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FERMATEAN FUZZY SUBGROUPS

I. Silambarasan

Abstract. Fermatean fuzzy environment is the modern tool for handling un-

certainty in many decisions making problems. In this paper, we introduce
the notion of Fermatean fuzzy subgroup (FFSG) as a generalization of intu-
itionistic fuzzy subgroup and Pythagorean fuzzy subgroup. We investigate

various properties of our proposed fuzzy subgroup. Also, we introduce Fer-
matean fuzzy coset and Fermatean fuzzy normal subgroup (FFNSG) with their
properties. Further, we define the notion of Fermatean fuzzy level subgroup
and establish related properties of it. Finally, we discuss the effect of group

homomorphism on Fermatean fuzzy subgroup.

1. Introduction

Group theory has various applications in many fields of Mathematics such as
Algebraic geometry, Cryptography, Harmonic analysis, Algebraic number theory,
etc. Uncertainty is a part of our daily life. There is an uncertainty in almost every
problem we face day to day. Fuzzy set theory was first invented by Zadeh [39] to
handle uncertainty in real life problems. Using the concept of fuzzy set, Rosenfeld
[28] first defined the notion of fuzzy subgroup. Using t-norm the notion of fuzzy
subgroup was redefined by Anthony and Sherwood [5, 6]. Das [15] introduced the
concept of fuzzy level subgroup. Choudhury et al. [12] proved various properties of
fuzzy subgroups and fuzzy homomorphism. Dixit et al. [16] discussed fuzzy level
subgroups and union of fuzzy subgroups. The notion of anti-fuzzy subgroups was
first proposed by Biswas [10]. Ajmal and Prajapati [2] gave the idea of fuzzy normal
subgroup, fuzzy coset and fuzzy quotient subgroup. Chakraborty and Khare [10]
studied various properties of fuzzy homomorphism. Many more results on fuzzy
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2 I. SILAMBARASAN

subgroup ware introduced by Mukherjee [22, 23] and Bhattacharya [7]. In recent
years many researchers studied various properties of fuzzy subgroups. Tarnauceanu
[36] classified fuzzy normal subgroup of finite groups. Onasanya [25] reviewed some
anti fuzzy properties of fuzzy subgroups. Shuaib [30] and Shaheryar [31] studied
the properties of omicron fuzzy subgroup and omicron anti fuzzy subgroup. Addis
[1] developed fuzzy homomorphism theorems on groups. Atanassov [4] invented
Intuitionistic fuzzy set. Intuitionistic fuzzy subgroup was first studied by Biswas
[11]. Zhan and Tan [21] introduced intuitionistic fuzzy M-group. Furthermore,
researchers developed intuitionistic fuzzy subgroup in many ways [9, 21, 35]. Pic-
ture fuzzy set can be treated as an immediate generalization of intuitionistic fuzzy
set by togethering three components namely positive, neutral and negative. With
the advancement of time, different kinds of research works under picture fuzzy
environment were performed by several researchers [14, 17, 19, 18, 33].

Yager [37] introduced Pythagorean fuzzy set, where the sum of square of the
membership degree and non membership degree lies between 0 and 1. Pythagorean
fuzzy set is more fruitful in many decision making problems. This concept is per-
fectly designed to represent vagueness and uncertainty in mathematical way and to
produce a formalized tool to handle imprecision to real problems. Naz et al. [24]
proposed a novel approach to decision making problem using Pythagorean fuzzy
set. Akram and Naz [3] applied complex Pythagorean fuzzy set in decision making
problems. we have identified and proved several of these properties, particularly
those involving the operation A→ B defined as pythagorean fuzzy implication with
other operations [32]. Ejegwa [20] gave an application of Pythagorean fuzzy set
in career placements based on academic performance using max-min-max compo-
sition. Some results related to it were given by Peng [26] and Yang [27]. Bhunia
et al. [8] represented the notion of Pythagorean fuzzy subgroup (PFSG) as a gen-
eralization of intuitionistic fuzzy subgroup and investigated various properties of
Pythagorean fuzzy subgroup. Also, they introduced Pythagorean fuzzy coset and
Pythagorean fuzzy normal subgroup (PFNSG) with their properties. Further, they
define the notion of Pythagorean fuzzy level subgroup and establish related prop-
erties of it. Senapti and Yager [29] coined the Fermatean fuzzy set (FFS) with its
comparison measures. FFS can characterize more complex uncertain information
by redefining the constraint condition 0 6 µ3+ν3 6 1. In other words, IFS and PFS
are two special forms of FFS, which means that the FFSs are able to handle higher
levels of uncertainties. Senapti and Yager [29] gave an example: For understanding
the FFS better, we give an instance to illuminate the understandability of the FFS:
We can definitely get 0.9+ 0.6 > 1, and, therefore, it does not follow the condition
of intuitionistic fuzzy sets. Also, we can get (0.9)2+(0.6)2 = 0.81+0.36 = 1.17 > 1,
which does not obey the constraint condition of Pythagorean fuzzy set. However,
we can get (0.9)3 + (0.6)3 = 0.729 + 0.216 = 0.945 6 1. which is good enough to
apply the Fermatean fuzzy set to control it. we have developed some new operators
for fermatean fuzzy sets [34].

Fermatean fuzzy set gives a modern way to model vagueness and uncertainty
with high precision and accuracy compared to intuitionistic fuzzy set. Group sym-
metry plays a vital role to analyse molecule structures. Isotope molecules decays
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with a certain rate, so the fuzzy sense comes into it. If decay rate follows the cri-
teria of Fermatean fuzzy environment then we can not opt for intuitionistic fuzzy
subgroup and Pythagorean fuzzy subgroup to analyse the structure of that isotope
at certain time. For this type of situations where we can not opted for intuitionistic
fuzzy subgroup and Pythagorean fuzzy subgroup, it is very important to introduce
Fermatean fuzzy subgroup as a bigger class of intuitionistic fuzzy subgroup and
Pythagorean fuzzy subgroup. But till now no algebraic structure is defined on
Fermatean fuzzy environment. In this article, we proved that intuitionistic fuzzy
subgroup and Pythagorean fuzzy subgroup is a subclass of Fermatean fuzzy sub-
group.

