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UP–ALGEBRA WITH APARTNESS

Daniel Abraham Romano

Abstract. The environment of this article is the Bishop’s constructive math-
ematics - a mathematics based on the Intuitionisic logic. In this paper, in lean-
ing on published article: A. Iampan. A new branch the logical algebra: UP-

Algebras. J. Algebra Rel. Topics, 5(1)(2017), 35–54, we introduce the concept
of a new algebraic structure, called an ’UP-algebra with apartness’ and con-
cepts of UP-ideals, UP-coideals, UP-filters and UP-cofilters, co-congruences
and strongly extensional UP- homomorphisms in UP-algebras with apartness.

In addition, we investigated some related properties of them.

1. Introduction

Among many algebraic structures, algebras of logic form important class of
algebras. Examples of these are BCK-algebras, BCI-algebras, BCH-algebras, SU-
algebras, KU-algebras and others. In 2017, the notion of a UP-algebra was first
introduced by A. Iampan in his paper [4]. In the aforementioned article, the au-
thor introduced and analyzed the concepts of UP-ideal, UP-congruence and UP-
homomorphism, also. This logical-algebraic concept has been the subject of con-
siderable research (See, for example [5, 6, 10, 11, 12, 14, 21, 22, 23, 27, 28,
29, 30, 31, 34, 36]). The concept of UP-filters in this class of logical algebras
was introduced by Somjanta et al. et al. in [35]. After that, Iampan and Jun
introduced classes of comparative, implicative and shift UP-filters in UP-algebras
([10, 11, 12]). This author took part in the analysis of filters in UP-algebrs: he
introduced the concept of proper UP-filters and (together with Y. B. Jun) the
concept of weak implicative UP-filters ([29]). The concept of meet-commutative
UP-algebras was introduced in article [33]. In article [15], a number of important
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18 ROMANO

properties of meet-commutative UP-algebras are given. In the last mentioned pa-
per, the concepts of prime UP-filters and irreducible UP-filters in such UP-algebras
are introduced and analyzed. In addition, in such UP-algebras, the concept of prime
of the second kind ([32]) and prime of the third kind ([28]) and weakly irreducible
UP-filters ([31]) was introduced and analyzed.

In this paper, we introduce (Definition 3.3) a new algebraic structure, called a
UP- algebra with apartness, in analogy with the (classical) concept of UP-algebra
and based on the already published articles [25, 26] on some other classes of logical
algebras with apartness. In additional, we introduce and analyze the concept of
UP-coideal, UP-cofilter, UP-cocongruence and UP-homomorphisms in UP-algebras
with apartness. Given a UP-coideal K of a UP-algebra with apartness A allows us
(Theorem 5.1) to design a co-congruence qK on A which allows us (Theorem 5.3)
to construct a UP-algebra [A : qK ] which has no counterpart in the classical theory
of UP-algebras.

The environment in which this research was realized is the Intuitionistic logic
[37]) and the principled-philosophical orientation of the Bishop’s Constructive
mathematics ([1, 2, 7]). Since the principle of TNT (the logical principle of exclu-
sion of the third) is not valid in the Intuitionistic logic, the concept of the set is
treated as a relational system with two associate relations, an equality and a diver-
sity, on a carrier. Therefore, the properties of algebraic structures in a constructive
algebra can be determined not only by equality, but also by diversity.

2. Preliminaries

Our setting is Bishop’s constructive mathematics ([1, 2, 7, 8, 13] and [37]),
mathematics developed with Constructive logic (or Intuitionistic logic [37]) - logic
without the Law of Excluded Middle P ∨ ¬P [TND]. We have to note that ’the
crazy axiom’ ¬P =⇒ (P =⇒ Q) is included in the Constructive logic. Precisely, in
Constructive logic the ’Double Negation Law’ P ⇐⇒ ¬¬P does not hold, but the
following implication P =⇒ ¬¬P holds even in the Minimal logic. In Constructive
logic ’Weak Law of Excluded Middle’ ¬P ∨ ¬¬P does not hold as well. It is
interesting, in Constructive logic the following deduction principle A ∨ B,¬A ⊢ B
holds, but this is impossible to prove without ’the crazy axiom’.

Dual of the equality relations ’=’ in a set A is diversity relation ’̸=’. This last
relation is extensive in terms of equality in the following sense:

= ◦ ̸=⊆ ̸= and ̸= ◦ =⊆ ̸=.

It is obvious that the following connection between these relations is valid:

= ⊆ ¬ ̸=

. In this case for relations = and ̸= we say that they are associate. So, it’s
quite natural to ask the question: Is there the maximal relation ’̸=’ such that it is
associated with equality ’=’?

Generally speaking: Let S be a subset of set (A,=, ̸=) determined by a pred-
icate P. The first task is to construct a dual T of the set S so that the subsets
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¬T = {a ∈ A : ¬(a ∈ T )} and its strong compliment T▹ = {a ∈ A : a ▹ T} have
property P. In addition, T▹ ⊆ ¬T holds.

Let ρ be an equality relation on the set A. For the relation q we say that it is
a co-equality relation to A if and only if the following is valid

q ⊆ ̸=, q−1 = q, q ⊆ q ∗ q.

