, by Lemma

2.1, G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-semiregular
bipartite graph (when G is bipartite). �

Corollary 3.6. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

BSO(G) 6
√

mM∗
2 (G)

(
∆

δ
+

δ

∆

)
with equality if and only if G is a regular graph or a (∆, δ)-semiregular bipartite
graph.

Proof. Without loss of generality, we assume that du > dv. By the proof of
Theorem 3.7, we have( ∑

uv∈E(G)

√
1
d2
u
+ 1

d2
v

)2

∑
uv∈E(G)

1
dudv

6
∑

uv∈E(G)

(
dv
du

+
du
dv

)
6
(
∆

δ
+

δ

∆

)
m

with equality if and only if du = ∆ and dv = δ for any edge uv. This implies
that G is a regular graph or a (∆, δ)-semiregular bipartite graph. Conversely, it is
easy to check that equality holds in Corollary 3.6 when G is a regular graph or a
(∆, δ)-semiregular bipartite graph. �

3.4. Bounds in terms of the forgotten index.

Theorem 3.8. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

BSO(G) >
√
2

∆3 + δ3

(
mδ3

∆
+

F

2

)
with equality if and only if G is a regular graph.
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Proof. Let ai =
√
d2u + d2v and bi =

1
dudv

in Lemma 2.4. Then q = 1√
2∆3

and

Q = 1√
2δ3

. By Lemma 2.4, we have

∑
uv∈E(G)

1

d2ud
2
v

+
1

2∆3δ3

∑
uv∈E(G)

(d2u + d2v) 6
1√
2

(
1

∆3
+

1

δ3

) ∑
uv∈E(G)

√
1

d2u
+

1

d2v
,

that is,
m

∆4
+

1

2∆3δ3
F (G) 6 1√

2

(
1

∆3
+

1

δ3

)
BSO(G),

that is,

BSO(G) >
√
2

∆3 + δ3

(
mδ3

∆
+

F

2

)
with equality if and only if du = dv = ∆ for any edge uv, that is, G is a regular
graph. �

Theorem 3.9. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

BSO(G) 6 2mSDD(G) +M∗
2 (G)F (G)

2SO(G)

with equality if and only if G is a regular graph (when G is non-bipartite) or G is
a (∆, δ)-semiregular bipartite graph (when G is bipartite).

Proof. Let ai = bi =
√
d2u + d2v, ci =

1
dudv

and di = 1 in Lemma 2.5. Then
we have

m
∑

uv∈E(G)

d2u + d2v
dudv

+
∑

uv∈E(G)

1

dudv

∑
uv∈E(G)

(d2u + d2v)

> 2
∑

uv∈E(G)

√
d2u + d2v
dudv

∑
uv∈E(G)

√
d2u + d2v,

that is,

2mSDD(G) +M∗
2 (G)F (G) > 2BSO(G)SO(G),

that is,

BSO(G) 6 2mSDD(G) +M∗
2 (G)F (G)

2SO(G)

with equality if and only if ai = bi =
√
d2u + d2v for any edge uv in G, that is,

d2u + d2v is a constant for any edge uv in G, by Lemma 2.1, G is a regular graph
(when G is non-bipartite) or G is a (∆, δ)-semiregular bipartite graph (when G is
bipartite). �

Corollary 3.7. Let G be a connected graph of size m with the maximum
degree ∆ and the minimum degree δ. Then

BSO(G) 6 m(∆2δ + δ2) + ∆F (G)

2
√
2∆δ3
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with equality if and only if G is a regular graph.

Corollary 3.8. Let G be a connected graph of size m with the maximum
degree ∆ and the minimum degree δ. Then

BSO(G) 6 m2(2∆3 +∆2δ + δ3)

2∆δ2SO(G)

with equality if and only if G is a regular graph.

3.5. Bounds in terms of the inverse sum indeg index and geometric-
arithmetic index.

Theorem 3.10. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then

BSO(G) 6 H(G)SDD(G) + 2M∗
2 (G)ISI(G)√

2GA(G)

with equality if and only if G is a regular graph.