This paper is organized as follows: Fermatean fuzzy subgroup is described
in Section 3. Fermatean fuzzy coset and Fermatean fuzzy normal subgroup are
discussed in Section 4. Fermatean fuzzy level subgroup and its properties are given
in Section 5. Finally, effect of group homomorphism on Fermatean fuzzy subgroup
is discussed in Section 6 and a conclusion is given in Section 7.

2. Preliminaries

In this section, we recap some definitions and concepts which are very much
important to develop later sections.

Definition 2.1. ([39]) Let C be a crisp set. Then µ : C → [0, 1] is called a
fuzzy subset of C. Here µ(m) is called degree of membership of m ∈ C.

Definition 2.2. ([28]) Let µ : C → [0, 1] be a fuzzy subset of a group (C, ∗)
Then µ is said to be a fuzzy subgroup of (C, ∗) if the following conditions hold:

(i) µ(m ∗ n) > µ(m) ∧ µ(n) for all m,n ∈ C,
(ii) µ(m−1) > µ(m) for all m ∈ C.

Definition 2.3. ([4]) Let C be a crisp set. An intuitionistic fuzzy set (IFS) I on
C is defined by I = {(m,µ(m), ν(m))|m ∈ C} where µ(m) ∈ [0, 1] and ν(m) ∈ [0, 1]
are the degree of membership and non membership of m ∈ C respectively, which
satisfy the condition 0 6 µ(m) + ν(m) 6 1 for all m ∈ C.

Definition 2.4. ([10]) Let I = {(m,µ(m), ν(m))|m ∈ C} be a IFS of a group
(C, ∗). Then I is said to be an intuitionistic fuzzy subgroup (IFSG) of C if the
following conditions hold:

(i) µ(m ∗ n) > µ(m) ∧ µ(n) and ν(m ∗ n) 6 ν(m) ∨ ν(n) for all m,n ∈ C,
(ii) µ(m−1) > µ(m) and ν(m−1) 6 ν(m) for all m ∈ C.

In 2013, Yager [37] defined Pythagorean fuzzy subset (PFS) as a generalization
of IFS.

Definition 2.5. Let C be a crisp set. A Pythagorean fuzzy set (IFS) ψ on C
is defined by ψ = {(m,µ(m), ν(m))|m ∈ C} where µ(m) ∈ [0, 1] and ν(m) ∈ [0, 1]
are the degree of membership and non membership of m ∈ C respectively, which
satisfy the condition 0 6 µ2(m) + ν2(m) 6 1 for all m ∈ C.

In 2020, Senapti and Yager [29] defined Fermatean fuzzy subset (PFS) as a
generalization of IFS.
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Definition 2.6. Let C be a crisp set. A Fermatean fuzzy set (IFS) ξ on C
is defined by ξ = {(m,µ(m), ν(m))|m ∈ C} where µ(m) ∈ [0, 1] and ν(m) ∈ [0, 1]
are the degree of membership and non membership of m ∈ C respectively, which
satisfy the condition 0 6 µ3(m) + ν3(m) 6 1 for all m ∈ C.

Some operations on FFSs [29] are stated below. Let

ξ1 = {(m,µ1(m), ν1(m))|m ∈ C} and ξ2 = {(m,µ2(m), ν2(m))|m ∈ C}
be two FFSs of C. Then the following holds:

• ξ1 ∪ ξ2 = {(m,µ1(m) ∨ µ2(m), ν1(m) ∧ ν2(m))|m ∈ C}
• ξ1 ∩ ξ2 = {(m,µ1(m) ∧ µ2(m), ν1(m) ∨ ν2(m))|m ∈ C}
• ξC1 = {(m, ν1(m), µ1(m))|m ∈ C}
• ξ1 ⊆ ξ2 if µ1(m) 6 µ2(m) and ν1(m) = ν2(m) for all m ∈ C
• ξ1 = ξ2 if µ1(m) = µ2(m) and ν1(m) = ν2(m) for all m ∈ C

Throughout this paper, we will write Fermatean fuzzy subset as FFS and we will
write ξ = (µ, ν) instead of ξ = {(m,µ(m), ν(m))|m ∈ C}.

3. Fermatean fuzzy subgroup

In this section, we define Fermatean fuzzy subgroup (FFSG) as an extension
of intuitionistic fuzzy subgroup (IFSG) and Pythagorean fuzzy subgroup (PFSG).

Definition 3.1. Let ξ = {(m,µ(m), ν(m))|m ∈ C} be a FFS of a group (C, ∗).
Then xi is said to be a Fermatean fuzzy subgroup (FFSG) of C if the following
conditions hold:

(i) µ3(m ∗ n) > µ3(m)∧µ3(n) and ν3(m ∗ n) 6 ν3(m)∧ ν3(n) for all m,n ∈ C,
(ii) µ3(m−1) > µ3(m) and ν3(m−1) 6 ν3(m) for all m ∈ C.

Here, µ3(m) = {µ(m)}3 and ν3(m) = {ν(m)}3 for all m ∈ C.

Example 3.1. Let us take the set C = {1,−1, i,−i}. Then (C, .) is a group,
where ′.′ s the usual multiplication. Define a FFS ξ = (µ, ν) on C by

µ(1) = 0.9, µ(−1) = 0.6, µ(i) = 0.5, µ(−i) = 0.5,
ν(1) = 0.6, ν(−1) = 0.2, ν(i) = 0.4, ν(−i) = 0.4,

Here, µ3(i,−i) = µ3(1) = (0.9)3 = 0.729 and ν3(i,−i) = ν3(1) = (0.6)3 =
0.216. Now, µ3(i) ∧ µ3(−i) = min {0.125, 0.125} = 0.125 and µ3(i) ∨ µ3(−i) =
max {0.064, 0.064} = 0.064. So, µ3(i,−i) ⊃ µ3(i) ∧ µ3(−i) and ν3(i,−i) ⊂ ν3(i) ∨
ν3(−i). Also, µ3(i) = µ3(−i) and ν3(i) = ν3(−i). In the same manner it can
be shown that µ3(m ∗ n) > µ3(m) ∧ µ3(n) and ν3(m ∗ n) 6 ν3(m) ∧ ν3(n) for all
m,n ∈ C, and µ3(m−1) > µ3(m) and ν3(m−1) 6 ν3(m) for all m ∈ C. Hence, ξ is
a FFSG of the group (C, .).