Here, ’∗’ is the filed product between relations defined by the following way: If α
and β are relations on set A, then filed product β ∗ α of relation α and β is the
relation given by {(x, z) ∈ A × A : (∀y ∈ A)((x, y) ∈ α ∨ (y, z) ∈ β)}. Of course,
the strong compliment q▹ of the relation q is an equivalence in A and the following

q▹ ⊆ ¬q, q ◦ q▹ ⊆ q and q▹ ◦ q ⊆ q

are valid (see, for example, Proposition 1.1 in [24]). In addition, the relation q
called co-congruence on a grupoid (A,=, ̸=, ·) if it is strongly extensional (or, it is
cancellative with respect to apartness).

For couple ρ and q, of a relation of equivalence ρ and a relation of co-equivalence
q, we say it is associated if the following inclusions

ρ ◦ q ⊆ q and q ◦ ρ ⊆ q

are valid.
This investigation is in Bishop’s constructive algebra in sense of papers [3, 9,

17, 18, 19, 20] and books [13], [37] (Chapter 8: Algebra). In this section, we
will describe with more detail of basic concepts in constructive algebra and their
properties.

Let (A,=, ̸=) be a constructive set. The diversity relation ”̸=” is a binary
relation on A, which satisfies the following properties:

¬(x ̸= x), x ̸= y =⇒ y ̸= x, (x ̸= y ∧ y = z) =⇒ x ̸= z.

If it satisfies the following condition

x ̸= z =⇒ (∀y ∈ A)(x ̸= y ∨ y ̸= z),

it is called apartness (A. Heyting). The apartness relation in a set A should not be
regarded as a negation of the equality relation in the set A. It needs to be accept
as one extensive relation on the set A. This relation on the set A is a dual to the
equality relation in A.

For subsets X and Y of A we say that set X is set-set apartness from Y ,
and it is denoted by X ◃▹ Y , if and only if (∀x ∈ X)(∀y ∈ Y )(x ̸= y). We set
x ▹ Y instead of {x} ◃▹ Y , and, of course, x ̸= y instead of {x} ◃▹ {y}. With
X▹ = {x ∈ A : x ◃▹ X} we denote apartness complement of X in A. So, ”◃▹” is a
relation between pairs of subsets of A. and the relation ”▹” is a relation between
elements and a set.

For a function f : (X,=, ̸=) −→ (Y,=, ̸=) we say that it is a strongly extensional
if and only if (∀a, b ∈ X)(f(a) ̸= f(b) =⇒ a ̸= b). A total strongly extensional
function w : X ×X −→ X is an internal operation in X and the couple (X,w) is
a grupoid. It is understood that the following implications are valid

(∀x, y, u, v ∈ X)((x, y) = (u, v) =⇒ w(x, y) = w(u, v)),

(∀x, y, u, v ∈ X)(w(x, y) ̸= w(u, v) =⇒ (x, y) ̸= (u, v)).
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The second implication can be written in the following way

(∀x, y, z ∈ X)((w(x, z) ̸= w(y, z) ∨ w(z, x) ̸= w(z, y)) =⇒ x ̸= y).

Speaking of the classical algebraic language, in this case we talking that the oper-
ation w is left and right cancellative with respect to apartness.

Since in the Constructive logic the logical principe ’Law of Excluded Middle’ is
not valid, in Bishop’s constructive algebra the following relation is also interesting
- a relation symmetric to order relation 6. A relation θ on A is co-order ([19, 20])
on set A if and only if

θ ⊆ ̸= (consistency), θ ⊆ θ ∗ θ (co-transitivity), ̸=⊆ θ ∪ θ−1 (linearity).

The relation θ is left strongly extensional with respect to the internal operation or
left cancellative if

(∀x, y, z ∈ A)((x · z, y · z) ∈ θ =⇒ (x, y) ∈ θ))

and right strongly extensional with respect to the internal operation or right can-
cellative if

(∀x, y, z ∈ A)(z · x, z · y) ∈ θ =⇒ (x, y) ∈ θ)).

holds.
A system (A,=, ̸=, w, θ) is an ordered grupoid under co-order θ if (A,=, ̸=, w)

is a grupoid where the internal operation w is strongly extensional and the relation
θ is a co-order relation on (A,=, ̸=).

At the end of this section we remind readers about the notion ’co-quasiorder
relation’. For a relation determined in A we say ([9, 16, 17, 18, 19, 20]) that
it is a co-quasiorder relation in A if it is a consistent and co-transitive. If ⊀ is
a co-quasiorder relation in set A, then the relation q =⊀ ∪ ⊀−1 is a co-equality
relation in A ([16], Lemma 0).

3. UP-Algebra with Apaertness

We begin this section with the indication of the UP-algebra definition taken
from article [4]

3.1. UP-algebra in the classical sense.

Definition 3.1. ([4], Definition 1.3) An algebra A = (A, ·, 0) of type (2, 0) is
called a (classical) UP- algebra if it satisfies the following axioms:

(UP - 1): (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP - 2): (∀x ∈ A)(0 · x = x),
(UP - 3): (∀x ∈ A)(x · 0 = 0),
(UP - 4): (∀x, y ∈ A)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

A reader can founds several examples of this algebraic structure in the afore-
mentioned article [4]: Examples 1.4-1.6.

The following propositions are very important for the study of UP-algebras.
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Proposition 3.1 ([4], Proposition 1.7). In a UP-algebra A, the following prop-
erties hold:
(1) (∀x ∈ A)(x · x = 0),
(2) (∀x, y, z ∈ A)((x · y = 0 ∧ y · z = 0) =⇒ x · z = 0),
(3) (∀x, y, z ∈ A)(x · y = 0 =⇒ (z · x) · (z · y) = 0),
(4) (∀x, y, z ∈ A)(x · y = 0 =⇒ (y · z) · (x · z) = 0),
(5) (∀x, y ∈ A)(x · (y · x) = 0),
(6) (∀x, y ∈ A)((y · x) · x = 0 ⇐⇒ x = y · x),
(7) (∀x, y ∈ A)(x · (y · y) = 0).