Proof. Let ai =
√
d2u + d2v, bi =

√
2dudv, ci =

1
dudv

and di =
1

du+dv
in Lemma

2.5. Then we have∑
uv∈E(G)

1

du + dv

∑
uv∈E(G)

d2u + d2v
dudv

+
∑

uv∈E(G)

1

dudv

∑
uv∈E(G)

2dudv
du + dv

> 2
∑

uv∈E(G)

√
d2u + d2v
dudv

∑
uv∈E(G)

√
2dudv

du + dv
,

that is,

H(G)SDD(G) + 2M∗
2 (G)ISI(G) >

√
2BSO(G)GA(G),

that is,

BSO(G) 6 H(G)SDD(G) + 2M∗
2 (G)ISI(G)√

2GA(G)

with equality if and only if
√
d2u + d2v =

√
2dudv for any edge uv, that is, G is a

regular graph. �

Corollary 3.9. Let G be a connected graph of size m with the maximum
degree ∆ and the minimum degree δ. Then

BSO(G) 6 m2∆2 +m2δ2 + 4m∆ISI(G)

2
√
2∆δ2GA(G)

with equality if and only if G is a regular graph.
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3.6. Bounds in terms of the Sombor index and the modified second
Zagreb index.

Theorem 3.11. Let G be a connected graph of size m with the maximum degree
∆ and the minimum degree δ. Then

2m2

SO(G)
6 BSO(G) 6 1

δ2
SO(G)

with equality if and only if G is a regular graph.

Proof. It is easy to see that

BSO(G) =
∑

uv∈E(G)

√
1

d2u
+

1

d2v
6 1

δ2

∑
uv∈E(G)

√
d2u + d2v 6 1

δ2
SO(G),

with equality if and only if du = dv = ∆ for any edge uv, that is, G is a regular
graph.

Let ai = bi =
1√
dudv

and ci = di =
√

d2u + d2v in Lemma 2.5. Then

2
∑

uv∈E(G)

√
d2u + d2v

∑
uv∈E(G)

√
1

d2u
+

1

d2v
> 2

 ∑
uv∈E(G)

√
d2u + d2v
dudv

2

> 4m2,

that is,

2SO(G)BSO(G) > 4m2,

that is,

BSO(G) > 2m2

SO(G)

with equality if and only if G is a regular graph. �

Theorem 3.12. Let G be a connected graph of order n and size m with the
maximum degree ∆ and the minimum degree δ. Then∣∣∣∣ 1mBSO(G)− 1

m2
SO(G)M∗

2 (G)

∣∣∣∣ 6 ξ(m)

√
2(∆ + δ)(∆− δ)2

∆2δ2
,

where

ξ(m) =
1

4

(
1− 1 + (−1)m+1

2m2

)
.

Proof. Let ai =
√
d2u + d2v and bi = 1

dudv
in Lemma 2.6. Then a =

√
2δ,

A =
√
2∆, b = 1

∆2 and B = 1
δ2 . By Lemma 2.6, we have∣∣∣∣∣∣ 1m

∑
uv∈E(G)

√
1

d2u
+

1

d2v
− 1

m2

∑
uv∈E(G)

√
d2u + d2v

∑
uv∈E(G)

1

dudv

∣∣∣∣∣∣
6 1

m

⌊m
2

⌋(
1− 1

m

⌊m
2

⌋)√
2(∆− δ)(

1

δ2
− 1

∆2
),
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that is, ∣∣∣∣ 1mBSO(G)− 1

m2
SO(G)M∗

2 (G)

∣∣∣∣ 6 ξ(m)

√
2(∆ + δ)(∆− δ)2

∆2δ2
,

where

ξ(m) =
1

m

⌊m
2

⌋(
1− 1

m

⌊m
2

⌋)
=

1

4

(
1− 1 + (−1)m+1

2m2

)
.