Proposition 3.1. Let ξ = (µ, ν) be a PFSG of a group (C, ∗). Then the
following holds:

(i) µ3(e) > µ3(m) and ν3(e) 6 ν3(m)∀m ∈ C and
(ii) µ3(m−1) = µ3(m) and ν3(m−1) 6 ν3(m) for all m ∈ C,

where e is the identity element in C.

Proof. Since ξ = (µ, ν) is a FFSG of a group (C, ∗), then
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µ3(m ∗ n) > µ3(m) ∧ µ3(n), ν3(m ∗ n) 6 ν3(m) ∨ ν3(n) and

µ3(m−1) > µ3(m), ν3(m−1) 6 ν3(m) for all m,n ∈ C.

(i) Now,

µ3(e) = µ3(m ∗m−1) > µ3(m) ∧ µ3(m−1) = µ3(m).

Also,

ν3(e) = ν3(m ∗m−1) 6 ν3(m) ∨ ν3(m−1) = ν3(m) for all m ∈ C.

(ii) We have

µ3(m−1) > µ3(m), ν3(m−1) 6 ν3(m) for all m,n ∈ C.

Putting m−1 in place of m, we obtain that µ3
(
(m−1)−1

)
> µ3(m−1) implies

µ3(m) > µ3(m−1) for all m ∈ C. Again, from ν3
(
(m−1)−1

)
6 ν3(m−1) it fol-

lows ν3(m) 6 ν3(m−1) for all m ∈ C. Hence, combining all the results we get
µ3(m−1) > µ3(m), ν3(m−1) 6 ν3(m) for all m,n ∈ C. �

Now, we will show that every intuitionistic fuzzy subgroup (IFSG) and Pythago-
rean fuzzy subgroup of a group (C, ∗) is also a Fermatean fuzzy subgroup (PFSG)
of the group (C, ∗). But the converse is not true.

Theorem 3.1. If ξ = (µ, ν) is a IFSG and PFSG of a group (C, ∗), then ξ is
a FFSG of the group (C, ∗).

Proof. Since ξ = (µ, ν) is a IFSG and PFSG of a group (C, ∗), then

µ(m ∗ n) > µ(m) ∧ µ(n) and ν(m ∗ n) 6 ν(m) ∨ ν(n) for all m,n ∈ C.

Thus

µ(m−1) > µ(m) and ν(m−1) 6 ν(m) for all m ∈ C.

Here µ(m) ∈ [0, 1] and ν(m) ∈ [0, 1]∀m ∈ C. Many cases arise.

Case 1: Let µ(m) > µ(n) and ν(m) > ν(n) for all m,n ∈ C. So, µ3(m) >
µ3(n) and ν3(m) > ν3(n) for all m,n ∈ C. Now, µ(m ∗ n) > µ(m) ∧ µ(n) = µ(n)
implies µ3(m∗n) > µ3(n) = µ3(m)∧µ3(n), i.e. µ3(m∗n) > µ3(m)∧µ3(n). Again,
ν(m ∗ n) 6 ν(m) ∨ ν(n) = ν(m) implies ν3(m ∗ n) 6 ν3(n) = ν3(m) ∨ ν3(n), i.e.
ν3(m ∗ n) 6 ν3(m) ∨ ν3(n).

Case 2: Let µ(m) < µ(n) and ν(m) < ν(n) for all m,n ∈ C. So, µ3(m) <
µ3(n) and ν3(m) < ν3(n) for all m,n ∈ C. Now, µ(m ∗ n) > µ(m) ∧ µ(n) = µ(m)
implies µ3(m∗n) > µ3(m) = µ3(m)∧µ3(n), i.e. µ3(m∗n) > µ3(m)∧µ3(n). Again,
ν(m ∗ n) 6 ν(m) ∨ ν(n) = ν(n) implies ν3(m ∗ n) 6 ν3(n) = ν3(m) ∨ ν3(n), i.e.
ν3(m ∗ n) 6 ν3(m) ∨ ν3(n).

Case 3: Let µ(m) = µ(n) and ν(m) = ν(n)∀m,n ∈ C. So, µ3(m) = µ3(n)
and ν3(m) = ν3(n) for all m,n ∈ C. Now, µ(m ∗ n) = µ(m) = µ(n) = µ(m)
implies µ3(m ∗ n) = µ3(m) = µ3(m) = µ3(n), i.e. µ3(m ∗ n) = µ3(m) ∧ µ3(n).
Again, ν(m ∗ n) = ν(m) = ν(n) = ν(n) implies ν3(m ∗ n) = ν3(m) = ν3(n), i.e.
ν3(m ∗ n) = ν3(m) ∨ ν3(n).
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In this way, considering all the cases we can easily show that

µ3(m ∗ n) > µ3(m) ∧ µ3(n) and ν3(m ∗ n) 6 ν3(m) ∨ ν3(n) for all m,n ∈ C.

Again, µ(m−1) > µ(m) and ν(m−1) 6 µ(m) for all m,n ∈ C. Since µ(m) ∈ [0, 1]
and ν(m) ∈ [0, 1], we have µ3(m−1) > µ3(m) and ν3(m−1) 6 µ3(m) for all m,n ∈
C. Hence, ξ = (µ, ν) is a FFSG of the group (C, ∗). �

Example 3.2. Let us consider the Kleins 4-group C = {e, a, b, c}, where a3 =
b3 = c3 = e and ab = c, bc = a, ca = b. Define a FFS ξ = (µ, ν) on C by

µ(e) = 0.9, µ(c) = 0.8, µ(a) = 0.6, µ(b) = 0.6,
ν(e) = 0.2, ν(c) = 0.3, ν(a) = 0.4, ν(b) = 0.4.

We can easily verify that ξ = (µ, ν) is a PFSG of C. But here µ(e) + ν(e) = 1.1,
which is greater than one. So ξ is not a IFS of C. Therefore ξ is not a IFSG of C.

This example shows that FFSG may not be an IFSG and PFSG.

Remark 3.1. Every IFSG of a group (C, ∗) is a PFSG of (C, ∗), but the
converse need not be true.

Proposition 3.2. Let ξ = (µ, ν) be a FFS of a group (C, ∗). Then ξ is a
FFSG of (C, ∗) iff µ3(m ∗ n−1) > µ3(m)∧ µ3(n) and ν3(m ∗ n−1) 6 ν3(m)∨ ν3(n)
for all m,n ∈ C.