Remark 3.1. Here one should pay reader’s attention that assertions (1) - (5)
and (7) are proved without reference to the axiom (UP - 4).

The order relation 6 in an UP-algebra (A, ·, 0) is introduced by the following
definition

Definition 3.2. ([4]) (∀x, y ∈ A)(x 6 y ⇐⇒ x · y = 0).

The features of this relationship are given by Proposition 1.8 in the article [4].

3.2. UP-Algebra with Apartness. In this subsection, we will introduce the
concept of ’UP-algebras with apartness’.

Definition 3.3. An algebra A = ((A,=, ̸=), ·, 0) of type (2, 0), where the
internal operation · is strongly extensional, is called a (constructive) UP- algebra
with apartness if it satisfies the following axioms:

(UP - 1): (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP - 2): (∀x ∈ A)(0 · x = 0),
(UP - 3): (∀x ∈ A)(x · 0 = x),
(UP - 4a): (∀x, y ∈ A)(x ̸= y =⇒ (x · y ̸= 0 ∨ y · x ̸= 0)).

Without difficulties, the following statement can be proven

Proposition 3.2. If the apartness relation in the set A is tight, then (UP -
4a) implies (UP - 4).

Proof. Let x · y = 0 ∧ y · x = 0 be holds and suppose that x ̸= y. Thus, by
(UP - 4a) we have x · y ̸= 0 ∨ y ·x ̸= 0. It is in a contradiction with the hypothesis.
So, ¬(x ̸= y) and x = y since the apartness is tight. Therefore, the formula (UP -
4) is valid. �

Remark 3.2. The logical environment in which these algebraic structures are
analyzed is the Intuitionistic Logic. That’s why the opposition implication of the
previous implication is not valid in the general case.

Remark 3.3. We remind readers that they should accept that the assertions
(1) - (5) and (7) presented in Proposition 3.1 also are valid in a UP algebra with
apartness. This statement should be linked to our comment in the Remark 3.1.

In the following definition we introduce a co-order in a UP-algebra with apart-
ness.
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Definition 3.4. (∀x, y ∈ A)(x 
 y ⇐⇒ x · y ̸= 0).

In the following three claims, we will show two elementary characteristics of
this relation.

Statement 1. For relations 6 and 
, defined as above, holds

(∀x, y ∈ A)¬(x 6 y ∧ x 
 y).

Statement 2. For relations 6 and 
, defined as above, holds

(∀x, y ∈ A)((y 6 x ∧ y 
 z) =⇒ x 
 z).

Proof. Let x, y, z ∈ A be elements such that y 6 x and y 
 z. Then y 

x or x 
 z by co-transitivity of 
. Thus x 
 z becuase the option y 
 x is
impossible. �

Statement 3. For relation 
, defined as above, holds

(∀x, y ∈ A)(x 
 y =⇒ x ̸= y).

Proof. Let for elements x and y holds x 
 y. Thus x · y ̸= 0. Then, from
x ·y ̸= 0 = y ·y immediately follows x ̸= y by cancelativity of the internal operation
in A with respect to the apartness. �

In the following theorem we describe some special properties of this relation.

Theorem 3.1. In a UP-algebra with apartness ((A,=, ̸=), ·, 0) the following
properties hold

(1a) (∀x ∈ A)¬(x 
 x),
(2a) (∀x, y ∈ A)(x ̸= y =⇒ x 
 y ∨ y 
 x),
(3a) (∀x, y, z ∈ A)(x 
 z =⇒ x 
 y ∨ y 
 z),
(4a) (∀x, y, z ∈ A)(z · x 
 z · y =⇒ x 
 y),
(5a) (∀x, y, z ∈ A)(y · z 
 x · z =⇒ x 
 y),
(6a) (∀x, y ∈ A)(x 
▹ y · x),
(7a) (∀x, y ∈ A)(x 
▹ y · y).

Proof. (1a) Let x be an arbitrary element of UP-algebra with apartness.
Because x · x = 0 holds, we have ¬(x · x ̸= 0). So, ¬(x 
 x) is valid.

(2a) The statement (2a) is the (UP-4a) axiom only written by the co-order
relation 
.

(3a) Let x, yz ∈ A be arbotrary elements of A such that x 
 z. It means
x · z ̸= 0. Thus x · z ̸= (y · z) · (x · z) ∨ (y · z) · (x · z) ̸= 0.

The first case 0 · (x · z) ̸= (y · z) · (x · z) gives 0 ̸= y · z.
The second case (y · z) · (x · z) ̸= 0 gives

0 ̸= (y · z) · ((x · y) · (x · z)) ∨ (y · z) · ((x · y) · (x · z)) ̸= (y · z) · (x · z).

Since the first option is impossible by (UP - 1), from the second option we got
(x · y) · (x · z) ̸= (x · z) = 0 · (x · z) and x · y ̸= 0. Therefore, we are proved the
implication x 
 z =⇒ x 
 y ∨ y 
 z.
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(4a) Suppose z · x 
 z · y. Thus (z · x)(z · y) ̸= 0. From this, by co-transitivity,
we have

0 · ((z · x)(z · y)) ̸= (x · y) · ((z · x)(z · y)) ∨ (x · y) · ((z · x)(z · y)) ̸= 0.