�

4. The first Banhatti-Sombor index of trees

In this section, we determine the trees with the maximum and minimum first
Banhatti-Sombor index among the set of trees of order n, respectively. For a tree
Tn of order n with maximum degree ∆, denote by ni the number of vertices with
degree i in Tn for 1 6 i 6 ∆, and mi,j the number of edges of Tn connecting vertices
of degree i and j, where 1 6 i 6 j 6 ∆. Note that Tn is connected, so m1,1 = 0
for n > 3. Let N = {(i, j) ∈ N × N : 1 6 i 6 j 6 ∆}. Then clearly the following
relations hold:

(4.1) |V (Tn)| = n =
∆∑
i=1

ni,

(4.2) |E(Tn)| = n− 1 =
∑

(i,j)∈N

mi,j ,

and

(4.3)


2m1,1 +m1,2 + . . .+m1,∆ = n1,

m1,2 + 2m2,2 + . . .+m2,∆ = 2n2,

. . .

m1,∆ +m2,∆ + . . .+ 2m∆,∆ = ∆n∆.

It follows easily from (4.1) and (4.3) that

(4.4) n =
∑

(i,j)∈N

i+ j

ij
mi,j .

And the definition of the first Banhatti-Sombor index is equivalent to

(4.5) SO(Tn) =
∑

(i,j)∈N

√
1

i2
+

1

j2
mi,j .

Theorem 4.1. Let Tn be a tree with n-vertex. Then
√
2(n− 3)

2
+

√
5 6 BSO(Tn) 6

√
1 + (n− 1)2.

The equality in the left-hand side holds if and only if Tn
∼= Pn, and the equality in

the right-hand side holds if and only if Tn
∼= K1, n−1.



RUNNING TITLE / HEADER 65

Proof. First, we consider the inequality in the left-hand side. Let

N1 =
{
(i, j) ∈ N : (i, j) ̸= (1, 1), (i, j) ̸= (1, 2), (i, j) ̸= (2, 2)

}
.

By equation (4.4), we have

3m1,2 + 2m2,2 = 2n−
∑

(i,j)∈N1

2(i+ j)

ij
mi,j ,

and by equation (4.2), we have

m1,2 +m2,2 = n− 1−
∑

(i,j)∈N1

mi,j .

Then we obtain the following expression for m1,2 and m2,2:

m1,2 = 2 +
∑

(i,j)∈N1

[
2− 2(i+ j)

ij

]
mi,j ,

m2,2 = n− 3 +
∑

(i,j)∈N1

[2(i+ j)

ij
− 3
]
mi,j .

According to the expression (4.5), we have

BSO(Tn) = m1,2

√
1

4
+ 1 +m2,2

√
1

4
+

1

4
+

∑
(i,j)∈N1

√
1

i2
+

1

j2
mi,j

=
√
5
[
1 +

∑
(i,j)∈N1

(
1− i+ j

ij

)
mi,j

]
+

√
2

2

{
n− 3

+
∑

(i,j)∈N1

[2(i+ j)

ij
− 3
]
mi,j

}
+

∑
(i,j)∈N1

√
1

i2
+

1

j2
mi,j

=

√
2

2
(n− 3) +

√
5 +

∑
(i,j)∈N1

[√ 1

i2
+

1

j2
+ (

√
2−

√
5)

i+ j

ij

+
√
5− 3

√
2

2

]
mi,j .

Let

f(x, y) =

√
1

x2
+

1

y2
+ (

√
2−

√
5)

x+ y

xy
+
√
5− 3

√
2

2
,

where (x, y) ∈ N , it is easy to see that f(1, 2) = 0, f(2, 2) = 0 and f(x, y) > 0 for

(x, y) ∈ N1. Therefore, BSO(Tn) =
√
2
2 (n− 3) +

√
5 if and only if mi,j = 0 for all

(i, j) ∈ N1. And this occurs if and only if Tn
∼= Pn. Conversely, if Tn

∼= Pn, by
(4.5), we obtain

BSO(Pn) = 2

√
1

4
+ 1 + (n− 3)

√
1

4
+

1

4
=

√
2

2
(n− 3) +

√
5.