Proof. Let ξ = (µ, ν) be a FFSG of a group (C, ∗). So, µ3(m∗n−1) > µ3(m)∧
µ3(n−1) = µ3(m)∧ µ3(n) and ν3(m ∗ n−1) 6 ν3(m)∨ ν3(n−1) = ν3(m)∨ ν3(n) for
all m,n ∈ C.

Conversely, let us assume that µ3(m∗n−1) > µ3(m)∧µ3(n) and ν3(m∗n−1) 6
ν3(m) ∨ ν3(n) for all m,n ∈ C. Now, µ3(e) = µ3(m ∗m−1) > µ3(m) ∧ µ3(m−1) =
µ3(m) and ν3(e) = ν3(m ∗m−1) 6 ν3(m)∨ ν3(m−1) = ν3(m) for all m ∈ C, where
e is the identity element of C.

Again, µ3(m−1) = µ3(e ∗m−1) > µ3(e) ∧ µ3(m−1) = µ3(m) and ν3(m−1) =
ν3(e ∗m−1) 6 ν3(e) ∨ ν3(m−1) = ν3(m) for all m ∈ C. Therefore, µ3(m ∗ n) =
µ3(m ∗ (n−1)−1) > µ3(m) ∧ µ3(n−1) > µ3(m) ∧ µ3(n) and ν3(m ∗ n) = ν3(m ∗
(n−1)−1) 6 ν3(m) ∨ ν3(n−1) 6 ν3(m) ∨ ν3(n) for all m,n ∈ C. Hence ξ = (µ, ν)
be a FFSG of a group (C, ∗). �

Now we will check whether the union and intersection of two FFSGs of a group
(C, ∗) is a FFSG of C.

Theorem 3.2. Intersection of two FFSGs of a group (C, ∗) is a FFSG of the
group (C, ∗).

Proof. Let ξ1 = (µ1, ν1) and ξ2 = (µ2, ν2) be two FFSGs of a group (C, ∗).
Then ξ = ξ1∩ξ2 = (µ, ν), where µ(m) = µ1(m)∧µ2(m) and ν(m) = ν1(m)∨ν2(m)
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for all m ∈ C. Now for all m,n ∈ C

µ3(m ∗ n−1) = µ3
1(m ∗ n−1) ∧ µ3

2(m ∗ n−1)

>
(
µ3
1(m) ∧ µ3

1(n)
)
∧
(
µ3
2(m) ∧ µ3

2(n)
)

=
(
µ3
1(m) ∧ µ3

2(m)
)
∧
(
µ3
1(n) ∧ µ3

2(n)
)

= µ3(m) ∧ µ3(n)

and

ν3(m ∗ n−1) = ν31(m ∗ n−1) ∨ ν32(m ∗ n−1)

6
(
ν31(m) ∨ ν31(n)

)
∨
(
ν32(m) ∨ ν32(n)

)
=

(
ν31(m) ∨ ν32(m)

)
∨
(
ν31(n) ∨ µ3

2(n)
)

= ν3(m) ∨ ν3(n)

Therefore ξ = ξ1 ∩ ξ2 is a FFSG of (C, ∗). Hence intersection of two FFSGs of a
group is also a FFSG of the group. �

Corollary 3.1. Intersection of a family of FFSGs of a group (C, ∗) is also a
FFSG of the group (C, ∗).

Proof. Let W = {ξ1, ξ2, ..., ξf} be a family of FFSG of (C, ∗). We have show

that ξ =
∩f

i=1 ξi is a FFSG of (C, ∗). Then ξ = (µ, ν) is given by

µ(m) = µ1(m) ∧ µ2(m) ∧ ... ∧ µf (m) and ν(m) = ν1(m) ∨ ν2(m) ∨ ... ∨ νf (m)

for all m ∈ C. Now for all m,n ∈ C

µ3(m ∗ n−1) = µ3
1(m ∗ n−1) ∧ µ3

2(m ∗ n−1) ∧ ... ∧ µ3
f (m ∗ n−1)

>
(
µ3
1(m) ∧ µ3

1(n)
)
∧
(
µ3
2(m) ∧ µ3

2(n)
)
∧ ...

(
µ3
f (m) ∧ µ3

f (n)
)

=
(
µ3
1(m) ∧ µ3

2(m) ∧ ... ∧ µ3
f (m)

)
∧
(
µ3
1(n) ∧ µ3

2(n) ∧ ... ∧ µ3
f (n)

)
= µ3(m) ∧ µ3(n)

and

ν3(m ∗ n−1) = ν31(m ∗ n−1) ∨ ν32(m ∗ n−1) ∨ ... ∨ ν3f (m ∗ n−1)

6
(
ν31(m) ∨ ν31(n)

)
∨
(
ν32(m) ∨ ν32(n)

)
∨ ...

(
ν3f (m) ∨ ν3f (n)

)
=

(
ν31(m) ∨ ν32(m) ∨ ... ∨ ν3f (m)

)
∨
(
ν31(n) ∨ ν32(n) ∨ ... ∨ ν3f (n)

)
= ν3(m) ∨ ν3(n)

Therefore ξ = (µ, ν) is a FFSG of the group (C, ∗). Hence intersection of a family
of FFSGs of a group is also a FFSG of that group. �

Remark 3.2. Union of two FFSGs of a group may not be a FFSG of that
group.

Example 3.3. Let us take the group C = (Z,+), the group of integers under
usual addition and let ξ1 = (µ1, ν1), ξ2 = (µ2, ν2) be two FFSGs of C defined by
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µ1(a) =

{
0.3, when a ∈ 5Z

0, elsewhere

ν1(a) =

{
0, when a ∈ 5Z

0.5, elsewhere

µ2(a) =

{
0.15, when a ∈ 3Z

0, elsewhere

ν2(a) =

{
0.2, when a ∈ 3Z

0.3, elsewhere

Let ξ = ξ1 ∪ ξ2 = (µ, ν), where

µ(a) =


0.3, when a ∈ 5Z

0.15, when a ∈ 3Z − 5Z

0, elsewhere

ν(a) =


0, when a ∈ 5Z

0.2, when a ∈ 3Z − 5Z

0.3, elsewhere

Here, µ3(5 + (−3)) = µ3(2) = 0, but µ3(5) ∧ µ3(−3) = min
{
0.33, 0.153

}
= 0.153.