Since the second option is impossible, from the first case we give 0 ̸= x · y.
(5a) Let y · z 
 x · z be holds. This means (y · z) · (x · z) ̸= 0. Thus

(y · z) · (x · z) ̸= (y · z) · ((x · y) · (x · z)) ∨ (y · z) · ((x · y) · (x · z)) ̸= 0.

Since the second option in previous disjunction is impossible, from the first option
we have 0 · (x · z) ̸= (x · z) · (x · z) and finally 0 ̸= x · y.

(6a) Let u, v, x, y be arbitrary elements of A such that u 
 v. Thus u 
 x ∨ x 

y · x ∨ y · x 
 v. Since the second option is impossible by the statement (5) in
Proposition 1.8 in [4], we have u ̸= x or y · x ̸= v. Then (x, y · x) ̸= (u, v).
Therefore x 
▹ y · x holds.

(7a) Let u, v, x, y be arbitrary elements of A such that u 
 v. Thus u 
 x ∨ x 

y ·y ∨ y ·y 
 u. Since the option x 
 y ·y is impossible because x · (y ·y) = x ·0 = 0
we have u ̸= x or y · y ̸= v. Therefore, we have (x, y · y) ̸= (u, v) ∈
. �

So, the relation 
, introduced in Definition 3.4, is a co-order on the set (A,=
, ̸=) left cancellative (the formula (4a)) and right anti-cancellative (the formula
(5a)) with respect to the internal operation in the UP-algebra ((A,=, ̸=), ·, 0) with
apartness.

4. UP-substructues

4.1. UP-idels and UP-coideals. Firstly, let’s recall how the concept of UP-
ideals was introduced into UP-algebra in the initials text.

Definition 4.1. ([4], Definition 2.1) Let A be a UP-algebra. A subset J of A
is called a UP-ideal of A if it satisfies the following properties:

(1) 0 ∈ J , and
(2) (∀x, y, z ∈ A)(x · (y · z) ∈ J ∧ y ∈ J =⇒ x · z ∈ J).

An example of UP-ideal in an UP-algebra readers can seen in Example 2.2 of
the article [4].

In the following definition we introduce the concept of UP-coideals in an UP-
algebra with apartness.

Definition 4.2. Let ((A,=, ̸=), ·, 0) be a UP-algebra with apparntess. A sub-
set K of A is called a UP-coideal of A if it satisfies the following properties:

(1) 0▹K, and
(2) (∀x, y, z ∈ A)(x · z ∈ K =⇒ (x · (y · z) ∈ K ∨ y ∈ K)).

Clearly, A and ∅ are so-call trivial UP-coideals of A.
By the following theorem we describe some fundamental properties of UP-

coideals in a UP-algebra.
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Theorem 4.1. Let A = ((A,=, ̸=), ·, 0) be a UP-algebra with apartness and K
an UP-coideal of A. Then the following statements hold:

(1) (∀x, y ∈ A)(x ∈ K =⇒ (y ∈ K ∨ y · x ∈ K)),
(2) (∀x, y ∈ A)(x · y ∈ K =⇒ y ∈ K),

Proof. Let x, y be arbitrary elements of A such that x ∈ K. Then 0 ·x = x ∈
K. Thus, by definition of the UP-coideal K of UP-algebra A, we have 0 ·(y ·x) ∈ K
or y ∈ K. Finally, we have y · x ∈ K ∨ y ∈ K.

Let x, y be arbitrary elements of A such that x · y ∈ K. Thus x · (y · y) ∈
K ∨ y ∈ K by definition of UP-coideal. Since the first option is impossible because
x · (y · y) = 0▹K we have the option to y ∈ K. �

Corollary 4.1. A UP-coidea K of UP-algebra A with apartness is a strongly
extensional subset of A.

Proof. Let x, y ∈ A arbitrary elements such that y ∈ K. Thus follows x ∈ K
or x · y ∈ K by Theorem 4.1 (1). From the second case follows x · y ̸= 0 = y · y and
x ̸= y. Therefore, the implication y ∈ K =⇒ (x ∈ K ∨ x ̸= y) is valid. So, the
subset K is a strongly extensional subset in A. �

Corollary 4.2. Let K be a UP-coideal of a UP-with apartness. Then the set
K▹ is a UP-ideal of A.

Proof. Let x, y, z, u ∈ A arbitrary elements such that y ∈ K▹, x · (y ·z) ∈ K▹

and u ∈ K. Since the UP-coideal K is a strongly extensional subset of A, thus
x · z ̸= u ∨ x · z ∈ K. From the second option, by definition of UP-coideal K, we
conclude x · (y · z) ∈ K ∨ y ∈ K. Both cases are impossible by the assumptions.
So, we have x · z ̸= u ∈ K. Since u was arbitrary element we got x · z ∈ K▹. Since
it is obvious that 0 ∈ K▹ holds, we have proven that set K▹ are a UP-ideal in
A. �

Corollary 4.3. Let A be an UP-algebra with apartness and K an UP-coideal
of A. Then

(3) (∀x, y ∈ A)(x ∈ K =⇒ (y ∈ K ∨ y 
 x)).

Proof. Let x, y be arbitrary elements of A such that x ∈ K. Thus, by The-
orem 4.1 (1), we have y ∈ K ∨ y · x ∈ K and y ∈ K ∨ y · x ̸= 0. Then we have
y ∈ K ∨ y 
 x. �

Corollary 4.4. Let A be an UP-algebra with apartness and K an UP-coideal
of A. Then

(4) (∀x, a, b ∈ A)(x ∈ K =⇒ (a ∈ K ∨ b ∈ K ∨ b 
 a · x)).