Thus, we have BSO(Tn) > BSO(Pn) with equality if and only if Tn
∼= Pn.
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Now, we consider the inequality in the right-hand side. Let

N2 =
{
(i, j) ∈ N : (i, j) ̸= (1, 1), (i, j) ̸= (1,∆), (i, j) ̸= (∆,∆)

}
.

Similar to the proof of the above, by equation (4.4), we have

(∆ + 1)m1,∆ + 2m∆,∆ = ∆n−
∑

(i,j)∈N2

∆
i+ j

ij
mi,j ,

and by equation (4.2), we have

m1,∆ +m∆,∆ = n− 1−
∑

(i,j)∈N2

mi,j .

Then we obtain the following expression for m1,∆ and m∆,∆:

(∆− 1)m1,∆ = (∆− 2)n+ 2−
∑

(i,j)∈N2

(
∆
i+ j

ij
− 2
)
mi,j ,

(∆− 1)m∆,∆ = n− (∆ + 1) +
∑

(i,j)∈N2

(
∆
i+ j

ij
− (∆ + 1)

)
mi,j .

According to the expression (4.5), we have

BSO(Tn) = m1,∆

√
1

∆2
+ 1 +m∆,∆

√
1

∆2
+

1

∆2
+

∑
(i,j)∈N2

√
1

i2
+

1

j2
mi,j

=

√
∆2 + 1

∆(∆− 1)

[
(∆−2)n+ 2−

∑
(i,j)∈N2

(
∆
i+ j

ij
− 2
)
mi,j

]
+

√
1 + ∆2

∆(∆− 1)

[
n−(∆ + 1) +

∑
(i,j)∈N2

(
∆
i+ j

ij
−(∆ + 1)

)
mi,j

]
+

∑
(i,j)∈N2

√
1

i2
+

1

j2
mi,j

=
(∆− 2)n

√
∆2 + 1 +

√
2(n−∆− 1) + 2

√
∆2 + 1

∆(∆− 1)

+
∑

(i,j)∈N2

[√ 1

i2
+

1

j2
+

√
2−

√
∆2 + 1

∆− 1

i+ j

ij

+
2
√
∆2 + 1−

√
2(∆ + 1)

∆(∆− 1)

]
mi,j .

Let

g(x, y) =

√
1

x2
+

1

y2
+

√
2−

√
∆2 + 1

∆− 1

x+ y

xy
+

2
√
∆2 + 1−

√
2(∆ + 1)

∆(∆− 1)
,
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where (x, y) ∈ N , it is easy to see that f(1,∆) = 0, f(∆,∆) = 0 and f(x, y) < 0
for (x, y) ∈ N2. Therefore,

BSO(Tn) =
(∆− 2)n

√
∆2 + 1 +

√
2(n−∆− 1) + 2

√
∆2 + 1

∆(∆− 1)

if and only if mi,j = 0 for all (i, j) ∈ N2. And this occurs if and only if n2 = n3 =
. . . = n∆−1 = 0.

Let

h(x) =
(x− 2)n

√
x2 + 1 +

√
2(n− x− 1) + 2

√
x2 + 1

x(x− 1)
.

By derivative, we know that h(x) is an increasing function for [2,+∞). Thus

h(∆) 6 h(n− 1) =
√
1 + (n− 1)2.

Conversely, BSO(K1, n−1) =
√
1 + (n− 1)2. Thus, we have

BSO(Tn) 6 BSO(K1, n−1)

with equality if and only if Tn
∼= K1, n−1. �

Similar to the method used in Theorem 4.1, we now give an upper bound on
chemical trees without its proof.

Theorem 4.2. Let Tn be a chemical tree with n vertices. If n− 2 = 0(mod 3),
then

BSO(Tn) 6
2
√
17(n+ 1) +

√
2(n− 5)

12
with equality if and only if n2 = n3 = 0.
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[3] K. Ch. Das, A. S. Çevik, I. N. Cangul and Y. Shang. On Sombor Index. Symmetry, 13(2021),
140.

[4] J. B. Diaz and F. T. Metcalf. Stronger forms of a class of inequalities of G. Pólja-G. Szegö
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