So, µ3(5 + (−3)) � µ3(5) ∧ µ3(−3) Again, ν3(5 + (−3)) = ν3(2) = 0.027, but
ν3(5)∨ ν3(−3) = min {0, 0.008} = 0.008. So, ν3(5+ (−3)) � ν3(5)∨ ν3(−3) Hence,
ξ = ξ1 ∪ ξ2 = (µ, ν) is not a FFSG of C = (Z,+).

Proposition 3.3. If ξ = (µ, ν) is a FFSG of a (C, ∗). Then µ3(mk) > µ3(m)
and ν3(mk) 6 ν3(m) for all m ∈ C and k ∈ N . Here mk = m∗m∗ ...∗m(k times).

Proof. Since ξ = (µ, ν) is a FFSG of a (C, ∗), then µ3(m ∗n) > µ3(m)∧µ(n)
and ν3(m ∗ n) 6 ν3(m) ∨ ν(n) for all m,n ∈ C. So, µ3(m3) = µ3(m ∗ n) >
µ3(m) ∧ µ3(m) = µ3(m) and ν3(m3) = ν3(m ∗ n) 6 ν3(m) ∨ ν3(m) = ν3(m)
for all m,n ∈ C. Thus by induction, we can show that µ3(mk) > µ3(m) and
ν3(mk) 6 ν3(m) for all m ∈ C and k ∈ N . �

The next result produces the condition when equality occurs in the definition
of FFSG.

Proposition 3.4. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). If µ(m) ̸= µ(n)
and ν(m) ̸= ν(n), then µ3(m ∗ n) = µ3(m) ∧ µ3(n) and ν3(m ∗ n) = ν3(m) ∨ ν3(n)
for all m,n ∈ C.

Proof. Let us assume that µ(m) > µ(n) and ν(m) < ν(n). So, µ3(m) > µ3(n)
and ν3(m) < ν3(n) for all m,n ∈ C. Now

µ3(n) = µ3(m−1 ∗m ∗ n)
> µ3(m−1) ∧ µ3(m ∗ n)
= µ3(m) ∧ µ3(m ∗ n)
> µ3(m ∗ n), otherwise µ3(n) > µ3(m), a contradiction.



FERMATEAN FUZZY SUBGROUPS 9

This show that µ3(n) > µ3(m ∗ n). Again µ3(m ∗ n) > µ3(m) ∧ µ3(n) = µ3(n).
Therefore µ3(m ∗ n) > µ3(n). So, µ3(m ∗ n) = µ3(n) = µ3(m) ∧ µ3(n) for all
m,n ∈ C. Similarly, when µ(m) < µ(n) this result also holds.

Also,

ν3(n) = ν3(m−1 ∗m ∗ n)
6 ν3(m−1) ∨ µ3(m ∗ n)
= ν3(m) ∨ ν3(m ∗ n)
6 ν3(m ∗ n), otherwise ν3(n) 6 ν3(m), a contradiction.

Thus ν3(n) 6 ν3(m ∗ n). Again ν3(m ∗ n) 6 ν3(m) ∨ ν3(n) = ν3(n). Therefore
ν3(m ∗ n) 6 µ3(n). So, ν3(m ∗ n) = ν3(n) = ν3(m) ∨ ν3(n) for all m,n ∈ C.
Similarly, when ν(m) > ν(n) this result also holds. Hence µ3(m ∗ n) = µ3(n) =
µ3(m) ∧ µ3(n) and ν3(m ∗ n) = ν3(n) = ν3(m) ∨ ν3(n), when µ(m) ̸= µ(n) and
ν(m) ̸= ν(n) for all m,n ∈ C. �

Proposition 3.5. Let ξ = (µ, ν) is a FFSG of the group (C, ∗) with e as the
identity element and m ∈ C. If µ3(m) = µ3(e) then µ3(m ∗ n) = µ3(n) for all
m,n ∈ C and if ν3(m) = ν3(e), then ν3(m ∗ n) = ν3(n) for all m,n ∈ C.

Proof. Let us assume that µ3(m) = µ3(e) and ν3(m) = ν(e). So, µ3(m∗n) >
µ3(m) ∧ µ3(n) = µ3(e) ∧ µ3(n) = µ3(n), sine µ3(e) > µ3(n) for all n ∈ C. Also,

µ3(n) = µ3(m−1 ∗m ∗ n)
> µ3(m−1) ∧ µ3(m ∗ n)
= µ3(m) ∧ µ3(n ∗ n)
= µ3(e) ∧ µ3(m ∗ n)
= µ3(m ∗ n), since µ3(e) > µ3(n) for all m,n ∈ C.

Therefore µ3(m ∗ n) = µ3(n) for all n ∈ C, where µ3(m) = µ3(e)
Again, ν3(m∗n) 6 ν3(m)∨ν3(n) = ν3(e)∨ν3(n) = ν3(n), since ν3(e) 6 ν3(n)

for all n ∈ C. In the same way we can show that ν3(n) 6 ν3(m ∗ n). Hence,
ν3(m ∗ n) = ν3(n) for all n ∈ C, when ν3(m) = µ3(e). �

Theorem 3.3. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). Then the set
N =

{
m ∈ C|µ3(e) = µ3(m), ν3(e) = ν3(m)

}
forms a subgroup of the group (C, ∗),

where e is the identity element in C.

Proof. Here N =
{
m ∈ C|µ3(e) = µ3(m), ν3(e) = ν3(m)

}
, clearly N is non

empty, as e ∈ N . To show that (N, ∗) is a subgroup of (C, ∗), we have to show
that m ∗ n−1 ∈ N for all m,n ∈ C. Let m,n ∈ N . Then µ3(m) = µ3(e) = µ3(n),
ν3(m) = ν3(e) = ν3(n). Since ξ = (µ, ν) is a FFSG of the group (C, ∗), then

µ3(m ∗ n−1) > µ3(m) ∧ µ3(n−1)

= µ3(m) ∧ µ3(n)

= µ3(e) ∧ µ3(e)

= µ3(e).