Proof. Let x, a, b ∈ A be arbitrary elements such that x ∈ K. Thus a ∈ K
or a · x ∈ K be theorem 4.1(1). Again, by Theorem 4.1(1), we have

b ∈ K ∨ a ∈ K ∨ b · (a · x) ∈ K.

Since 0▹K, finally we have b ∈ K ∨ a ∈ K ∨ b 
 a · x. �
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Theorem 4.2. Let A be an UP-algebra with apartness and {Ki}i∈I a family
of UP- coideals of A. Then

∪
i∈I Ki is a UP-coideal of A.

Proof. Let x, y, z ∈ A be arbitrary elements such that x · z ∈
∪

i∈I Ki. Thus,
there exists an index i ∈ I such that x · z ∈ Ki. Since Ki is a UP-coideal of A we
have x · (y · z) ∈ Ki or y ∈ Ki. Then x · (y · z) ∈

∪
i∈I Ki or y ∈

∪
i∈I Ki. Hence,∪

i∈I Ki is a UP-coideal of A. �
Corollary 4.5. The family of all UP-coideals of UP-algebra A forms join

semi-lattice.

Remark 4.1. Let {Ki}i∈I a family of UP- coideals of A and let K be family
of all UP-coideals included in the intersection

∩
i∈I Ki. By the previous theorem,∪

{K : K ∈ K} is the maximal UP-coideal included in the intersection
∩

i∈I Ki.
The problem we are faced with is related to the principle-philosophical orientations
of Bishop’s constructive mathematics. To be we able to deal with this set as an
UP coideal, it is necessary to have at least one its constructive algorithm with a
finitely many steps.

In the following theorem we prove that besides the order relation 
 in a UP-
algebra A with the apartness given by definition 3.4, there is a family of order
relations determined by the family of all co-ideals.

Theorem 4.3. Let K be a UP-coideal of UP-algebra A. The the relation ⊀K ,
defined by x ⊀K y ⇐⇒ x ·y ∈ K, is a co-quasiorder in A left cancellative and right
anti-cancellative with respect to the internal operation in A.

Proof. (i) Suppose x ⊀K y for elements x, y ∈ A. Then x · y ∈ K. Thus
x · y ̸= 0 = y · y. So, x ̸= y. Therefore, ⊀K ⊆ ̸= holds and the relation ⊀K is a
consistent relation in A.
(ii) Let x, y, z ∈ A be arbitrary elements of A such that x ⊀K z. Thus x · z ∈ K.

Then x · y ∈ K ∨ (x · y) · (x · z) ∈ K and

x · y ∈ K ∨ y · z ∈ K ∨ (y · z) · ((x · y) · (x · z)) ∈ K.

Since the third option is impossible, we have x ⊀K y y ⊀K z. So, the relation ⊀K

is co-transitive.
(iii) Let x, y, z ∈ A be arbitrary element such that z ·x ⊀K z ·y. Thus (z ·x)·(z ·y) ∈
K. Then (x · y) · ((z · x) · (z · y)) ∈ K ∨ x · y ∈ K. Since, the first option is
impossible, we have x · y ∈ K. So, we have x ⊀K y. Therefore, the relation ⊀K is
left cancellative.
(iv) Let x, y, z ∈ K be arbitrary elements such that y·z ⊀K x·z. Thus (y·z)·(x·z) ∈
K. Then (y · z) · ((x · y) · (x · z)) ∈ K ∨ x · y ∈ K by definition of UP-coideal K.
So x ⊀K y because the second option is impossible by (UP - 1). Therefore, the
relation ⊀K is right anti-cancellative in A. �

Remark 4.2. For any UP-coideal K in UP-algebra A the following implication
x ⊀K y =⇒ x 
 y holds. Indeed. From x ⊀K y we have x · y ∈ K and x · y ̸= 0.
So, x 
 y.
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4.2. UP-filters and UP-cofilters. Recall that the creators of the concept
of UP-filters in an UP-algebra have defined this notion.

Definition 4.3. ([35], Definition 1.11) Let A be a UP-algebra. A subset F of
A is called a UP-filter of A, if it satisfies the following properties:

(i) 0 ∈ F ,
(ii) (∀x, y ∈ A)((x ∈ F ∧ x · y ∈ F ) =⇒ y ∈ F ).

Relying on the understanding of the concept of duality of substructures in alge-
braic structures with apartness, we can now introduce the concept of UP-coflters.

Definition 4.4. Let A be a UP-algebra with apartness. A nonempty subset
G of A is called a UP-cofilter of A, if it satisfies the following properties:

(i) 0▹G,
(ii) (∀x, y ∈ A)(y ∈ G =⇒ (x ∈ G ∨ x · y ∈ G)).

Lemma 4.1. Let G be a UP-cofilter in a UP-algebra with apartness A. Then

(∀x, y ∈ A)(y ∈ G =⇒ (x ∈ G ∨ x 
 y).

Proof. Let x, y ∈ A ne elements such that y ∈ G. Then x ∈ G ∨ x · y ∈ G.
Thus x ∈ G ∨ x 
 y since 0 ̸= x · y ∈ G holds. �

Our first statement about UP-cofilters is:

Statement 4. Any UP-cofiltet G in UP-algebra A with apartness is a strongly
extensional subset of A.