10 I. SILAMBARASAN

Similarly, we can show that, ν3(m∗n−1) 6 ν3(e). We have µ3(e) > µ3(m∗n−1) and
nu3(e) 6 nu3(m ∗ n−1). Therefore µ3(m ∗ n−1) = µ3(e) and ν3(m ∗ n−1) = ν3(e),
so m ∗ n−1 ∈ N . Hence (N, ∗) is a subgroup of (C, ∗). �

4. Fermatean fuzzy coset and Fermatean fuzzy normal subgroup

In this section, we will define Fermatean fuzzy coset and Fermatean fuzzy
normal subgroup. Further, we will describe properties related to Fermatean fuzzy
normal subgroup.

Definition 4.1. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). Then form ∈ C,
the Fermatean fuzzy left coset of ξ is the FFS mξ = (mµ,mν), defined by

(mµ)3(u) = µ3(m−1 ∗ u), (mν)3(u) = ν3(m−1 ∗ u)
and the Fermatean fuzzy right coset of ξ is the FFS mξ = (µm, νm), defined by

(µm)3(u) = µ3(u ∗m−1), (νm)3(u) = ν3(u ∗m−1) for all u ∈ C.

Definition 4.2. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). Then ξ is a
Fermatean fuzzy normal subgroup (FFNSG) of the group (C, ∗) if every Fermatean
fuzzy left coset of ξ is also a Fermatean fuzzy right coset of ξ in C. Equivalently,
mξ = ξm for all m ∈ C.

Example 4.1. Let us take the group C = (Z3,+3), where +3 is addition of
integers modulo 3. Define a FFS ξ = (µ, ν) on C by

µ(0) = 0.9, µ(1) = 0.7, µ(2) = 0.7,
ν(0) = 0.1, ν(1) = 0.2, ν(2) = 0.2.

We can easily verify that ξ = (µ, ν) is a FFSG of C. For m = 1 ∈ C, the
Fermatean fuzzy left coset of ξ is the FFS 1ξ = (1µ, 1ν), defined by (1µ)3(u) =
µ3(1−1 +3 u), (1ν)

3(u) = ν3(1−1 +3 u) and the Fermatean fuzzy right coset of ξ is
the FFS 1ξ = (µ1, ν1), defined by

(µ1)3(u) = µ3(u+3 1
−1) and (ν1)3(u) = ν3(u+3 1

−1) for all u ∈ C.

When u = 0,

(1µ)3(0) = µ3(1−1 +3 0) = µ3(2 +3 0) = µ3(2) = 0.04
(µ1)3(0) = µ3(0 +3 2) = µ3(2) = 0.04.

Also,

(1ν)3(0) = ν3(1−1 +3 0) = ν3(2 +3 0) = ν3(2) = 0.04
(1µ)3(0) = ν3(0 +3 1

−1) = µ3(0 +3 2) = µ3(2) = 0.04.

So, (1µ)3(0) = (µ1)3(0) and (1ν)3(0) = (ν1)3(0). Similarly, we can check that the
result holds when u = 1 and 2. Therefore (1µ)3(u) = (µ1)3(u) and (1ν)3(u) =
(ν1)3(u). In the same manner it can be shown that mξ = ξm for all m ∈ C. Hence
ξ = (µ, ν) is a FFNSG of the group (Z3,+3).

Proposition 4.1. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). Then ξ is a
FFNSG of C iff µ3(m∗n) = µ3(n∗m) and ν3(m∗n) = ν3(n∗m) for all m,n ∈ C.
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Proof. Let ξ = (µ, ν) is a FFNSG of the group (C, ∗). Then mξ = ξm for all
m ∈ C. That is (mµ)3(u) = (µm)3(u) and (mν)3(u) = (νm)3(u) for all m ∈ C.
Therefore µ3(m−1 ∗ u) = µ3(u ∗ m−1) and ν3(m−1 ∗ u) = ν3(u ∗ m−1) for all
m,u ∈ C. So, µ3(m ∗ n) = µ3(m ∗ (n−1)−1) = µ3((n−1)−1 ∗m) = µ3(n ∗m) and
ν3(m ∗ n) = ν3(m ∗ (n−1)−1) = ν3((n−1)−1 ∗m) = ν3(n ∗m).

Conversely, µ3(m ∗ n) = µ3(n ∗m) and ν3(m ∗ n) = ν3(n ∗m) for all m,n ∈ C.
This gives µ3(m∗ (n−1)−1) = µ3((n−1)−1 ∗m) and ν3(m∗ (n−1)−1) = ν3((n−1)−1 ∗
m) for all m,n ∈ C. Put n−1 = d, µ3(m ∗ d−1) = µ3(d−1 ∗m) and ν3(m ∗ d−1) =
ν3(d−1 ∗m) for all m,n ∈ C. So, (µd)3(m) = (dµ)3(m) and (νd)3(m) = (dν)3(m)
for all m, d ∈ C. This implies that µd = dµ and νd = dν for all d ∈ C. Therefore
ξd = dξ for all d ∈ C. Hence ξ is a FFNSG of the group (C, ∗). �

Proposition 4.2. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). Then ξ is a
FFNSG of C iff µ3(k ∗ u ∗ k−1) = µ3 and ν3(k ∗ u ∗ k−1) = ν3 for all u, k ∈ C.

Proof. Let ξ = (µ, ν) is a FFNSG of the group (C, ∗). Then µ3(m ∗ n) =
µ3(n ∗m) and ν3(m ∗ n) = ν3(n ∗m) for all m,n ∈ C. Now for all u, k ∈ C,

µ3(k ∗ u ∗ k−1) = µ3
(
(k ∗ u) ∗ k−1

)
= µ3

(
k−1 ∗ (k ∗ u)

)
(using the above condition)

= µ3(k−1 ∗ k ∗ u)
= µ3(e ∗ u)
= µ3(u)

Similarly, we get ν3(k ∗ u ∗ k−1) = ν3(u). Therefore µ3(k ∗ u ∗ k−1) = µ3(u) and
ν3(k ∗ u ∗ k−1) = ν3(u) for all u, k ∈ C.

Conversely, let µ3(k ∗ u ∗ k−1) = µ3(u) and ν3(k ∗ u ∗ k−1) = ν3(u) for all
u, k ∈ C. Now for all m,n ∈ C,

µ3(m ∗ n) = µ3(n−1 ∗ n ∗m ∗ n)
= µ3((n−1) ∗ (n ∗m) ∗ (n−1)−1)

= µ3(n ∗m)(using the above condition)

Similarly, we can get ν3(m ∗ n) = ν3(n ∗m) Therefore ξ = (µ, ν) is a FFNSG of
the group (C, ∗). �

Theorem 4.1. Let ξ = (µ, ν) is a FFNSG of the group (C, ∗). Then the set
N =

{
m ∈ C|µ3(e) = µ3(m), ν3(e) = ν3(m)

}
forms a subgroup of the group (C, ∗),

where e is the identity element in C.