Proof. Let x, y be arbitrary elements of UP-algebra A such that y ∈ G. By
definition of UP-cofilter, we have x ∈ G ∨ x · y ∈ G. From the second option
x · y ∈ G, by 0 ▹ G we have x · y ̸= 0 = y · y. So, finally we have x ∈ G ∨ x ̸= y.
Therefore, the UP-cofilter G is a strongly extensional subset of A. �

The following theorem shows that the concept of UP-cofilter in UP-algebra
with apartness is correctly determined in the sense that a strong compliment G▹

of a UP-cofilter G in a UP-algebra with apartness A is a UP-filter in A.

Theorem 4.4. Let G ne a UP-cofilter in a UP-algebra with apartness A. Then
the set G▹ is a UP-ideal in A.

Proof. It is clear that 0 ∈ G is valid according to part (i) of the Definition
4.4.

Let x, y, t ∈ A be elements of A such that x ∈ G▹, x · y ∈ G▹ and t ∈ G.
Then y ∈ G or y · t ∈ G by (ii) of Definition 4.4. Suppose y ∈ G. Then we would
have x ∈ G ∨ x · y ∈ G which is in contradiction with the chosen hypotheses.
The resulting contradiction disables this choice. The second option y · t ∈ G gives
y · t = y · y ∨ 0 = y · y ∈ G since G is a strongly extensional subset in A by the
previous statement. The option 0 = y · y ∈ G contradicts to (i) in the Definition
4.4. From the option y · t ̸= y · y it follows y ̸= t ∈ G. Thus, y ▹G since t was an
arbitrary element in G. This shows that y ∈ G▹ is valid. �
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Theorem 4.5. Let {Gj}j∈L be a family of UP-coideals in a UP-algebra with
apartness A. Then the set

∪
j∈L Gj is a UP-cofilter in A.

Proof. It is clear that 0▹
∪

j∈L Gj holds.

Let x, y ∈ A be elements such that y ∈
∪

j∈L Gj . Then y ∈ Gj for all j ∈ L.

Thus x ∈ Gj ⊆
∪

j∈L Gj or x · y ∈ Hj ⊆
∪

j∈L Gj . �

Corollary 4.6. The family G(A) of all UP-cofilters in a UP-algebra with
apartness A forms a complete upper semi-lattice.

5. Co-congruence in UP-algebra with apartness

First, let’s look at how the concept of a congruence in the UP algebra (=
equivalence relations associated with the internal operation in the UP algebra) is
introduced.

Definition 5.1. ([4], Definition 3.1) Let A be a UP-algebra and J an UP-ideal
of A. Define the binary relation ∼J on A as follows

(∀x, y ∈ A)(x ∼J y ⇐⇒ (x · y ∈ J ∧ y · x ∈ J)).

This relation is called an equivalence relation on UP-algebra A generated by the
UP-ideal J .

Definition 5.2. ([4], Definition 3.3) Let A be a UP-algebra. An equivalence
relation ϱ on A is called a congruence if

(∀x, y, z ∈ A)(xϱy =⇒ ((x · z)ϱ(y · z) ∧ (z · x)ϱ(z · y))).

The concept of UP-cocongruence on UP-algebra with apartness is introduced
by the following definition.

Definition 5.3. For a co-equality relation q on a UP-algebra with apartness
A it is said that a UP-cocongruence on A if the following holds

(∀x, y, u, v ∈ A)((x · u, y · v) ∈ q =⇒ ((x, y) ∈ q ∨ (y, v) ∈ q)).

Lemma 5.1. The implication in the previous definition is equivalent to the
following two implications

(∀x, y, z ∈ A)((x · z, y · z) ∈ q =⇒ (x, y) ∈ q) and

(∀x, y, z ∈ A)(z · z, z · y) ∈ q =⇒ (x, y) ∈ q).

A co-congruence in UP-algebras with apartness we construct in the following
theorem.

Theorem 5.1. Let A be an UP-algebra with apartness and K a UP-coideal of
A. Define the binary relation qK on A as follows

(∀x, y ∈ A)(xqKy ⇐⇒ (x · y ∈ K ∨ y · x ∈ K)).

This relation is a co-congruence on UP-algebra A generated by the UP-coideal K.
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Proof. Let x, y ∈ A elements such that xqKy. Thus x·y ∈ K ∨ y·x ∈ K. Then
x ⊀K y ∨ y ⊀K x. Since the relation ⊀K is a co-quasiorder relation in UP-algebra,
the the relation qK =⊀K ∪ ⊀K is a co-equality relation in set (A,=, ̸=).

Let x, y, z ∈ A be arbitrary elements such that (z · x)qK(z · y). Thus

z · x ⊀K z · y ∨ z · y ⊀K z · x.

Since by Theorem 4.3 the relation ⊀K in UP-algebra A is left cancellative with
respect to the internal operation in UP-algebra ((A,=, ̸=), ·, 0) we have x ⊀K y ∨
y ⊀K x. Then xqKy.

Let x, y, z ∈ A be arbitrary elements such that (x · z)qK(y · z). Thus

x · z ⊀K y · z ∨ y · z ⊀K x · z.

Since by Theorem 4.3 the relation ⊀K in UP-algebra A is right anti-cancellative
with respect to the internal operation in UP-algebra ((A,=, ̸=), ·, 0) we have y ⊀K

x ∨ x ⊀K y. Then xqKy again.
Therefore, the relation qK is a co-congruence in UP-algebra A. �

Corollary 5.1. Let K be a UP-coideal of UP-algebra A. Then the class
0qK of the co-congruence qK generated by the element 0 is a UP-coideal in A and
0qK = K holds.