Proof. Clearly N is non empty, as e ∈ N . By Proposition 3.11 we have
N is a subgroup of (C, ∗). Let k ∈ C and u ∈ N . As u ∈ N,µ3(e) = µ3(u)
and µ3(e) = µ3(u). Since ξ = (µ, ν) is a FFNSG of the group (G, ∗), by above
Proposition 4.5 we have

µ3(k ∗ u ∗ k−1) = µ3(u) and ν3(k ∗ u ∗ k−1) = ν3(u) for all u, k ∈ C.
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Consequently, µ3(k ∗ u ∗ k−1) = µ3(e) and ν3(k ∗ u ∗ k−1) = ν3(e) for all
u, k ∈ C. Therefore k ∗ u ∗ k−1 ∈ N . Hence (N, ∗) is a normal subgroup of the
group (C, ∗). �

5. Fermatean fuzzy level subgroup

Definition 5.1. Let C be a crisp set. Let ξ = (µ, ν) be a FFS of the set C.
For θ, τ ∈ [0, 1], the set

ξ(θ,τ) =
{
m ∈ C|µ3(m) > θ, ν3 6 τ

}
is called a Fermatean fuzzy level subset (FFLS) of the FFS ξ of C, where 0 6
θ3 + τ3 6 1.

Proposition 5.1. Let ξ′ = (µ′, ν′) and ξ′′ = (µ′′, ν′′) be two FFSs of the
universal set C. Then

(i) ξ′(θ,τ) ⊆ ξ′(ϕ,σ) if ϕ 6 θ and τ 6 σ for θ, τ, ϕ, σ ∈ [0, 1],

(ii) ξ′ ⊆ ξ′′ ⇒ ξ′(θ,τ) ⊆ ξ′′(θ,τ) for θ, τ ∈ [0, 1].

Proof. (i) Let m ∈ ξ′(θ,τ) ⇒ (µ′)3 > θ, (ν′)3 6 τ . We have ϕ 6 θ, τ 6 σ. So,

ϕ 6 θ 6 (µ′)3 and (ν′)3 6 τ 6 σ. Thereforem ∈ ξ′(ϕ,σ). Hence ϕ 6 θ, τ 6 σ implies

ξ′(θ,τ) ⊆ ξ′(θ,τ).

(ii) Since ξ′ ⊆ ξ′′, so µ′(m) 6 µ′′(m) and ν′(m) > ν′′(m) for all m ∈ C.
This implies (µ′)3(m) 6 (µ′′)3(m) and (ν′)3(m) > (ν′′)3(m) for all m ∈ C. Let
m ∈ ξ′(θ,τ). Hence, it follows (µ′)3(m) > θ and (ν′)3(m) 6 τ . So, θ 6 (µ′)3(m) 6
(µ′′)3(m) and (ν′′)3(m) 6 (ν′)3(m) 6 τ . This shows that θ 6 (µ′′)3(m) and
(µ′′)3(m) 6 τ . Therefore m ∈ ξ′(θ,τ). Hence ξ′(θ,τ) ⊆ ξ′′(θ,τ). �

Proposition 5.2. Let ξ = (µ, ν) is a FFSG of the group (C, ∗).Then the
Fermatean fuzzy level subset ξ(θ,τ) forms a subgroup of the group (C, ∗), where

θ 6 µ3(e) and τ > ν3(e), e is the identity element in C.

Definition 5.2. The subgroup ξ(θ,τ) of the group (C, ∗) is called Fermatean
fuzzy level subgroup (FFLSG) of the FFSG ξ = (µ, ν).

Proposition 5.3. Let ξ = (µ, ν) is a FFSG of the group (C, ∗). If the FFLS
ξ(θ,τ) is a subgroup of the group (C, ∗), where θ 6 µ3(e) and τ > ν3(e) then ξ =
(µ, ν) is a FFSG of the group (C, ∗).

Proof. Let m,n ∈ C. Given that ξ = (µ, ν) is a FFS of C and ξ(θ,τ) is

a subgroup of the group (C, ∗). Let us assume that µ3(m) = θ1, µ
3(n) = θ2 with

θ1 < θ2 and ν
3(m) = τ1, ν

3(n) = τ2 with τ1 < τ2. This implies thatm ∈ ξ(θ1,τ1) and
n ∈ ξ(θ2,τ2). Since, θ1 < θ2 and τ1 > τ2, then ξ(θ2,τ2) ⊆ ξ(θ1,τ1). Now m ∈ ξ(θ1,τ1)
and n ∈ ξ(θ1,τ1). So, m∗n ∈ ξ(θ1,τ1), since ξ(θ1,τ1) is a subgroup of (C, ∗). Therefore
µ3(m ∗ n) > θ1 and ν3(m ∗ n) 6 τ1. From here, it follows µ3(m ∗ n) > θ1 ∧ θ2
and ν3(m ∗ n) 6 τ1 ∨ τ2. Also, from here, it follows µ3(m ∗ n) > µ3(m) ∧ µ3n and
ν3(m ∗ n) 6 ν3(m) ∨ ν3(n).

Again, m ∈ ξ(θ1,τ1) umplies m−1 ∈ ξ(θ1,τ1), since ξ(θ1,τ1) is a subgroup of (C, ∗).
From here, it implies µ2(m−1) > θ1 and ν2(m−1) 6 τ1. Now, µ2(m−1) > µ3(m)
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and ν2(m−1) 6 ν3(m). Since m,n ∈ C are arbitrary, µ3(m ∗n) > µ3(m)∧µ3n and
ν3(m ∗ n) 6 ν3(m)∨ ν3n for all m,n ∈ C. µ2(m−1) > µ3(a), ν2(m−1) 6 ν3(m) for
all m,n ∈ C. Hence, ξ = (µ, ν) is a FFSG of the group (C, ∗). �

Proposition 5.4. Let ξ = (µ, ν) is a FFSG of the group (C, ∗).Then the
Fermatean fuzzy level subset ξ(θ,τ) forms a subgroup of the group (C, ∗), where

θ 6 µ3(e) and τ > ν3(e), e is the identity element in C.