Remark 5.1. The relation ̸= (=
 ∪ 
−1) is a co-congruence in UP-algebra
with apartness and for any UP-coideal K the following inclusion qK ⊆ ̸= holds.
Indeed. Suppose xqKy. Then x · y ∈ K ∨ y · x ∈ K. Thus x · y ̸= 0 ∨ y · x ̸= 0.
Therefore x 
 y ∨ y 
 x and x ̸= y.

Let J and K be an associated pair of UP-ideals and UP-coideals in UP-algebra
with apartness A. Then the congruence relation ∼J , generated with J and the
co-congruence relation qK , generated with K, are associated in the following sense

∼J ◦ qK ⊆ qK and qK ◦ ∼J ⊆ qK .

We can design the set A/(∼J , qK) = {[x] : x ∈ A} with [x] := {y ∈ A : x ∼J y}
where

(∀x, y ∈ A)([x] =1 [y] ⇐⇒ x ∼J y ∧ [x] ̸=1 [y] ⇐⇒ (x, y) ∈ qK).

Let us define the internal operation ’∗’ in A/(∼J , qK) as

(∀x, y ∈ A)([x] ∗ [y] := [x · y]).

In what follows we need the following lemma:

Lemma 5.2. The operation ’ ∗’ is correctly defined: it is a strongly extensional
function.

By direct verification it can be established that the following theorem holds

Theorem 5.2. Let J and K be an associated pair of a UP-ideal and UP-coideal
of a UP-algerba with apartness A. Then (A/(∼J , qK), ∗, [0]) is a UP-algebra with
apartness, too.
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Proof. We will only check the condition (UP-4a) since the proof of properties
(UP-1), (UP-2) and (UP-3) completely coincides with the proof demonstrated in
Theorem 3.7 in article [4].

Let x, y ∈ A be elements such that [x] ̸=1 [y]. Then (x, y) ∈ q. This means
x · y ∈ K ∨ y · x ∈ K. Thus x · y ̸= 0 ∨ y · x ̸= 0. �

On the other hand, we can design the set

[A : qK ] := {xqK : x ∈ A},

where

xqK := {y ∈ A : (x, y) ∈ qK} = {y ∈ A : x · y ∈ K y · x ∈ K}
is the class qK of the relation qK generated by the element x and where the equality
and co-equality determined as follows:

(∀x, y ∈ A)(xqK =2 yqK ⇐⇒ (x, y)▹ qK ∧ xqK ̸=2 yqK ⇐⇒ (x, y) ∈ qK).

Let us define the internal operation ’⋆’ in [A : qK ] as

(∀x, y ∈ A)(xqK ⋆ yqK := (x · y)qK).

Let us proved, first, that ⋆ is correctly defined:

Lemma 5.3. ’⋆’ is a strongly extensional total function.

Proof. It is obvious that ⋆ is total.
Let x, y, u, v, s, t ∈ A be elements such that xqK =2 yqK , yqK =2 vqK and

(s, t) ∈ qK . Then (x, u)▹ qK and (y, v)▹ qK . On the other hand, from (s, t) ∈ qK
follows

(s, x · y) ∈ qK ∨ (x · y, u · v) ∈ qK ∨ (u · v, t) ∈ qK .

and

s ̸= x · y ∨ (x, y) ∈ qK ∨ (u, v) ∈ qK ∨ u · v ̸= t.

We have (x ·y, u ·v) ̸= (s, t) ∈ qK since the second and third options are impossible.
This means (x · y, u · v)▹ qK . So, we have

xqK ⋆ yqK = (x · y)qK =2 (u · v)qK = uqK ⋆ vqK

showing that ’⋆’ is a function.
Let x, y, y, v ∈ A be elements such that

xqK ⋆ yqK = (x · y)qK ̸=2 (u · v)qK = uqK ⋆ vqK .

Then (x · y, u · v) ∈ qK . Thus x, u) ∈ qK or (y, v) ∈ qK . Hence xqK ̸=2 yqK or
uqK ̸=2 vqK showing that ’⋆’ is a strongly extensional function. �

The following theorem shows the existence of UP-algebra with apartness gen-
erated by a UP-coideal in a UP-algebra with apartness that has no a counterpart
in the classic theory of UP-algebras.

Theorem 5.3. Let K be a IP-coideal of a UP-algebra with apartness. Then
the structure (([A : qK ],=2, ̸=2), ⋆, K) is a UP-algebra with apartness.
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Proof. Since (y · z) · (y · z) · (x · z)) = 0▹K = 0qK for every x, y, z ∈ A, we
have

((yqK) ⋆ (zqK)) ⋆ (((yqK) ⋆ (zqK)) ⋆ ((xqK) ⋆ (zqK))) =2 0qK .

This shows that the condition (Up-1) for the elements of the set [A : qK ] is valid
formula.

Let x, s, t ∈ A be elements such that (s, t) ∈ qK . Then

(s, t) ∈ qK =⇒ (s, 0 · x) ∈ qK ∨ (0 · x, x) ∈ qK ∨ (x, t) ∈ qK .

Thus (0 · x, x) ̸= (s, t) ∈ qK . this means 0qK ⋆ xqK =2 xqK thus showing that the
adverb (UP-2) is valid for the elements of the set [A : qK ].