6. Homomorphism on Fermatean fuzzy subgroup

In this section, we will discuss the effect of group homomorphism on Fermatean
fuzzy subgroup.

Theorem 6.1. Let (C1, ∗1) and (C2, ∗2) be two groups. Let g be a surjective
homomorphism from (C1, ∗1) to (C2, ∗2) and ξ = (µ, ν) is a FFSG of the group
(C1, ∗1). Then g(ξ) = (g(µ), g(ν)) is a FFSG of (C2, ∗2).

Proof. Since g : C1 → C2is a surjective homomorphism, then g(C1) = C2.
Let m2 and n2 be two elements of C2. Suppose m2 = g(m1) and n2 = g(n1) for
some m1, n1 ∈ C1. We have g(ξ) = {(c, g(µ)(c), g(ν)(c))|c ∈ C2}. Now

(g(µ))3(m2 ∗2 n2) = {(g(µ))(m2 ∗2 n2)}3

= [∨{µ(t)|t ∈ C1, g(t) = m2 ∗2 n2}]3

= ∨
{
µ3(t)|t ∈ C1, g(t) = m2 ∗2 n2

}
> ∨

{
µ3(m1 ∗1 n1)|m1, n1 ∈ C1 and g(m1) = m2, g(n1) = n2

}
> ∨

{
µ3(m1) ∧ µ3(n1)|m1, n1 ∈ C1 and g(m1) = m2, g(n1) = n2

}
=

(
∨
{
µ3(m1|m1 ∈ C1 and g(m1) = m2)

})
∧

(
∨
{
µ3(n1|n1 ∈ C1 and g(n1) = n2)

})
= {(g(µ))(m2)}3 ∧ {(g(µ))(n2)}3

= (g(µ))3(m2) ∧ (g(µ))3(n2).

Therefore (g(µ))3(m2 ∗2 n2) > (g(µ))3(m2) ∧ (g(µ))2(n2) for all m2, n2 ∈ C2. Sim-
ilarly, we can prove that (g(ν))3(m2 ∗2 n2) 6 (g(ν))3(m2) ∨ (g(ν))2(n2) for all
m2, n2 ∈ C2. Again

(g(µ))3(m−1
2 ) =

{
g(µ)(m−1

2 )
}3

= [∨
{
µ(m)|m ∈ C1 and g(m) = (m−1

2 )
}
]3

= [∨
{
µ(m−1)|m−1 ∈ C1 and g(m−1) = (m2)

}
]3

= {g(µ)(m2)}3

= (g(µ))3(m2).

Therefore (g(µ))3(m−1
2 ) = (g(µ))3(m2) for all m2 ∈ C2. Similarly, we can show

that (g(ν))3(m−1
2 ) = (g(ν))3(m2) for all m2 ∈ C2. Hence g(ξ) = (g(µ), g(ν)) is a

FFSG of (C2, ∗2). �
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Theorem 6.2. Let (C1, ∗1) and (C2, ∗2) be two groups. Let g be a bijective
homomorphism from (C1, ∗1) to (C2, ∗2) and ξ = (µ, ν) is a FFSG of the group
(C2, ∗2). Then g−1(ξ) = (g−1(µ), g−1(ν)) is a FFSG of (C1, ∗1).

Theorem 6.3. Let (C1, ∗1) and (C2, ∗2) be two groups. Let g be a surjective
homomorphism from (C1, ∗1) to (C2, ∗2) and ξ = (µ, ν) is a FFNSG of the group
(C1, ∗1). Then g(ξ) = (g(µ), g(ν)) is a FFNSG of (C2, ∗2).

Theorem 6.4. Let (C1, ∗1) and (C2, ∗2) be two groups. Let g be a bijective
homomorphism from (C1, ∗1) to (C2, ∗2) and ξ = (µ, ν) is a FFNSG of the group
(C2, ∗2). Then g−1(ξ) = (g−1(µ), g−1(ν)) is a FFNSG of (C1, ∗1).

Proof. We can state that g−1(ξ) = (g−1(µ), g−1(ν)) is a FFNSG of (C1, ∗1).
Since ξ = (µ, ν) is a FFNSG of the group (C2, ∗2).

µ3(m2 ∗2 n2) = µ3(n2 ∗2 m2) and ν
3(m2 ∗2 n2) = ν3(n2 ∗2 m2) for all m2, n2 ∈ C2.

Let m1 and n1 be two elements of C1. Then

(g−1(µ))3(m1 ∗1 n1) =
{
g−1(µ)(m1 ∗1 n1)

}3

= {µ(g(m1 ∗1 n1))}3

= µ3(g(m1 ∗1 n1))
= µ3((g(m1)) ∗2 g(n1)) (Since g is a homomorphism)

= µ3(g(n1) ∗2 g(m1))

= µ3(g(n1 ∗1 m1))

=
{
g−1(µ)(n1 ∗1 m1)

}3

= (g−1(µ))3(n1 ∗1 m1).

Therefore (g−1(µ))3(m1 ∗1n1) = (g−1(µ))3(n1 ∗1m1) for all m1, n1 ∈ C1. Similarly,
we can prove that (g−1(ν))3(m1 ∗1 n1) = (g−1(ν))3(n1 ∗1 m1) for all m1, n1 ∈ C1.
Hence g−1(ξ) = (g−1(µ), g−1(ν)) is a FFNSG of (C1, ∗1). �

7. Conclusion

The purpose of this paper is to initiate the study of Fermatean fuzzy subgroup.
We have discussed various algebraic attributes of Fermatean fuzzy subgroup. We
have proved that intuitionistic fuzzy subgroup and Pythagorean fuzzy subgroup of
any group is a Fermatean fuzzy subgroup of that group. We have introduced the
notion of Fermatean fuzzy coset and Fermatean fuzzy normal subgroup. We have
presented the necessary and sufficient condition for Fermatean fuzzy subgroup to
be a Fermatean fuzzy normal subgroup. Further, we have proved that Fermatean
fuzzy level subset is a normal subgroup of the given group. Moreover, we have
studied the effect of group homomorphism on Fermatean fuzzy subgroup.

In our future work, we will work on Fermatean fuzzy quotient group and order
of Fermatean fuzzy subgroup. We will also work on the Lagrange theorem in
Fermatean fuzzy subgroup.
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