Let x, s, t ∈ A be elements such that (s, t) ∈ qK . It follows from here

(s, x · 0) ∈ qK ∨ (x · 0, 0) ∈ qK ∨ (0, t) ∈ qK .

Second option is impossible by (UP-3). So, we have (x · 0, 0) ̸= (s, t) ∈ qK . This
means (x · 0)qK =2 0qK . Finally, we have xqK ⋆ 0qK =2 0qK . Thus, the condition
(UP-3) is a valid formula for all elements of the set [A : qK ].

Let x, y ∈ A be elements such that xqK ̸=2 yqK . Then (x, y) ∈ qK . This means
x · y ∈ K = 0qK ∨ y · z ∈ K = 0qK . Thus (x · y, 0) ∈ qK or (y · x, 0) ∈ qK .
So, finally we have xqK ⋆ yqK ̸=2 0qK or yqK ⋆ xqK ̸=2 0qK thus proving that
condition (UP-4a) is a valid formula in [A : qK ]. �

6. Strongly extensional UP-homomorphism

In this section, we introduce the concept of a strongly extensional homomor-
phism between UP-algebras with apartness. For this purpose we will use the defi-
nition of homomorphism given in article [4] with the assumption that this function
is strongly extensional.

Definition 6.1. Let ((A,=, ̸=), ·, 0) and ((A′,=′, ̸=′), ·′ , 0′
) be UP-algebras

with apartnesses. A strongly extensional mapping f : A −→ A′ is called a (strongly
extensional) UP-homomorphism if the following formula

(∀x, y ∈ A)(f(x · y) =′ f(x) ·
′
f(y)).

is valid.

Remark 6.1. As can be seen, the UP-homomorphisms between UP-algebras
in the classical case are not different from our definition of stromgly extensive UP-
homomorphism between UP algebra with apartness. The differences between these
two concepts of UP homomorphism are recognized when recognizing the environ-
ment in which these objects are observed. The previous definition implies that the
following implications are valid

(∀x, y ∈ A)(x = y =⇒ f(x) =′ f(y)),

(∀x, y ∈ A)(f(x) ̸=′ f(y) =⇒ x ̸= y).

The readers who have experience in reading texts into the Constructive Algebra
can understand the following statements without major difficulty.
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Theorem 6.1. Let ((A,=, ̸=), ·, 0) and ((A′,=′, ̸=′), ·′, 0′) be UP-algebras with
apartness and let f : A −→ B be a strongly extensional UP-homomorphism between
them. Then the following statements hold:

(1) f is a reverse isotone mapping.
(2) If K ′ be UP-coideal of UP-algebra A′, then f−1(K ′) is a UP-coideal in

UP-algebra A. In particular, Coker(f) = {x ∈ A : f(x) ̸=′ 0′} is a UP-coideal in
A and Coker(f) = {x ∈ A : x ̸= 0} is and only if f is an embedding.

Proof. Let x, y ∈ A be elements such that f(x) 
′ f(y). This means that
f(x ·y) =′ f(x) ·′ f(y) ̸=′ 0′ =′ f(0). Then x ·y ̸= 0 by strongly extensionality of the
mapping f . So, x 
 y. Therefore, the mapping f is a reverse isotone se-mapping.

It is clear that 0 ▹ f−1(K ′). Indeed. from f(0) =′ 0′ ▹ f−1(K ′), i.e. from
(∀u ∈ K ′)(f(0) ̸=′ f(u)) it follows (∀v ∈ f−1(K ′))(0 ̸= v) since the mapping f is
a se-mapping. Let x, y ∈ A be elements such that y ∈ f−1(K). Then f(y) ∈ K ′.
Thus f(x) ∈ K ′ ∨ f(x) ̸=′ f(y) because K ′ is a UP-cofilter in the UP-algebra
A′. Hence x ∈ f−1(K ′) ∨ x ̸= y. So, the subset f−1(K ′) is a UP-cofilter in the
UP-algebra A.

Since the subset {u ∈ A′ : u ̸= 0′} is a UP-cofilter in A′, we conclude that the
set f−1({u ∈ A′ : u ̸= 0′) = {x ∈ A : f(x) ̸= 0′} = Coker(f) is a UP-cofilter in A,
according to the second part of this proof.

The last part of the statement of this theorem follows directly from the defini-
tion of the notion of embedding. �

We conclude this section with the following two theorems whose proofs can be
demonstrated by direct verification:

Theorem 6.2. Let A be a UP-algebra with apartness, J and K be associate
a UP-ideal and a UP-coideal of A. Then the mapping πJ,K : A −→ A/(vJ , qK),
defined by πJ,K(x) := [x] for all x ∈ A, is a strongly extensional UP-epimorphism.

Theorem 6.3. Let A be a UP-algerba with apartness and K be a UP-coideal
in A. Then the mapping ϑK : A −→ [A : qK ], defined by ϑK(x) := xqK for all
x ∈ A, is a strongly extensional UP-epimorphism.

7. Conclusion

The environment in which this research was realized is the Intuitionistic logic
and the principle-philosophical orientation of the Bishop’s Constructive mathemat-
ics. In the present paper, we have introduced a new algebraic structure, called a
UP-algebra with apartness and the concepts of UP-coideals and UP-cofilters, co-
congruences and (strongly extensional) UP-homomorphisms in UP-algebras with
apartness and investigated some of its essential properties.

This text, by our opinion, enables to readers to observe the complexity of the
substructures in the UP algebra with apartness and, moreover, the techniques used
in this part of the Constructive Algebra.
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